Merge branch 'linus' into cont_syslog
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/delay.h>
28 #include <linux/fb.h>
29 #include <linux/ioport.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/interrupt.h>
35
36 #include <asm/io.h>
37
38 #include "intelfb.h"
39 #include "intelfbhw.h"
40
41 struct pll_min_max {
42         int min_m, max_m, min_m1, max_m1;
43         int min_m2, max_m2, min_n, max_n;
44         int min_p, max_p, min_p1, max_p1;
45         int min_vco, max_vco, p_transition_clk, ref_clk;
46         int p_inc_lo, p_inc_hi;
47 };
48
49 #define PLLS_I8xx 0
50 #define PLLS_I9xx 1
51 #define PLLS_MAX 2
52
53 static struct pll_min_max plls[PLLS_MAX] = {
54         { 108, 140, 18, 26,
55           6, 16, 3, 16,
56           4, 128, 0, 31,
57           930000, 1400000, 165000, 48000,
58           4, 2 },               /* I8xx */
59
60         { 75, 120, 10, 20,
61           5, 9, 4, 7,
62           5, 80, 1, 8,
63           1400000, 2800000, 200000, 96000,
64           10, 5 }               /* I9xx */
65 };
66
67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
68 {
69         u32 tmp;
70         if (!pdev || !dinfo)
71                 return 1;
72
73         switch (pdev->device) {
74         case PCI_DEVICE_ID_INTEL_830M:
75                 dinfo->name = "Intel(R) 830M";
76                 dinfo->chipset = INTEL_830M;
77                 dinfo->mobile = 1;
78                 dinfo->pll_index = PLLS_I8xx;
79                 return 0;
80         case PCI_DEVICE_ID_INTEL_845G:
81                 dinfo->name = "Intel(R) 845G";
82                 dinfo->chipset = INTEL_845G;
83                 dinfo->mobile = 0;
84                 dinfo->pll_index = PLLS_I8xx;
85                 return 0;
86         case PCI_DEVICE_ID_INTEL_854:
87                 dinfo->mobile = 1;
88                 dinfo->name = "Intel(R) 854";
89                 dinfo->chipset = INTEL_854;
90                 return 0;
91         case PCI_DEVICE_ID_INTEL_85XGM:
92                 tmp = 0;
93                 dinfo->mobile = 1;
94                 dinfo->pll_index = PLLS_I8xx;
95                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97                         INTEL_85X_VARIANT_MASK) {
98                 case INTEL_VAR_855GME:
99                         dinfo->name = "Intel(R) 855GME";
100                         dinfo->chipset = INTEL_855GME;
101                         return 0;
102                 case INTEL_VAR_855GM:
103                         dinfo->name = "Intel(R) 855GM";
104                         dinfo->chipset = INTEL_855GM;
105                         return 0;
106                 case INTEL_VAR_852GME:
107                         dinfo->name = "Intel(R) 852GME";
108                         dinfo->chipset = INTEL_852GME;
109                         return 0;
110                 case INTEL_VAR_852GM:
111                         dinfo->name = "Intel(R) 852GM";
112                         dinfo->chipset = INTEL_852GM;
113                         return 0;
114                 default:
115                         dinfo->name = "Intel(R) 852GM/855GM";
116                         dinfo->chipset = INTEL_85XGM;
117                         return 0;
118                 }
119                 break;
120         case PCI_DEVICE_ID_INTEL_865G:
121                 dinfo->name = "Intel(R) 865G";
122                 dinfo->chipset = INTEL_865G;
123                 dinfo->mobile = 0;
124                 dinfo->pll_index = PLLS_I8xx;
125                 return 0;
126         case PCI_DEVICE_ID_INTEL_915G:
127                 dinfo->name = "Intel(R) 915G";
128                 dinfo->chipset = INTEL_915G;
129                 dinfo->mobile = 0;
130                 dinfo->pll_index = PLLS_I9xx;
131                 return 0;
132         case PCI_DEVICE_ID_INTEL_915GM:
133                 dinfo->name = "Intel(R) 915GM";
134                 dinfo->chipset = INTEL_915GM;
135                 dinfo->mobile = 1;
136                 dinfo->pll_index = PLLS_I9xx;
137                 return 0;
138         case PCI_DEVICE_ID_INTEL_945G:
139                 dinfo->name = "Intel(R) 945G";
140                 dinfo->chipset = INTEL_945G;
141                 dinfo->mobile = 0;
142                 dinfo->pll_index = PLLS_I9xx;
143                 return 0;
144         case PCI_DEVICE_ID_INTEL_945GM:
145                 dinfo->name = "Intel(R) 945GM";
146                 dinfo->chipset = INTEL_945GM;
147                 dinfo->mobile = 1;
148                 dinfo->pll_index = PLLS_I9xx;
149                 return 0;
150         case PCI_DEVICE_ID_INTEL_945GME:
151                 dinfo->name = "Intel(R) 945GME";
152                 dinfo->chipset = INTEL_945GME;
153                 dinfo->mobile = 1;
154                 dinfo->pll_index = PLLS_I9xx;
155                 return 0;
156         case PCI_DEVICE_ID_INTEL_965G:
157                 dinfo->name = "Intel(R) 965G";
158                 dinfo->chipset = INTEL_965G;
159                 dinfo->mobile = 0;
160                 dinfo->pll_index = PLLS_I9xx;
161                 return 0;
162         case PCI_DEVICE_ID_INTEL_965GM:
163                 dinfo->name = "Intel(R) 965GM";
164                 dinfo->chipset = INTEL_965GM;
165                 dinfo->mobile = 1;
166                 dinfo->pll_index = PLLS_I9xx;
167                 return 0;
168         default:
169                 return 1;
170         }
171 }
172
173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174                          int *stolen_size)
175 {
176         struct pci_dev *bridge_dev;
177         u16 tmp;
178         int stolen_overhead;
179
180         if (!pdev || !aperture_size || !stolen_size)
181                 return 1;
182
183         /* Find the bridge device.  It is always 0:0.0 */
184         if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
185                 ERR_MSG("cannot find bridge device\n");
186                 return 1;
187         }
188
189         /* Get the fb aperture size and "stolen" memory amount. */
190         tmp = 0;
191         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
192         pci_dev_put(bridge_dev);
193
194         switch (pdev->device) {
195         case PCI_DEVICE_ID_INTEL_915G:
196         case PCI_DEVICE_ID_INTEL_915GM:
197         case PCI_DEVICE_ID_INTEL_945G:
198         case PCI_DEVICE_ID_INTEL_945GM:
199         case PCI_DEVICE_ID_INTEL_945GME:
200         case PCI_DEVICE_ID_INTEL_965G:
201         case PCI_DEVICE_ID_INTEL_965GM:
202                 /* 915, 945 and 965 chipsets support a 256MB aperture.
203                    Aperture size is determined by inspected the
204                    base address of the aperture. */
205                 if (pci_resource_start(pdev, 2) & 0x08000000)
206                         *aperture_size = MB(128);
207                 else
208                         *aperture_size = MB(256);
209                 break;
210         default:
211                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
212                         *aperture_size = MB(64);
213                 else
214                         *aperture_size = MB(128);
215                 break;
216         }
217
218         /* Stolen memory size is reduced by the GTT and the popup.
219            GTT is 1K per MB of aperture size, and popup is 4K. */
220         stolen_overhead = (*aperture_size / MB(1)) + 4;
221         switch(pdev->device) {
222         case PCI_DEVICE_ID_INTEL_830M:
223         case PCI_DEVICE_ID_INTEL_845G:
224                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
225                 case INTEL_830_GMCH_GMS_STOLEN_512:
226                         *stolen_size = KB(512) - KB(stolen_overhead);
227                         return 0;
228                 case INTEL_830_GMCH_GMS_STOLEN_1024:
229                         *stolen_size = MB(1) - KB(stolen_overhead);
230                         return 0;
231                 case INTEL_830_GMCH_GMS_STOLEN_8192:
232                         *stolen_size = MB(8) - KB(stolen_overhead);
233                         return 0;
234                 case INTEL_830_GMCH_GMS_LOCAL:
235                         ERR_MSG("only local memory found\n");
236                         return 1;
237                 case INTEL_830_GMCH_GMS_DISABLED:
238                         ERR_MSG("video memory is disabled\n");
239                         return 1;
240                 default:
241                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
242                                 tmp & INTEL_830_GMCH_GMS_MASK);
243                         return 1;
244                 }
245                 break;
246         default:
247                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
248                 case INTEL_855_GMCH_GMS_STOLEN_1M:
249                         *stolen_size = MB(1) - KB(stolen_overhead);
250                         return 0;
251                 case INTEL_855_GMCH_GMS_STOLEN_4M:
252                         *stolen_size = MB(4) - KB(stolen_overhead);
253                         return 0;
254                 case INTEL_855_GMCH_GMS_STOLEN_8M:
255                         *stolen_size = MB(8) - KB(stolen_overhead);
256                         return 0;
257                 case INTEL_855_GMCH_GMS_STOLEN_16M:
258                         *stolen_size = MB(16) - KB(stolen_overhead);
259                         return 0;
260                 case INTEL_855_GMCH_GMS_STOLEN_32M:
261                         *stolen_size = MB(32) - KB(stolen_overhead);
262                         return 0;
263                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
264                         *stolen_size = MB(48) - KB(stolen_overhead);
265                         return 0;
266                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
267                         *stolen_size = MB(64) - KB(stolen_overhead);
268                         return 0;
269                 case INTEL_855_GMCH_GMS_DISABLED:
270                         ERR_MSG("video memory is disabled\n");
271                         return 0;
272                 default:
273                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
274                                 tmp & INTEL_855_GMCH_GMS_MASK);
275                         return 1;
276                 }
277         }
278 }
279
280 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
281 {
282         int dvo = 0;
283
284         if (INREG(LVDS) & PORT_ENABLE)
285                 dvo |= LVDS_PORT;
286         if (INREG(DVOA) & PORT_ENABLE)
287                 dvo |= DVOA_PORT;
288         if (INREG(DVOB) & PORT_ENABLE)
289                 dvo |= DVOB_PORT;
290         if (INREG(DVOC) & PORT_ENABLE)
291                 dvo |= DVOC_PORT;
292
293         return dvo;
294 }
295
296 const char * intelfbhw_dvo_to_string(int dvo)
297 {
298         if (dvo & DVOA_PORT)
299                 return "DVO port A";
300         else if (dvo & DVOB_PORT)
301                 return "DVO port B";
302         else if (dvo & DVOC_PORT)
303                 return "DVO port C";
304         else if (dvo & LVDS_PORT)
305                 return "LVDS port";
306         else
307                 return NULL;
308 }
309
310
311 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
312                             struct fb_var_screeninfo *var)
313 {
314         int bytes_per_pixel;
315         int tmp;
316
317 #if VERBOSE > 0
318         DBG_MSG("intelfbhw_validate_mode\n");
319 #endif
320
321         bytes_per_pixel = var->bits_per_pixel / 8;
322         if (bytes_per_pixel == 3)
323                 bytes_per_pixel = 4;
324
325         /* Check if enough video memory. */
326         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
327         if (tmp > dinfo->fb.size) {
328                 WRN_MSG("Not enough video ram for mode "
329                         "(%d KByte vs %d KByte).\n",
330                         BtoKB(tmp), BtoKB(dinfo->fb.size));
331                 return 1;
332         }
333
334         /* Check if x/y limits are OK. */
335         if (var->xres - 1 > HACTIVE_MASK) {
336                 WRN_MSG("X resolution too large (%d vs %d).\n",
337                         var->xres, HACTIVE_MASK + 1);
338                 return 1;
339         }
340         if (var->yres - 1 > VACTIVE_MASK) {
341                 WRN_MSG("Y resolution too large (%d vs %d).\n",
342                         var->yres, VACTIVE_MASK + 1);
343                 return 1;
344         }
345         if (var->xres < 4) {
346                 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
347                 return 1;
348         }
349         if (var->yres < 4) {
350                 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
351                 return 1;
352         }
353
354         /* Check for doublescan modes. */
355         if (var->vmode & FB_VMODE_DOUBLE) {
356                 WRN_MSG("Mode is double-scan.\n");
357                 return 1;
358         }
359
360         if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
361                 WRN_MSG("Odd number of lines in interlaced mode\n");
362                 return 1;
363         }
364
365         /* Check if clock is OK. */
366         tmp = 1000000000 / var->pixclock;
367         if (tmp < MIN_CLOCK) {
368                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
369                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
370                 return 1;
371         }
372         if (tmp > MAX_CLOCK) {
373                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
374                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
375                 return 1;
376         }
377
378         return 0;
379 }
380
381 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
382 {
383         struct intelfb_info *dinfo = GET_DINFO(info);
384         u32 offset, xoffset, yoffset;
385
386 #if VERBOSE > 0
387         DBG_MSG("intelfbhw_pan_display\n");
388 #endif
389
390         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
391         yoffset = var->yoffset;
392
393         if ((xoffset + var->xres > var->xres_virtual) ||
394             (yoffset + var->yres > var->yres_virtual))
395                 return -EINVAL;
396
397         offset = (yoffset * dinfo->pitch) +
398                  (xoffset * var->bits_per_pixel) / 8;
399
400         offset += dinfo->fb.offset << 12;
401
402         dinfo->vsync.pan_offset = offset;
403         if ((var->activate & FB_ACTIVATE_VBL) &&
404             !intelfbhw_enable_irq(dinfo))
405                 dinfo->vsync.pan_display = 1;
406         else {
407                 dinfo->vsync.pan_display = 0;
408                 OUTREG(DSPABASE, offset);
409         }
410
411         return 0;
412 }
413
414 /* Blank the screen. */
415 void intelfbhw_do_blank(int blank, struct fb_info *info)
416 {
417         struct intelfb_info *dinfo = GET_DINFO(info);
418         u32 tmp;
419
420 #if VERBOSE > 0
421         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
422 #endif
423
424         /* Turn plane A on or off */
425         tmp = INREG(DSPACNTR);
426         if (blank)
427                 tmp &= ~DISPPLANE_PLANE_ENABLE;
428         else
429                 tmp |= DISPPLANE_PLANE_ENABLE;
430         OUTREG(DSPACNTR, tmp);
431         /* Flush */
432         tmp = INREG(DSPABASE);
433         OUTREG(DSPABASE, tmp);
434
435         /* Turn off/on the HW cursor */
436 #if VERBOSE > 0
437         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
438 #endif
439         if (dinfo->cursor_on) {
440                 if (blank)
441                         intelfbhw_cursor_hide(dinfo);
442                 else
443                         intelfbhw_cursor_show(dinfo);
444                 dinfo->cursor_on = 1;
445         }
446         dinfo->cursor_blanked = blank;
447
448         /* Set DPMS level */
449         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
450         switch (blank) {
451         case FB_BLANK_UNBLANK:
452         case FB_BLANK_NORMAL:
453                 tmp |= ADPA_DPMS_D0;
454                 break;
455         case FB_BLANK_VSYNC_SUSPEND:
456                 tmp |= ADPA_DPMS_D1;
457                 break;
458         case FB_BLANK_HSYNC_SUSPEND:
459                 tmp |= ADPA_DPMS_D2;
460                 break;
461         case FB_BLANK_POWERDOWN:
462                 tmp |= ADPA_DPMS_D3;
463                 break;
464         }
465         OUTREG(ADPA, tmp);
466
467         return;
468 }
469
470
471 /* Check which pipe is connected to an active display plane. */
472 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
473 {
474         int pipe = -1;
475
476         /* keep old default behaviour - prefer PIPE_A */
477         if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
478                 pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
479                 pipe &= PIPE_MASK;
480                 if (unlikely(pipe == PIPE_A))
481                         return PIPE_A;
482         }
483         if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
484                 pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
485                 pipe &= PIPE_MASK;
486                 if (likely(pipe == PIPE_A))
487                         return PIPE_A;
488         }
489         /* Impossible that no pipe is selected - return PIPE_A */
490         WARN_ON(pipe == -1);
491         if (unlikely(pipe == -1))
492                 pipe = PIPE_A;
493
494         return pipe;
495 }
496
497 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
498                          unsigned red, unsigned green, unsigned blue,
499                          unsigned transp)
500 {
501         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
502                           PALETTE_A : PALETTE_B;
503
504 #if VERBOSE > 0
505         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
506                 regno, red, green, blue);
507 #endif
508
509         OUTREG(palette_reg + (regno << 2),
510                (red << PALETTE_8_RED_SHIFT) |
511                (green << PALETTE_8_GREEN_SHIFT) |
512                (blue << PALETTE_8_BLUE_SHIFT));
513 }
514
515
516 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
517                             struct intelfb_hwstate *hw, int flag)
518 {
519         int i;
520
521 #if VERBOSE > 0
522         DBG_MSG("intelfbhw_read_hw_state\n");
523 #endif
524
525         if (!hw || !dinfo)
526                 return -1;
527
528         /* Read in as much of the HW state as possible. */
529         hw->vga0_divisor = INREG(VGA0_DIVISOR);
530         hw->vga1_divisor = INREG(VGA1_DIVISOR);
531         hw->vga_pd = INREG(VGAPD);
532         hw->dpll_a = INREG(DPLL_A);
533         hw->dpll_b = INREG(DPLL_B);
534         hw->fpa0 = INREG(FPA0);
535         hw->fpa1 = INREG(FPA1);
536         hw->fpb0 = INREG(FPB0);
537         hw->fpb1 = INREG(FPB1);
538
539         if (flag == 1)
540                 return flag;
541
542 #if 0
543         /* This seems to be a problem with the 852GM/855GM */
544         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
545                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
546                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
547         }
548 #endif
549
550         if (flag == 2)
551                 return flag;
552
553         hw->htotal_a = INREG(HTOTAL_A);
554         hw->hblank_a = INREG(HBLANK_A);
555         hw->hsync_a = INREG(HSYNC_A);
556         hw->vtotal_a = INREG(VTOTAL_A);
557         hw->vblank_a = INREG(VBLANK_A);
558         hw->vsync_a = INREG(VSYNC_A);
559         hw->src_size_a = INREG(SRC_SIZE_A);
560         hw->bclrpat_a = INREG(BCLRPAT_A);
561         hw->htotal_b = INREG(HTOTAL_B);
562         hw->hblank_b = INREG(HBLANK_B);
563         hw->hsync_b = INREG(HSYNC_B);
564         hw->vtotal_b = INREG(VTOTAL_B);
565         hw->vblank_b = INREG(VBLANK_B);
566         hw->vsync_b = INREG(VSYNC_B);
567         hw->src_size_b = INREG(SRC_SIZE_B);
568         hw->bclrpat_b = INREG(BCLRPAT_B);
569
570         if (flag == 3)
571                 return flag;
572
573         hw->adpa = INREG(ADPA);
574         hw->dvoa = INREG(DVOA);
575         hw->dvob = INREG(DVOB);
576         hw->dvoc = INREG(DVOC);
577         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
578         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
579         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
580         hw->lvds = INREG(LVDS);
581
582         if (flag == 4)
583                 return flag;
584
585         hw->pipe_a_conf = INREG(PIPEACONF);
586         hw->pipe_b_conf = INREG(PIPEBCONF);
587         hw->disp_arb = INREG(DISPARB);
588
589         if (flag == 5)
590                 return flag;
591
592         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
593         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
594         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
595         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
596
597         if (flag == 6)
598                 return flag;
599
600         for (i = 0; i < 4; i++) {
601                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
602                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
603         }
604
605         if (flag == 7)
606                 return flag;
607
608         hw->cursor_size = INREG(CURSOR_SIZE);
609
610         if (flag == 8)
611                 return flag;
612
613         hw->disp_a_ctrl = INREG(DSPACNTR);
614         hw->disp_b_ctrl = INREG(DSPBCNTR);
615         hw->disp_a_base = INREG(DSPABASE);
616         hw->disp_b_base = INREG(DSPBBASE);
617         hw->disp_a_stride = INREG(DSPASTRIDE);
618         hw->disp_b_stride = INREG(DSPBSTRIDE);
619
620         if (flag == 9)
621                 return flag;
622
623         hw->vgacntrl = INREG(VGACNTRL);
624
625         if (flag == 10)
626                 return flag;
627
628         hw->add_id = INREG(ADD_ID);
629
630         if (flag == 11)
631                 return flag;
632
633         for (i = 0; i < 7; i++) {
634                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
635                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
636                 if (i < 3)
637                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
638         }
639
640         for (i = 0; i < 8; i++)
641                 hw->fence[i] = INREG(FENCE + (i << 2));
642
643         hw->instpm = INREG(INSTPM);
644         hw->mem_mode = INREG(MEM_MODE);
645         hw->fw_blc_0 = INREG(FW_BLC_0);
646         hw->fw_blc_1 = INREG(FW_BLC_1);
647
648         hw->hwstam = INREG16(HWSTAM);
649         hw->ier = INREG16(IER);
650         hw->iir = INREG16(IIR);
651         hw->imr = INREG16(IMR);
652
653         return 0;
654 }
655
656
657 static int calc_vclock3(int index, int m, int n, int p)
658 {
659         if (p == 0 || n == 0)
660                 return 0;
661         return plls[index].ref_clk * m / n / p;
662 }
663
664 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
665                        int lvds)
666 {
667         struct pll_min_max *pll = &plls[index];
668         u32 m, vco, p;
669
670         m = (5 * (m1 + 2)) + (m2 + 2);
671         n += 2;
672         vco = pll->ref_clk * m / n;
673
674         if (index == PLLS_I8xx)
675                 p = ((p1 + 2) * (1 << (p2 + 1)));
676         else
677                 p = ((p1) * (p2 ? 5 : 10));
678         return vco / p;
679 }
680
681 #if REGDUMP
682 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
683                                int *o_p1, int *o_p2)
684 {
685         int p1, p2;
686
687         if (IS_I9XX(dinfo)) {
688                 if (dpll & DPLL_P1_FORCE_DIV2)
689                         p1 = 1;
690                 else
691                         p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
692
693                 p1 = ffs(p1);
694
695                 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
696         } else {
697                 if (dpll & DPLL_P1_FORCE_DIV2)
698                         p1 = 0;
699                 else
700                         p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
701                 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
702         }
703
704         *o_p1 = p1;
705         *o_p2 = p2;
706 }
707 #endif
708
709
710 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
711                               struct intelfb_hwstate *hw)
712 {
713 #if REGDUMP
714         int i, m1, m2, n, p1, p2;
715         int index = dinfo->pll_index;
716         DBG_MSG("intelfbhw_print_hw_state\n");
717
718         if (!hw)
719                 return;
720         /* Read in as much of the HW state as possible. */
721         printk("hw state dump start\n");
722         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
723         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
724         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
725         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
726         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
727         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728
729         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
730
731         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
732                m1, m2, n, p1, p2);
733         printk("        VGA0: clock is %d\n",
734                calc_vclock(index, m1, m2, n, p1, p2, 0));
735
736         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
737         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
738         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
739
740         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
741         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
742                m1, m2, n, p1, p2);
743         printk("        VGA1: clock is %d\n",
744                calc_vclock(index, m1, m2, n, p1, p2, 0));
745
746         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
747         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
748         printk("        FPA0:                   0x%08x\n", hw->fpa0);
749         printk("        FPA1:                   0x%08x\n", hw->fpa1);
750         printk("        FPB0:                   0x%08x\n", hw->fpb0);
751         printk("        FPB1:                   0x%08x\n", hw->fpb1);
752
753         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
754         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
755         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
756
757         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
758
759         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
760                m1, m2, n, p1, p2);
761         printk("        PLLA0: clock is %d\n",
762                calc_vclock(index, m1, m2, n, p1, p2, 0));
763
764         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
765         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
766         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
767
768         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
769
770         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
771                m1, m2, n, p1, p2);
772         printk("        PLLA1: clock is %d\n",
773                calc_vclock(index, m1, m2, n, p1, p2, 0));
774
775 #if 0
776         printk("        PALETTE_A:\n");
777         for (i = 0; i < PALETTE_8_ENTRIES)
778                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
779         printk("        PALETTE_B:\n");
780         for (i = 0; i < PALETTE_8_ENTRIES)
781                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
782 #endif
783
784         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
785         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
786         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
787         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
788         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
789         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
790         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
791         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
792         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
793         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
794         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
795         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
796         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
797         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
798         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
799         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
800
801         printk("        ADPA:                   0x%08x\n", hw->adpa);
802         printk("        DVOA:                   0x%08x\n", hw->dvoa);
803         printk("        DVOB:                   0x%08x\n", hw->dvob);
804         printk("        DVOC:                   0x%08x\n", hw->dvoc);
805         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
806         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
807         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
808         printk("        LVDS:                   0x%08x\n", hw->lvds);
809
810         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
811         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
812         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
813
814         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
815         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
816         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
817         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
818
819         printk("        CURSOR_A_PALETTE:       ");
820         for (i = 0; i < 4; i++) {
821                 printk("0x%08x", hw->cursor_a_palette[i]);
822                 if (i < 3)
823                         printk(", ");
824         }
825         printk("\n");
826         printk("        CURSOR_B_PALETTE:       ");
827         for (i = 0; i < 4; i++) {
828                 printk("0x%08x", hw->cursor_b_palette[i]);
829                 if (i < 3)
830                         printk(", ");
831         }
832         printk("\n");
833
834         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
835
836         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
837         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
838         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
839         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
840         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
841         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
842
843         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
844         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
845
846         for (i = 0; i < 7; i++) {
847                 printk("        SWF0%d                  0x%08x\n", i,
848                         hw->swf0x[i]);
849         }
850         for (i = 0; i < 7; i++) {
851                 printk("        SWF1%d                  0x%08x\n", i,
852                         hw->swf1x[i]);
853         }
854         for (i = 0; i < 3; i++) {
855                 printk("        SWF3%d                  0x%08x\n", i,
856                        hw->swf3x[i]);
857         }
858         for (i = 0; i < 8; i++)
859                 printk("        FENCE%d                 0x%08x\n", i,
860                        hw->fence[i]);
861
862         printk("        INSTPM                  0x%08x\n", hw->instpm);
863         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
864         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
865         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
866
867         printk("        HWSTAM                  0x%04x\n", hw->hwstam);
868         printk("        IER                     0x%04x\n", hw->ier);
869         printk("        IIR                     0x%04x\n", hw->iir);
870         printk("        IMR                     0x%04x\n", hw->imr);
871         printk("hw state dump end\n");
872 #endif
873 }
874
875
876
877 /* Split the M parameter into M1 and M2. */
878 static int splitm(int index, unsigned int m, unsigned int *retm1,
879                   unsigned int *retm2)
880 {
881         int m1, m2;
882         int testm;
883         struct pll_min_max *pll = &plls[index];
884
885         /* no point optimising too much - brute force m */
886         for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
887                 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
888                         testm = (5 * (m1 + 2)) + (m2 + 2);
889                         if (testm == m) {
890                                 *retm1 = (unsigned int)m1;
891                                 *retm2 = (unsigned int)m2;
892                                 return 0;
893                         }
894                 }
895         }
896         return 1;
897 }
898
899 /* Split the P parameter into P1 and P2. */
900 static int splitp(int index, unsigned int p, unsigned int *retp1,
901                   unsigned int *retp2)
902 {
903         int p1, p2;
904         struct pll_min_max *pll = &plls[index];
905
906         if (index == PLLS_I9xx) {
907                 p2 = (p % 10) ? 1 : 0;
908
909                 p1 = p / (p2 ? 5 : 10);
910
911                 *retp1 = (unsigned int)p1;
912                 *retp2 = (unsigned int)p2;
913                 return 0;
914         }
915
916         if (p % 4 == 0)
917                 p2 = 1;
918         else
919                 p2 = 0;
920         p1 = (p / (1 << (p2 + 1))) - 2;
921         if (p % 4 == 0 && p1 < pll->min_p1) {
922                 p2 = 0;
923                 p1 = (p / (1 << (p2 + 1))) - 2;
924         }
925         if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
926             (p1 + 2) * (1 << (p2 + 1)) != p) {
927                 return 1;
928         } else {
929                 *retp1 = (unsigned int)p1;
930                 *retp2 = (unsigned int)p2;
931                 return 0;
932         }
933 }
934
935 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
936                            u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
937 {
938         u32 m1, m2, n, p1, p2, n1, testm;
939         u32 f_vco, p, p_best = 0, m, f_out = 0;
940         u32 err_max, err_target, err_best = 10000000;
941         u32 n_best = 0, m_best = 0, f_best, f_err;
942         u32 p_min, p_max, p_inc, div_max;
943         struct pll_min_max *pll = &plls[index];
944
945         /* Accept 0.5% difference, but aim for 0.1% */
946         err_max = 5 * clock / 1000;
947         err_target = clock / 1000;
948
949         DBG_MSG("Clock is %d\n", clock);
950
951         div_max = pll->max_vco / clock;
952
953         p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
954         p_min = p_inc;
955         p_max = ROUND_DOWN_TO(div_max, p_inc);
956         if (p_min < pll->min_p)
957                 p_min = pll->min_p;
958         if (p_max > pll->max_p)
959                 p_max = pll->max_p;
960
961         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
962
963         p = p_min;
964         do {
965                 if (splitp(index, p, &p1, &p2)) {
966                         WRN_MSG("cannot split p = %d\n", p);
967                         p += p_inc;
968                         continue;
969                 }
970                 n = pll->min_n;
971                 f_vco = clock * p;
972
973                 do {
974                         m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
975                         if (m < pll->min_m)
976                                 m = pll->min_m + 1;
977                         if (m > pll->max_m)
978                                 m = pll->max_m - 1;
979                         for (testm = m - 1; testm <= m; testm++) {
980                                 f_out = calc_vclock3(index, testm, n, p);
981                                 if (splitm(index, testm, &m1, &m2)) {
982                                         WRN_MSG("cannot split m = %d\n",
983                                                 testm);
984                                         continue;
985                                 }
986                                 if (clock > f_out)
987                                         f_err = clock - f_out;
988                                 else/* slightly bias the error for bigger clocks */
989                                         f_err = f_out - clock + 1;
990
991                                 if (f_err < err_best) {
992                                         m_best = testm;
993                                         n_best = n;
994                                         p_best = p;
995                                         f_best = f_out;
996                                         err_best = f_err;
997                                 }
998                         }
999                         n++;
1000                 } while ((n <= pll->max_n) && (f_out >= clock));
1001                 p += p_inc;
1002         } while ((p <= p_max));
1003
1004         if (!m_best) {
1005                 WRN_MSG("cannot find parameters for clock %d\n", clock);
1006                 return 1;
1007         }
1008         m = m_best;
1009         n = n_best;
1010         p = p_best;
1011         splitm(index, m, &m1, &m2);
1012         splitp(index, p, &p1, &p2);
1013         n1 = n - 2;
1014
1015         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1016                 "f: %d (%d), VCO: %d\n",
1017                 m, m1, m2, n, n1, p, p1, p2,
1018                 calc_vclock3(index, m, n, p),
1019                 calc_vclock(index, m1, m2, n1, p1, p2, 0),
1020                 calc_vclock3(index, m, n, p) * p);
1021         *retm1 = m1;
1022         *retm2 = m2;
1023         *retn = n1;
1024         *retp1 = p1;
1025         *retp2 = p2;
1026         *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1027
1028         return 0;
1029 }
1030
1031 static __inline__ int check_overflow(u32 value, u32 limit,
1032                                      const char *description)
1033 {
1034         if (value > limit) {
1035                 WRN_MSG("%s value %d exceeds limit %d\n",
1036                         description, value, limit);
1037                 return 1;
1038         }
1039         return 0;
1040 }
1041
1042 /* It is assumed that hw is filled in with the initial state information. */
1043 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1044                          struct intelfb_hwstate *hw,
1045                          struct fb_var_screeninfo *var)
1046 {
1047         int pipe = intelfbhw_active_pipe(hw);
1048         u32 *dpll, *fp0, *fp1;
1049         u32 m1, m2, n, p1, p2, clock_target, clock;
1050         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1051         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1052         u32 vsync_pol, hsync_pol;
1053         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1054         u32 stride_alignment;
1055
1056         DBG_MSG("intelfbhw_mode_to_hw\n");
1057
1058         /* Disable VGA */
1059         hw->vgacntrl |= VGA_DISABLE;
1060
1061         /* Set which pipe's registers will be set. */
1062         if (pipe == PIPE_B) {
1063                 dpll = &hw->dpll_b;
1064                 fp0 = &hw->fpb0;
1065                 fp1 = &hw->fpb1;
1066                 hs = &hw->hsync_b;
1067                 hb = &hw->hblank_b;
1068                 ht = &hw->htotal_b;
1069                 vs = &hw->vsync_b;
1070                 vb = &hw->vblank_b;
1071                 vt = &hw->vtotal_b;
1072                 ss = &hw->src_size_b;
1073                 pipe_conf = &hw->pipe_b_conf;
1074         } else {
1075                 dpll = &hw->dpll_a;
1076                 fp0 = &hw->fpa0;
1077                 fp1 = &hw->fpa1;
1078                 hs = &hw->hsync_a;
1079                 hb = &hw->hblank_a;
1080                 ht = &hw->htotal_a;
1081                 vs = &hw->vsync_a;
1082                 vb = &hw->vblank_a;
1083                 vt = &hw->vtotal_a;
1084                 ss = &hw->src_size_a;
1085                 pipe_conf = &hw->pipe_a_conf;
1086         }
1087
1088         /* Use ADPA register for sync control. */
1089         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1090
1091         /* sync polarity */
1092         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1093                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1094         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1095                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1096         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1097                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1098         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1099                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1100
1101         /* Connect correct pipe to the analog port DAC */
1102         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1103         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1104
1105         /* Set DPMS state to D0 (on) */
1106         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1107         hw->adpa |= ADPA_DPMS_D0;
1108
1109         hw->adpa |= ADPA_DAC_ENABLE;
1110
1111         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1112         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1113         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1114
1115         /* Desired clock in kHz */
1116         clock_target = 1000000000 / var->pixclock;
1117
1118         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1119                             &n, &p1, &p2, &clock)) {
1120                 WRN_MSG("calc_pll_params failed\n");
1121                 return 1;
1122         }
1123
1124         /* Check for overflow. */
1125         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1126                 return 1;
1127         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1128                 return 1;
1129         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1130                 return 1;
1131         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1132                 return 1;
1133         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1134                 return 1;
1135
1136         *dpll &= ~DPLL_P1_FORCE_DIV2;
1137         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1138                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1139
1140         if (IS_I9XX(dinfo)) {
1141                 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1142                 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1143         } else
1144                 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1145
1146         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1147                (m1 << FP_M1_DIVISOR_SHIFT) |
1148                (m2 << FP_M2_DIVISOR_SHIFT);
1149         *fp1 = *fp0;
1150
1151         hw->dvob &= ~PORT_ENABLE;
1152         hw->dvoc &= ~PORT_ENABLE;
1153
1154         /* Use display plane A. */
1155         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1156         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1157         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1158         switch (intelfb_var_to_depth(var)) {
1159         case 8:
1160                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1161                 break;
1162         case 15:
1163                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1164                 break;
1165         case 16:
1166                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1167                 break;
1168         case 24:
1169                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1170                 break;
1171         }
1172         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1173         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1174
1175         /* Set CRTC registers. */
1176         hactive = var->xres;
1177         hsync_start = hactive + var->right_margin;
1178         hsync_end = hsync_start + var->hsync_len;
1179         htotal = hsync_end + var->left_margin;
1180         hblank_start = hactive;
1181         hblank_end = htotal;
1182
1183         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1184                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1185                 hblank_end);
1186
1187         vactive = var->yres;
1188         if (var->vmode & FB_VMODE_INTERLACED)
1189                 vactive--; /* the chip adds 2 halflines automatically */
1190         vsync_start = vactive + var->lower_margin;
1191         vsync_end = vsync_start + var->vsync_len;
1192         vtotal = vsync_end + var->upper_margin;
1193         vblank_start = vactive;
1194         vblank_end = vtotal;
1195         vblank_end = vsync_end + 1;
1196
1197         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1198                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1199                 vblank_end);
1200
1201         /* Adjust for register values, and check for overflow. */
1202         hactive--;
1203         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1204                 return 1;
1205         hsync_start--;
1206         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1207                 return 1;
1208         hsync_end--;
1209         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1210                 return 1;
1211         htotal--;
1212         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1213                 return 1;
1214         hblank_start--;
1215         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1216                 return 1;
1217         hblank_end--;
1218         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1219                 return 1;
1220
1221         vactive--;
1222         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1223                 return 1;
1224         vsync_start--;
1225         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1226                 return 1;
1227         vsync_end--;
1228         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1229                 return 1;
1230         vtotal--;
1231         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1232                 return 1;
1233         vblank_start--;
1234         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1235                 return 1;
1236         vblank_end--;
1237         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1238                 return 1;
1239
1240         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1241         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1242               (hblank_end << HSYNCEND_SHIFT);
1243         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1244
1245         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1246         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1247               (vblank_end << VSYNCEND_SHIFT);
1248         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1249         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1250               (vactive << SRC_SIZE_VERT_SHIFT);
1251
1252         hw->disp_a_stride = dinfo->pitch;
1253         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1254
1255         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1256                           var->xoffset * var->bits_per_pixel / 8;
1257
1258         hw->disp_a_base += dinfo->fb.offset << 12;
1259
1260         /* Check stride alignment. */
1261         stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1262                                             STRIDE_ALIGNMENT;
1263         if (hw->disp_a_stride % stride_alignment != 0) {
1264                 WRN_MSG("display stride %d has bad alignment %d\n",
1265                         hw->disp_a_stride, stride_alignment);
1266                 return 1;
1267         }
1268
1269         /* Set the palette to 8-bit mode. */
1270         *pipe_conf &= ~PIPECONF_GAMMA;
1271
1272         if (var->vmode & FB_VMODE_INTERLACED)
1273                 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1274         else
1275                 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1276
1277         return 0;
1278 }
1279
1280 /* Program a (non-VGA) video mode. */
1281 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1282                            const struct intelfb_hwstate *hw, int blank)
1283 {
1284         u32 tmp;
1285         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1286         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1287         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1288         u32 hsync_reg, htotal_reg, hblank_reg;
1289         u32 vsync_reg, vtotal_reg, vblank_reg;
1290         u32 src_size_reg;
1291         u32 count, tmp_val[3];
1292
1293         /* Assume single pipe */
1294
1295 #if VERBOSE > 0
1296         DBG_MSG("intelfbhw_program_mode\n");
1297 #endif
1298
1299         /* Disable VGA */
1300         tmp = INREG(VGACNTRL);
1301         tmp |= VGA_DISABLE;
1302         OUTREG(VGACNTRL, tmp);
1303
1304         dinfo->pipe = intelfbhw_active_pipe(hw);
1305
1306         if (dinfo->pipe == PIPE_B) {
1307                 dpll = &hw->dpll_b;
1308                 fp0 = &hw->fpb0;
1309                 fp1 = &hw->fpb1;
1310                 pipe_conf = &hw->pipe_b_conf;
1311                 hs = &hw->hsync_b;
1312                 hb = &hw->hblank_b;
1313                 ht = &hw->htotal_b;
1314                 vs = &hw->vsync_b;
1315                 vb = &hw->vblank_b;
1316                 vt = &hw->vtotal_b;
1317                 ss = &hw->src_size_b;
1318                 dpll_reg = DPLL_B;
1319                 fp0_reg = FPB0;
1320                 fp1_reg = FPB1;
1321                 pipe_conf_reg = PIPEBCONF;
1322                 pipe_stat_reg = PIPEBSTAT;
1323                 hsync_reg = HSYNC_B;
1324                 htotal_reg = HTOTAL_B;
1325                 hblank_reg = HBLANK_B;
1326                 vsync_reg = VSYNC_B;
1327                 vtotal_reg = VTOTAL_B;
1328                 vblank_reg = VBLANK_B;
1329                 src_size_reg = SRC_SIZE_B;
1330         } else {
1331                 dpll = &hw->dpll_a;
1332                 fp0 = &hw->fpa0;
1333                 fp1 = &hw->fpa1;
1334                 pipe_conf = &hw->pipe_a_conf;
1335                 hs = &hw->hsync_a;
1336                 hb = &hw->hblank_a;
1337                 ht = &hw->htotal_a;
1338                 vs = &hw->vsync_a;
1339                 vb = &hw->vblank_a;
1340                 vt = &hw->vtotal_a;
1341                 ss = &hw->src_size_a;
1342                 dpll_reg = DPLL_A;
1343                 fp0_reg = FPA0;
1344                 fp1_reg = FPA1;
1345                 pipe_conf_reg = PIPEACONF;
1346                 pipe_stat_reg = PIPEASTAT;
1347                 hsync_reg = HSYNC_A;
1348                 htotal_reg = HTOTAL_A;
1349                 hblank_reg = HBLANK_A;
1350                 vsync_reg = VSYNC_A;
1351                 vtotal_reg = VTOTAL_A;
1352                 vblank_reg = VBLANK_A;
1353                 src_size_reg = SRC_SIZE_A;
1354         }
1355
1356         /* turn off pipe */
1357         tmp = INREG(pipe_conf_reg);
1358         tmp &= ~PIPECONF_ENABLE;
1359         OUTREG(pipe_conf_reg, tmp);
1360
1361         count = 0;
1362         do {
1363                 tmp_val[count % 3] = INREG(PIPEA_DSL);
1364                 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1365                         break;
1366                 count++;
1367                 udelay(1);
1368                 if (count % 200 == 0) {
1369                         tmp = INREG(pipe_conf_reg);
1370                         tmp &= ~PIPECONF_ENABLE;
1371                         OUTREG(pipe_conf_reg, tmp);
1372                 }
1373         } while (count < 2000);
1374
1375         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1376
1377         /* Disable planes A and B. */
1378         tmp = INREG(DSPACNTR);
1379         tmp &= ~DISPPLANE_PLANE_ENABLE;
1380         OUTREG(DSPACNTR, tmp);
1381         tmp = INREG(DSPBCNTR);
1382         tmp &= ~DISPPLANE_PLANE_ENABLE;
1383         OUTREG(DSPBCNTR, tmp);
1384
1385         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1386         mdelay(20);
1387
1388         OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1389         OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1390         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1391
1392         /* Disable Sync */
1393         tmp = INREG(ADPA);
1394         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1395         tmp |= ADPA_DPMS_D3;
1396         OUTREG(ADPA, tmp);
1397
1398         /* do some funky magic - xyzzy */
1399         OUTREG(0x61204, 0xabcd0000);
1400
1401         /* turn off PLL */
1402         tmp = INREG(dpll_reg);
1403         tmp &= ~DPLL_VCO_ENABLE;
1404         OUTREG(dpll_reg, tmp);
1405
1406         /* Set PLL parameters */
1407         OUTREG(fp0_reg, *fp0);
1408         OUTREG(fp1_reg, *fp1);
1409
1410         /* Enable PLL */
1411         OUTREG(dpll_reg, *dpll);
1412
1413         /* Set DVOs B/C */
1414         OUTREG(DVOB, hw->dvob);
1415         OUTREG(DVOC, hw->dvoc);
1416
1417         /* undo funky magic */
1418         OUTREG(0x61204, 0x00000000);
1419
1420         /* Set ADPA */
1421         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1422         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1423
1424         /* Set pipe parameters */
1425         OUTREG(hsync_reg, *hs);
1426         OUTREG(hblank_reg, *hb);
1427         OUTREG(htotal_reg, *ht);
1428         OUTREG(vsync_reg, *vs);
1429         OUTREG(vblank_reg, *vb);
1430         OUTREG(vtotal_reg, *vt);
1431         OUTREG(src_size_reg, *ss);
1432
1433         switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1434                                           FB_VMODE_ODD_FLD_FIRST)) {
1435         case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1436                 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1437                 break;
1438         case FB_VMODE_INTERLACED: /* even lines first */
1439                 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1440                 break;
1441         default:                /* non-interlaced */
1442                 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1443         }
1444         /* Enable pipe */
1445         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1446
1447         /* Enable sync */
1448         tmp = INREG(ADPA);
1449         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1450         tmp |= ADPA_DPMS_D0;
1451         OUTREG(ADPA, tmp);
1452
1453         /* setup display plane */
1454         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1455                 /*
1456                  *      i830M errata: the display plane must be enabled
1457                  *      to allow writes to the other bits in the plane
1458                  *      control register.
1459                  */
1460                 tmp = INREG(DSPACNTR);
1461                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1462                         tmp |= DISPPLANE_PLANE_ENABLE;
1463                         OUTREG(DSPACNTR, tmp);
1464                         OUTREG(DSPACNTR,
1465                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1466                         mdelay(1);
1467                 }
1468         }
1469
1470         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1471         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1472         OUTREG(DSPABASE, hw->disp_a_base);
1473
1474         /* Enable plane */
1475         if (!blank) {
1476                 tmp = INREG(DSPACNTR);
1477                 tmp |= DISPPLANE_PLANE_ENABLE;
1478                 OUTREG(DSPACNTR, tmp);
1479                 OUTREG(DSPABASE, hw->disp_a_base);
1480         }
1481
1482         return 0;
1483 }
1484
1485 /* forward declarations */
1486 static void refresh_ring(struct intelfb_info *dinfo);
1487 static void reset_state(struct intelfb_info *dinfo);
1488 static void do_flush(struct intelfb_info *dinfo);
1489
1490 static  u32 get_ring_space(struct intelfb_info *dinfo)
1491 {
1492         u32 ring_space;
1493
1494         if (dinfo->ring_tail >= dinfo->ring_head)
1495                 ring_space = dinfo->ring.size -
1496                         (dinfo->ring_tail - dinfo->ring_head);
1497         else
1498                 ring_space = dinfo->ring_head - dinfo->ring_tail;
1499
1500         if (ring_space > RING_MIN_FREE)
1501                 ring_space -= RING_MIN_FREE;
1502         else
1503                 ring_space = 0;
1504
1505         return ring_space;
1506 }
1507
1508 static int wait_ring(struct intelfb_info *dinfo, int n)
1509 {
1510         int i = 0;
1511         unsigned long end;
1512         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1513
1514 #if VERBOSE > 0
1515         DBG_MSG("wait_ring: %d\n", n);
1516 #endif
1517
1518         end = jiffies + (HZ * 3);
1519         while (dinfo->ring_space < n) {
1520                 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1521                 dinfo->ring_space = get_ring_space(dinfo);
1522
1523                 if (dinfo->ring_head != last_head) {
1524                         end = jiffies + (HZ * 3);
1525                         last_head = dinfo->ring_head;
1526                 }
1527                 i++;
1528                 if (time_before(end, jiffies)) {
1529                         if (!i) {
1530                                 /* Try again */
1531                                 reset_state(dinfo);
1532                                 refresh_ring(dinfo);
1533                                 do_flush(dinfo);
1534                                 end = jiffies + (HZ * 3);
1535                                 i = 1;
1536                         } else {
1537                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1538                                         dinfo->ring_space, n);
1539                                 WRN_MSG("lockup - turning off hardware "
1540                                         "acceleration\n");
1541                                 dinfo->ring_lockup = 1;
1542                                 break;
1543                         }
1544                 }
1545                 udelay(1);
1546         }
1547         return i;
1548 }
1549
1550 static void do_flush(struct intelfb_info *dinfo)
1551 {
1552         START_RING(2);
1553         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1554         OUT_RING(MI_NOOP);
1555         ADVANCE_RING();
1556 }
1557
1558 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1559 {
1560 #if VERBOSE > 0
1561         DBG_MSG("intelfbhw_do_sync\n");
1562 #endif
1563
1564         if (!dinfo->accel)
1565                 return;
1566
1567         /*
1568          * Send a flush, then wait until the ring is empty.  This is what
1569          * the XFree86 driver does, and actually it doesn't seem a lot worse
1570          * than the recommended method (both have problems).
1571          */
1572         do_flush(dinfo);
1573         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1574         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1575 }
1576
1577 static void refresh_ring(struct intelfb_info *dinfo)
1578 {
1579 #if VERBOSE > 0
1580         DBG_MSG("refresh_ring\n");
1581 #endif
1582
1583         dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1584         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1585         dinfo->ring_space = get_ring_space(dinfo);
1586 }
1587
1588 static void reset_state(struct intelfb_info *dinfo)
1589 {
1590         int i;
1591         u32 tmp;
1592
1593 #if VERBOSE > 0
1594         DBG_MSG("reset_state\n");
1595 #endif
1596
1597         for (i = 0; i < FENCE_NUM; i++)
1598                 OUTREG(FENCE + (i << 2), 0);
1599
1600         /* Flush the ring buffer if it's enabled. */
1601         tmp = INREG(PRI_RING_LENGTH);
1602         if (tmp & RING_ENABLE) {
1603 #if VERBOSE > 0
1604                 DBG_MSG("reset_state: ring was enabled\n");
1605 #endif
1606                 refresh_ring(dinfo);
1607                 intelfbhw_do_sync(dinfo);
1608                 DO_RING_IDLE();
1609         }
1610
1611         OUTREG(PRI_RING_LENGTH, 0);
1612         OUTREG(PRI_RING_HEAD, 0);
1613         OUTREG(PRI_RING_TAIL, 0);
1614         OUTREG(PRI_RING_START, 0);
1615 }
1616
1617 /* Stop the 2D engine, and turn off the ring buffer. */
1618 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1619 {
1620 #if VERBOSE > 0
1621         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1622                 dinfo->accel, dinfo->ring_active);
1623 #endif
1624
1625         if (!dinfo->accel)
1626                 return;
1627
1628         dinfo->ring_active = 0;
1629         reset_state(dinfo);
1630 }
1631
1632 /*
1633  * Enable the ring buffer, and initialise the 2D engine.
1634  * It is assumed that the graphics engine has been stopped by previously
1635  * calling intelfb_2d_stop().
1636  */
1637 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1638 {
1639 #if VERBOSE > 0
1640         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1641                 dinfo->accel, dinfo->ring_active);
1642 #endif
1643
1644         if (!dinfo->accel)
1645                 return;
1646
1647         /* Initialise the primary ring buffer. */
1648         OUTREG(PRI_RING_LENGTH, 0);
1649         OUTREG(PRI_RING_TAIL, 0);
1650         OUTREG(PRI_RING_HEAD, 0);
1651
1652         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1653         OUTREG(PRI_RING_LENGTH,
1654                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1655                 RING_NO_REPORT | RING_ENABLE);
1656         refresh_ring(dinfo);
1657         dinfo->ring_active = 1;
1658 }
1659
1660 /* 2D fillrect (solid fill or invert) */
1661 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1662                            u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1663 {
1664         u32 br00, br09, br13, br14, br16;
1665
1666 #if VERBOSE > 0
1667         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1668                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1669 #endif
1670
1671         br00 = COLOR_BLT_CMD;
1672         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1673         br13 = (rop << ROP_SHIFT) | pitch;
1674         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1675         br16 = color;
1676
1677         switch (bpp) {
1678         case 8:
1679                 br13 |= COLOR_DEPTH_8;
1680                 break;
1681         case 16:
1682                 br13 |= COLOR_DEPTH_16;
1683                 break;
1684         case 32:
1685                 br13 |= COLOR_DEPTH_32;
1686                 br00 |= WRITE_ALPHA | WRITE_RGB;
1687                 break;
1688         }
1689
1690         START_RING(6);
1691         OUT_RING(br00);
1692         OUT_RING(br13);
1693         OUT_RING(br14);
1694         OUT_RING(br09);
1695         OUT_RING(br16);
1696         OUT_RING(MI_NOOP);
1697         ADVANCE_RING();
1698
1699 #if VERBOSE > 0
1700         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1701                 dinfo->ring_tail, dinfo->ring_space);
1702 #endif
1703 }
1704
1705 void
1706 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1707                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1708 {
1709         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1710
1711 #if VERBOSE > 0
1712         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1713                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1714 #endif
1715
1716         br00 = XY_SRC_COPY_BLT_CMD;
1717         br09 = dinfo->fb_start;
1718         br11 = (pitch << PITCH_SHIFT);
1719         br12 = dinfo->fb_start;
1720         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1721         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1722         br23 = ((dstx + w) << WIDTH_SHIFT) |
1723                ((dsty + h) << HEIGHT_SHIFT);
1724         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1725
1726         switch (bpp) {
1727         case 8:
1728                 br13 |= COLOR_DEPTH_8;
1729                 break;
1730         case 16:
1731                 br13 |= COLOR_DEPTH_16;
1732                 break;
1733         case 32:
1734                 br13 |= COLOR_DEPTH_32;
1735                 br00 |= WRITE_ALPHA | WRITE_RGB;
1736                 break;
1737         }
1738
1739         START_RING(8);
1740         OUT_RING(br00);
1741         OUT_RING(br13);
1742         OUT_RING(br22);
1743         OUT_RING(br23);
1744         OUT_RING(br09);
1745         OUT_RING(br26);
1746         OUT_RING(br11);
1747         OUT_RING(br12);
1748         ADVANCE_RING();
1749 }
1750
1751 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1752                            u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1753                            u32 bpp)
1754 {
1755         int nbytes, ndwords, pad, tmp;
1756         u32 br00, br09, br13, br18, br19, br22, br23;
1757         int dat, ix, iy, iw;
1758         int i, j;
1759
1760 #if VERBOSE > 0
1761         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1762 #endif
1763
1764         /* size in bytes of a padded scanline */
1765         nbytes = ROUND_UP_TO(w, 16) / 8;
1766
1767         /* Total bytes of padded scanline data to write out. */
1768         nbytes = nbytes * h;
1769
1770         /*
1771          * Check if the glyph data exceeds the immediate mode limit.
1772          * It would take a large font (1K pixels) to hit this limit.
1773          */
1774         if (nbytes > MAX_MONO_IMM_SIZE)
1775                 return 0;
1776
1777         /* Src data is packaged a dword (32-bit) at a time. */
1778         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1779
1780         /*
1781          * Ring has to be padded to a quad word. But because the command starts
1782            with 7 bytes, pad only if there is an even number of ndwords
1783          */
1784         pad = !(ndwords % 2);
1785
1786         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1787         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1788         br09 = dinfo->fb_start;
1789         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1790         br18 = bg;
1791         br19 = fg;
1792         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1793         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1794
1795         switch (bpp) {
1796         case 8:
1797                 br13 |= COLOR_DEPTH_8;
1798                 break;
1799         case 16:
1800                 br13 |= COLOR_DEPTH_16;
1801                 break;
1802         case 32:
1803                 br13 |= COLOR_DEPTH_32;
1804                 br00 |= WRITE_ALPHA | WRITE_RGB;
1805                 break;
1806         }
1807
1808         START_RING(8 + ndwords);
1809         OUT_RING(br00);
1810         OUT_RING(br13);
1811         OUT_RING(br22);
1812         OUT_RING(br23);
1813         OUT_RING(br09);
1814         OUT_RING(br18);
1815         OUT_RING(br19);
1816         ix = iy = 0;
1817         iw = ROUND_UP_TO(w, 8) / 8;
1818         while (ndwords--) {
1819                 dat = 0;
1820                 for (j = 0; j < 2; ++j) {
1821                         for (i = 0; i < 2; ++i) {
1822                                 if (ix != iw || i == 0)
1823                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1824                         }
1825                         if (ix == iw && iy != (h-1)) {
1826                                 ix = 0;
1827                                 ++iy;
1828                         }
1829                 }
1830                 OUT_RING(dat);
1831         }
1832         if (pad)
1833                 OUT_RING(MI_NOOP);
1834         ADVANCE_RING();
1835
1836         return 1;
1837 }
1838
1839 /* HW cursor functions. */
1840 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1841 {
1842         u32 tmp;
1843
1844 #if VERBOSE > 0
1845         DBG_MSG("intelfbhw_cursor_init\n");
1846 #endif
1847
1848         if (dinfo->mobile || IS_I9XX(dinfo)) {
1849                 if (!dinfo->cursor.physical)
1850                         return;
1851                 tmp = INREG(CURSOR_A_CONTROL);
1852                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1853                          CURSOR_MEM_TYPE_LOCAL |
1854                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1855                 tmp |= CURSOR_MODE_DISABLE;
1856                 OUTREG(CURSOR_A_CONTROL, tmp);
1857                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1858         } else {
1859                 tmp = INREG(CURSOR_CONTROL);
1860                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1861                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1862                 tmp = CURSOR_FORMAT_3C;
1863                 OUTREG(CURSOR_CONTROL, tmp);
1864                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1865                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1866                       (64 << CURSOR_SIZE_V_SHIFT);
1867                 OUTREG(CURSOR_SIZE, tmp);
1868         }
1869 }
1870
1871 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1872 {
1873         u32 tmp;
1874
1875 #if VERBOSE > 0
1876         DBG_MSG("intelfbhw_cursor_hide\n");
1877 #endif
1878
1879         dinfo->cursor_on = 0;
1880         if (dinfo->mobile || IS_I9XX(dinfo)) {
1881                 if (!dinfo->cursor.physical)
1882                         return;
1883                 tmp = INREG(CURSOR_A_CONTROL);
1884                 tmp &= ~CURSOR_MODE_MASK;
1885                 tmp |= CURSOR_MODE_DISABLE;
1886                 OUTREG(CURSOR_A_CONTROL, tmp);
1887                 /* Flush changes */
1888                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1889         } else {
1890                 tmp = INREG(CURSOR_CONTROL);
1891                 tmp &= ~CURSOR_ENABLE;
1892                 OUTREG(CURSOR_CONTROL, tmp);
1893         }
1894 }
1895
1896 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1897 {
1898         u32 tmp;
1899
1900 #if VERBOSE > 0
1901         DBG_MSG("intelfbhw_cursor_show\n");
1902 #endif
1903
1904         dinfo->cursor_on = 1;
1905
1906         if (dinfo->cursor_blanked)
1907                 return;
1908
1909         if (dinfo->mobile || IS_I9XX(dinfo)) {
1910                 if (!dinfo->cursor.physical)
1911                         return;
1912                 tmp = INREG(CURSOR_A_CONTROL);
1913                 tmp &= ~CURSOR_MODE_MASK;
1914                 tmp |= CURSOR_MODE_64_4C_AX;
1915                 OUTREG(CURSOR_A_CONTROL, tmp);
1916                 /* Flush changes */
1917                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1918         } else {
1919                 tmp = INREG(CURSOR_CONTROL);
1920                 tmp |= CURSOR_ENABLE;
1921                 OUTREG(CURSOR_CONTROL, tmp);
1922         }
1923 }
1924
1925 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1926 {
1927         u32 tmp;
1928
1929 #if VERBOSE > 0
1930         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1931 #endif
1932
1933         /*
1934          * Sets the position. The coordinates are assumed to already
1935          * have any offset adjusted. Assume that the cursor is never
1936          * completely off-screen, and that x, y are always >= 0.
1937          */
1938
1939         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1940               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1941         OUTREG(CURSOR_A_POSITION, tmp);
1942
1943         if (IS_I9XX(dinfo))
1944                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1945 }
1946
1947 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1948 {
1949 #if VERBOSE > 0
1950         DBG_MSG("intelfbhw_cursor_setcolor\n");
1951 #endif
1952
1953         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1954         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1955         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1956         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1957 }
1958
1959 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1960                            u8 *data)
1961 {
1962         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1963         int i, j, w = width / 8;
1964         int mod = width % 8, t_mask, d_mask;
1965
1966 #if VERBOSE > 0
1967         DBG_MSG("intelfbhw_cursor_load\n");
1968 #endif
1969
1970         if (!dinfo->cursor.virtual)
1971                 return;
1972
1973         t_mask = 0xff >> mod;
1974         d_mask = ~(0xff >> mod);
1975         for (i = height; i--; ) {
1976                 for (j = 0; j < w; j++) {
1977                         writeb(0x00, addr + j);
1978                         writeb(*(data++), addr + j+8);
1979                 }
1980                 if (mod) {
1981                         writeb(t_mask, addr + j);
1982                         writeb(*(data++) & d_mask, addr + j+8);
1983                 }
1984                 addr += 16;
1985         }
1986 }
1987
1988 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1989 {
1990         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1991         int i, j;
1992
1993 #if VERBOSE > 0
1994         DBG_MSG("intelfbhw_cursor_reset\n");
1995 #endif
1996
1997         if (!dinfo->cursor.virtual)
1998                 return;
1999
2000         for (i = 64; i--; ) {
2001                 for (j = 0; j < 8; j++) {
2002                         writeb(0xff, addr + j+0);
2003                         writeb(0x00, addr + j+8);
2004                 }
2005                 addr += 16;
2006         }
2007 }
2008
2009 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2010 {
2011         u16 tmp;
2012         struct intelfb_info *dinfo = dev_id;
2013
2014         spin_lock(&dinfo->int_lock);
2015
2016         tmp = INREG16(IIR);
2017         if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2018                 tmp &= PIPE_A_EVENT_INTERRUPT;
2019         else
2020                 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2021
2022         if (tmp == 0) {
2023                 spin_unlock(&dinfo->int_lock);
2024                 return IRQ_RETVAL(0); /* not us */
2025         }
2026
2027         /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2028         OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2029
2030         OUTREG16(IIR, tmp);
2031         if (dinfo->vsync.pan_display) {
2032                 dinfo->vsync.pan_display = 0;
2033                 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2034         }
2035
2036         dinfo->vsync.count++;
2037         wake_up_interruptible(&dinfo->vsync.wait);
2038
2039         spin_unlock(&dinfo->int_lock);
2040
2041         return IRQ_RETVAL(1);
2042 }
2043
2044 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2045 {
2046         u16 tmp;
2047         if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2048                 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2049                                 "intelfb", dinfo)) {
2050                         clear_bit(0, &dinfo->irq_flags);
2051                         return -EINVAL;
2052                 }
2053
2054                 spin_lock_irq(&dinfo->int_lock);
2055                 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2056                 OUTREG16(IMR, 0);
2057         } else
2058                 spin_lock_irq(&dinfo->int_lock);
2059
2060         if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2061                 tmp = PIPE_A_EVENT_INTERRUPT;
2062         else
2063                 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2064         if (tmp != INREG16(IER)) {
2065                 DBG_MSG("changing IER to 0x%X\n", tmp);
2066                 OUTREG16(IER, tmp);
2067         }
2068
2069         spin_unlock_irq(&dinfo->int_lock);
2070         return 0;
2071 }
2072
2073 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2074 {
2075         if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2076                 if (dinfo->vsync.pan_display) {
2077                         dinfo->vsync.pan_display = 0;
2078                         OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2079                 }
2080                 spin_lock_irq(&dinfo->int_lock);
2081                 OUTREG16(HWSTAM, 0xffff);
2082                 OUTREG16(IMR, 0xffff);
2083                 OUTREG16(IER, 0x0);
2084
2085                 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2086                 spin_unlock_irq(&dinfo->int_lock);
2087
2088                 free_irq(dinfo->pdev->irq, dinfo);
2089         }
2090 }
2091
2092 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2093 {
2094         struct intelfb_vsync *vsync;
2095         unsigned int count;
2096         int ret;
2097
2098         switch (pipe) {
2099                 case 0:
2100                         vsync = &dinfo->vsync;
2101                         break;
2102                 default:
2103                         return -ENODEV;
2104         }
2105
2106         ret = intelfbhw_enable_irq(dinfo);
2107         if (ret)
2108                 return ret;
2109
2110         count = vsync->count;
2111         ret = wait_event_interruptible_timeout(vsync->wait,
2112                                                count != vsync->count, HZ / 10);
2113         if (ret < 0)
2114                 return ret;
2115         if (ret == 0) {
2116                 DBG_MSG("wait_for_vsync timed out!\n");
2117                 return -ETIMEDOUT;
2118         }
2119
2120         return 0;
2121 }