intelfb: add support for i945G
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44         int min_m, max_m;
45         int min_m1, max_m1;
46         int min_m2, max_m2;
47         int min_n, max_n;
48         int min_p, max_p;
49         int min_p1, max_p1;
50         int min_vco_freq, max_vco_freq;
51         int p_transition_clock;
52         int p_inc_lo, p_inc_hi;
53 };
54
55 #define PLLS_I8xx 0
56 #define PLLS_I9xx 1
57 #define PLLS_MAX 2
58
59 struct pll_min_max plls[PLLS_MAX] = {
60         { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
61         {  75, 120, 10, 20, 5, 9, 4,  7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 }  //I9xx
62 };
63
64 int
65 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
66 {
67         u32 tmp;
68         if (!pdev || !dinfo)
69                 return 1;
70
71         switch (pdev->device) {
72         case PCI_DEVICE_ID_INTEL_830M:
73                 dinfo->name = "Intel(R) 830M";
74                 dinfo->chipset = INTEL_830M;
75                 dinfo->mobile = 1;
76                 dinfo->pll_index = PLLS_I8xx;
77                 return 0;
78         case PCI_DEVICE_ID_INTEL_845G:
79                 dinfo->name = "Intel(R) 845G";
80                 dinfo->chipset = INTEL_845G;
81                 dinfo->mobile = 0;
82                 dinfo->pll_index = PLLS_I8xx;
83                 return 0;
84         case PCI_DEVICE_ID_INTEL_85XGM:
85                 tmp = 0;
86                 dinfo->mobile = 1;
87                 dinfo->pll_index = PLLS_I8xx;
88                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
89                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
90                         INTEL_85X_VARIANT_MASK) {
91                 case INTEL_VAR_855GME:
92                         dinfo->name = "Intel(R) 855GME";
93                         dinfo->chipset = INTEL_855GME;
94                         return 0;
95                 case INTEL_VAR_855GM:
96                         dinfo->name = "Intel(R) 855GM";
97                         dinfo->chipset = INTEL_855GM;
98                         return 0;
99                 case INTEL_VAR_852GME:
100                         dinfo->name = "Intel(R) 852GME";
101                         dinfo->chipset = INTEL_852GME;
102                         return 0;
103                 case INTEL_VAR_852GM:
104                         dinfo->name = "Intel(R) 852GM";
105                         dinfo->chipset = INTEL_852GM;
106                         return 0;
107                 default:
108                         dinfo->name = "Intel(R) 852GM/855GM";
109                         dinfo->chipset = INTEL_85XGM;
110                         return 0;
111                 }
112                 break;
113         case PCI_DEVICE_ID_INTEL_865G:
114                 dinfo->name = "Intel(R) 865G";
115                 dinfo->chipset = INTEL_865G;
116                 dinfo->mobile = 0;
117                 dinfo->pll_index = PLLS_I8xx;
118                 return 0;
119         case PCI_DEVICE_ID_INTEL_915G:
120                 dinfo->name = "Intel(R) 915G";
121                 dinfo->chipset = INTEL_915G;
122                 dinfo->mobile = 0;
123                 dinfo->pll_index = PLLS_I9xx;
124                 return 0;
125         case PCI_DEVICE_ID_INTEL_915GM:
126                 dinfo->name = "Intel(R) 915GM";
127                 dinfo->chipset = INTEL_915GM;
128                 dinfo->mobile = 1;
129                 dinfo->pll_index = PLLS_I9xx;
130                 return 0;
131         case PCI_DEVICE_ID_INTEL_945G:
132                 dinfo->name = "Intel(R) 945G";
133                 dinfo->chipset = INTEL_945G;
134                 dinfo->mobile = 0;
135                 dinfo->pll_index = PLLS_I9xx;
136                 return 0;
137         default:
138                 return 1;
139         }
140 }
141
142 int
143 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
144                      int *stolen_size)
145 {
146         struct pci_dev *bridge_dev;
147         u16 tmp;
148
149         if (!pdev || !aperture_size || !stolen_size)
150                 return 1;
151
152         /* Find the bridge device.  It is always 0:0.0 */
153         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
154                 ERR_MSG("cannot find bridge device\n");
155                 return 1;
156         }
157
158         /* Get the fb aperture size and "stolen" memory amount. */
159         tmp = 0;
160         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
161         switch (pdev->device) {
162         case PCI_DEVICE_ID_INTEL_830M:
163         case PCI_DEVICE_ID_INTEL_845G:
164                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
165                         *aperture_size = MB(64);
166                 else
167                         *aperture_size = MB(128);
168                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
169                 case INTEL_830_GMCH_GMS_STOLEN_512:
170                         *stolen_size = KB(512) - KB(132);
171                         return 0;
172                 case INTEL_830_GMCH_GMS_STOLEN_1024:
173                         *stolen_size = MB(1) - KB(132);
174                         return 0;
175                 case INTEL_830_GMCH_GMS_STOLEN_8192:
176                         *stolen_size = MB(8) - KB(132);
177                         return 0;
178                 case INTEL_830_GMCH_GMS_LOCAL:
179                         ERR_MSG("only local memory found\n");
180                         return 1;
181                 case INTEL_830_GMCH_GMS_DISABLED:
182                         ERR_MSG("video memory is disabled\n");
183                         return 1;
184                 default:
185                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
186                                 tmp & INTEL_830_GMCH_GMS_MASK);
187                         return 1;
188                 }
189                 break;
190         default:
191                 *aperture_size = MB(128);
192                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
193                 case INTEL_855_GMCH_GMS_STOLEN_1M:
194                         *stolen_size = MB(1) - KB(132);
195                         return 0;
196                 case INTEL_855_GMCH_GMS_STOLEN_4M:
197                         *stolen_size = MB(4) - KB(132);
198                         return 0;
199                 case INTEL_855_GMCH_GMS_STOLEN_8M:
200                         *stolen_size = MB(8) - KB(132);
201                         return 0;
202                 case INTEL_855_GMCH_GMS_STOLEN_16M:
203                         *stolen_size = MB(16) - KB(132);
204                         return 0;
205                 case INTEL_855_GMCH_GMS_STOLEN_32M:
206                         *stolen_size = MB(32) - KB(132);
207                         return 0;
208                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
209                         *stolen_size = MB(48) - KB(132);
210                         return 0;
211                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
212                         *stolen_size = MB(64) - KB(132);
213                         return 0;
214                 case INTEL_855_GMCH_GMS_DISABLED:
215                         ERR_MSG("video memory is disabled\n");
216                         return 0;
217                 default:
218                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
219                                 tmp & INTEL_855_GMCH_GMS_MASK);
220                         return 1;
221                 }
222         }
223 }
224
225 int
226 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
227 {
228         int dvo = 0;
229
230         if (INREG(LVDS) & PORT_ENABLE)
231                 dvo |= LVDS_PORT;
232         if (INREG(DVOA) & PORT_ENABLE)
233                 dvo |= DVOA_PORT;
234         if (INREG(DVOB) & PORT_ENABLE)
235                 dvo |= DVOB_PORT;
236         if (INREG(DVOC) & PORT_ENABLE)
237                 dvo |= DVOC_PORT;
238
239         return dvo;
240 }
241
242 const char *
243 intelfbhw_dvo_to_string(int dvo)
244 {
245         if (dvo & DVOA_PORT)
246                 return "DVO port A";
247         else if (dvo & DVOB_PORT)
248                 return "DVO port B";
249         else if (dvo & DVOC_PORT)
250                 return "DVO port C";
251         else if (dvo & LVDS_PORT)
252                 return "LVDS port";
253         else
254                 return NULL;
255 }
256
257
258 int
259 intelfbhw_validate_mode(struct intelfb_info *dinfo,
260                         struct fb_var_screeninfo *var)
261 {
262         int bytes_per_pixel;
263         int tmp;
264
265 #if VERBOSE > 0
266         DBG_MSG("intelfbhw_validate_mode\n");
267 #endif
268
269         bytes_per_pixel = var->bits_per_pixel / 8;
270         if (bytes_per_pixel == 3)
271                 bytes_per_pixel = 4;
272
273         /* Check if enough video memory. */
274         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
275         if (tmp > dinfo->fb.size) {
276                 WRN_MSG("Not enough video ram for mode "
277                         "(%d KByte vs %d KByte).\n",
278                         BtoKB(tmp), BtoKB(dinfo->fb.size));
279                 return 1;
280         }
281
282         /* Check if x/y limits are OK. */
283         if (var->xres - 1 > HACTIVE_MASK) {
284                 WRN_MSG("X resolution too large (%d vs %d).\n",
285                         var->xres, HACTIVE_MASK + 1);
286                 return 1;
287         }
288         if (var->yres - 1 > VACTIVE_MASK) {
289                 WRN_MSG("Y resolution too large (%d vs %d).\n",
290                         var->yres, VACTIVE_MASK + 1);
291                 return 1;
292         }
293
294         /* Check for interlaced/doublescan modes. */
295         if (var->vmode & FB_VMODE_INTERLACED) {
296                 WRN_MSG("Mode is interlaced.\n");
297                 return 1;
298         }
299         if (var->vmode & FB_VMODE_DOUBLE) {
300                 WRN_MSG("Mode is double-scan.\n");
301                 return 1;
302         }
303
304         /* Check if clock is OK. */
305         tmp = 1000000000 / var->pixclock;
306         if (tmp < MIN_CLOCK) {
307                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
308                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
309                 return 1;
310         }
311         if (tmp > MAX_CLOCK) {
312                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
313                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
314                 return 1;
315         }
316
317         return 0;
318 }
319
320 int
321 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
322 {
323         struct intelfb_info *dinfo = GET_DINFO(info);
324         u32 offset, xoffset, yoffset;
325
326 #if VERBOSE > 0
327         DBG_MSG("intelfbhw_pan_display\n");
328 #endif
329
330         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
331         yoffset = var->yoffset;
332
333         if ((xoffset + var->xres > var->xres_virtual) ||
334             (yoffset + var->yres > var->yres_virtual))
335                 return -EINVAL;
336
337         offset = (yoffset * dinfo->pitch) +
338                  (xoffset * var->bits_per_pixel) / 8;
339
340         offset += dinfo->fb.offset << 12;
341
342         OUTREG(DSPABASE, offset);
343
344         return 0;
345 }
346
347 /* Blank the screen. */
348 void
349 intelfbhw_do_blank(int blank, struct fb_info *info)
350 {
351         struct intelfb_info *dinfo = GET_DINFO(info);
352         u32 tmp;
353
354 #if VERBOSE > 0
355         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
356 #endif
357
358         /* Turn plane A on or off */
359         tmp = INREG(DSPACNTR);
360         if (blank)
361                 tmp &= ~DISPPLANE_PLANE_ENABLE;
362         else
363                 tmp |= DISPPLANE_PLANE_ENABLE;
364         OUTREG(DSPACNTR, tmp);
365         /* Flush */
366         tmp = INREG(DSPABASE);
367         OUTREG(DSPABASE, tmp);
368
369         /* Turn off/on the HW cursor */
370 #if VERBOSE > 0
371         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
372 #endif
373         if (dinfo->cursor_on) {
374                 if (blank) {
375                         intelfbhw_cursor_hide(dinfo);
376                 } else {
377                         intelfbhw_cursor_show(dinfo);
378                 }
379                 dinfo->cursor_on = 1;
380         }
381         dinfo->cursor_blanked = blank;
382
383         /* Set DPMS level */
384         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
385         switch (blank) {
386         case FB_BLANK_UNBLANK:
387         case FB_BLANK_NORMAL:
388                 tmp |= ADPA_DPMS_D0;
389                 break;
390         case FB_BLANK_VSYNC_SUSPEND:
391                 tmp |= ADPA_DPMS_D1;
392                 break;
393         case FB_BLANK_HSYNC_SUSPEND:
394                 tmp |= ADPA_DPMS_D2;
395                 break;
396         case FB_BLANK_POWERDOWN:
397                 tmp |= ADPA_DPMS_D3;
398                 break;
399         }
400         OUTREG(ADPA, tmp);
401
402         return;
403 }
404
405
406 void
407 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
408                     unsigned red, unsigned green, unsigned blue,
409                     unsigned transp)
410 {
411 #if VERBOSE > 0
412         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
413                 regno, red, green, blue);
414 #endif
415
416         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
417                           PALETTE_A : PALETTE_B;
418
419         OUTREG(palette_reg + (regno << 2),
420                (red << PALETTE_8_RED_SHIFT) |
421                (green << PALETTE_8_GREEN_SHIFT) |
422                (blue << PALETTE_8_BLUE_SHIFT));
423 }
424
425
426 int
427 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
428                         int flag)
429 {
430         int i;
431
432 #if VERBOSE > 0
433         DBG_MSG("intelfbhw_read_hw_state\n");
434 #endif
435
436         if (!hw || !dinfo)
437                 return -1;
438
439         /* Read in as much of the HW state as possible. */
440         hw->vga0_divisor = INREG(VGA0_DIVISOR);
441         hw->vga1_divisor = INREG(VGA1_DIVISOR);
442         hw->vga_pd = INREG(VGAPD);
443         hw->dpll_a = INREG(DPLL_A);
444         hw->dpll_b = INREG(DPLL_B);
445         hw->fpa0 = INREG(FPA0);
446         hw->fpa1 = INREG(FPA1);
447         hw->fpb0 = INREG(FPB0);
448         hw->fpb1 = INREG(FPB1);
449
450         if (flag == 1)
451                 return flag;
452
453 #if 0
454         /* This seems to be a problem with the 852GM/855GM */
455         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
456                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
457                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
458         }
459 #endif
460
461         if (flag == 2)
462                 return flag;
463
464         hw->htotal_a = INREG(HTOTAL_A);
465         hw->hblank_a = INREG(HBLANK_A);
466         hw->hsync_a = INREG(HSYNC_A);
467         hw->vtotal_a = INREG(VTOTAL_A);
468         hw->vblank_a = INREG(VBLANK_A);
469         hw->vsync_a = INREG(VSYNC_A);
470         hw->src_size_a = INREG(SRC_SIZE_A);
471         hw->bclrpat_a = INREG(BCLRPAT_A);
472         hw->htotal_b = INREG(HTOTAL_B);
473         hw->hblank_b = INREG(HBLANK_B);
474         hw->hsync_b = INREG(HSYNC_B);
475         hw->vtotal_b = INREG(VTOTAL_B);
476         hw->vblank_b = INREG(VBLANK_B);
477         hw->vsync_b = INREG(VSYNC_B);
478         hw->src_size_b = INREG(SRC_SIZE_B);
479         hw->bclrpat_b = INREG(BCLRPAT_B);
480
481         if (flag == 3)
482                 return flag;
483
484         hw->adpa = INREG(ADPA);
485         hw->dvoa = INREG(DVOA);
486         hw->dvob = INREG(DVOB);
487         hw->dvoc = INREG(DVOC);
488         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
489         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
490         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
491         hw->lvds = INREG(LVDS);
492
493         if (flag == 4)
494                 return flag;
495
496         hw->pipe_a_conf = INREG(PIPEACONF);
497         hw->pipe_b_conf = INREG(PIPEBCONF);
498         hw->disp_arb = INREG(DISPARB);
499
500         if (flag == 5)
501                 return flag;
502
503         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
504         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
505         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
506         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
507
508         if (flag == 6)
509                 return flag;
510
511         for (i = 0; i < 4; i++) {
512                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
513                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
514         }
515
516         if (flag == 7)
517                 return flag;
518
519         hw->cursor_size = INREG(CURSOR_SIZE);
520
521         if (flag == 8)
522                 return flag;
523
524         hw->disp_a_ctrl = INREG(DSPACNTR);
525         hw->disp_b_ctrl = INREG(DSPBCNTR);
526         hw->disp_a_base = INREG(DSPABASE);
527         hw->disp_b_base = INREG(DSPBBASE);
528         hw->disp_a_stride = INREG(DSPASTRIDE);
529         hw->disp_b_stride = INREG(DSPBSTRIDE);
530
531         if (flag == 9)
532                 return flag;
533
534         hw->vgacntrl = INREG(VGACNTRL);
535
536         if (flag == 10)
537                 return flag;
538
539         hw->add_id = INREG(ADD_ID);
540
541         if (flag == 11)
542                 return flag;
543
544         for (i = 0; i < 7; i++) {
545                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
546                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
547                 if (i < 3)
548                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
549         }
550
551         for (i = 0; i < 8; i++)
552                 hw->fence[i] = INREG(FENCE + (i << 2));
553
554         hw->instpm = INREG(INSTPM);
555         hw->mem_mode = INREG(MEM_MODE);
556         hw->fw_blc_0 = INREG(FW_BLC_0);
557         hw->fw_blc_1 = INREG(FW_BLC_1);
558
559         return 0;
560 }
561
562
563 static int calc_vclock3(int index, int m, int n, int p)
564 {
565         return PLL_REFCLK * m / n / p;
566 }
567                        
568 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
569 {
570         switch(index)
571         {
572         case PLLS_I9xx:
573                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
574                          ((p1)) * (p2 ? 10 : 5)));
575         case PLLS_I8xx:
576         default:
577                 return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / 
578                          ((p1+2) * (1 << (p2 + 1)))));
579         }
580 }
581
582 void
583 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
584 {
585 #if REGDUMP
586         int i, m1, m2, n, p1, p2;
587         int index = dinfo->pll_index;
588         DBG_MSG("intelfbhw_print_hw_state\n");
589         
590         if (!hw || !dinfo)
591                 return;
592         /* Read in as much of the HW state as possible. */
593         printk("hw state dump start\n");
594         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
595         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
596         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
597         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
598         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
599         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
600         if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
601                 p1 = 0;
602         else
603                 p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
604         p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
605         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
606                m1, m2, n, p1, p2);
607         printk("        VGA0: clock is %d\n", 
608                calc_vclock(index, m1, m2, n, p1, p2));
609         
610         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
611         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
612         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
613         if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
614                 p1 = 0;
615         else
616                 p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
617         p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
618         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
619                m1, m2, n, p1, p2);
620         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
621         
622         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
623         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
624         printk("        FPA0:                   0x%08x\n", hw->fpa0);
625         printk("        FPA1:                   0x%08x\n", hw->fpa1);
626         printk("        FPB0:                   0x%08x\n", hw->fpb0);
627         printk("        FPB1:                   0x%08x\n", hw->fpb1);
628         
629         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
630         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
631         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
632         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
633                 p1 = 0;
634         else
635                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
636         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
637         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
638                m1, m2, n, p1, p2);
639         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
640         
641         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
642         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
643         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
644         if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
645                 p1 = 0;
646         else
647                 p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
648         p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
649         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
650                m1, m2, n, p1, p2);
651         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
652         
653 #if 0
654         printk("        PALETTE_A:\n");
655         for (i = 0; i < PALETTE_8_ENTRIES)
656                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
657         printk("        PALETTE_B:\n");
658         for (i = 0; i < PALETTE_8_ENTRIES)
659                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
660 #endif
661
662         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
663         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
664         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
665         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
666         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
667         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
668         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
669         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
670         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
671         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
672         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
673         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
674         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
675         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
676         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
677         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
678
679         printk("        ADPA:                   0x%08x\n", hw->adpa);
680         printk("        DVOA:                   0x%08x\n", hw->dvoa);
681         printk("        DVOB:                   0x%08x\n", hw->dvob);
682         printk("        DVOC:                   0x%08x\n", hw->dvoc);
683         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
684         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
685         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
686         printk("        LVDS:                   0x%08x\n", hw->lvds);
687
688         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
689         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
690         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
691
692         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
693         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
694         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
695         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
696
697         printk("        CURSOR_A_PALETTE:       ");
698         for (i = 0; i < 4; i++) {
699                 printk("0x%08x", hw->cursor_a_palette[i]);
700                 if (i < 3)
701                         printk(", ");
702         }
703         printk("\n");
704         printk("        CURSOR_B_PALETTE:       ");
705         for (i = 0; i < 4; i++) {
706                 printk("0x%08x", hw->cursor_b_palette[i]);
707                 if (i < 3)
708                         printk(", ");
709         }
710         printk("\n");
711
712         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
713
714         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
715         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
716         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
717         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
718         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
719         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
720
721         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
722         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
723
724         for (i = 0; i < 7; i++) {
725                 printk("        SWF0%d                  0x%08x\n", i,
726                         hw->swf0x[i]);
727         }
728         for (i = 0; i < 7; i++) {
729                 printk("        SWF1%d                  0x%08x\n", i,
730                         hw->swf1x[i]);
731         }
732         for (i = 0; i < 3; i++) {
733                 printk("        SWF3%d                  0x%08x\n", i,
734                        hw->swf3x[i]);
735         }
736         for (i = 0; i < 8; i++)
737                 printk("        FENCE%d                 0x%08x\n", i,
738                        hw->fence[i]);
739                        
740         printk("        INSTPM                  0x%08x\n", hw->instpm);
741         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
742         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
743         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
744
745         printk("hw state dump end\n");
746 #endif
747 }
748
749                
750
751 /* Split the M parameter into M1 and M2. */
752 static int
753 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
754 {
755         int m1, m2;
756         int testm;
757         /* no point optimising too much - brute force m */
758         for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++)
759         {
760           for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++)
761           {
762             testm  = ( 5 * ( m1 + 2 )) + (m2 + 2);
763             if (testm == m)
764             {
765                 *retm1 = (unsigned int)m1;
766                 *retm2 = (unsigned int)m2;            
767                 return 0;
768             }
769           }
770         }
771         return 1;
772 }
773
774 /* Split the P parameter into P1 and P2. */
775 static int
776 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
777 {
778         int p1, p2;
779
780         if (index == PLLS_I9xx)
781         {
782                 p1 = (p / 10) + 1;
783                 p2 = 0;
784                 
785                 *retp1 = (unsigned int)p1;
786                 *retp2 = (unsigned int)p2;
787                 return 0;
788         }
789
790         if (index == PLLS_I8xx)
791         {
792                 if (p % 4 == 0)
793                         p2 = 1;
794                 else
795                         p2 = 0;
796                 p1 = (p / (1 << (p2 + 1))) - 2;
797                 if (p % 4 == 0 && p1 < plls[index].min_p1) {
798                         p2 = 0;
799                         p1 = (p / (1 << (p2 + 1))) - 2;
800                 }
801                 if (p1  < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
802                         return 1;
803                 } else {
804                         *retp1 = (unsigned int)p1;
805                         *retp2 = (unsigned int)p2;
806                         return 0;
807                 }
808         }
809         return 1;
810 }
811
812 static int
813 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
814                 u32 *retp2, u32 *retclock)
815 {
816         u32 m1, m2, n, p1, p2, n1;
817         u32 f_vco, p, p_best = 0, m, f_out;
818         u32 err_max, err_target, err_best = 10000000;
819         u32 n_best = 0, m_best = 0, f_best, f_err;
820         u32 p_min, p_max, p_inc, div_min, div_max;
821
822         /* Accept 0.5% difference, but aim for 0.1% */
823         err_max = 5 * clock / 1000;
824         err_target = clock / 1000;
825
826         DBG_MSG("Clock is %d\n", clock);
827
828         div_max = plls[index].max_vco_freq / clock;
829         div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
830
831         if (clock <= plls[index].p_transition_clock)
832                 p_inc = plls[index].p_inc_lo;
833         else
834                 p_inc = plls[index].p_inc_hi;
835         p_min = ROUND_UP_TO(div_min, p_inc);
836         p_max = ROUND_DOWN_TO(div_max, p_inc);
837         if (p_min < plls[index].min_p)
838                 p_min = plls[index].min_p;
839         if (p_max > plls[index].max_p)
840                 p_max = plls[index].max_p;
841
842         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
843
844         p = p_min;
845         do {
846                 if (splitp(index, p, &p1, &p2)) {
847                         WRN_MSG("cannot split p = %d\n", p);
848                         p += p_inc;
849                         continue;
850                 }
851                 n = plls[index].min_n;
852                 f_vco = clock * p;
853
854                 do {
855                         m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
856                         if (m < plls[index].min_m)
857                                 m = plls[index].min_m;
858                         if (m > plls[index].max_m)
859                                 m = plls[index].max_m;
860                         f_out = calc_vclock3(index, m, n, p);
861                         if (splitm(index, m, &m1, &m2)) {
862                                 WRN_MSG("cannot split m = %d\n", m);
863                                 n++;
864                                 continue;
865                         }
866                         if (clock > f_out)
867                                 f_err = clock - f_out;
868                         else
869                                 f_err = f_out - clock;
870
871                         if (f_err < err_best) {
872                                 m_best = m;
873                                 n_best = n;
874                                 p_best = p;
875                                 f_best = f_out;
876                                 err_best = f_err;
877                         }
878                         n++;
879                 } while ((n <= plls[index].max_n) && (f_out >= clock));
880                 p += p_inc;
881         } while ((p <= p_max));
882
883         if (!m_best) {
884                 WRN_MSG("cannot find parameters for clock %d\n", clock);
885                 return 1;
886         }
887         m = m_best;
888         n = n_best;
889         p = p_best;
890         splitm(index, m, &m1, &m2);
891         splitp(index, p, &p1, &p2);
892         n1 = n - 2;
893
894         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
895                 "f: %d (%d), VCO: %d\n",
896                 m, m1, m2, n, n1, p, p1, p2,
897                 calc_vclock3(index, m, n, p), 
898                 calc_vclock(index, m1, m2, n1, p1, p2),
899                 calc_vclock3(index, m, n, p) * p);
900         *retm1 = m1;
901         *retm2 = m2;
902         *retn = n1;
903         *retp1 = p1;
904         *retp2 = p2;
905         *retclock = calc_vclock(index, m1, m2, n1, p1, p2);
906
907         return 0;
908 }
909
910 static __inline__ int
911 check_overflow(u32 value, u32 limit, const char *description)
912 {
913         if (value > limit) {
914                 WRN_MSG("%s value %d exceeds limit %d\n",
915                         description, value, limit);
916                 return 1;
917         }
918         return 0;
919 }
920
921 /* It is assumed that hw is filled in with the initial state information. */
922 int
923 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
924                      struct fb_var_screeninfo *var)
925 {
926         int pipe = PIPE_A;
927         u32 *dpll, *fp0, *fp1;
928         u32 m1, m2, n, p1, p2, clock_target, clock;
929         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
930         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
931         u32 vsync_pol, hsync_pol;
932         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
933
934         DBG_MSG("intelfbhw_mode_to_hw\n");
935
936         /* Disable VGA */
937         hw->vgacntrl |= VGA_DISABLE;
938
939         /* Check whether pipe A or pipe B is enabled. */
940         if (hw->pipe_a_conf & PIPECONF_ENABLE)
941                 pipe = PIPE_A;
942         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
943                 pipe = PIPE_B;
944
945         /* Set which pipe's registers will be set. */
946         if (pipe == PIPE_B) {
947                 dpll = &hw->dpll_b;
948                 fp0 = &hw->fpb0;
949                 fp1 = &hw->fpb1;
950                 hs = &hw->hsync_b;
951                 hb = &hw->hblank_b;
952                 ht = &hw->htotal_b;
953                 vs = &hw->vsync_b;
954                 vb = &hw->vblank_b;
955                 vt = &hw->vtotal_b;
956                 ss = &hw->src_size_b;
957                 pipe_conf = &hw->pipe_b_conf;
958         } else {
959                 dpll = &hw->dpll_a;
960                 fp0 = &hw->fpa0;
961                 fp1 = &hw->fpa1;
962                 hs = &hw->hsync_a;
963                 hb = &hw->hblank_a;
964                 ht = &hw->htotal_a;
965                 vs = &hw->vsync_a;
966                 vb = &hw->vblank_a;
967                 vt = &hw->vtotal_a;
968                 ss = &hw->src_size_a;
969                 pipe_conf = &hw->pipe_a_conf;
970         }
971
972         /* Use ADPA register for sync control. */
973         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
974
975         /* sync polarity */
976         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
977                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
978         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
979                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
980         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
981                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
982         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
983                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
984
985         /* Connect correct pipe to the analog port DAC */
986         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
987         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
988
989         /* Set DPMS state to D0 (on) */
990         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
991         hw->adpa |= ADPA_DPMS_D0;
992
993         hw->adpa |= ADPA_DAC_ENABLE;
994
995         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
996         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
997         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
998
999         /* Desired clock in kHz */
1000         clock_target = 1000000000 / var->pixclock;
1001
1002         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
1003                 WRN_MSG("calc_pll_params failed\n");
1004                 return 1;
1005         }
1006
1007         /* Check for overflow. */
1008         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1009                 return 1;
1010         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1011                 return 1;
1012         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1013                 return 1;
1014         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1015                 return 1;
1016         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1017                 return 1;
1018
1019         *dpll &= ~DPLL_P1_FORCE_DIV2;
1020         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1021                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1022         *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1023         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1024                (m1 << FP_M1_DIVISOR_SHIFT) |
1025                (m2 << FP_M2_DIVISOR_SHIFT);
1026         *fp1 = *fp0;
1027
1028         hw->dvob &= ~PORT_ENABLE;
1029         hw->dvoc &= ~PORT_ENABLE;
1030
1031         /* Use display plane A. */
1032         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1033         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1034         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1035         switch (intelfb_var_to_depth(var)) {
1036         case 8:
1037                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1038                 break;
1039         case 15:
1040                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1041                 break;
1042         case 16:
1043                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1044                 break;
1045         case 24:
1046                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1047                 break;
1048         }
1049         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1050         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1051
1052         /* Set CRTC registers. */
1053         hactive = var->xres;
1054         hsync_start = hactive + var->right_margin;
1055         hsync_end = hsync_start + var->hsync_len;
1056         htotal = hsync_end + var->left_margin;
1057         hblank_start = hactive;
1058         hblank_end = htotal;
1059
1060         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1061                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1062                 hblank_end);
1063
1064         vactive = var->yres;
1065         vsync_start = vactive + var->lower_margin;
1066         vsync_end = vsync_start + var->vsync_len;
1067         vtotal = vsync_end + var->upper_margin;
1068         vblank_start = vactive;
1069         vblank_end = vtotal;
1070         vblank_end = vsync_end + 1;
1071
1072         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1073                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1074                 vblank_end);
1075
1076         /* Adjust for register values, and check for overflow. */
1077         hactive--;
1078         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1079                 return 1;
1080         hsync_start--;
1081         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1082                 return 1;
1083         hsync_end--;
1084         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1085                 return 1;
1086         htotal--;
1087         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1088                 return 1;
1089         hblank_start--;
1090         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1091                 return 1;
1092         hblank_end--;
1093         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1094                 return 1;
1095
1096         vactive--;
1097         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1098                 return 1;
1099         vsync_start--;
1100         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1101                 return 1;
1102         vsync_end--;
1103         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1104                 return 1;
1105         vtotal--;
1106         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1107                 return 1;
1108         vblank_start--;
1109         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1110                 return 1;
1111         vblank_end--;
1112         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1113                 return 1;
1114
1115         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1116         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1117               (hblank_end << HSYNCEND_SHIFT);
1118         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1119
1120         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1121         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1122               (vblank_end << VSYNCEND_SHIFT);
1123         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1124         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1125               (vactive << SRC_SIZE_VERT_SHIFT);
1126
1127         hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1128         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1129
1130         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1131                           var->xoffset * var->bits_per_pixel / 8;
1132
1133         hw->disp_a_base += dinfo->fb.offset << 12;
1134
1135         /* Check stride alignment. */
1136         if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1137                 WRN_MSG("display stride %d has bad alignment %d\n",
1138                         hw->disp_a_stride, STRIDE_ALIGNMENT);
1139                 return 1;
1140         }
1141
1142         /* Set the palette to 8-bit mode. */
1143         *pipe_conf &= ~PIPECONF_GAMMA;
1144         return 0;
1145 }
1146
1147 /* Program a (non-VGA) video mode. */
1148 int
1149 intelfbhw_program_mode(struct intelfb_info *dinfo,
1150                      const struct intelfb_hwstate *hw, int blank)
1151 {
1152         int pipe = PIPE_A;
1153         u32 tmp;
1154         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1155         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1156         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1157         u32 hsync_reg, htotal_reg, hblank_reg;
1158         u32 vsync_reg, vtotal_reg, vblank_reg;
1159         u32 src_size_reg;
1160
1161         /* Assume single pipe, display plane A, analog CRT. */
1162
1163 #if VERBOSE > 0
1164         DBG_MSG("intelfbhw_program_mode\n");
1165 #endif
1166
1167         /* Disable VGA */
1168         tmp = INREG(VGACNTRL);
1169         tmp |= VGA_DISABLE;
1170         OUTREG(VGACNTRL, tmp);
1171
1172         /* Check whether pipe A or pipe B is enabled. */
1173         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1174                 pipe = PIPE_A;
1175         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1176                 pipe = PIPE_B;
1177
1178         dinfo->pipe = pipe;
1179
1180         if (pipe == PIPE_B) {
1181                 dpll = &hw->dpll_b;
1182                 fp0 = &hw->fpb0;
1183                 fp1 = &hw->fpb1;
1184                 pipe_conf = &hw->pipe_b_conf;
1185                 hs = &hw->hsync_b;
1186                 hb = &hw->hblank_b;
1187                 ht = &hw->htotal_b;
1188                 vs = &hw->vsync_b;
1189                 vb = &hw->vblank_b;
1190                 vt = &hw->vtotal_b;
1191                 ss = &hw->src_size_b;
1192                 dpll_reg = DPLL_B;
1193                 fp0_reg = FPB0;
1194                 fp1_reg = FPB1;
1195                 pipe_conf_reg = PIPEBCONF;
1196                 hsync_reg = HSYNC_B;
1197                 htotal_reg = HTOTAL_B;
1198                 hblank_reg = HBLANK_B;
1199                 vsync_reg = VSYNC_B;
1200                 vtotal_reg = VTOTAL_B;
1201                 vblank_reg = VBLANK_B;
1202                 src_size_reg = SRC_SIZE_B;
1203         } else {
1204                 dpll = &hw->dpll_a;
1205                 fp0 = &hw->fpa0;
1206                 fp1 = &hw->fpa1;
1207                 pipe_conf = &hw->pipe_a_conf;
1208                 hs = &hw->hsync_a;
1209                 hb = &hw->hblank_a;
1210                 ht = &hw->htotal_a;
1211                 vs = &hw->vsync_a;
1212                 vb = &hw->vblank_a;
1213                 vt = &hw->vtotal_a;
1214                 ss = &hw->src_size_a;
1215                 dpll_reg = DPLL_A;
1216                 fp0_reg = FPA0;
1217                 fp1_reg = FPA1;
1218                 pipe_conf_reg = PIPEACONF;
1219                 hsync_reg = HSYNC_A;
1220                 htotal_reg = HTOTAL_A;
1221                 hblank_reg = HBLANK_A;
1222                 vsync_reg = VSYNC_A;
1223                 vtotal_reg = VTOTAL_A;
1224                 vblank_reg = VBLANK_A;
1225                 src_size_reg = SRC_SIZE_A;
1226         }
1227
1228         /* Disable planes A and B. */
1229         tmp = INREG(DSPACNTR);
1230         tmp &= ~DISPPLANE_PLANE_ENABLE;
1231         OUTREG(DSPACNTR, tmp);
1232         tmp = INREG(DSPBCNTR);
1233         tmp &= ~DISPPLANE_PLANE_ENABLE;
1234         OUTREG(DSPBCNTR, tmp);
1235
1236         /* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1237         mdelay(20);
1238
1239         /* Disable Sync */
1240         tmp = INREG(ADPA);
1241         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1242         tmp |= ADPA_DPMS_D3;
1243         OUTREG(ADPA, tmp);
1244
1245         /* turn off pipe */
1246         tmp = INREG(pipe_conf_reg);
1247         tmp &= ~PIPECONF_ENABLE;
1248         OUTREG(pipe_conf_reg, tmp);
1249
1250         /* turn off PLL */
1251         tmp = INREG(dpll_reg);
1252         dpll_reg &= ~DPLL_VCO_ENABLE;
1253         OUTREG(dpll_reg, tmp);
1254
1255         /* Set PLL parameters */
1256         OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1257         OUTREG(fp0_reg, *fp0);
1258         OUTREG(fp1_reg, *fp1);
1259
1260         /* Set pipe parameters */
1261         OUTREG(hsync_reg, *hs);
1262         OUTREG(hblank_reg, *hb);
1263         OUTREG(htotal_reg, *ht);
1264         OUTREG(vsync_reg, *vs);
1265         OUTREG(vblank_reg, *vb);
1266         OUTREG(vtotal_reg, *vt);
1267         OUTREG(src_size_reg, *ss);
1268
1269         /* Set DVOs B/C */
1270         OUTREG(DVOB, hw->dvob);
1271         OUTREG(DVOC, hw->dvoc);
1272
1273         /* Set ADPA */
1274         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1275
1276         /* Enable PLL */
1277         tmp = INREG(dpll_reg);
1278         tmp |= DPLL_VCO_ENABLE;
1279         OUTREG(dpll_reg, tmp);
1280
1281         /* Enable pipe */
1282         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1283
1284         /* Enable sync */
1285         tmp = INREG(ADPA);
1286         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1287         tmp |= ADPA_DPMS_D0;
1288         OUTREG(ADPA, tmp);
1289
1290         /* setup display plane */
1291         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1292                 /*
1293                  *      i830M errata: the display plane must be enabled
1294                  *      to allow writes to the other bits in the plane
1295                  *      control register.
1296                  */
1297                 tmp = INREG(DSPACNTR);
1298                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1299                         tmp |= DISPPLANE_PLANE_ENABLE;
1300                         OUTREG(DSPACNTR, tmp);
1301                         OUTREG(DSPACNTR,
1302                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1303                         mdelay(1);
1304               }
1305         }
1306
1307         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1308         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1309         OUTREG(DSPABASE, hw->disp_a_base);
1310
1311         /* Enable plane */
1312         if (!blank) {
1313                 tmp = INREG(DSPACNTR);
1314                 tmp |= DISPPLANE_PLANE_ENABLE;
1315                 OUTREG(DSPACNTR, tmp);
1316                 OUTREG(DSPABASE, hw->disp_a_base);
1317         }
1318
1319         return 0;
1320 }
1321
1322 /* forward declarations */
1323 static void refresh_ring(struct intelfb_info *dinfo);
1324 static void reset_state(struct intelfb_info *dinfo);
1325 static void do_flush(struct intelfb_info *dinfo);
1326
1327 static int
1328 wait_ring(struct intelfb_info *dinfo, int n)
1329 {
1330         int i = 0;
1331         unsigned long end;
1332         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1333
1334 #if VERBOSE > 0
1335         DBG_MSG("wait_ring: %d\n", n);
1336 #endif
1337
1338         end = jiffies + (HZ * 3);
1339         while (dinfo->ring_space < n) {
1340                 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1341                                                    RING_HEAD_MASK);
1342                 if (dinfo->ring_tail + RING_MIN_FREE <
1343                     (u32 __iomem) dinfo->ring_head)
1344                         dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1345                                 - (dinfo->ring_tail + RING_MIN_FREE);
1346                 else
1347                         dinfo->ring_space = (dinfo->ring.size +
1348                                              (u32 __iomem) dinfo->ring_head)
1349                                 - (dinfo->ring_tail + RING_MIN_FREE);
1350                 if ((u32 __iomem) dinfo->ring_head != last_head) {
1351                         end = jiffies + (HZ * 3);
1352                         last_head = (u32 __iomem) dinfo->ring_head;
1353                 }
1354                 i++;
1355                 if (time_before(end, jiffies)) {
1356                         if (!i) {
1357                                 /* Try again */
1358                                 reset_state(dinfo);
1359                                 refresh_ring(dinfo);
1360                                 do_flush(dinfo);
1361                                 end = jiffies + (HZ * 3);
1362                                 i = 1;
1363                         } else {
1364                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1365                                         dinfo->ring_space, n);
1366                                 WRN_MSG("lockup - turning off hardware "
1367                                         "acceleration\n");
1368                                 dinfo->ring_lockup = 1;
1369                                 break;
1370                         }
1371                 }
1372                 udelay(1);
1373         }
1374         return i;
1375 }
1376
1377 static void
1378 do_flush(struct intelfb_info *dinfo) {
1379         START_RING(2);
1380         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1381         OUT_RING(MI_NOOP);
1382         ADVANCE_RING();
1383 }
1384
1385 void
1386 intelfbhw_do_sync(struct intelfb_info *dinfo)
1387 {
1388 #if VERBOSE > 0
1389         DBG_MSG("intelfbhw_do_sync\n");
1390 #endif
1391
1392         if (!dinfo->accel)
1393                 return;
1394
1395         /*
1396          * Send a flush, then wait until the ring is empty.  This is what
1397          * the XFree86 driver does, and actually it doesn't seem a lot worse
1398          * than the recommended method (both have problems).
1399          */
1400         do_flush(dinfo);
1401         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1402         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1403 }
1404
1405 static void
1406 refresh_ring(struct intelfb_info *dinfo)
1407 {
1408 #if VERBOSE > 0
1409         DBG_MSG("refresh_ring\n");
1410 #endif
1411
1412         dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1413                                            RING_HEAD_MASK);
1414         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1415         if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1416                 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1417                         - (dinfo->ring_tail + RING_MIN_FREE);
1418         else
1419                 dinfo->ring_space = (dinfo->ring.size +
1420                                      (u32 __iomem) dinfo->ring_head)
1421                         - (dinfo->ring_tail + RING_MIN_FREE);
1422 }
1423
1424 static void
1425 reset_state(struct intelfb_info *dinfo)
1426 {
1427         int i;
1428         u32 tmp;
1429
1430 #if VERBOSE > 0
1431         DBG_MSG("reset_state\n");
1432 #endif
1433
1434         for (i = 0; i < FENCE_NUM; i++)
1435                 OUTREG(FENCE + (i << 2), 0);
1436
1437         /* Flush the ring buffer if it's enabled. */
1438         tmp = INREG(PRI_RING_LENGTH);
1439         if (tmp & RING_ENABLE) {
1440 #if VERBOSE > 0
1441                 DBG_MSG("reset_state: ring was enabled\n");
1442 #endif
1443                 refresh_ring(dinfo);
1444                 intelfbhw_do_sync(dinfo);
1445                 DO_RING_IDLE();
1446         }
1447
1448         OUTREG(PRI_RING_LENGTH, 0);
1449         OUTREG(PRI_RING_HEAD, 0);
1450         OUTREG(PRI_RING_TAIL, 0);
1451         OUTREG(PRI_RING_START, 0);
1452 }
1453
1454 /* Stop the 2D engine, and turn off the ring buffer. */
1455 void
1456 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1457 {
1458 #if VERBOSE > 0
1459         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1460                 dinfo->ring_active);
1461 #endif
1462
1463         if (!dinfo->accel)
1464                 return;
1465
1466         dinfo->ring_active = 0;
1467         reset_state(dinfo);
1468 }
1469
1470 /*
1471  * Enable the ring buffer, and initialise the 2D engine.
1472  * It is assumed that the graphics engine has been stopped by previously
1473  * calling intelfb_2d_stop().
1474  */
1475 void
1476 intelfbhw_2d_start(struct intelfb_info *dinfo)
1477 {
1478 #if VERBOSE > 0
1479         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1480                 dinfo->accel, dinfo->ring_active);
1481 #endif
1482
1483         if (!dinfo->accel)
1484                 return;
1485
1486         /* Initialise the primary ring buffer. */
1487         OUTREG(PRI_RING_LENGTH, 0);
1488         OUTREG(PRI_RING_TAIL, 0);
1489         OUTREG(PRI_RING_HEAD, 0);
1490
1491         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1492         OUTREG(PRI_RING_LENGTH,
1493                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1494                 RING_NO_REPORT | RING_ENABLE);
1495         refresh_ring(dinfo);
1496         dinfo->ring_active = 1;
1497 }
1498
1499 /* 2D fillrect (solid fill or invert) */
1500 void
1501 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1502                       u32 color, u32 pitch, u32 bpp, u32 rop)
1503 {
1504         u32 br00, br09, br13, br14, br16;
1505
1506 #if VERBOSE > 0
1507         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1508                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1509 #endif
1510
1511         br00 = COLOR_BLT_CMD;
1512         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1513         br13 = (rop << ROP_SHIFT) | pitch;
1514         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1515         br16 = color;
1516
1517         switch (bpp) {
1518         case 8:
1519                 br13 |= COLOR_DEPTH_8;
1520                 break;
1521         case 16:
1522                 br13 |= COLOR_DEPTH_16;
1523                 break;
1524         case 32:
1525                 br13 |= COLOR_DEPTH_32;
1526                 br00 |= WRITE_ALPHA | WRITE_RGB;
1527                 break;
1528         }
1529
1530         START_RING(6);
1531         OUT_RING(br00);
1532         OUT_RING(br13);
1533         OUT_RING(br14);
1534         OUT_RING(br09);
1535         OUT_RING(br16);
1536         OUT_RING(MI_NOOP);
1537         ADVANCE_RING();
1538
1539 #if VERBOSE > 0
1540         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1541                 dinfo->ring_tail, dinfo->ring_space);
1542 #endif
1543 }
1544
1545 void
1546 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1547                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1548 {
1549         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1550
1551 #if VERBOSE > 0
1552         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1553                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1554 #endif
1555
1556         br00 = XY_SRC_COPY_BLT_CMD;
1557         br09 = dinfo->fb_start;
1558         br11 = (pitch << PITCH_SHIFT);
1559         br12 = dinfo->fb_start;
1560         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1561         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1562         br23 = ((dstx + w) << WIDTH_SHIFT) |
1563                ((dsty + h) << HEIGHT_SHIFT);
1564         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1565
1566         switch (bpp) {
1567         case 8:
1568                 br13 |= COLOR_DEPTH_8;
1569                 break;
1570         case 16:
1571                 br13 |= COLOR_DEPTH_16;
1572                 break;
1573         case 32:
1574                 br13 |= COLOR_DEPTH_32;
1575                 br00 |= WRITE_ALPHA | WRITE_RGB;
1576                 break;
1577         }
1578
1579         START_RING(8);
1580         OUT_RING(br00);
1581         OUT_RING(br13);
1582         OUT_RING(br22);
1583         OUT_RING(br23);
1584         OUT_RING(br09);
1585         OUT_RING(br26);
1586         OUT_RING(br11);
1587         OUT_RING(br12);
1588         ADVANCE_RING();
1589 }
1590
1591 int
1592 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1593                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1594 {
1595         int nbytes, ndwords, pad, tmp;
1596         u32 br00, br09, br13, br18, br19, br22, br23;
1597         int dat, ix, iy, iw;
1598         int i, j;
1599
1600 #if VERBOSE > 0
1601         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1602 #endif
1603
1604         /* size in bytes of a padded scanline */
1605         nbytes = ROUND_UP_TO(w, 16) / 8;
1606
1607         /* Total bytes of padded scanline data to write out. */
1608         nbytes = nbytes * h;
1609
1610         /*
1611          * Check if the glyph data exceeds the immediate mode limit.
1612          * It would take a large font (1K pixels) to hit this limit.
1613          */
1614         if (nbytes > MAX_MONO_IMM_SIZE)
1615                 return 0;
1616
1617         /* Src data is packaged a dword (32-bit) at a time. */
1618         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1619
1620         /*
1621          * Ring has to be padded to a quad word. But because the command starts
1622            with 7 bytes, pad only if there is an even number of ndwords
1623          */
1624         pad = !(ndwords % 2);
1625
1626         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1627         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1628         br09 = dinfo->fb_start;
1629         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1630         br18 = bg;
1631         br19 = fg;
1632         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1633         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1634
1635         switch (bpp) {
1636         case 8:
1637                 br13 |= COLOR_DEPTH_8;
1638                 break;
1639         case 16:
1640                 br13 |= COLOR_DEPTH_16;
1641                 break;
1642         case 32:
1643                 br13 |= COLOR_DEPTH_32;
1644                 br00 |= WRITE_ALPHA | WRITE_RGB;
1645                 break;
1646         }
1647
1648         START_RING(8 + ndwords);
1649         OUT_RING(br00);
1650         OUT_RING(br13);
1651         OUT_RING(br22);
1652         OUT_RING(br23);
1653         OUT_RING(br09);
1654         OUT_RING(br18);
1655         OUT_RING(br19);
1656         ix = iy = 0;
1657         iw = ROUND_UP_TO(w, 8) / 8;
1658         while (ndwords--) {
1659                 dat = 0;
1660                 for (j = 0; j < 2; ++j) {
1661                         for (i = 0; i < 2; ++i) {
1662                                 if (ix != iw || i == 0)
1663                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1664                         }
1665                         if (ix == iw && iy != (h-1)) {
1666                                 ix = 0;
1667                                 ++iy;
1668                         }
1669                 }
1670                 OUT_RING(dat);
1671         }
1672         if (pad)
1673                 OUT_RING(MI_NOOP);
1674         ADVANCE_RING();
1675
1676         return 1;
1677 }
1678
1679 /* HW cursor functions. */
1680 void
1681 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1682 {
1683         u32 tmp;
1684
1685 #if VERBOSE > 0
1686         DBG_MSG("intelfbhw_cursor_init\n");
1687 #endif
1688
1689         if (dinfo->mobile) {
1690                 if (!dinfo->cursor.physical)
1691                         return;
1692                 tmp = INREG(CURSOR_A_CONTROL);
1693                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1694                          CURSOR_MEM_TYPE_LOCAL |
1695                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1696                 tmp |= CURSOR_MODE_DISABLE;
1697                 OUTREG(CURSOR_A_CONTROL, tmp);
1698                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1699         } else {
1700                 tmp = INREG(CURSOR_CONTROL);
1701                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1702                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1703                 tmp = CURSOR_FORMAT_3C;
1704                 OUTREG(CURSOR_CONTROL, tmp);
1705                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1706                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1707                       (64 << CURSOR_SIZE_V_SHIFT);
1708                 OUTREG(CURSOR_SIZE, tmp);
1709         }
1710 }
1711
1712 void
1713 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1714 {
1715         u32 tmp;
1716
1717 #if VERBOSE > 0
1718         DBG_MSG("intelfbhw_cursor_hide\n");
1719 #endif
1720
1721         dinfo->cursor_on = 0;
1722         if (dinfo->mobile) {
1723                 if (!dinfo->cursor.physical)
1724                         return;
1725                 tmp = INREG(CURSOR_A_CONTROL);
1726                 tmp &= ~CURSOR_MODE_MASK;
1727                 tmp |= CURSOR_MODE_DISABLE;
1728                 OUTREG(CURSOR_A_CONTROL, tmp);
1729                 /* Flush changes */
1730                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1731         } else {
1732                 tmp = INREG(CURSOR_CONTROL);
1733                 tmp &= ~CURSOR_ENABLE;
1734                 OUTREG(CURSOR_CONTROL, tmp);
1735         }
1736 }
1737
1738 void
1739 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1740 {
1741         u32 tmp;
1742
1743 #if VERBOSE > 0
1744         DBG_MSG("intelfbhw_cursor_show\n");
1745 #endif
1746
1747         dinfo->cursor_on = 1;
1748
1749         if (dinfo->cursor_blanked)
1750                 return;
1751
1752         if (dinfo->mobile) {
1753                 if (!dinfo->cursor.physical)
1754                         return;
1755                 tmp = INREG(CURSOR_A_CONTROL);
1756                 tmp &= ~CURSOR_MODE_MASK;
1757                 tmp |= CURSOR_MODE_64_4C_AX;
1758                 OUTREG(CURSOR_A_CONTROL, tmp);
1759                 /* Flush changes */
1760                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1761         } else {
1762                 tmp = INREG(CURSOR_CONTROL);
1763                 tmp |= CURSOR_ENABLE;
1764                 OUTREG(CURSOR_CONTROL, tmp);
1765         }
1766 }
1767
1768 void
1769 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1770 {
1771         u32 tmp;
1772
1773 #if VERBOSE > 0
1774         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1775 #endif
1776
1777         /*
1778          * Sets the position.  The coordinates are assumed to already
1779          * have any offset adjusted.  Assume that the cursor is never
1780          * completely off-screen, and that x, y are always >= 0.
1781          */
1782
1783         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1784               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1785         OUTREG(CURSOR_A_POSITION, tmp);
1786 }
1787
1788 void
1789 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1790 {
1791 #if VERBOSE > 0
1792         DBG_MSG("intelfbhw_cursor_setcolor\n");
1793 #endif
1794
1795         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1796         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1797         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1798         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1799 }
1800
1801 void
1802 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1803                       u8 *data)
1804 {
1805         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1806         int i, j, w = width / 8;
1807         int mod = width % 8, t_mask, d_mask;
1808
1809 #if VERBOSE > 0
1810         DBG_MSG("intelfbhw_cursor_load\n");
1811 #endif
1812
1813         if (!dinfo->cursor.virtual)
1814                 return;
1815
1816         t_mask = 0xff >> mod;
1817         d_mask = ~(0xff >> mod);
1818         for (i = height; i--; ) {
1819                 for (j = 0; j < w; j++) {
1820                         writeb(0x00, addr + j);
1821                         writeb(*(data++), addr + j+8);
1822                 }
1823                 if (mod) {
1824                         writeb(t_mask, addr + j);
1825                         writeb(*(data++) & d_mask, addr + j+8);
1826                 }
1827                 addr += 16;
1828         }
1829 }
1830
1831 void
1832 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1833         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1834         int i, j;
1835
1836 #if VERBOSE > 0
1837         DBG_MSG("intelfbhw_cursor_reset\n");
1838 #endif
1839
1840         if (!dinfo->cursor.virtual)
1841                 return;
1842
1843         for (i = 64; i--; ) {
1844                 for (j = 0; j < 8; j++) {
1845                         writeb(0xff, addr + j+0);
1846                         writeb(0x00, addr + j+8);
1847                 }
1848                 addr += 16;
1849         }
1850 }