intelfb: support i854
[safe/jmp/linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fb.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
36
37 #include <asm/io.h>
38
39 #include "intelfb.h"
40 #include "intelfbhw.h"
41
42 struct pll_min_max {
43         int min_m, max_m, min_m1, max_m1;
44         int min_m2, max_m2, min_n, max_n;
45         int min_p, max_p, min_p1, max_p1;
46         int min_vco, max_vco, p_transition_clk, ref_clk;
47         int p_inc_lo, p_inc_hi;
48 };
49
50 #define PLLS_I8xx 0
51 #define PLLS_I9xx 1
52 #define PLLS_MAX 2
53
54 static struct pll_min_max plls[PLLS_MAX] = {
55         { 108, 140, 18, 26,
56           6, 16, 3, 16,
57           4, 128, 0, 31,
58           930000, 1400000, 165000, 48000,
59           4, 2 },               /* I8xx */
60
61         { 75, 120, 10, 20,
62           5, 9, 4, 7,
63           5, 80, 1, 8,
64           1400000, 2800000, 200000, 96000,
65           10, 5 }               /* I9xx */
66 };
67
68 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
69 {
70         u32 tmp;
71         if (!pdev || !dinfo)
72                 return 1;
73
74         switch (pdev->device) {
75         case PCI_DEVICE_ID_INTEL_830M:
76                 dinfo->name = "Intel(R) 830M";
77                 dinfo->chipset = INTEL_830M;
78                 dinfo->mobile = 1;
79                 dinfo->pll_index = PLLS_I8xx;
80                 return 0;
81         case PCI_DEVICE_ID_INTEL_845G:
82                 dinfo->name = "Intel(R) 845G";
83                 dinfo->chipset = INTEL_845G;
84                 dinfo->mobile = 0;
85                 dinfo->pll_index = PLLS_I8xx;
86                 return 0;
87         case PCI_DEVICE_ID_INTEL_854:
88                 dinfo->mobile = 1;
89                 dinfo->name = "Intel(R) 854";
90                 dinfo->chipset = INTEL_854;
91                 return 0;
92         case PCI_DEVICE_ID_INTEL_85XGM:
93                 tmp = 0;
94                 dinfo->mobile = 1;
95                 dinfo->pll_index = PLLS_I8xx;
96                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
97                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
98                         INTEL_85X_VARIANT_MASK) {
99                 case INTEL_VAR_855GME:
100                         dinfo->name = "Intel(R) 855GME";
101                         dinfo->chipset = INTEL_855GME;
102                         return 0;
103                 case INTEL_VAR_855GM:
104                         dinfo->name = "Intel(R) 855GM";
105                         dinfo->chipset = INTEL_855GM;
106                         return 0;
107                 case INTEL_VAR_852GME:
108                         dinfo->name = "Intel(R) 852GME";
109                         dinfo->chipset = INTEL_852GME;
110                         return 0;
111                 case INTEL_VAR_852GM:
112                         dinfo->name = "Intel(R) 852GM";
113                         dinfo->chipset = INTEL_852GM;
114                         return 0;
115                 default:
116                         dinfo->name = "Intel(R) 852GM/855GM";
117                         dinfo->chipset = INTEL_85XGM;
118                         return 0;
119                 }
120                 break;
121         case PCI_DEVICE_ID_INTEL_865G:
122                 dinfo->name = "Intel(R) 865G";
123                 dinfo->chipset = INTEL_865G;
124                 dinfo->mobile = 0;
125                 dinfo->pll_index = PLLS_I8xx;
126                 return 0;
127         case PCI_DEVICE_ID_INTEL_915G:
128                 dinfo->name = "Intel(R) 915G";
129                 dinfo->chipset = INTEL_915G;
130                 dinfo->mobile = 0;
131                 dinfo->pll_index = PLLS_I9xx;
132                 return 0;
133         case PCI_DEVICE_ID_INTEL_915GM:
134                 dinfo->name = "Intel(R) 915GM";
135                 dinfo->chipset = INTEL_915GM;
136                 dinfo->mobile = 1;
137                 dinfo->pll_index = PLLS_I9xx;
138                 return 0;
139         case PCI_DEVICE_ID_INTEL_945G:
140                 dinfo->name = "Intel(R) 945G";
141                 dinfo->chipset = INTEL_945G;
142                 dinfo->mobile = 0;
143                 dinfo->pll_index = PLLS_I9xx;
144                 return 0;
145         case PCI_DEVICE_ID_INTEL_945GM:
146                 dinfo->name = "Intel(R) 945GM";
147                 dinfo->chipset = INTEL_945GM;
148                 dinfo->mobile = 1;
149                 dinfo->pll_index = PLLS_I9xx;
150                 return 0;
151         case PCI_DEVICE_ID_INTEL_945GME:
152                 dinfo->name = "Intel(R) 945GME";
153                 dinfo->chipset = INTEL_945GME;
154                 dinfo->mobile = 1;
155                 dinfo->pll_index = PLLS_I9xx;
156                 return 0;
157         case PCI_DEVICE_ID_INTEL_965G:
158                 dinfo->name = "Intel(R) 965G";
159                 dinfo->chipset = INTEL_965G;
160                 dinfo->mobile = 0;
161                 dinfo->pll_index = PLLS_I9xx;
162                 return 0;
163         case PCI_DEVICE_ID_INTEL_965GM:
164                 dinfo->name = "Intel(R) 965GM";
165                 dinfo->chipset = INTEL_965GM;
166                 dinfo->mobile = 1;
167                 dinfo->pll_index = PLLS_I9xx;
168                 return 0;
169         default:
170                 return 1;
171         }
172 }
173
174 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
175                          int *stolen_size)
176 {
177         struct pci_dev *bridge_dev;
178         u16 tmp;
179         int stolen_overhead;
180
181         if (!pdev || !aperture_size || !stolen_size)
182                 return 1;
183
184         /* Find the bridge device.  It is always 0:0.0 */
185         if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
186                 ERR_MSG("cannot find bridge device\n");
187                 return 1;
188         }
189
190         /* Get the fb aperture size and "stolen" memory amount. */
191         tmp = 0;
192         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
193         pci_dev_put(bridge_dev);
194
195         switch (pdev->device) {
196         case PCI_DEVICE_ID_INTEL_915G:
197         case PCI_DEVICE_ID_INTEL_915GM:
198         case PCI_DEVICE_ID_INTEL_945G:
199         case PCI_DEVICE_ID_INTEL_945GM:
200         case PCI_DEVICE_ID_INTEL_945GME:
201         case PCI_DEVICE_ID_INTEL_965G:
202         case PCI_DEVICE_ID_INTEL_965GM:
203                 /* 915, 945 and 965 chipsets support a 256MB aperture.
204                    Aperture size is determined by inspected the
205                    base address of the aperture. */
206                 if (pci_resource_start(pdev, 2) & 0x08000000)
207                         *aperture_size = MB(128);
208                 else
209                         *aperture_size = MB(256);
210                 break;
211         default:
212                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
213                         *aperture_size = MB(64);
214                 else
215                         *aperture_size = MB(128);
216                 break;
217         }
218
219         /* Stolen memory size is reduced by the GTT and the popup.
220            GTT is 1K per MB of aperture size, and popup is 4K. */
221         stolen_overhead = (*aperture_size / MB(1)) + 4;
222         switch(pdev->device) {
223         case PCI_DEVICE_ID_INTEL_830M:
224         case PCI_DEVICE_ID_INTEL_845G:
225                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
226                 case INTEL_830_GMCH_GMS_STOLEN_512:
227                         *stolen_size = KB(512) - KB(stolen_overhead);
228                         return 0;
229                 case INTEL_830_GMCH_GMS_STOLEN_1024:
230                         *stolen_size = MB(1) - KB(stolen_overhead);
231                         return 0;
232                 case INTEL_830_GMCH_GMS_STOLEN_8192:
233                         *stolen_size = MB(8) - KB(stolen_overhead);
234                         return 0;
235                 case INTEL_830_GMCH_GMS_LOCAL:
236                         ERR_MSG("only local memory found\n");
237                         return 1;
238                 case INTEL_830_GMCH_GMS_DISABLED:
239                         ERR_MSG("video memory is disabled\n");
240                         return 1;
241                 default:
242                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
243                                 tmp & INTEL_830_GMCH_GMS_MASK);
244                         return 1;
245                 }
246                 break;
247         default:
248                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
249                 case INTEL_855_GMCH_GMS_STOLEN_1M:
250                         *stolen_size = MB(1) - KB(stolen_overhead);
251                         return 0;
252                 case INTEL_855_GMCH_GMS_STOLEN_4M:
253                         *stolen_size = MB(4) - KB(stolen_overhead);
254                         return 0;
255                 case INTEL_855_GMCH_GMS_STOLEN_8M:
256                         *stolen_size = MB(8) - KB(stolen_overhead);
257                         return 0;
258                 case INTEL_855_GMCH_GMS_STOLEN_16M:
259                         *stolen_size = MB(16) - KB(stolen_overhead);
260                         return 0;
261                 case INTEL_855_GMCH_GMS_STOLEN_32M:
262                         *stolen_size = MB(32) - KB(stolen_overhead);
263                         return 0;
264                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
265                         *stolen_size = MB(48) - KB(stolen_overhead);
266                         return 0;
267                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
268                         *stolen_size = MB(64) - KB(stolen_overhead);
269                         return 0;
270                 case INTEL_855_GMCH_GMS_DISABLED:
271                         ERR_MSG("video memory is disabled\n");
272                         return 0;
273                 default:
274                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
275                                 tmp & INTEL_855_GMCH_GMS_MASK);
276                         return 1;
277                 }
278         }
279 }
280
281 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
282 {
283         int dvo = 0;
284
285         if (INREG(LVDS) & PORT_ENABLE)
286                 dvo |= LVDS_PORT;
287         if (INREG(DVOA) & PORT_ENABLE)
288                 dvo |= DVOA_PORT;
289         if (INREG(DVOB) & PORT_ENABLE)
290                 dvo |= DVOB_PORT;
291         if (INREG(DVOC) & PORT_ENABLE)
292                 dvo |= DVOC_PORT;
293
294         return dvo;
295 }
296
297 const char * intelfbhw_dvo_to_string(int dvo)
298 {
299         if (dvo & DVOA_PORT)
300                 return "DVO port A";
301         else if (dvo & DVOB_PORT)
302                 return "DVO port B";
303         else if (dvo & DVOC_PORT)
304                 return "DVO port C";
305         else if (dvo & LVDS_PORT)
306                 return "LVDS port";
307         else
308                 return NULL;
309 }
310
311
312 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
313                             struct fb_var_screeninfo *var)
314 {
315         int bytes_per_pixel;
316         int tmp;
317
318 #if VERBOSE > 0
319         DBG_MSG("intelfbhw_validate_mode\n");
320 #endif
321
322         bytes_per_pixel = var->bits_per_pixel / 8;
323         if (bytes_per_pixel == 3)
324                 bytes_per_pixel = 4;
325
326         /* Check if enough video memory. */
327         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
328         if (tmp > dinfo->fb.size) {
329                 WRN_MSG("Not enough video ram for mode "
330                         "(%d KByte vs %d KByte).\n",
331                         BtoKB(tmp), BtoKB(dinfo->fb.size));
332                 return 1;
333         }
334
335         /* Check if x/y limits are OK. */
336         if (var->xres - 1 > HACTIVE_MASK) {
337                 WRN_MSG("X resolution too large (%d vs %d).\n",
338                         var->xres, HACTIVE_MASK + 1);
339                 return 1;
340         }
341         if (var->yres - 1 > VACTIVE_MASK) {
342                 WRN_MSG("Y resolution too large (%d vs %d).\n",
343                         var->yres, VACTIVE_MASK + 1);
344                 return 1;
345         }
346         if (var->xres < 4) {
347                 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
348                 return 1;
349         }
350         if (var->yres < 4) {
351                 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
352                 return 1;
353         }
354
355         /* Check for doublescan modes. */
356         if (var->vmode & FB_VMODE_DOUBLE) {
357                 WRN_MSG("Mode is double-scan.\n");
358                 return 1;
359         }
360
361         if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
362                 WRN_MSG("Odd number of lines in interlaced mode\n");
363                 return 1;
364         }
365
366         /* Check if clock is OK. */
367         tmp = 1000000000 / var->pixclock;
368         if (tmp < MIN_CLOCK) {
369                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
370                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
371                 return 1;
372         }
373         if (tmp > MAX_CLOCK) {
374                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
375                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
376                 return 1;
377         }
378
379         return 0;
380 }
381
382 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
383 {
384         struct intelfb_info *dinfo = GET_DINFO(info);
385         u32 offset, xoffset, yoffset;
386
387 #if VERBOSE > 0
388         DBG_MSG("intelfbhw_pan_display\n");
389 #endif
390
391         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
392         yoffset = var->yoffset;
393
394         if ((xoffset + var->xres > var->xres_virtual) ||
395             (yoffset + var->yres > var->yres_virtual))
396                 return -EINVAL;
397
398         offset = (yoffset * dinfo->pitch) +
399                  (xoffset * var->bits_per_pixel) / 8;
400
401         offset += dinfo->fb.offset << 12;
402
403         dinfo->vsync.pan_offset = offset;
404         if ((var->activate & FB_ACTIVATE_VBL) &&
405             !intelfbhw_enable_irq(dinfo))
406                 dinfo->vsync.pan_display = 1;
407         else {
408                 dinfo->vsync.pan_display = 0;
409                 OUTREG(DSPABASE, offset);
410         }
411
412         return 0;
413 }
414
415 /* Blank the screen. */
416 void intelfbhw_do_blank(int blank, struct fb_info *info)
417 {
418         struct intelfb_info *dinfo = GET_DINFO(info);
419         u32 tmp;
420
421 #if VERBOSE > 0
422         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
423 #endif
424
425         /* Turn plane A on or off */
426         tmp = INREG(DSPACNTR);
427         if (blank)
428                 tmp &= ~DISPPLANE_PLANE_ENABLE;
429         else
430                 tmp |= DISPPLANE_PLANE_ENABLE;
431         OUTREG(DSPACNTR, tmp);
432         /* Flush */
433         tmp = INREG(DSPABASE);
434         OUTREG(DSPABASE, tmp);
435
436         /* Turn off/on the HW cursor */
437 #if VERBOSE > 0
438         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
439 #endif
440         if (dinfo->cursor_on) {
441                 if (blank)
442                         intelfbhw_cursor_hide(dinfo);
443                 else
444                         intelfbhw_cursor_show(dinfo);
445                 dinfo->cursor_on = 1;
446         }
447         dinfo->cursor_blanked = blank;
448
449         /* Set DPMS level */
450         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
451         switch (blank) {
452         case FB_BLANK_UNBLANK:
453         case FB_BLANK_NORMAL:
454                 tmp |= ADPA_DPMS_D0;
455                 break;
456         case FB_BLANK_VSYNC_SUSPEND:
457                 tmp |= ADPA_DPMS_D1;
458                 break;
459         case FB_BLANK_HSYNC_SUSPEND:
460                 tmp |= ADPA_DPMS_D2;
461                 break;
462         case FB_BLANK_POWERDOWN:
463                 tmp |= ADPA_DPMS_D3;
464                 break;
465         }
466         OUTREG(ADPA, tmp);
467
468         return;
469 }
470
471
472 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
473                          unsigned red, unsigned green, unsigned blue,
474                          unsigned transp)
475 {
476         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
477                           PALETTE_A : PALETTE_B;
478
479 #if VERBOSE > 0
480         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
481                 regno, red, green, blue);
482 #endif
483
484         OUTREG(palette_reg + (regno << 2),
485                (red << PALETTE_8_RED_SHIFT) |
486                (green << PALETTE_8_GREEN_SHIFT) |
487                (blue << PALETTE_8_BLUE_SHIFT));
488 }
489
490
491 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
492                             struct intelfb_hwstate *hw, int flag)
493 {
494         int i;
495
496 #if VERBOSE > 0
497         DBG_MSG("intelfbhw_read_hw_state\n");
498 #endif
499
500         if (!hw || !dinfo)
501                 return -1;
502
503         /* Read in as much of the HW state as possible. */
504         hw->vga0_divisor = INREG(VGA0_DIVISOR);
505         hw->vga1_divisor = INREG(VGA1_DIVISOR);
506         hw->vga_pd = INREG(VGAPD);
507         hw->dpll_a = INREG(DPLL_A);
508         hw->dpll_b = INREG(DPLL_B);
509         hw->fpa0 = INREG(FPA0);
510         hw->fpa1 = INREG(FPA1);
511         hw->fpb0 = INREG(FPB0);
512         hw->fpb1 = INREG(FPB1);
513
514         if (flag == 1)
515                 return flag;
516
517 #if 0
518         /* This seems to be a problem with the 852GM/855GM */
519         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
520                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
521                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
522         }
523 #endif
524
525         if (flag == 2)
526                 return flag;
527
528         hw->htotal_a = INREG(HTOTAL_A);
529         hw->hblank_a = INREG(HBLANK_A);
530         hw->hsync_a = INREG(HSYNC_A);
531         hw->vtotal_a = INREG(VTOTAL_A);
532         hw->vblank_a = INREG(VBLANK_A);
533         hw->vsync_a = INREG(VSYNC_A);
534         hw->src_size_a = INREG(SRC_SIZE_A);
535         hw->bclrpat_a = INREG(BCLRPAT_A);
536         hw->htotal_b = INREG(HTOTAL_B);
537         hw->hblank_b = INREG(HBLANK_B);
538         hw->hsync_b = INREG(HSYNC_B);
539         hw->vtotal_b = INREG(VTOTAL_B);
540         hw->vblank_b = INREG(VBLANK_B);
541         hw->vsync_b = INREG(VSYNC_B);
542         hw->src_size_b = INREG(SRC_SIZE_B);
543         hw->bclrpat_b = INREG(BCLRPAT_B);
544
545         if (flag == 3)
546                 return flag;
547
548         hw->adpa = INREG(ADPA);
549         hw->dvoa = INREG(DVOA);
550         hw->dvob = INREG(DVOB);
551         hw->dvoc = INREG(DVOC);
552         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
553         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
554         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
555         hw->lvds = INREG(LVDS);
556
557         if (flag == 4)
558                 return flag;
559
560         hw->pipe_a_conf = INREG(PIPEACONF);
561         hw->pipe_b_conf = INREG(PIPEBCONF);
562         hw->disp_arb = INREG(DISPARB);
563
564         if (flag == 5)
565                 return flag;
566
567         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
568         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
569         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
570         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
571
572         if (flag == 6)
573                 return flag;
574
575         for (i = 0; i < 4; i++) {
576                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
577                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
578         }
579
580         if (flag == 7)
581                 return flag;
582
583         hw->cursor_size = INREG(CURSOR_SIZE);
584
585         if (flag == 8)
586                 return flag;
587
588         hw->disp_a_ctrl = INREG(DSPACNTR);
589         hw->disp_b_ctrl = INREG(DSPBCNTR);
590         hw->disp_a_base = INREG(DSPABASE);
591         hw->disp_b_base = INREG(DSPBBASE);
592         hw->disp_a_stride = INREG(DSPASTRIDE);
593         hw->disp_b_stride = INREG(DSPBSTRIDE);
594
595         if (flag == 9)
596                 return flag;
597
598         hw->vgacntrl = INREG(VGACNTRL);
599
600         if (flag == 10)
601                 return flag;
602
603         hw->add_id = INREG(ADD_ID);
604
605         if (flag == 11)
606                 return flag;
607
608         for (i = 0; i < 7; i++) {
609                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
610                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
611                 if (i < 3)
612                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
613         }
614
615         for (i = 0; i < 8; i++)
616                 hw->fence[i] = INREG(FENCE + (i << 2));
617
618         hw->instpm = INREG(INSTPM);
619         hw->mem_mode = INREG(MEM_MODE);
620         hw->fw_blc_0 = INREG(FW_BLC_0);
621         hw->fw_blc_1 = INREG(FW_BLC_1);
622
623         hw->hwstam = INREG16(HWSTAM);
624         hw->ier = INREG16(IER);
625         hw->iir = INREG16(IIR);
626         hw->imr = INREG16(IMR);
627
628         return 0;
629 }
630
631
632 static int calc_vclock3(int index, int m, int n, int p)
633 {
634         if (p == 0 || n == 0)
635                 return 0;
636         return plls[index].ref_clk * m / n / p;
637 }
638
639 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
640                        int lvds)
641 {
642         struct pll_min_max *pll = &plls[index];
643         u32 m, vco, p;
644
645         m = (5 * (m1 + 2)) + (m2 + 2);
646         n += 2;
647         vco = pll->ref_clk * m / n;
648
649         if (index == PLLS_I8xx)
650                 p = ((p1 + 2) * (1 << (p2 + 1)));
651         else
652                 p = ((p1) * (p2 ? 5 : 10));
653         return vco / p;
654 }
655
656 #if REGDUMP
657 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
658                                int *o_p1, int *o_p2)
659 {
660         int p1, p2;
661
662         if (IS_I9XX(dinfo)) {
663                 if (dpll & DPLL_P1_FORCE_DIV2)
664                         p1 = 1;
665                 else
666                         p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
667
668                 p1 = ffs(p1);
669
670                 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
671         } else {
672                 if (dpll & DPLL_P1_FORCE_DIV2)
673                         p1 = 0;
674                 else
675                         p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
676                 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
677         }
678
679         *o_p1 = p1;
680         *o_p2 = p2;
681 }
682 #endif
683
684
685 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
686                               struct intelfb_hwstate *hw)
687 {
688 #if REGDUMP
689         int i, m1, m2, n, p1, p2;
690         int index = dinfo->pll_index;
691         DBG_MSG("intelfbhw_print_hw_state\n");
692
693         if (!hw)
694                 return;
695         /* Read in as much of the HW state as possible. */
696         printk("hw state dump start\n");
697         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
698         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
699         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
700         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
701         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
702         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
703
704         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
705
706         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
707                m1, m2, n, p1, p2);
708         printk("        VGA0: clock is %d\n",
709                calc_vclock(index, m1, m2, n, p1, p2, 0));
710
711         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
712         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
713         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
714
715         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
716         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
717                m1, m2, n, p1, p2);
718         printk("        VGA1: clock is %d\n",
719                calc_vclock(index, m1, m2, n, p1, p2, 0));
720
721         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
722         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
723         printk("        FPA0:                   0x%08x\n", hw->fpa0);
724         printk("        FPA1:                   0x%08x\n", hw->fpa1);
725         printk("        FPB0:                   0x%08x\n", hw->fpb0);
726         printk("        FPB1:                   0x%08x\n", hw->fpb1);
727
728         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
729         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
730         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
731
732         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
733
734         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
735                m1, m2, n, p1, p2);
736         printk("        PLLA0: clock is %d\n",
737                calc_vclock(index, m1, m2, n, p1, p2, 0));
738
739         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
740         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
741         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
742
743         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
744
745         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
746                m1, m2, n, p1, p2);
747         printk("        PLLA1: clock is %d\n",
748                calc_vclock(index, m1, m2, n, p1, p2, 0));
749
750 #if 0
751         printk("        PALETTE_A:\n");
752         for (i = 0; i < PALETTE_8_ENTRIES)
753                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
754         printk("        PALETTE_B:\n");
755         for (i = 0; i < PALETTE_8_ENTRIES)
756                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
757 #endif
758
759         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
760         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
761         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
762         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
763         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
764         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
765         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
766         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
767         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
768         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
769         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
770         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
771         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
772         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
773         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
774         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
775
776         printk("        ADPA:                   0x%08x\n", hw->adpa);
777         printk("        DVOA:                   0x%08x\n", hw->dvoa);
778         printk("        DVOB:                   0x%08x\n", hw->dvob);
779         printk("        DVOC:                   0x%08x\n", hw->dvoc);
780         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
781         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
782         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
783         printk("        LVDS:                   0x%08x\n", hw->lvds);
784
785         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
786         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
787         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
788
789         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
790         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
791         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
792         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
793
794         printk("        CURSOR_A_PALETTE:       ");
795         for (i = 0; i < 4; i++) {
796                 printk("0x%08x", hw->cursor_a_palette[i]);
797                 if (i < 3)
798                         printk(", ");
799         }
800         printk("\n");
801         printk("        CURSOR_B_PALETTE:       ");
802         for (i = 0; i < 4; i++) {
803                 printk("0x%08x", hw->cursor_b_palette[i]);
804                 if (i < 3)
805                         printk(", ");
806         }
807         printk("\n");
808
809         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
810
811         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
812         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
813         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
814         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
815         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
816         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
817
818         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
819         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
820
821         for (i = 0; i < 7; i++) {
822                 printk("        SWF0%d                  0x%08x\n", i,
823                         hw->swf0x[i]);
824         }
825         for (i = 0; i < 7; i++) {
826                 printk("        SWF1%d                  0x%08x\n", i,
827                         hw->swf1x[i]);
828         }
829         for (i = 0; i < 3; i++) {
830                 printk("        SWF3%d                  0x%08x\n", i,
831                        hw->swf3x[i]);
832         }
833         for (i = 0; i < 8; i++)
834                 printk("        FENCE%d                 0x%08x\n", i,
835                        hw->fence[i]);
836
837         printk("        INSTPM                  0x%08x\n", hw->instpm);
838         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
839         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
840         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
841
842         printk("        HWSTAM                  0x%04x\n", hw->hwstam);
843         printk("        IER                     0x%04x\n", hw->ier);
844         printk("        IIR                     0x%04x\n", hw->iir);
845         printk("        IMR                     0x%04x\n", hw->imr);
846         printk("hw state dump end\n");
847 #endif
848 }
849
850
851
852 /* Split the M parameter into M1 and M2. */
853 static int splitm(int index, unsigned int m, unsigned int *retm1,
854                   unsigned int *retm2)
855 {
856         int m1, m2;
857         int testm;
858         struct pll_min_max *pll = &plls[index];
859
860         /* no point optimising too much - brute force m */
861         for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
862                 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
863                         testm = (5 * (m1 + 2)) + (m2 + 2);
864                         if (testm == m) {
865                                 *retm1 = (unsigned int)m1;
866                                 *retm2 = (unsigned int)m2;
867                                 return 0;
868                         }
869                 }
870         }
871         return 1;
872 }
873
874 /* Split the P parameter into P1 and P2. */
875 static int splitp(int index, unsigned int p, unsigned int *retp1,
876                   unsigned int *retp2)
877 {
878         int p1, p2;
879         struct pll_min_max *pll = &plls[index];
880
881         if (index == PLLS_I9xx) {
882                 p2 = (p % 10) ? 1 : 0;
883
884                 p1 = p / (p2 ? 5 : 10);
885
886                 *retp1 = (unsigned int)p1;
887                 *retp2 = (unsigned int)p2;
888                 return 0;
889         }
890
891         if (p % 4 == 0)
892                 p2 = 1;
893         else
894                 p2 = 0;
895         p1 = (p / (1 << (p2 + 1))) - 2;
896         if (p % 4 == 0 && p1 < pll->min_p1) {
897                 p2 = 0;
898                 p1 = (p / (1 << (p2 + 1))) - 2;
899         }
900         if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
901             (p1 + 2) * (1 << (p2 + 1)) != p) {
902                 return 1;
903         } else {
904                 *retp1 = (unsigned int)p1;
905                 *retp2 = (unsigned int)p2;
906                 return 0;
907         }
908 }
909
910 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
911                            u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
912 {
913         u32 m1, m2, n, p1, p2, n1, testm;
914         u32 f_vco, p, p_best = 0, m, f_out = 0;
915         u32 err_max, err_target, err_best = 10000000;
916         u32 n_best = 0, m_best = 0, f_best, f_err;
917         u32 p_min, p_max, p_inc, div_max;
918         struct pll_min_max *pll = &plls[index];
919
920         /* Accept 0.5% difference, but aim for 0.1% */
921         err_max = 5 * clock / 1000;
922         err_target = clock / 1000;
923
924         DBG_MSG("Clock is %d\n", clock);
925
926         div_max = pll->max_vco / clock;
927
928         p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
929         p_min = p_inc;
930         p_max = ROUND_DOWN_TO(div_max, p_inc);
931         if (p_min < pll->min_p)
932                 p_min = pll->min_p;
933         if (p_max > pll->max_p)
934                 p_max = pll->max_p;
935
936         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
937
938         p = p_min;
939         do {
940                 if (splitp(index, p, &p1, &p2)) {
941                         WRN_MSG("cannot split p = %d\n", p);
942                         p += p_inc;
943                         continue;
944                 }
945                 n = pll->min_n;
946                 f_vco = clock * p;
947
948                 do {
949                         m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
950                         if (m < pll->min_m)
951                                 m = pll->min_m + 1;
952                         if (m > pll->max_m)
953                                 m = pll->max_m - 1;
954                         for (testm = m - 1; testm <= m; testm++) {
955                                 f_out = calc_vclock3(index, testm, n, p);
956                                 if (splitm(index, testm, &m1, &m2)) {
957                                         WRN_MSG("cannot split m = %d\n",
958                                                 testm);
959                                         continue;
960                                 }
961                                 if (clock > f_out)
962                                         f_err = clock - f_out;
963                                 else/* slightly bias the error for bigger clocks */
964                                         f_err = f_out - clock + 1;
965
966                                 if (f_err < err_best) {
967                                         m_best = testm;
968                                         n_best = n;
969                                         p_best = p;
970                                         f_best = f_out;
971                                         err_best = f_err;
972                                 }
973                         }
974                         n++;
975                 } while ((n <= pll->max_n) && (f_out >= clock));
976                 p += p_inc;
977         } while ((p <= p_max));
978
979         if (!m_best) {
980                 WRN_MSG("cannot find parameters for clock %d\n", clock);
981                 return 1;
982         }
983         m = m_best;
984         n = n_best;
985         p = p_best;
986         splitm(index, m, &m1, &m2);
987         splitp(index, p, &p1, &p2);
988         n1 = n - 2;
989
990         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
991                 "f: %d (%d), VCO: %d\n",
992                 m, m1, m2, n, n1, p, p1, p2,
993                 calc_vclock3(index, m, n, p),
994                 calc_vclock(index, m1, m2, n1, p1, p2, 0),
995                 calc_vclock3(index, m, n, p) * p);
996         *retm1 = m1;
997         *retm2 = m2;
998         *retn = n1;
999         *retp1 = p1;
1000         *retp2 = p2;
1001         *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1002
1003         return 0;
1004 }
1005
1006 static __inline__ int check_overflow(u32 value, u32 limit,
1007                                      const char *description)
1008 {
1009         if (value > limit) {
1010                 WRN_MSG("%s value %d exceeds limit %d\n",
1011                         description, value, limit);
1012                 return 1;
1013         }
1014         return 0;
1015 }
1016
1017 /* It is assumed that hw is filled in with the initial state information. */
1018 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1019                          struct intelfb_hwstate *hw,
1020                          struct fb_var_screeninfo *var)
1021 {
1022         int pipe = PIPE_A;
1023         u32 *dpll, *fp0, *fp1;
1024         u32 m1, m2, n, p1, p2, clock_target, clock;
1025         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1026         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1027         u32 vsync_pol, hsync_pol;
1028         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1029         u32 stride_alignment;
1030
1031         DBG_MSG("intelfbhw_mode_to_hw\n");
1032
1033         /* Disable VGA */
1034         hw->vgacntrl |= VGA_DISABLE;
1035
1036         /* Check whether pipe A or pipe B is enabled. */
1037         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1038                 pipe = PIPE_A;
1039         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1040                 pipe = PIPE_B;
1041
1042         /* Set which pipe's registers will be set. */
1043         if (pipe == PIPE_B) {
1044                 dpll = &hw->dpll_b;
1045                 fp0 = &hw->fpb0;
1046                 fp1 = &hw->fpb1;
1047                 hs = &hw->hsync_b;
1048                 hb = &hw->hblank_b;
1049                 ht = &hw->htotal_b;
1050                 vs = &hw->vsync_b;
1051                 vb = &hw->vblank_b;
1052                 vt = &hw->vtotal_b;
1053                 ss = &hw->src_size_b;
1054                 pipe_conf = &hw->pipe_b_conf;
1055         } else {
1056                 dpll = &hw->dpll_a;
1057                 fp0 = &hw->fpa0;
1058                 fp1 = &hw->fpa1;
1059                 hs = &hw->hsync_a;
1060                 hb = &hw->hblank_a;
1061                 ht = &hw->htotal_a;
1062                 vs = &hw->vsync_a;
1063                 vb = &hw->vblank_a;
1064                 vt = &hw->vtotal_a;
1065                 ss = &hw->src_size_a;
1066                 pipe_conf = &hw->pipe_a_conf;
1067         }
1068
1069         /* Use ADPA register for sync control. */
1070         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1071
1072         /* sync polarity */
1073         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1074                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1075         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1076                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1077         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1078                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1079         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1080                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1081
1082         /* Connect correct pipe to the analog port DAC */
1083         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1084         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1085
1086         /* Set DPMS state to D0 (on) */
1087         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1088         hw->adpa |= ADPA_DPMS_D0;
1089
1090         hw->adpa |= ADPA_DAC_ENABLE;
1091
1092         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1093         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1094         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1095
1096         /* Desired clock in kHz */
1097         clock_target = 1000000000 / var->pixclock;
1098
1099         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1100                             &n, &p1, &p2, &clock)) {
1101                 WRN_MSG("calc_pll_params failed\n");
1102                 return 1;
1103         }
1104
1105         /* Check for overflow. */
1106         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1107                 return 1;
1108         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1109                 return 1;
1110         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1111                 return 1;
1112         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1113                 return 1;
1114         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1115                 return 1;
1116
1117         *dpll &= ~DPLL_P1_FORCE_DIV2;
1118         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1119                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1120
1121         if (IS_I9XX(dinfo)) {
1122                 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1123                 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1124         } else
1125                 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1126
1127         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1128                (m1 << FP_M1_DIVISOR_SHIFT) |
1129                (m2 << FP_M2_DIVISOR_SHIFT);
1130         *fp1 = *fp0;
1131
1132         hw->dvob &= ~PORT_ENABLE;
1133         hw->dvoc &= ~PORT_ENABLE;
1134
1135         /* Use display plane A. */
1136         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1137         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1138         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1139         switch (intelfb_var_to_depth(var)) {
1140         case 8:
1141                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1142                 break;
1143         case 15:
1144                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1145                 break;
1146         case 16:
1147                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1148                 break;
1149         case 24:
1150                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1151                 break;
1152         }
1153         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1154         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1155
1156         /* Set CRTC registers. */
1157         hactive = var->xres;
1158         hsync_start = hactive + var->right_margin;
1159         hsync_end = hsync_start + var->hsync_len;
1160         htotal = hsync_end + var->left_margin;
1161         hblank_start = hactive;
1162         hblank_end = htotal;
1163
1164         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1165                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1166                 hblank_end);
1167
1168         vactive = var->yres;
1169         if (var->vmode & FB_VMODE_INTERLACED)
1170                 vactive--; /* the chip adds 2 halflines automatically */
1171         vsync_start = vactive + var->lower_margin;
1172         vsync_end = vsync_start + var->vsync_len;
1173         vtotal = vsync_end + var->upper_margin;
1174         vblank_start = vactive;
1175         vblank_end = vtotal;
1176         vblank_end = vsync_end + 1;
1177
1178         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1179                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1180                 vblank_end);
1181
1182         /* Adjust for register values, and check for overflow. */
1183         hactive--;
1184         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1185                 return 1;
1186         hsync_start--;
1187         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1188                 return 1;
1189         hsync_end--;
1190         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1191                 return 1;
1192         htotal--;
1193         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1194                 return 1;
1195         hblank_start--;
1196         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1197                 return 1;
1198         hblank_end--;
1199         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1200                 return 1;
1201
1202         vactive--;
1203         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1204                 return 1;
1205         vsync_start--;
1206         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1207                 return 1;
1208         vsync_end--;
1209         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1210                 return 1;
1211         vtotal--;
1212         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1213                 return 1;
1214         vblank_start--;
1215         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1216                 return 1;
1217         vblank_end--;
1218         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1219                 return 1;
1220
1221         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1222         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1223               (hblank_end << HSYNCEND_SHIFT);
1224         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1225
1226         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1227         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1228               (vblank_end << VSYNCEND_SHIFT);
1229         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1230         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1231               (vactive << SRC_SIZE_VERT_SHIFT);
1232
1233         hw->disp_a_stride = dinfo->pitch;
1234         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1235
1236         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1237                           var->xoffset * var->bits_per_pixel / 8;
1238
1239         hw->disp_a_base += dinfo->fb.offset << 12;
1240
1241         /* Check stride alignment. */
1242         stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1243                                             STRIDE_ALIGNMENT;
1244         if (hw->disp_a_stride % stride_alignment != 0) {
1245                 WRN_MSG("display stride %d has bad alignment %d\n",
1246                         hw->disp_a_stride, stride_alignment);
1247                 return 1;
1248         }
1249
1250         /* Set the palette to 8-bit mode. */
1251         *pipe_conf &= ~PIPECONF_GAMMA;
1252
1253         if (var->vmode & FB_VMODE_INTERLACED)
1254                 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1255         else
1256                 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1257
1258         return 0;
1259 }
1260
1261 /* Program a (non-VGA) video mode. */
1262 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1263                            const struct intelfb_hwstate *hw, int blank)
1264 {
1265         int pipe = PIPE_A;
1266         u32 tmp;
1267         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1268         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1269         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1270         u32 hsync_reg, htotal_reg, hblank_reg;
1271         u32 vsync_reg, vtotal_reg, vblank_reg;
1272         u32 src_size_reg;
1273         u32 count, tmp_val[3];
1274
1275         /* Assume single pipe, display plane A, analog CRT. */
1276
1277 #if VERBOSE > 0
1278         DBG_MSG("intelfbhw_program_mode\n");
1279 #endif
1280
1281         /* Disable VGA */
1282         tmp = INREG(VGACNTRL);
1283         tmp |= VGA_DISABLE;
1284         OUTREG(VGACNTRL, tmp);
1285
1286         /* Check whether pipe A or pipe B is enabled. */
1287         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1288                 pipe = PIPE_A;
1289         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1290                 pipe = PIPE_B;
1291
1292         dinfo->pipe = pipe;
1293
1294         if (pipe == PIPE_B) {
1295                 dpll = &hw->dpll_b;
1296                 fp0 = &hw->fpb0;
1297                 fp1 = &hw->fpb1;
1298                 pipe_conf = &hw->pipe_b_conf;
1299                 hs = &hw->hsync_b;
1300                 hb = &hw->hblank_b;
1301                 ht = &hw->htotal_b;
1302                 vs = &hw->vsync_b;
1303                 vb = &hw->vblank_b;
1304                 vt = &hw->vtotal_b;
1305                 ss = &hw->src_size_b;
1306                 dpll_reg = DPLL_B;
1307                 fp0_reg = FPB0;
1308                 fp1_reg = FPB1;
1309                 pipe_conf_reg = PIPEBCONF;
1310                 pipe_stat_reg = PIPEBSTAT;
1311                 hsync_reg = HSYNC_B;
1312                 htotal_reg = HTOTAL_B;
1313                 hblank_reg = HBLANK_B;
1314                 vsync_reg = VSYNC_B;
1315                 vtotal_reg = VTOTAL_B;
1316                 vblank_reg = VBLANK_B;
1317                 src_size_reg = SRC_SIZE_B;
1318         } else {
1319                 dpll = &hw->dpll_a;
1320                 fp0 = &hw->fpa0;
1321                 fp1 = &hw->fpa1;
1322                 pipe_conf = &hw->pipe_a_conf;
1323                 hs = &hw->hsync_a;
1324                 hb = &hw->hblank_a;
1325                 ht = &hw->htotal_a;
1326                 vs = &hw->vsync_a;
1327                 vb = &hw->vblank_a;
1328                 vt = &hw->vtotal_a;
1329                 ss = &hw->src_size_a;
1330                 dpll_reg = DPLL_A;
1331                 fp0_reg = FPA0;
1332                 fp1_reg = FPA1;
1333                 pipe_conf_reg = PIPEACONF;
1334                 pipe_stat_reg = PIPEASTAT;
1335                 hsync_reg = HSYNC_A;
1336                 htotal_reg = HTOTAL_A;
1337                 hblank_reg = HBLANK_A;
1338                 vsync_reg = VSYNC_A;
1339                 vtotal_reg = VTOTAL_A;
1340                 vblank_reg = VBLANK_A;
1341                 src_size_reg = SRC_SIZE_A;
1342         }
1343
1344         /* turn off pipe */
1345         tmp = INREG(pipe_conf_reg);
1346         tmp &= ~PIPECONF_ENABLE;
1347         OUTREG(pipe_conf_reg, tmp);
1348
1349         count = 0;
1350         do {
1351                 tmp_val[count % 3] = INREG(PIPEA_DSL);
1352                 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1353                         break;
1354                 count++;
1355                 udelay(1);
1356                 if (count % 200 == 0) {
1357                         tmp = INREG(pipe_conf_reg);
1358                         tmp &= ~PIPECONF_ENABLE;
1359                         OUTREG(pipe_conf_reg, tmp);
1360                 }
1361         } while (count < 2000);
1362
1363         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1364
1365         /* Disable planes A and B. */
1366         tmp = INREG(DSPACNTR);
1367         tmp &= ~DISPPLANE_PLANE_ENABLE;
1368         OUTREG(DSPACNTR, tmp);
1369         tmp = INREG(DSPBCNTR);
1370         tmp &= ~DISPPLANE_PLANE_ENABLE;
1371         OUTREG(DSPBCNTR, tmp);
1372
1373         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1374         mdelay(20);
1375
1376         OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1377         OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1378         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1379
1380         /* Disable Sync */
1381         tmp = INREG(ADPA);
1382         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1383         tmp |= ADPA_DPMS_D3;
1384         OUTREG(ADPA, tmp);
1385
1386         /* do some funky magic - xyzzy */
1387         OUTREG(0x61204, 0xabcd0000);
1388
1389         /* turn off PLL */
1390         tmp = INREG(dpll_reg);
1391         tmp &= ~DPLL_VCO_ENABLE;
1392         OUTREG(dpll_reg, tmp);
1393
1394         /* Set PLL parameters */
1395         OUTREG(fp0_reg, *fp0);
1396         OUTREG(fp1_reg, *fp1);
1397
1398         /* Enable PLL */
1399         OUTREG(dpll_reg, *dpll);
1400
1401         /* Set DVOs B/C */
1402         OUTREG(DVOB, hw->dvob);
1403         OUTREG(DVOC, hw->dvoc);
1404
1405         /* undo funky magic */
1406         OUTREG(0x61204, 0x00000000);
1407
1408         /* Set ADPA */
1409         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1410         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1411
1412         /* Set pipe parameters */
1413         OUTREG(hsync_reg, *hs);
1414         OUTREG(hblank_reg, *hb);
1415         OUTREG(htotal_reg, *ht);
1416         OUTREG(vsync_reg, *vs);
1417         OUTREG(vblank_reg, *vb);
1418         OUTREG(vtotal_reg, *vt);
1419         OUTREG(src_size_reg, *ss);
1420
1421         switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1422                                           FB_VMODE_ODD_FLD_FIRST)) {
1423         case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1424                 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1425                 break;
1426         case FB_VMODE_INTERLACED: /* even lines first */
1427                 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1428                 break;
1429         default:                /* non-interlaced */
1430                 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1431         }
1432         /* Enable pipe */
1433         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1434
1435         /* Enable sync */
1436         tmp = INREG(ADPA);
1437         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1438         tmp |= ADPA_DPMS_D0;
1439         OUTREG(ADPA, tmp);
1440
1441         /* setup display plane */
1442         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1443                 /*
1444                  *      i830M errata: the display plane must be enabled
1445                  *      to allow writes to the other bits in the plane
1446                  *      control register.
1447                  */
1448                 tmp = INREG(DSPACNTR);
1449                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1450                         tmp |= DISPPLANE_PLANE_ENABLE;
1451                         OUTREG(DSPACNTR, tmp);
1452                         OUTREG(DSPACNTR,
1453                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1454                         mdelay(1);
1455                 }
1456         }
1457
1458         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1459         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1460         OUTREG(DSPABASE, hw->disp_a_base);
1461
1462         /* Enable plane */
1463         if (!blank) {
1464                 tmp = INREG(DSPACNTR);
1465                 tmp |= DISPPLANE_PLANE_ENABLE;
1466                 OUTREG(DSPACNTR, tmp);
1467                 OUTREG(DSPABASE, hw->disp_a_base);
1468         }
1469
1470         return 0;
1471 }
1472
1473 /* forward declarations */
1474 static void refresh_ring(struct intelfb_info *dinfo);
1475 static void reset_state(struct intelfb_info *dinfo);
1476 static void do_flush(struct intelfb_info *dinfo);
1477
1478 static  u32 get_ring_space(struct intelfb_info *dinfo)
1479 {
1480         u32 ring_space;
1481
1482         if (dinfo->ring_tail >= dinfo->ring_head)
1483                 ring_space = dinfo->ring.size -
1484                         (dinfo->ring_tail - dinfo->ring_head);
1485         else
1486                 ring_space = dinfo->ring_head - dinfo->ring_tail;
1487
1488         if (ring_space > RING_MIN_FREE)
1489                 ring_space -= RING_MIN_FREE;
1490         else
1491                 ring_space = 0;
1492
1493         return ring_space;
1494 }
1495
1496 static int wait_ring(struct intelfb_info *dinfo, int n)
1497 {
1498         int i = 0;
1499         unsigned long end;
1500         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1501
1502 #if VERBOSE > 0
1503         DBG_MSG("wait_ring: %d\n", n);
1504 #endif
1505
1506         end = jiffies + (HZ * 3);
1507         while (dinfo->ring_space < n) {
1508                 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1509                 dinfo->ring_space = get_ring_space(dinfo);
1510
1511                 if (dinfo->ring_head != last_head) {
1512                         end = jiffies + (HZ * 3);
1513                         last_head = dinfo->ring_head;
1514                 }
1515                 i++;
1516                 if (time_before(end, jiffies)) {
1517                         if (!i) {
1518                                 /* Try again */
1519                                 reset_state(dinfo);
1520                                 refresh_ring(dinfo);
1521                                 do_flush(dinfo);
1522                                 end = jiffies + (HZ * 3);
1523                                 i = 1;
1524                         } else {
1525                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1526                                         dinfo->ring_space, n);
1527                                 WRN_MSG("lockup - turning off hardware "
1528                                         "acceleration\n");
1529                                 dinfo->ring_lockup = 1;
1530                                 break;
1531                         }
1532                 }
1533                 udelay(1);
1534         }
1535         return i;
1536 }
1537
1538 static void do_flush(struct intelfb_info *dinfo)
1539 {
1540         START_RING(2);
1541         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1542         OUT_RING(MI_NOOP);
1543         ADVANCE_RING();
1544 }
1545
1546 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1547 {
1548 #if VERBOSE > 0
1549         DBG_MSG("intelfbhw_do_sync\n");
1550 #endif
1551
1552         if (!dinfo->accel)
1553                 return;
1554
1555         /*
1556          * Send a flush, then wait until the ring is empty.  This is what
1557          * the XFree86 driver does, and actually it doesn't seem a lot worse
1558          * than the recommended method (both have problems).
1559          */
1560         do_flush(dinfo);
1561         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1562         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1563 }
1564
1565 static void refresh_ring(struct intelfb_info *dinfo)
1566 {
1567 #if VERBOSE > 0
1568         DBG_MSG("refresh_ring\n");
1569 #endif
1570
1571         dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1572         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1573         dinfo->ring_space = get_ring_space(dinfo);
1574 }
1575
1576 static void reset_state(struct intelfb_info *dinfo)
1577 {
1578         int i;
1579         u32 tmp;
1580
1581 #if VERBOSE > 0
1582         DBG_MSG("reset_state\n");
1583 #endif
1584
1585         for (i = 0; i < FENCE_NUM; i++)
1586                 OUTREG(FENCE + (i << 2), 0);
1587
1588         /* Flush the ring buffer if it's enabled. */
1589         tmp = INREG(PRI_RING_LENGTH);
1590         if (tmp & RING_ENABLE) {
1591 #if VERBOSE > 0
1592                 DBG_MSG("reset_state: ring was enabled\n");
1593 #endif
1594                 refresh_ring(dinfo);
1595                 intelfbhw_do_sync(dinfo);
1596                 DO_RING_IDLE();
1597         }
1598
1599         OUTREG(PRI_RING_LENGTH, 0);
1600         OUTREG(PRI_RING_HEAD, 0);
1601         OUTREG(PRI_RING_TAIL, 0);
1602         OUTREG(PRI_RING_START, 0);
1603 }
1604
1605 /* Stop the 2D engine, and turn off the ring buffer. */
1606 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1607 {
1608 #if VERBOSE > 0
1609         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1610                 dinfo->accel, dinfo->ring_active);
1611 #endif
1612
1613         if (!dinfo->accel)
1614                 return;
1615
1616         dinfo->ring_active = 0;
1617         reset_state(dinfo);
1618 }
1619
1620 /*
1621  * Enable the ring buffer, and initialise the 2D engine.
1622  * It is assumed that the graphics engine has been stopped by previously
1623  * calling intelfb_2d_stop().
1624  */
1625 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1626 {
1627 #if VERBOSE > 0
1628         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1629                 dinfo->accel, dinfo->ring_active);
1630 #endif
1631
1632         if (!dinfo->accel)
1633                 return;
1634
1635         /* Initialise the primary ring buffer. */
1636         OUTREG(PRI_RING_LENGTH, 0);
1637         OUTREG(PRI_RING_TAIL, 0);
1638         OUTREG(PRI_RING_HEAD, 0);
1639
1640         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1641         OUTREG(PRI_RING_LENGTH,
1642                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1643                 RING_NO_REPORT | RING_ENABLE);
1644         refresh_ring(dinfo);
1645         dinfo->ring_active = 1;
1646 }
1647
1648 /* 2D fillrect (solid fill or invert) */
1649 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1650                            u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1651 {
1652         u32 br00, br09, br13, br14, br16;
1653
1654 #if VERBOSE > 0
1655         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1656                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1657 #endif
1658
1659         br00 = COLOR_BLT_CMD;
1660         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1661         br13 = (rop << ROP_SHIFT) | pitch;
1662         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1663         br16 = color;
1664
1665         switch (bpp) {
1666         case 8:
1667                 br13 |= COLOR_DEPTH_8;
1668                 break;
1669         case 16:
1670                 br13 |= COLOR_DEPTH_16;
1671                 break;
1672         case 32:
1673                 br13 |= COLOR_DEPTH_32;
1674                 br00 |= WRITE_ALPHA | WRITE_RGB;
1675                 break;
1676         }
1677
1678         START_RING(6);
1679         OUT_RING(br00);
1680         OUT_RING(br13);
1681         OUT_RING(br14);
1682         OUT_RING(br09);
1683         OUT_RING(br16);
1684         OUT_RING(MI_NOOP);
1685         ADVANCE_RING();
1686
1687 #if VERBOSE > 0
1688         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1689                 dinfo->ring_tail, dinfo->ring_space);
1690 #endif
1691 }
1692
1693 void
1694 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1695                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1696 {
1697         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1698
1699 #if VERBOSE > 0
1700         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1701                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1702 #endif
1703
1704         br00 = XY_SRC_COPY_BLT_CMD;
1705         br09 = dinfo->fb_start;
1706         br11 = (pitch << PITCH_SHIFT);
1707         br12 = dinfo->fb_start;
1708         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1709         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1710         br23 = ((dstx + w) << WIDTH_SHIFT) |
1711                ((dsty + h) << HEIGHT_SHIFT);
1712         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1713
1714         switch (bpp) {
1715         case 8:
1716                 br13 |= COLOR_DEPTH_8;
1717                 break;
1718         case 16:
1719                 br13 |= COLOR_DEPTH_16;
1720                 break;
1721         case 32:
1722                 br13 |= COLOR_DEPTH_32;
1723                 br00 |= WRITE_ALPHA | WRITE_RGB;
1724                 break;
1725         }
1726
1727         START_RING(8);
1728         OUT_RING(br00);
1729         OUT_RING(br13);
1730         OUT_RING(br22);
1731         OUT_RING(br23);
1732         OUT_RING(br09);
1733         OUT_RING(br26);
1734         OUT_RING(br11);
1735         OUT_RING(br12);
1736         ADVANCE_RING();
1737 }
1738
1739 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1740                            u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1741                            u32 bpp)
1742 {
1743         int nbytes, ndwords, pad, tmp;
1744         u32 br00, br09, br13, br18, br19, br22, br23;
1745         int dat, ix, iy, iw;
1746         int i, j;
1747
1748 #if VERBOSE > 0
1749         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1750 #endif
1751
1752         /* size in bytes of a padded scanline */
1753         nbytes = ROUND_UP_TO(w, 16) / 8;
1754
1755         /* Total bytes of padded scanline data to write out. */
1756         nbytes = nbytes * h;
1757
1758         /*
1759          * Check if the glyph data exceeds the immediate mode limit.
1760          * It would take a large font (1K pixels) to hit this limit.
1761          */
1762         if (nbytes > MAX_MONO_IMM_SIZE)
1763                 return 0;
1764
1765         /* Src data is packaged a dword (32-bit) at a time. */
1766         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1767
1768         /*
1769          * Ring has to be padded to a quad word. But because the command starts
1770            with 7 bytes, pad only if there is an even number of ndwords
1771          */
1772         pad = !(ndwords % 2);
1773
1774         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1775         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1776         br09 = dinfo->fb_start;
1777         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1778         br18 = bg;
1779         br19 = fg;
1780         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1781         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1782
1783         switch (bpp) {
1784         case 8:
1785                 br13 |= COLOR_DEPTH_8;
1786                 break;
1787         case 16:
1788                 br13 |= COLOR_DEPTH_16;
1789                 break;
1790         case 32:
1791                 br13 |= COLOR_DEPTH_32;
1792                 br00 |= WRITE_ALPHA | WRITE_RGB;
1793                 break;
1794         }
1795
1796         START_RING(8 + ndwords);
1797         OUT_RING(br00);
1798         OUT_RING(br13);
1799         OUT_RING(br22);
1800         OUT_RING(br23);
1801         OUT_RING(br09);
1802         OUT_RING(br18);
1803         OUT_RING(br19);
1804         ix = iy = 0;
1805         iw = ROUND_UP_TO(w, 8) / 8;
1806         while (ndwords--) {
1807                 dat = 0;
1808                 for (j = 0; j < 2; ++j) {
1809                         for (i = 0; i < 2; ++i) {
1810                                 if (ix != iw || i == 0)
1811                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1812                         }
1813                         if (ix == iw && iy != (h-1)) {
1814                                 ix = 0;
1815                                 ++iy;
1816                         }
1817                 }
1818                 OUT_RING(dat);
1819         }
1820         if (pad)
1821                 OUT_RING(MI_NOOP);
1822         ADVANCE_RING();
1823
1824         return 1;
1825 }
1826
1827 /* HW cursor functions. */
1828 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1829 {
1830         u32 tmp;
1831
1832 #if VERBOSE > 0
1833         DBG_MSG("intelfbhw_cursor_init\n");
1834 #endif
1835
1836         if (dinfo->mobile || IS_I9XX(dinfo)) {
1837                 if (!dinfo->cursor.physical)
1838                         return;
1839                 tmp = INREG(CURSOR_A_CONTROL);
1840                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1841                          CURSOR_MEM_TYPE_LOCAL |
1842                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1843                 tmp |= CURSOR_MODE_DISABLE;
1844                 OUTREG(CURSOR_A_CONTROL, tmp);
1845                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1846         } else {
1847                 tmp = INREG(CURSOR_CONTROL);
1848                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1849                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1850                 tmp = CURSOR_FORMAT_3C;
1851                 OUTREG(CURSOR_CONTROL, tmp);
1852                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1853                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1854                       (64 << CURSOR_SIZE_V_SHIFT);
1855                 OUTREG(CURSOR_SIZE, tmp);
1856         }
1857 }
1858
1859 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1860 {
1861         u32 tmp;
1862
1863 #if VERBOSE > 0
1864         DBG_MSG("intelfbhw_cursor_hide\n");
1865 #endif
1866
1867         dinfo->cursor_on = 0;
1868         if (dinfo->mobile || IS_I9XX(dinfo)) {
1869                 if (!dinfo->cursor.physical)
1870                         return;
1871                 tmp = INREG(CURSOR_A_CONTROL);
1872                 tmp &= ~CURSOR_MODE_MASK;
1873                 tmp |= CURSOR_MODE_DISABLE;
1874                 OUTREG(CURSOR_A_CONTROL, tmp);
1875                 /* Flush changes */
1876                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1877         } else {
1878                 tmp = INREG(CURSOR_CONTROL);
1879                 tmp &= ~CURSOR_ENABLE;
1880                 OUTREG(CURSOR_CONTROL, tmp);
1881         }
1882 }
1883
1884 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1885 {
1886         u32 tmp;
1887
1888 #if VERBOSE > 0
1889         DBG_MSG("intelfbhw_cursor_show\n");
1890 #endif
1891
1892         dinfo->cursor_on = 1;
1893
1894         if (dinfo->cursor_blanked)
1895                 return;
1896
1897         if (dinfo->mobile || IS_I9XX(dinfo)) {
1898                 if (!dinfo->cursor.physical)
1899                         return;
1900                 tmp = INREG(CURSOR_A_CONTROL);
1901                 tmp &= ~CURSOR_MODE_MASK;
1902                 tmp |= CURSOR_MODE_64_4C_AX;
1903                 OUTREG(CURSOR_A_CONTROL, tmp);
1904                 /* Flush changes */
1905                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1906         } else {
1907                 tmp = INREG(CURSOR_CONTROL);
1908                 tmp |= CURSOR_ENABLE;
1909                 OUTREG(CURSOR_CONTROL, tmp);
1910         }
1911 }
1912
1913 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1914 {
1915         u32 tmp;
1916
1917 #if VERBOSE > 0
1918         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1919 #endif
1920
1921         /*
1922          * Sets the position. The coordinates are assumed to already
1923          * have any offset adjusted. Assume that the cursor is never
1924          * completely off-screen, and that x, y are always >= 0.
1925          */
1926
1927         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1928               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1929         OUTREG(CURSOR_A_POSITION, tmp);
1930
1931         if (IS_I9XX(dinfo))
1932                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1933 }
1934
1935 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1936 {
1937 #if VERBOSE > 0
1938         DBG_MSG("intelfbhw_cursor_setcolor\n");
1939 #endif
1940
1941         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1942         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1943         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1944         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1945 }
1946
1947 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1948                            u8 *data)
1949 {
1950         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1951         int i, j, w = width / 8;
1952         int mod = width % 8, t_mask, d_mask;
1953
1954 #if VERBOSE > 0
1955         DBG_MSG("intelfbhw_cursor_load\n");
1956 #endif
1957
1958         if (!dinfo->cursor.virtual)
1959                 return;
1960
1961         t_mask = 0xff >> mod;
1962         d_mask = ~(0xff >> mod);
1963         for (i = height; i--; ) {
1964                 for (j = 0; j < w; j++) {
1965                         writeb(0x00, addr + j);
1966                         writeb(*(data++), addr + j+8);
1967                 }
1968                 if (mod) {
1969                         writeb(t_mask, addr + j);
1970                         writeb(*(data++) & d_mask, addr + j+8);
1971                 }
1972                 addr += 16;
1973         }
1974 }
1975
1976 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1977 {
1978         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1979         int i, j;
1980
1981 #if VERBOSE > 0
1982         DBG_MSG("intelfbhw_cursor_reset\n");
1983 #endif
1984
1985         if (!dinfo->cursor.virtual)
1986                 return;
1987
1988         for (i = 64; i--; ) {
1989                 for (j = 0; j < 8; j++) {
1990                         writeb(0xff, addr + j+0);
1991                         writeb(0x00, addr + j+8);
1992                 }
1993                 addr += 16;
1994         }
1995 }
1996
1997 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1998 {
1999         u16 tmp;
2000         struct intelfb_info *dinfo = dev_id;
2001
2002         spin_lock(&dinfo->int_lock);
2003
2004         tmp = INREG16(IIR);
2005         if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2006                 tmp &= PIPE_A_EVENT_INTERRUPT;
2007         else
2008                 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2009
2010         if (tmp == 0) {
2011                 spin_unlock(&dinfo->int_lock);
2012                 return IRQ_RETVAL(0); /* not us */
2013         }
2014
2015         /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2016         OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2017
2018         OUTREG16(IIR, tmp);
2019         if (dinfo->vsync.pan_display) {
2020                 dinfo->vsync.pan_display = 0;
2021                 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2022         }
2023
2024         dinfo->vsync.count++;
2025         wake_up_interruptible(&dinfo->vsync.wait);
2026
2027         spin_unlock(&dinfo->int_lock);
2028
2029         return IRQ_RETVAL(1);
2030 }
2031
2032 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2033 {
2034         u16 tmp;
2035         if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2036                 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2037                                 "intelfb", dinfo)) {
2038                         clear_bit(0, &dinfo->irq_flags);
2039                         return -EINVAL;
2040                 }
2041
2042                 spin_lock_irq(&dinfo->int_lock);
2043                 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2044                 OUTREG16(IMR, 0);
2045         } else
2046                 spin_lock_irq(&dinfo->int_lock);
2047
2048         if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2049                 tmp = PIPE_A_EVENT_INTERRUPT;
2050         else
2051                 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2052         if (tmp != INREG16(IER)) {
2053                 DBG_MSG("changing IER to 0x%X\n", tmp);
2054                 OUTREG16(IER, tmp);
2055         }
2056
2057         spin_unlock_irq(&dinfo->int_lock);
2058         return 0;
2059 }
2060
2061 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2062 {
2063         if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2064                 if (dinfo->vsync.pan_display) {
2065                         dinfo->vsync.pan_display = 0;
2066                         OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2067                 }
2068                 spin_lock_irq(&dinfo->int_lock);
2069                 OUTREG16(HWSTAM, 0xffff);
2070                 OUTREG16(IMR, 0xffff);
2071                 OUTREG16(IER, 0x0);
2072
2073                 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2074                 spin_unlock_irq(&dinfo->int_lock);
2075
2076                 free_irq(dinfo->pdev->irq, dinfo);
2077         }
2078 }
2079
2080 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2081 {
2082         struct intelfb_vsync *vsync;
2083         unsigned int count;
2084         int ret;
2085
2086         switch (pipe) {
2087                 case 0:
2088                         vsync = &dinfo->vsync;
2089                         break;
2090                 default:
2091                         return -ENODEV;
2092         }
2093
2094         ret = intelfbhw_enable_irq(dinfo);
2095         if (ret)
2096                 return ret;
2097
2098         count = vsync->count;
2099         ret = wait_event_interruptible_timeout(vsync->wait,
2100                                                count != vsync->count, HZ / 10);
2101         if (ret < 0)
2102                 return ret;
2103         if (ret == 0) {
2104                 DBG_MSG("wait_for_vsync timed out!\n");
2105                 return -ETIMEDOUT;
2106         }
2107
2108         return 0;
2109 }