spi: move common spi_setup() functionality into core
[safe/jmp/linux-2.6] / drivers / spi / spi_imx.c
1 /*
2  * drivers/spi/spi_imx.c
3  *
4  * Copyright (C) 2006 SWAPP
5  *      Andrea Paterniani <a.paterniani@swapp-eng.it>
6  *
7  * Initial version inspired by:
8  *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  */
20
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/device.h>
24 #include <linux/ioport.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spi/spi.h>
30 #include <linux/workqueue.h>
31 #include <linux/delay.h>
32 #include <linux/clk.h>
33
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/delay.h>
37
38 #include <mach/hardware.h>
39 #include <mach/imx-dma.h>
40 #include <mach/spi_imx.h>
41
42 /*-------------------------------------------------------------------------*/
43 /* SPI Registers offsets from peripheral base address */
44 #define SPI_RXDATA              (0x00)
45 #define SPI_TXDATA              (0x04)
46 #define SPI_CONTROL             (0x08)
47 #define SPI_INT_STATUS          (0x0C)
48 #define SPI_TEST                (0x10)
49 #define SPI_PERIOD              (0x14)
50 #define SPI_DMA                 (0x18)
51 #define SPI_RESET               (0x1C)
52
53 /* SPI Control Register Bit Fields & Masks */
54 #define SPI_CONTROL_BITCOUNT_MASK       (0xF)           /* Bit Count Mask */
55 #define SPI_CONTROL_BITCOUNT(n)         (((n) - 1) & SPI_CONTROL_BITCOUNT_MASK)
56 #define SPI_CONTROL_POL                 (0x1 << 4)      /* Clock Polarity Mask */
57 #define SPI_CONTROL_POL_ACT_HIGH        (0x0 << 4)      /* Active high pol. (0=idle) */
58 #define SPI_CONTROL_POL_ACT_LOW         (0x1 << 4)      /* Active low pol. (1=idle) */
59 #define SPI_CONTROL_PHA                 (0x1 << 5)      /* Clock Phase Mask */
60 #define SPI_CONTROL_PHA_0               (0x0 << 5)      /* Clock Phase 0 */
61 #define SPI_CONTROL_PHA_1               (0x1 << 5)      /* Clock Phase 1 */
62 #define SPI_CONTROL_SSCTL               (0x1 << 6)      /* /SS Waveform Select Mask */
63 #define SPI_CONTROL_SSCTL_0             (0x0 << 6)      /* Master: /SS stays low between SPI burst
64                                                            Slave: RXFIFO advanced by BIT_COUNT */
65 #define SPI_CONTROL_SSCTL_1             (0x1 << 6)      /* Master: /SS insert pulse between SPI burst
66                                                            Slave: RXFIFO advanced by /SS rising edge */
67 #define SPI_CONTROL_SSPOL               (0x1 << 7)      /* /SS Polarity Select Mask */
68 #define SPI_CONTROL_SSPOL_ACT_LOW       (0x0 << 7)      /* /SS Active low */
69 #define SPI_CONTROL_SSPOL_ACT_HIGH      (0x1 << 7)      /* /SS Active high */
70 #define SPI_CONTROL_XCH                 (0x1 << 8)      /* Exchange */
71 #define SPI_CONTROL_SPIEN               (0x1 << 9)      /* SPI Module Enable */
72 #define SPI_CONTROL_MODE                (0x1 << 10)     /* SPI Mode Select Mask */
73 #define SPI_CONTROL_MODE_SLAVE          (0x0 << 10)     /* SPI Mode Slave */
74 #define SPI_CONTROL_MODE_MASTER         (0x1 << 10)     /* SPI Mode Master */
75 #define SPI_CONTROL_DRCTL               (0x3 << 11)     /* /SPI_RDY Control Mask */
76 #define SPI_CONTROL_DRCTL_0             (0x0 << 11)     /* Ignore /SPI_RDY */
77 #define SPI_CONTROL_DRCTL_1             (0x1 << 11)     /* /SPI_RDY falling edge triggers input */
78 #define SPI_CONTROL_DRCTL_2             (0x2 << 11)     /* /SPI_RDY active low level triggers input */
79 #define SPI_CONTROL_DATARATE            (0x7 << 13)     /* Data Rate Mask */
80 #define SPI_PERCLK2_DIV_MIN             (0)             /* PERCLK2:4 */
81 #define SPI_PERCLK2_DIV_MAX             (7)             /* PERCLK2:512 */
82 #define SPI_CONTROL_DATARATE_MIN        (SPI_PERCLK2_DIV_MAX << 13)
83 #define SPI_CONTROL_DATARATE_MAX        (SPI_PERCLK2_DIV_MIN << 13)
84 #define SPI_CONTROL_DATARATE_BAD        (SPI_CONTROL_DATARATE_MIN + 1)
85
86 /* SPI Interrupt/Status Register Bit Fields & Masks */
87 #define SPI_STATUS_TE   (0x1 << 0)      /* TXFIFO Empty Status */
88 #define SPI_STATUS_TH   (0x1 << 1)      /* TXFIFO Half Status */
89 #define SPI_STATUS_TF   (0x1 << 2)      /* TXFIFO Full Status */
90 #define SPI_STATUS_RR   (0x1 << 3)      /* RXFIFO Data Ready Status */
91 #define SPI_STATUS_RH   (0x1 << 4)      /* RXFIFO Half Status */
92 #define SPI_STATUS_RF   (0x1 << 5)      /* RXFIFO Full Status */
93 #define SPI_STATUS_RO   (0x1 << 6)      /* RXFIFO Overflow */
94 #define SPI_STATUS_BO   (0x1 << 7)      /* Bit Count Overflow */
95 #define SPI_STATUS      (0xFF)          /* SPI Status Mask */
96 #define SPI_INTEN_TE    (0x1 << 8)      /* TXFIFO Empty Interrupt Enable */
97 #define SPI_INTEN_TH    (0x1 << 9)      /* TXFIFO Half Interrupt Enable */
98 #define SPI_INTEN_TF    (0x1 << 10)     /* TXFIFO Full Interrupt Enable */
99 #define SPI_INTEN_RE    (0x1 << 11)     /* RXFIFO Data Ready Interrupt Enable */
100 #define SPI_INTEN_RH    (0x1 << 12)     /* RXFIFO Half Interrupt Enable */
101 #define SPI_INTEN_RF    (0x1 << 13)     /* RXFIFO Full Interrupt Enable */
102 #define SPI_INTEN_RO    (0x1 << 14)     /* RXFIFO Overflow Interrupt Enable */
103 #define SPI_INTEN_BO    (0x1 << 15)     /* Bit Count Overflow Interrupt Enable */
104 #define SPI_INTEN       (0xFF << 8)     /* SPI Interrupt Enable Mask */
105
106 /* SPI Test Register Bit Fields & Masks */
107 #define SPI_TEST_TXCNT          (0xF << 0)      /* TXFIFO Counter */
108 #define SPI_TEST_RXCNT_LSB      (4)             /* RXFIFO Counter LSB */
109 #define SPI_TEST_RXCNT          (0xF << 4)      /* RXFIFO Counter */
110 #define SPI_TEST_SSTATUS        (0xF << 8)      /* State Machine Status */
111 #define SPI_TEST_LBC            (0x1 << 14)     /* Loop Back Control */
112
113 /* SPI Period Register Bit Fields & Masks */
114 #define SPI_PERIOD_WAIT         (0x7FFF << 0)   /* Wait Between Transactions */
115 #define SPI_PERIOD_MAX_WAIT     (0x7FFF)        /* Max Wait Between
116                                                         Transactions */
117 #define SPI_PERIOD_CSRC         (0x1 << 15)     /* Period Clock Source Mask */
118 #define SPI_PERIOD_CSRC_BCLK    (0x0 << 15)     /* Period Clock Source is
119                                                         Bit Clock */
120 #define SPI_PERIOD_CSRC_32768   (0x1 << 15)     /* Period Clock Source is
121                                                         32.768 KHz Clock */
122
123 /* SPI DMA Register Bit Fields & Masks */
124 #define SPI_DMA_RHDMA   (0x1 << 4)      /* RXFIFO Half Status */
125 #define SPI_DMA_RFDMA   (0x1 << 5)      /* RXFIFO Full Status */
126 #define SPI_DMA_TEDMA   (0x1 << 6)      /* TXFIFO Empty Status */
127 #define SPI_DMA_THDMA   (0x1 << 7)      /* TXFIFO Half Status */
128 #define SPI_DMA_RHDEN   (0x1 << 12)     /* RXFIFO Half DMA Request Enable */
129 #define SPI_DMA_RFDEN   (0x1 << 13)     /* RXFIFO Full DMA Request Enable */
130 #define SPI_DMA_TEDEN   (0x1 << 14)     /* TXFIFO Empty DMA Request Enable */
131 #define SPI_DMA_THDEN   (0x1 << 15)     /* TXFIFO Half DMA Request Enable */
132
133 /* SPI Soft Reset Register Bit Fields & Masks */
134 #define SPI_RESET_START (0x1)           /* Start */
135
136 /* Default SPI configuration values */
137 #define SPI_DEFAULT_CONTROL             \
138 (                                       \
139         SPI_CONTROL_BITCOUNT(16) |      \
140         SPI_CONTROL_POL_ACT_HIGH |      \
141         SPI_CONTROL_PHA_0 |             \
142         SPI_CONTROL_SPIEN |             \
143         SPI_CONTROL_SSCTL_1 |           \
144         SPI_CONTROL_MODE_MASTER |       \
145         SPI_CONTROL_DRCTL_0 |           \
146         SPI_CONTROL_DATARATE_MIN        \
147 )
148 #define SPI_DEFAULT_ENABLE_LOOPBACK     (0)
149 #define SPI_DEFAULT_ENABLE_DMA          (0)
150 #define SPI_DEFAULT_PERIOD_WAIT         (8)
151 /*-------------------------------------------------------------------------*/
152
153
154 /*-------------------------------------------------------------------------*/
155 /* TX/RX SPI FIFO size */
156 #define SPI_FIFO_DEPTH                  (8)
157 #define SPI_FIFO_BYTE_WIDTH             (2)
158 #define SPI_FIFO_OVERFLOW_MARGIN        (2)
159
160 /* DMA burst length for half full/empty request trigger */
161 #define SPI_DMA_BLR                     (SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH / 2)
162
163 /* Dummy char output to achieve reads.
164    Choosing something different from all zeroes may help pattern recogition
165    for oscilloscope analysis, but may break some drivers. */
166 #define SPI_DUMMY_u8                    0
167 #define SPI_DUMMY_u16                   ((SPI_DUMMY_u8 << 8) | SPI_DUMMY_u8)
168 #define SPI_DUMMY_u32                   ((SPI_DUMMY_u16 << 16) | SPI_DUMMY_u16)
169
170 /**
171  * Macro to change a u32 field:
172  * @r : register to edit
173  * @m : bit mask
174  * @v : new value for the field correctly bit-alligned
175 */
176 #define u32_EDIT(r, m, v)               r = (r & ~(m)) | (v)
177
178 /* Message state */
179 #define START_STATE                     ((void*)0)
180 #define RUNNING_STATE                   ((void*)1)
181 #define DONE_STATE                      ((void*)2)
182 #define ERROR_STATE                     ((void*)-1)
183
184 /* Queue state */
185 #define QUEUE_RUNNING                   (0)
186 #define QUEUE_STOPPED                   (1)
187
188 #define IS_DMA_ALIGNED(x)               (((u32)(x) & 0x03) == 0)
189 #define DMA_ALIGNMENT                   4
190 /*-------------------------------------------------------------------------*/
191
192
193 /*-------------------------------------------------------------------------*/
194 /* Driver data structs */
195
196 /* Context */
197 struct driver_data {
198         /* Driver model hookup */
199         struct platform_device *pdev;
200
201         /* SPI framework hookup */
202         struct spi_master *master;
203
204         /* IMX hookup */
205         struct spi_imx_master *master_info;
206
207         /* Memory resources and SPI regs virtual address */
208         struct resource *ioarea;
209         void __iomem *regs;
210
211         /* SPI RX_DATA physical address */
212         dma_addr_t rd_data_phys;
213
214         /* Driver message queue */
215         struct workqueue_struct *workqueue;
216         struct work_struct work;
217         spinlock_t lock;
218         struct list_head queue;
219         int busy;
220         int run;
221
222         /* Message Transfer pump */
223         struct tasklet_struct pump_transfers;
224
225         /* Current message, transfer and state */
226         struct spi_message *cur_msg;
227         struct spi_transfer *cur_transfer;
228         struct chip_data *cur_chip;
229
230         /* Rd / Wr buffers pointers */
231         size_t len;
232         void *tx;
233         void *tx_end;
234         void *rx;
235         void *rx_end;
236
237         u8 rd_only;
238         u8 n_bytes;
239         int cs_change;
240
241         /* Function pointers */
242         irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
243         void (*cs_control)(u32 command);
244
245         /* DMA setup */
246         int rx_channel;
247         int tx_channel;
248         dma_addr_t rx_dma;
249         dma_addr_t tx_dma;
250         int rx_dma_needs_unmap;
251         int tx_dma_needs_unmap;
252         size_t tx_map_len;
253         u32 dummy_dma_buf ____cacheline_aligned;
254
255         struct clk *clk;
256 };
257
258 /* Runtime state */
259 struct chip_data {
260         u32 control;
261         u32 period;
262         u32 test;
263
264         u8 enable_dma:1;
265         u8 bits_per_word;
266         u8 n_bytes;
267         u32 max_speed_hz;
268
269         void (*cs_control)(u32 command);
270 };
271 /*-------------------------------------------------------------------------*/
272
273
274 static void pump_messages(struct work_struct *work);
275
276 static void flush(struct driver_data *drv_data)
277 {
278         void __iomem *regs = drv_data->regs;
279         u32 control;
280
281         dev_dbg(&drv_data->pdev->dev, "flush\n");
282
283         /* Wait for end of transaction */
284         do {
285                 control = readl(regs + SPI_CONTROL);
286         } while (control & SPI_CONTROL_XCH);
287
288         /* Release chip select if requested, transfer delays are
289            handled in pump_transfers */
290         if (drv_data->cs_change)
291                 drv_data->cs_control(SPI_CS_DEASSERT);
292
293         /* Disable SPI to flush FIFOs */
294         writel(control & ~SPI_CONTROL_SPIEN, regs + SPI_CONTROL);
295         writel(control, regs + SPI_CONTROL);
296 }
297
298 static void restore_state(struct driver_data *drv_data)
299 {
300         void __iomem *regs = drv_data->regs;
301         struct chip_data *chip = drv_data->cur_chip;
302
303         /* Load chip registers */
304         dev_dbg(&drv_data->pdev->dev,
305                 "restore_state\n"
306                 "    test    = 0x%08X\n"
307                 "    control = 0x%08X\n",
308                 chip->test,
309                 chip->control);
310         writel(chip->test, regs + SPI_TEST);
311         writel(chip->period, regs + SPI_PERIOD);
312         writel(0, regs + SPI_INT_STATUS);
313         writel(chip->control, regs + SPI_CONTROL);
314 }
315
316 static void null_cs_control(u32 command)
317 {
318 }
319
320 static inline u32 data_to_write(struct driver_data *drv_data)
321 {
322         return ((u32)(drv_data->tx_end - drv_data->tx)) / drv_data->n_bytes;
323 }
324
325 static inline u32 data_to_read(struct driver_data *drv_data)
326 {
327         return ((u32)(drv_data->rx_end - drv_data->rx)) / drv_data->n_bytes;
328 }
329
330 static int write(struct driver_data *drv_data)
331 {
332         void __iomem *regs = drv_data->regs;
333         void *tx = drv_data->tx;
334         void *tx_end = drv_data->tx_end;
335         u8 n_bytes = drv_data->n_bytes;
336         u32 remaining_writes;
337         u32 fifo_avail_space;
338         u32 n;
339         u16 d;
340
341         /* Compute how many fifo writes to do */
342         remaining_writes = (u32)(tx_end - tx) / n_bytes;
343         fifo_avail_space = SPI_FIFO_DEPTH -
344                                 (readl(regs + SPI_TEST) & SPI_TEST_TXCNT);
345         if (drv_data->rx && (fifo_avail_space > SPI_FIFO_OVERFLOW_MARGIN))
346                 /* Fix misunderstood receive overflow */
347                 fifo_avail_space -= SPI_FIFO_OVERFLOW_MARGIN;
348         n = min(remaining_writes, fifo_avail_space);
349
350         dev_dbg(&drv_data->pdev->dev,
351                 "write type %s\n"
352                 "    remaining writes = %d\n"
353                 "    fifo avail space = %d\n"
354                 "    fifo writes      = %d\n",
355                 (n_bytes == 1) ? "u8" : "u16",
356                 remaining_writes,
357                 fifo_avail_space,
358                 n);
359
360         if (n > 0) {
361                 /* Fill SPI TXFIFO */
362                 if (drv_data->rd_only) {
363                         tx += n * n_bytes;
364                         while (n--)
365                                 writel(SPI_DUMMY_u16, regs + SPI_TXDATA);
366                 } else {
367                         if (n_bytes == 1) {
368                                 while (n--) {
369                                         d = *(u8*)tx;
370                                         writel(d, regs + SPI_TXDATA);
371                                         tx += 1;
372                                 }
373                         } else {
374                                 while (n--) {
375                                         d = *(u16*)tx;
376                                         writel(d, regs + SPI_TXDATA);
377                                         tx += 2;
378                                 }
379                         }
380                 }
381
382                 /* Trigger transfer */
383                 writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
384                         regs + SPI_CONTROL);
385
386                 /* Update tx pointer */
387                 drv_data->tx = tx;
388         }
389
390         return (tx >= tx_end);
391 }
392
393 static int read(struct driver_data *drv_data)
394 {
395         void __iomem *regs = drv_data->regs;
396         void *rx = drv_data->rx;
397         void *rx_end = drv_data->rx_end;
398         u8 n_bytes = drv_data->n_bytes;
399         u32 remaining_reads;
400         u32 fifo_rxcnt;
401         u32 n;
402         u16 d;
403
404         /* Compute how many fifo reads to do */
405         remaining_reads = (u32)(rx_end - rx) / n_bytes;
406         fifo_rxcnt = (readl(regs + SPI_TEST) & SPI_TEST_RXCNT) >>
407                         SPI_TEST_RXCNT_LSB;
408         n = min(remaining_reads, fifo_rxcnt);
409
410         dev_dbg(&drv_data->pdev->dev,
411                 "read type %s\n"
412                 "    remaining reads = %d\n"
413                 "    fifo rx count   = %d\n"
414                 "    fifo reads      = %d\n",
415                 (n_bytes == 1) ? "u8" : "u16",
416                 remaining_reads,
417                 fifo_rxcnt,
418                 n);
419
420         if (n > 0) {
421                 /* Read SPI RXFIFO */
422                 if (n_bytes == 1) {
423                         while (n--) {
424                                 d = readl(regs + SPI_RXDATA);
425                                 *((u8*)rx) = d;
426                                 rx += 1;
427                         }
428                 } else {
429                         while (n--) {
430                                 d = readl(regs + SPI_RXDATA);
431                                 *((u16*)rx) = d;
432                                 rx += 2;
433                         }
434                 }
435
436                 /* Update rx pointer */
437                 drv_data->rx = rx;
438         }
439
440         return (rx >= rx_end);
441 }
442
443 static void *next_transfer(struct driver_data *drv_data)
444 {
445         struct spi_message *msg = drv_data->cur_msg;
446         struct spi_transfer *trans = drv_data->cur_transfer;
447
448         /* Move to next transfer */
449         if (trans->transfer_list.next != &msg->transfers) {
450                 drv_data->cur_transfer =
451                         list_entry(trans->transfer_list.next,
452                                         struct spi_transfer,
453                                         transfer_list);
454                 return RUNNING_STATE;
455         }
456
457         return DONE_STATE;
458 }
459
460 static int map_dma_buffers(struct driver_data *drv_data)
461 {
462         struct spi_message *msg;
463         struct device *dev;
464         void *buf;
465
466         drv_data->rx_dma_needs_unmap = 0;
467         drv_data->tx_dma_needs_unmap = 0;
468
469         if (!drv_data->master_info->enable_dma ||
470                 !drv_data->cur_chip->enable_dma)
471                         return -1;
472
473         msg = drv_data->cur_msg;
474         dev = &msg->spi->dev;
475         if (msg->is_dma_mapped) {
476                 if (drv_data->tx_dma)
477                         /* The caller provided at least dma and cpu virtual
478                            address for write; pump_transfers() will consider the
479                            transfer as write only if cpu rx virtual address is
480                            NULL */
481                         return 0;
482
483                 if (drv_data->rx_dma) {
484                         /* The caller provided dma and cpu virtual address to
485                            performe read only transfer -->
486                            use drv_data->dummy_dma_buf for dummy writes to
487                            achive reads */
488                         buf = &drv_data->dummy_dma_buf;
489                         drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
490                         drv_data->tx_dma = dma_map_single(dev,
491                                                         buf,
492                                                         drv_data->tx_map_len,
493                                                         DMA_TO_DEVICE);
494                         if (dma_mapping_error(dev, drv_data->tx_dma))
495                                 return -1;
496
497                         drv_data->tx_dma_needs_unmap = 1;
498
499                         /* Flags transfer as rd_only for pump_transfers() DMA
500                            regs programming (should be redundant) */
501                         drv_data->tx = NULL;
502
503                         return 0;
504                 }
505         }
506
507         if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
508                 return -1;
509
510         if (drv_data->tx == NULL) {
511                 /* Read only message --> use drv_data->dummy_dma_buf for dummy
512                    writes to achive reads */
513                 buf = &drv_data->dummy_dma_buf;
514                 drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
515         } else {
516                 buf = drv_data->tx;
517                 drv_data->tx_map_len = drv_data->len;
518         }
519         drv_data->tx_dma = dma_map_single(dev,
520                                         buf,
521                                         drv_data->tx_map_len,
522                                         DMA_TO_DEVICE);
523         if (dma_mapping_error(dev, drv_data->tx_dma))
524                 return -1;
525         drv_data->tx_dma_needs_unmap = 1;
526
527         /* NULL rx means write-only transfer and no map needed
528          * since rx DMA will not be used */
529         if (drv_data->rx) {
530                 buf = drv_data->rx;
531                 drv_data->rx_dma = dma_map_single(dev,
532                                                 buf,
533                                                 drv_data->len,
534                                                 DMA_FROM_DEVICE);
535                 if (dma_mapping_error(dev, drv_data->rx_dma)) {
536                         if (drv_data->tx_dma) {
537                                 dma_unmap_single(dev,
538                                                 drv_data->tx_dma,
539                                                 drv_data->tx_map_len,
540                                                 DMA_TO_DEVICE);
541                                 drv_data->tx_dma_needs_unmap = 0;
542                         }
543                         return -1;
544                 }
545                 drv_data->rx_dma_needs_unmap = 1;
546         }
547
548         return 0;
549 }
550
551 static void unmap_dma_buffers(struct driver_data *drv_data)
552 {
553         struct spi_message *msg = drv_data->cur_msg;
554         struct device *dev = &msg->spi->dev;
555
556         if (drv_data->rx_dma_needs_unmap) {
557                 dma_unmap_single(dev,
558                                 drv_data->rx_dma,
559                                 drv_data->len,
560                                 DMA_FROM_DEVICE);
561                 drv_data->rx_dma_needs_unmap = 0;
562         }
563         if (drv_data->tx_dma_needs_unmap) {
564                 dma_unmap_single(dev,
565                                 drv_data->tx_dma,
566                                 drv_data->tx_map_len,
567                                 DMA_TO_DEVICE);
568                 drv_data->tx_dma_needs_unmap = 0;
569         }
570 }
571
572 /* Caller already set message->status (dma is already blocked) */
573 static void giveback(struct spi_message *message, struct driver_data *drv_data)
574 {
575         void __iomem *regs = drv_data->regs;
576
577         /* Bring SPI to sleep; restore_state() and pump_transfer()
578            will do new setup */
579         writel(0, regs + SPI_INT_STATUS);
580         writel(0, regs + SPI_DMA);
581
582         /* Unconditioned deselct */
583         drv_data->cs_control(SPI_CS_DEASSERT);
584
585         message->state = NULL;
586         if (message->complete)
587                 message->complete(message->context);
588
589         drv_data->cur_msg = NULL;
590         drv_data->cur_transfer = NULL;
591         drv_data->cur_chip = NULL;
592         queue_work(drv_data->workqueue, &drv_data->work);
593 }
594
595 static void dma_err_handler(int channel, void *data, int errcode)
596 {
597         struct driver_data *drv_data = data;
598         struct spi_message *msg = drv_data->cur_msg;
599
600         dev_dbg(&drv_data->pdev->dev, "dma_err_handler\n");
601
602         /* Disable both rx and tx dma channels */
603         imx_dma_disable(drv_data->rx_channel);
604         imx_dma_disable(drv_data->tx_channel);
605         unmap_dma_buffers(drv_data);
606
607         flush(drv_data);
608
609         msg->state = ERROR_STATE;
610         tasklet_schedule(&drv_data->pump_transfers);
611 }
612
613 static void dma_tx_handler(int channel, void *data)
614 {
615         struct driver_data *drv_data = data;
616
617         dev_dbg(&drv_data->pdev->dev, "dma_tx_handler\n");
618
619         imx_dma_disable(channel);
620
621         /* Now waits for TX FIFO empty */
622         writel(SPI_INTEN_TE, drv_data->regs + SPI_INT_STATUS);
623 }
624
625 static irqreturn_t dma_transfer(struct driver_data *drv_data)
626 {
627         u32 status;
628         struct spi_message *msg = drv_data->cur_msg;
629         void __iomem *regs = drv_data->regs;
630
631         status = readl(regs + SPI_INT_STATUS);
632
633         if ((status & (SPI_INTEN_RO | SPI_STATUS_RO))
634                         == (SPI_INTEN_RO | SPI_STATUS_RO)) {
635                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
636
637                 imx_dma_disable(drv_data->tx_channel);
638                 imx_dma_disable(drv_data->rx_channel);
639                 unmap_dma_buffers(drv_data);
640
641                 flush(drv_data);
642
643                 dev_warn(&drv_data->pdev->dev,
644                                 "dma_transfer - fifo overun\n");
645
646                 msg->state = ERROR_STATE;
647                 tasklet_schedule(&drv_data->pump_transfers);
648
649                 return IRQ_HANDLED;
650         }
651
652         if (status & SPI_STATUS_TE) {
653                 writel(status & ~SPI_INTEN_TE, regs + SPI_INT_STATUS);
654
655                 if (drv_data->rx) {
656                         /* Wait end of transfer before read trailing data */
657                         while (readl(regs + SPI_CONTROL) & SPI_CONTROL_XCH)
658                                 cpu_relax();
659
660                         imx_dma_disable(drv_data->rx_channel);
661                         unmap_dma_buffers(drv_data);
662
663                         /* Release chip select if requested, transfer delays are
664                            handled in pump_transfers() */
665                         if (drv_data->cs_change)
666                                 drv_data->cs_control(SPI_CS_DEASSERT);
667
668                         /* Calculate number of trailing data and read them */
669                         dev_dbg(&drv_data->pdev->dev,
670                                 "dma_transfer - test = 0x%08X\n",
671                                 readl(regs + SPI_TEST));
672                         drv_data->rx = drv_data->rx_end -
673                                         ((readl(regs + SPI_TEST) &
674                                         SPI_TEST_RXCNT) >>
675                                         SPI_TEST_RXCNT_LSB)*drv_data->n_bytes;
676                         read(drv_data);
677                 } else {
678                         /* Write only transfer */
679                         unmap_dma_buffers(drv_data);
680
681                         flush(drv_data);
682                 }
683
684                 /* End of transfer, update total byte transfered */
685                 msg->actual_length += drv_data->len;
686
687                 /* Move to next transfer */
688                 msg->state = next_transfer(drv_data);
689
690                 /* Schedule transfer tasklet */
691                 tasklet_schedule(&drv_data->pump_transfers);
692
693                 return IRQ_HANDLED;
694         }
695
696         /* Opps problem detected */
697         return IRQ_NONE;
698 }
699
700 static irqreturn_t interrupt_wronly_transfer(struct driver_data *drv_data)
701 {
702         struct spi_message *msg = drv_data->cur_msg;
703         void __iomem *regs = drv_data->regs;
704         u32 status;
705         irqreturn_t handled = IRQ_NONE;
706
707         status = readl(regs + SPI_INT_STATUS);
708
709         if (status & SPI_INTEN_TE) {
710                 /* TXFIFO Empty Interrupt on the last transfered word */
711                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
712                 dev_dbg(&drv_data->pdev->dev,
713                         "interrupt_wronly_transfer - end of tx\n");
714
715                 flush(drv_data);
716
717                 /* Update total byte transfered */
718                 msg->actual_length += drv_data->len;
719
720                 /* Move to next transfer */
721                 msg->state = next_transfer(drv_data);
722
723                 /* Schedule transfer tasklet */
724                 tasklet_schedule(&drv_data->pump_transfers);
725
726                 return IRQ_HANDLED;
727         } else {
728                 while (status & SPI_STATUS_TH) {
729                         dev_dbg(&drv_data->pdev->dev,
730                                 "interrupt_wronly_transfer - status = 0x%08X\n",
731                                 status);
732
733                         /* Pump data */
734                         if (write(drv_data)) {
735                                 /* End of TXFIFO writes,
736                                    now wait until TXFIFO is empty */
737                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
738                                 return IRQ_HANDLED;
739                         }
740
741                         status = readl(regs + SPI_INT_STATUS);
742
743                         /* We did something */
744                         handled = IRQ_HANDLED;
745                 }
746         }
747
748         return handled;
749 }
750
751 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
752 {
753         struct spi_message *msg = drv_data->cur_msg;
754         void __iomem *regs = drv_data->regs;
755         u32 status, control;
756         irqreturn_t handled = IRQ_NONE;
757         unsigned long limit;
758
759         status = readl(regs + SPI_INT_STATUS);
760
761         if (status & SPI_INTEN_TE) {
762                 /* TXFIFO Empty Interrupt on the last transfered word */
763                 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
764                 dev_dbg(&drv_data->pdev->dev,
765                         "interrupt_transfer - end of tx\n");
766
767                 if (msg->state == ERROR_STATE) {
768                         /* RXFIFO overrun was detected and message aborted */
769                         flush(drv_data);
770                 } else {
771                         /* Wait for end of transaction */
772                         do {
773                                 control = readl(regs + SPI_CONTROL);
774                         } while (control & SPI_CONTROL_XCH);
775
776                         /* Release chip select if requested, transfer delays are
777                            handled in pump_transfers */
778                         if (drv_data->cs_change)
779                                 drv_data->cs_control(SPI_CS_DEASSERT);
780
781                         /* Read trailing bytes */
782                         limit = loops_per_jiffy << 1;
783                         while ((read(drv_data) == 0) && --limit)
784                                 cpu_relax();
785
786                         if (limit == 0)
787                                 dev_err(&drv_data->pdev->dev,
788                                         "interrupt_transfer - "
789                                         "trailing byte read failed\n");
790                         else
791                                 dev_dbg(&drv_data->pdev->dev,
792                                         "interrupt_transfer - end of rx\n");
793
794                         /* Update total byte transfered */
795                         msg->actual_length += drv_data->len;
796
797                         /* Move to next transfer */
798                         msg->state = next_transfer(drv_data);
799                 }
800
801                 /* Schedule transfer tasklet */
802                 tasklet_schedule(&drv_data->pump_transfers);
803
804                 return IRQ_HANDLED;
805         } else {
806                 while (status & (SPI_STATUS_TH | SPI_STATUS_RO)) {
807                         dev_dbg(&drv_data->pdev->dev,
808                                 "interrupt_transfer - status = 0x%08X\n",
809                                 status);
810
811                         if (status & SPI_STATUS_RO) {
812                                 /* RXFIFO overrun, abort message end wait
813                                    until TXFIFO is empty */
814                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
815
816                                 dev_warn(&drv_data->pdev->dev,
817                                         "interrupt_transfer - fifo overun\n"
818                                         "    data not yet written = %d\n"
819                                         "    data not yet read    = %d\n",
820                                         data_to_write(drv_data),
821                                         data_to_read(drv_data));
822
823                                 msg->state = ERROR_STATE;
824
825                                 return IRQ_HANDLED;
826                         }
827
828                         /* Pump data */
829                         read(drv_data);
830                         if (write(drv_data)) {
831                                 /* End of TXFIFO writes,
832                                    now wait until TXFIFO is empty */
833                                 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
834                                 return IRQ_HANDLED;
835                         }
836
837                         status = readl(regs + SPI_INT_STATUS);
838
839                         /* We did something */
840                         handled = IRQ_HANDLED;
841                 }
842         }
843
844         return handled;
845 }
846
847 static irqreturn_t spi_int(int irq, void *dev_id)
848 {
849         struct driver_data *drv_data = (struct driver_data *)dev_id;
850
851         if (!drv_data->cur_msg) {
852                 dev_err(&drv_data->pdev->dev,
853                         "spi_int - bad message state\n");
854                 /* Never fail */
855                 return IRQ_HANDLED;
856         }
857
858         return drv_data->transfer_handler(drv_data);
859 }
860
861 static inline u32 spi_speed_hz(struct driver_data *drv_data, u32 data_rate)
862 {
863         return clk_get_rate(drv_data->clk) / (4 << ((data_rate) >> 13));
864 }
865
866 static u32 spi_data_rate(struct driver_data *drv_data, u32 speed_hz)
867 {
868         u32 div;
869         u32 quantized_hz = clk_get_rate(drv_data->clk) >> 2;
870
871         for (div = SPI_PERCLK2_DIV_MIN;
872                 div <= SPI_PERCLK2_DIV_MAX;
873                 div++, quantized_hz >>= 1) {
874                         if (quantized_hz <= speed_hz)
875                                 /* Max available speed LEQ required speed */
876                                 return div << 13;
877         }
878         return SPI_CONTROL_DATARATE_BAD;
879 }
880
881 static void pump_transfers(unsigned long data)
882 {
883         struct driver_data *drv_data = (struct driver_data *)data;
884         struct spi_message *message;
885         struct spi_transfer *transfer, *previous;
886         struct chip_data *chip;
887         void __iomem *regs;
888         u32 tmp, control;
889
890         dev_dbg(&drv_data->pdev->dev, "pump_transfer\n");
891
892         message = drv_data->cur_msg;
893
894         /* Handle for abort */
895         if (message->state == ERROR_STATE) {
896                 message->status = -EIO;
897                 giveback(message, drv_data);
898                 return;
899         }
900
901         /* Handle end of message */
902         if (message->state == DONE_STATE) {
903                 message->status = 0;
904                 giveback(message, drv_data);
905                 return;
906         }
907
908         chip = drv_data->cur_chip;
909
910         /* Delay if requested at end of transfer*/
911         transfer = drv_data->cur_transfer;
912         if (message->state == RUNNING_STATE) {
913                 previous = list_entry(transfer->transfer_list.prev,
914                                         struct spi_transfer,
915                                         transfer_list);
916                 if (previous->delay_usecs)
917                         udelay(previous->delay_usecs);
918         } else {
919                 /* START_STATE */
920                 message->state = RUNNING_STATE;
921                 drv_data->cs_control = chip->cs_control;
922         }
923
924         transfer = drv_data->cur_transfer;
925         drv_data->tx = (void *)transfer->tx_buf;
926         drv_data->tx_end = drv_data->tx + transfer->len;
927         drv_data->rx = transfer->rx_buf;
928         drv_data->rx_end = drv_data->rx + transfer->len;
929         drv_data->rx_dma = transfer->rx_dma;
930         drv_data->tx_dma = transfer->tx_dma;
931         drv_data->len = transfer->len;
932         drv_data->cs_change = transfer->cs_change;
933         drv_data->rd_only = (drv_data->tx == NULL);
934
935         regs = drv_data->regs;
936         control = readl(regs + SPI_CONTROL);
937
938         /* Bits per word setup */
939         tmp = transfer->bits_per_word;
940         if (tmp == 0) {
941                 /* Use device setup */
942                 tmp = chip->bits_per_word;
943                 drv_data->n_bytes = chip->n_bytes;
944         } else
945                 /* Use per-transfer setup */
946                 drv_data->n_bytes = (tmp <= 8) ? 1 : 2;
947         u32_EDIT(control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
948
949         /* Speed setup (surely valid because already checked) */
950         tmp = transfer->speed_hz;
951         if (tmp == 0)
952                 tmp = chip->max_speed_hz;
953         tmp = spi_data_rate(drv_data, tmp);
954         u32_EDIT(control, SPI_CONTROL_DATARATE, tmp);
955
956         writel(control, regs + SPI_CONTROL);
957
958         /* Assert device chip-select */
959         drv_data->cs_control(SPI_CS_ASSERT);
960
961         /* DMA cannot read/write SPI FIFOs other than 16 bits at a time; hence
962            if bits_per_word is less or equal 8 PIO transfers are performed.
963            Moreover DMA is convinient for transfer length bigger than FIFOs
964            byte size. */
965         if ((drv_data->n_bytes == 2) &&
966                 (drv_data->len > SPI_FIFO_DEPTH*SPI_FIFO_BYTE_WIDTH) &&
967                 (map_dma_buffers(drv_data) == 0)) {
968                 dev_dbg(&drv_data->pdev->dev,
969                         "pump dma transfer\n"
970                         "    tx      = %p\n"
971                         "    tx_dma  = %08X\n"
972                         "    rx      = %p\n"
973                         "    rx_dma  = %08X\n"
974                         "    len     = %d\n",
975                         drv_data->tx,
976                         (unsigned int)drv_data->tx_dma,
977                         drv_data->rx,
978                         (unsigned int)drv_data->rx_dma,
979                         drv_data->len);
980
981                 /* Ensure we have the correct interrupt handler */
982                 drv_data->transfer_handler = dma_transfer;
983
984                 /* Trigger transfer */
985                 writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
986                         regs + SPI_CONTROL);
987
988                 /* Setup tx DMA */
989                 if (drv_data->tx)
990                         /* Linear source address */
991                         CCR(drv_data->tx_channel) =
992                                 CCR_DMOD_FIFO |
993                                 CCR_SMOD_LINEAR |
994                                 CCR_SSIZ_32 | CCR_DSIZ_16 |
995                                 CCR_REN;
996                 else
997                         /* Read only transfer -> fixed source address for
998                            dummy write to achive read */
999                         CCR(drv_data->tx_channel) =
1000                                 CCR_DMOD_FIFO |
1001                                 CCR_SMOD_FIFO |
1002                                 CCR_SSIZ_32 | CCR_DSIZ_16 |
1003                                 CCR_REN;
1004
1005                 imx_dma_setup_single(
1006                         drv_data->tx_channel,
1007                         drv_data->tx_dma,
1008                         drv_data->len,
1009                         drv_data->rd_data_phys + 4,
1010                         DMA_MODE_WRITE);
1011
1012                 if (drv_data->rx) {
1013                         /* Setup rx DMA for linear destination address */
1014                         CCR(drv_data->rx_channel) =
1015                                 CCR_DMOD_LINEAR |
1016                                 CCR_SMOD_FIFO |
1017                                 CCR_DSIZ_32 | CCR_SSIZ_16 |
1018                                 CCR_REN;
1019                         imx_dma_setup_single(
1020                                 drv_data->rx_channel,
1021                                 drv_data->rx_dma,
1022                                 drv_data->len,
1023                                 drv_data->rd_data_phys,
1024                                 DMA_MODE_READ);
1025                         imx_dma_enable(drv_data->rx_channel);
1026
1027                         /* Enable SPI interrupt */
1028                         writel(SPI_INTEN_RO, regs + SPI_INT_STATUS);
1029
1030                         /* Set SPI to request DMA service on both
1031                            Rx and Tx half fifo watermark */
1032                         writel(SPI_DMA_RHDEN | SPI_DMA_THDEN, regs + SPI_DMA);
1033                 } else
1034                         /* Write only access -> set SPI to request DMA
1035                            service on Tx half fifo watermark */
1036                         writel(SPI_DMA_THDEN, regs + SPI_DMA);
1037
1038                 imx_dma_enable(drv_data->tx_channel);
1039         } else {
1040                 dev_dbg(&drv_data->pdev->dev,
1041                         "pump pio transfer\n"
1042                         "    tx      = %p\n"
1043                         "    rx      = %p\n"
1044                         "    len     = %d\n",
1045                         drv_data->tx,
1046                         drv_data->rx,
1047                         drv_data->len);
1048
1049                 /* Ensure we have the correct interrupt handler */
1050                 if (drv_data->rx)
1051                         drv_data->transfer_handler = interrupt_transfer;
1052                 else
1053                         drv_data->transfer_handler = interrupt_wronly_transfer;
1054
1055                 /* Enable SPI interrupt */
1056                 if (drv_data->rx)
1057                         writel(SPI_INTEN_TH | SPI_INTEN_RO,
1058                                 regs + SPI_INT_STATUS);
1059                 else
1060                         writel(SPI_INTEN_TH, regs + SPI_INT_STATUS);
1061         }
1062 }
1063
1064 static void pump_messages(struct work_struct *work)
1065 {
1066         struct driver_data *drv_data =
1067                                 container_of(work, struct driver_data, work);
1068         unsigned long flags;
1069
1070         /* Lock queue and check for queue work */
1071         spin_lock_irqsave(&drv_data->lock, flags);
1072         if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1073                 drv_data->busy = 0;
1074                 spin_unlock_irqrestore(&drv_data->lock, flags);
1075                 return;
1076         }
1077
1078         /* Make sure we are not already running a message */
1079         if (drv_data->cur_msg) {
1080                 spin_unlock_irqrestore(&drv_data->lock, flags);
1081                 return;
1082         }
1083
1084         /* Extract head of queue */
1085         drv_data->cur_msg = list_entry(drv_data->queue.next,
1086                                         struct spi_message, queue);
1087         list_del_init(&drv_data->cur_msg->queue);
1088         drv_data->busy = 1;
1089         spin_unlock_irqrestore(&drv_data->lock, flags);
1090
1091         /* Initial message state */
1092         drv_data->cur_msg->state = START_STATE;
1093         drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1094                                                 struct spi_transfer,
1095                                                 transfer_list);
1096
1097         /* Setup the SPI using the per chip configuration */
1098         drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1099         restore_state(drv_data);
1100
1101         /* Mark as busy and launch transfers */
1102         tasklet_schedule(&drv_data->pump_transfers);
1103 }
1104
1105 static int transfer(struct spi_device *spi, struct spi_message *msg)
1106 {
1107         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1108         u32 min_speed_hz, max_speed_hz, tmp;
1109         struct spi_transfer *trans;
1110         unsigned long flags;
1111
1112         msg->actual_length = 0;
1113
1114         /* Per transfer setup check */
1115         min_speed_hz = spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN);
1116         max_speed_hz = spi->max_speed_hz;
1117         list_for_each_entry(trans, &msg->transfers, transfer_list) {
1118                 tmp = trans->bits_per_word;
1119                 if (tmp > 16) {
1120                         dev_err(&drv_data->pdev->dev,
1121                                 "message rejected : "
1122                                 "invalid transfer bits_per_word (%d bits)\n",
1123                                 tmp);
1124                         goto msg_rejected;
1125                 }
1126                 tmp = trans->speed_hz;
1127                 if (tmp) {
1128                         if (tmp < min_speed_hz) {
1129                                 dev_err(&drv_data->pdev->dev,
1130                                         "message rejected : "
1131                                         "device min speed (%d Hz) exceeds "
1132                                         "required transfer speed (%d Hz)\n",
1133                                         min_speed_hz,
1134                                         tmp);
1135                                 goto msg_rejected;
1136                         } else if (tmp > max_speed_hz) {
1137                                 dev_err(&drv_data->pdev->dev,
1138                                         "message rejected : "
1139                                         "transfer speed (%d Hz) exceeds "
1140                                         "device max speed (%d Hz)\n",
1141                                         tmp,
1142                                         max_speed_hz);
1143                                 goto msg_rejected;
1144                         }
1145                 }
1146         }
1147
1148         /* Message accepted */
1149         msg->status = -EINPROGRESS;
1150         msg->state = START_STATE;
1151
1152         spin_lock_irqsave(&drv_data->lock, flags);
1153         if (drv_data->run == QUEUE_STOPPED) {
1154                 spin_unlock_irqrestore(&drv_data->lock, flags);
1155                 return -ESHUTDOWN;
1156         }
1157
1158         list_add_tail(&msg->queue, &drv_data->queue);
1159         if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1160                 queue_work(drv_data->workqueue, &drv_data->work);
1161
1162         spin_unlock_irqrestore(&drv_data->lock, flags);
1163         return 0;
1164
1165 msg_rejected:
1166         /* Message rejected and not queued */
1167         msg->status = -EINVAL;
1168         msg->state = ERROR_STATE;
1169         if (msg->complete)
1170                 msg->complete(msg->context);
1171         return -EINVAL;
1172 }
1173
1174 /* the spi->mode bits understood by this driver: */
1175 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
1176
1177 /* On first setup bad values must free chip_data memory since will cause
1178    spi_new_device to fail. Bad value setup from protocol driver are simply not
1179    applied and notified to the calling driver. */
1180 static int setup(struct spi_device *spi)
1181 {
1182         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1183         struct spi_imx_chip *chip_info;
1184         struct chip_data *chip;
1185         int first_setup = 0;
1186         u32 tmp;
1187         int status = 0;
1188
1189         if (spi->mode & ~MODEBITS) {
1190                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
1191                         spi->mode & ~MODEBITS);
1192                 return -EINVAL;
1193         }
1194
1195         /* Get controller data */
1196         chip_info = spi->controller_data;
1197
1198         /* Get controller_state */
1199         chip = spi_get_ctldata(spi);
1200         if (chip == NULL) {
1201                 first_setup = 1;
1202
1203                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1204                 if (!chip) {
1205                         dev_err(&spi->dev,
1206                                 "setup - cannot allocate controller state\n");
1207                         return -ENOMEM;
1208                 }
1209                 chip->control = SPI_DEFAULT_CONTROL;
1210
1211                 if (chip_info == NULL) {
1212                         /* spi_board_info.controller_data not is supplied */
1213                         chip_info = kzalloc(sizeof(struct spi_imx_chip),
1214                                                 GFP_KERNEL);
1215                         if (!chip_info) {
1216                                 dev_err(&spi->dev,
1217                                         "setup - "
1218                                         "cannot allocate controller data\n");
1219                                 status = -ENOMEM;
1220                                 goto err_first_setup;
1221                         }
1222                         /* Set controller data default value */
1223                         chip_info->enable_loopback =
1224                                                 SPI_DEFAULT_ENABLE_LOOPBACK;
1225                         chip_info->enable_dma = SPI_DEFAULT_ENABLE_DMA;
1226                         chip_info->ins_ss_pulse = 1;
1227                         chip_info->bclk_wait = SPI_DEFAULT_PERIOD_WAIT;
1228                         chip_info->cs_control = null_cs_control;
1229                 }
1230         }
1231
1232         /* Now set controller state based on controller data */
1233
1234         if (first_setup) {
1235                 /* SPI loopback */
1236                 if (chip_info->enable_loopback)
1237                         chip->test = SPI_TEST_LBC;
1238                 else
1239                         chip->test = 0;
1240
1241                 /* SPI dma driven */
1242                 chip->enable_dma = chip_info->enable_dma;
1243
1244                 /* SPI /SS pulse between spi burst */
1245                 if (chip_info->ins_ss_pulse)
1246                         u32_EDIT(chip->control,
1247                                 SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_1);
1248                 else
1249                         u32_EDIT(chip->control,
1250                                 SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_0);
1251
1252                 /* SPI bclk waits between each bits_per_word spi burst */
1253                 if (chip_info->bclk_wait > SPI_PERIOD_MAX_WAIT) {
1254                         dev_err(&spi->dev,
1255                                 "setup - "
1256                                 "bclk_wait exceeds max allowed (%d)\n",
1257                                 SPI_PERIOD_MAX_WAIT);
1258                         goto err_first_setup;
1259                 }
1260                 chip->period = SPI_PERIOD_CSRC_BCLK |
1261                                 (chip_info->bclk_wait & SPI_PERIOD_WAIT);
1262         }
1263
1264         /* SPI mode */
1265         tmp = spi->mode;
1266         if (tmp & SPI_CS_HIGH) {
1267                 u32_EDIT(chip->control,
1268                                 SPI_CONTROL_SSPOL, SPI_CONTROL_SSPOL_ACT_HIGH);
1269         }
1270         switch (tmp & SPI_MODE_3) {
1271         case SPI_MODE_0:
1272                 tmp = 0;
1273                 break;
1274         case SPI_MODE_1:
1275                 tmp = SPI_CONTROL_PHA_1;
1276                 break;
1277         case SPI_MODE_2:
1278                 tmp = SPI_CONTROL_POL_ACT_LOW;
1279                 break;
1280         default:
1281                 /* SPI_MODE_3 */
1282                 tmp = SPI_CONTROL_PHA_1 | SPI_CONTROL_POL_ACT_LOW;
1283                 break;
1284         }
1285         u32_EDIT(chip->control, SPI_CONTROL_POL | SPI_CONTROL_PHA, tmp);
1286
1287         /* SPI word width */
1288         tmp = spi->bits_per_word;
1289         if (tmp > 16) {
1290                 status = -EINVAL;
1291                 dev_err(&spi->dev,
1292                         "setup - "
1293                         "invalid bits_per_word (%d)\n",
1294                         tmp);
1295                 if (first_setup)
1296                         goto err_first_setup;
1297                 else {
1298                         /* Undo setup using chip as backup copy */
1299                         tmp = chip->bits_per_word;
1300                         spi->bits_per_word = tmp;
1301                 }
1302         }
1303         chip->bits_per_word = tmp;
1304         u32_EDIT(chip->control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
1305         chip->n_bytes = (tmp <= 8) ? 1 : 2;
1306
1307         /* SPI datarate */
1308         tmp = spi_data_rate(drv_data, spi->max_speed_hz);
1309         if (tmp == SPI_CONTROL_DATARATE_BAD) {
1310                 status = -EINVAL;
1311                 dev_err(&spi->dev,
1312                         "setup - "
1313                         "HW min speed (%d Hz) exceeds required "
1314                         "max speed (%d Hz)\n",
1315                         spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN),
1316                         spi->max_speed_hz);
1317                 if (first_setup)
1318                         goto err_first_setup;
1319                 else
1320                         /* Undo setup using chip as backup copy */
1321                         spi->max_speed_hz = chip->max_speed_hz;
1322         } else {
1323                 u32_EDIT(chip->control, SPI_CONTROL_DATARATE, tmp);
1324                 /* Actual rounded max_speed_hz */
1325                 tmp = spi_speed_hz(drv_data, tmp);
1326                 spi->max_speed_hz = tmp;
1327                 chip->max_speed_hz = tmp;
1328         }
1329
1330         /* SPI chip-select management */
1331         if (chip_info->cs_control)
1332                 chip->cs_control = chip_info->cs_control;
1333         else
1334                 chip->cs_control = null_cs_control;
1335
1336         /* Save controller_state */
1337         spi_set_ctldata(spi, chip);
1338
1339         /* Summary */
1340         dev_dbg(&spi->dev,
1341                 "setup succeded\n"
1342                 "    loopback enable   = %s\n"
1343                 "    dma enable        = %s\n"
1344                 "    insert /ss pulse  = %s\n"
1345                 "    period wait       = %d\n"
1346                 "    mode              = %d\n"
1347                 "    bits per word     = %d\n"
1348                 "    min speed         = %d Hz\n"
1349                 "    rounded max speed = %d Hz\n",
1350                 chip->test & SPI_TEST_LBC ? "Yes" : "No",
1351                 chip->enable_dma ? "Yes" : "No",
1352                 chip->control & SPI_CONTROL_SSCTL ? "Yes" : "No",
1353                 chip->period & SPI_PERIOD_WAIT,
1354                 spi->mode,
1355                 spi->bits_per_word,
1356                 spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN),
1357                 spi->max_speed_hz);
1358         return status;
1359
1360 err_first_setup:
1361         kfree(chip);
1362         return status;
1363 }
1364
1365 static void cleanup(struct spi_device *spi)
1366 {
1367         kfree(spi_get_ctldata(spi));
1368 }
1369
1370 static int __init init_queue(struct driver_data *drv_data)
1371 {
1372         INIT_LIST_HEAD(&drv_data->queue);
1373         spin_lock_init(&drv_data->lock);
1374
1375         drv_data->run = QUEUE_STOPPED;
1376         drv_data->busy = 0;
1377
1378         tasklet_init(&drv_data->pump_transfers,
1379                         pump_transfers, (unsigned long)drv_data);
1380
1381         INIT_WORK(&drv_data->work, pump_messages);
1382         drv_data->workqueue = create_singlethread_workqueue(
1383                                 dev_name(drv_data->master->dev.parent));
1384         if (drv_data->workqueue == NULL)
1385                 return -EBUSY;
1386
1387         return 0;
1388 }
1389
1390 static int start_queue(struct driver_data *drv_data)
1391 {
1392         unsigned long flags;
1393
1394         spin_lock_irqsave(&drv_data->lock, flags);
1395
1396         if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1397                 spin_unlock_irqrestore(&drv_data->lock, flags);
1398                 return -EBUSY;
1399         }
1400
1401         drv_data->run = QUEUE_RUNNING;
1402         drv_data->cur_msg = NULL;
1403         drv_data->cur_transfer = NULL;
1404         drv_data->cur_chip = NULL;
1405         spin_unlock_irqrestore(&drv_data->lock, flags);
1406
1407         queue_work(drv_data->workqueue, &drv_data->work);
1408
1409         return 0;
1410 }
1411
1412 static int stop_queue(struct driver_data *drv_data)
1413 {
1414         unsigned long flags;
1415         unsigned limit = 500;
1416         int status = 0;
1417
1418         spin_lock_irqsave(&drv_data->lock, flags);
1419
1420         /* This is a bit lame, but is optimized for the common execution path.
1421          * A wait_queue on the drv_data->busy could be used, but then the common
1422          * execution path (pump_messages) would be required to call wake_up or
1423          * friends on every SPI message. Do this instead */
1424         drv_data->run = QUEUE_STOPPED;
1425         while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1426                 spin_unlock_irqrestore(&drv_data->lock, flags);
1427                 msleep(10);
1428                 spin_lock_irqsave(&drv_data->lock, flags);
1429         }
1430
1431         if (!list_empty(&drv_data->queue) || drv_data->busy)
1432                 status = -EBUSY;
1433
1434         spin_unlock_irqrestore(&drv_data->lock, flags);
1435
1436         return status;
1437 }
1438
1439 static int destroy_queue(struct driver_data *drv_data)
1440 {
1441         int status;
1442
1443         status = stop_queue(drv_data);
1444         if (status != 0)
1445                 return status;
1446
1447         if (drv_data->workqueue)
1448                 destroy_workqueue(drv_data->workqueue);
1449
1450         return 0;
1451 }
1452
1453 static int __init spi_imx_probe(struct platform_device *pdev)
1454 {
1455         struct device *dev = &pdev->dev;
1456         struct spi_imx_master *platform_info;
1457         struct spi_master *master;
1458         struct driver_data *drv_data;
1459         struct resource *res;
1460         int irq, status = 0;
1461
1462         platform_info = dev->platform_data;
1463         if (platform_info == NULL) {
1464                 dev_err(&pdev->dev, "probe - no platform data supplied\n");
1465                 status = -ENODEV;
1466                 goto err_no_pdata;
1467         }
1468
1469         /* Allocate master with space for drv_data */
1470         master = spi_alloc_master(dev, sizeof(struct driver_data));
1471         if (!master) {
1472                 dev_err(&pdev->dev, "probe - cannot alloc spi_master\n");
1473                 status = -ENOMEM;
1474                 goto err_no_mem;
1475         }
1476         drv_data = spi_master_get_devdata(master);
1477         drv_data->master = master;
1478         drv_data->master_info = platform_info;
1479         drv_data->pdev = pdev;
1480
1481         master->bus_num = pdev->id;
1482         master->num_chipselect = platform_info->num_chipselect;
1483         master->dma_alignment = DMA_ALIGNMENT;
1484         master->cleanup = cleanup;
1485         master->setup = setup;
1486         master->transfer = transfer;
1487
1488         drv_data->dummy_dma_buf = SPI_DUMMY_u32;
1489
1490         drv_data->clk = clk_get(&pdev->dev, "perclk2");
1491         if (IS_ERR(drv_data->clk)) {
1492                 dev_err(&pdev->dev, "probe - cannot get clock\n");
1493                 status = PTR_ERR(drv_data->clk);
1494                 goto err_no_clk;
1495         }
1496         clk_enable(drv_data->clk);
1497
1498         /* Find and map resources */
1499         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1500         if (!res) {
1501                 dev_err(&pdev->dev, "probe - MEM resources not defined\n");
1502                 status = -ENODEV;
1503                 goto err_no_iores;
1504         }
1505         drv_data->ioarea = request_mem_region(res->start,
1506                                                 res->end - res->start + 1,
1507                                                 pdev->name);
1508         if (drv_data->ioarea == NULL) {
1509                 dev_err(&pdev->dev, "probe - cannot reserve region\n");
1510                 status = -ENXIO;
1511                 goto err_no_iores;
1512         }
1513         drv_data->regs = ioremap(res->start, res->end - res->start + 1);
1514         if (drv_data->regs == NULL) {
1515                 dev_err(&pdev->dev, "probe - cannot map IO\n");
1516                 status = -ENXIO;
1517                 goto err_no_iomap;
1518         }
1519         drv_data->rd_data_phys = (dma_addr_t)res->start;
1520
1521         /* Attach to IRQ */
1522         irq = platform_get_irq(pdev, 0);
1523         if (irq < 0) {
1524                 dev_err(&pdev->dev, "probe - IRQ resource not defined\n");
1525                 status = -ENODEV;
1526                 goto err_no_irqres;
1527         }
1528         status = request_irq(irq, spi_int, IRQF_DISABLED,
1529                              dev_name(dev), drv_data);
1530         if (status < 0) {
1531                 dev_err(&pdev->dev, "probe - cannot get IRQ (%d)\n", status);
1532                 goto err_no_irqres;
1533         }
1534
1535         /* Setup DMA if requested */
1536         drv_data->tx_channel = -1;
1537         drv_data->rx_channel = -1;
1538         if (platform_info->enable_dma) {
1539                 /* Get rx DMA channel */
1540                 drv_data->rx_channel = imx_dma_request_by_prio("spi_imx_rx",
1541                                                                DMA_PRIO_HIGH);
1542                 if (drv_data->rx_channel < 0) {
1543                         dev_err(dev,
1544                                 "probe - problem (%d) requesting rx channel\n",
1545                                 drv_data->rx_channel);
1546                         goto err_no_rxdma;
1547                 } else
1548                         imx_dma_setup_handlers(drv_data->rx_channel, NULL,
1549                                                 dma_err_handler, drv_data);
1550
1551                 /* Get tx DMA channel */
1552                 drv_data->tx_channel = imx_dma_request_by_prio("spi_imx_tx",
1553                                                                DMA_PRIO_MEDIUM);
1554                 if (drv_data->tx_channel < 0) {
1555                         dev_err(dev,
1556                                 "probe - problem (%d) requesting tx channel\n",
1557                                 drv_data->tx_channel);
1558                         imx_dma_free(drv_data->rx_channel);
1559                         goto err_no_txdma;
1560                 } else
1561                         imx_dma_setup_handlers(drv_data->tx_channel,
1562                                                 dma_tx_handler, dma_err_handler,
1563                                                 drv_data);
1564
1565                 /* Set request source and burst length for allocated channels */
1566                 switch (drv_data->pdev->id) {
1567                 case 1:
1568                         /* Using SPI1 */
1569                         RSSR(drv_data->rx_channel) = DMA_REQ_SPI1_R;
1570                         RSSR(drv_data->tx_channel) = DMA_REQ_SPI1_T;
1571                         break;
1572                 case 2:
1573                         /* Using SPI2 */
1574                         RSSR(drv_data->rx_channel) = DMA_REQ_SPI2_R;
1575                         RSSR(drv_data->tx_channel) = DMA_REQ_SPI2_T;
1576                         break;
1577                 default:
1578                         dev_err(dev, "probe - bad SPI Id\n");
1579                         imx_dma_free(drv_data->rx_channel);
1580                         imx_dma_free(drv_data->tx_channel);
1581                         status = -ENODEV;
1582                         goto err_no_devid;
1583                 }
1584                 BLR(drv_data->rx_channel) = SPI_DMA_BLR;
1585                 BLR(drv_data->tx_channel) = SPI_DMA_BLR;
1586         }
1587
1588         /* Load default SPI configuration */
1589         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1590         writel(0, drv_data->regs + SPI_RESET);
1591         writel(SPI_DEFAULT_CONTROL, drv_data->regs + SPI_CONTROL);
1592
1593         /* Initial and start queue */
1594         status = init_queue(drv_data);
1595         if (status != 0) {
1596                 dev_err(&pdev->dev, "probe - problem initializing queue\n");
1597                 goto err_init_queue;
1598         }
1599         status = start_queue(drv_data);
1600         if (status != 0) {
1601                 dev_err(&pdev->dev, "probe - problem starting queue\n");
1602                 goto err_start_queue;
1603         }
1604
1605         /* Register with the SPI framework */
1606         platform_set_drvdata(pdev, drv_data);
1607         status = spi_register_master(master);
1608         if (status != 0) {
1609                 dev_err(&pdev->dev, "probe - problem registering spi master\n");
1610                 goto err_spi_register;
1611         }
1612
1613         dev_dbg(dev, "probe succeded\n");
1614         return 0;
1615
1616 err_init_queue:
1617 err_start_queue:
1618 err_spi_register:
1619         destroy_queue(drv_data);
1620
1621 err_no_rxdma:
1622 err_no_txdma:
1623 err_no_devid:
1624         free_irq(irq, drv_data);
1625
1626 err_no_irqres:
1627         iounmap(drv_data->regs);
1628
1629 err_no_iomap:
1630         release_resource(drv_data->ioarea);
1631         kfree(drv_data->ioarea);
1632
1633 err_no_iores:
1634         clk_disable(drv_data->clk);
1635         clk_put(drv_data->clk);
1636
1637 err_no_clk:
1638         spi_master_put(master);
1639
1640 err_no_pdata:
1641 err_no_mem:
1642         return status;
1643 }
1644
1645 static int __exit spi_imx_remove(struct platform_device *pdev)
1646 {
1647         struct driver_data *drv_data = platform_get_drvdata(pdev);
1648         int irq;
1649         int status = 0;
1650
1651         if (!drv_data)
1652                 return 0;
1653
1654         tasklet_kill(&drv_data->pump_transfers);
1655
1656         /* Remove the queue */
1657         status = destroy_queue(drv_data);
1658         if (status != 0) {
1659                 dev_err(&pdev->dev, "queue remove failed (%d)\n", status);
1660                 return status;
1661         }
1662
1663         /* Reset SPI */
1664         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1665         writel(0, drv_data->regs + SPI_RESET);
1666
1667         /* Release DMA */
1668         if (drv_data->master_info->enable_dma) {
1669                 RSSR(drv_data->rx_channel) = 0;
1670                 RSSR(drv_data->tx_channel) = 0;
1671                 imx_dma_free(drv_data->tx_channel);
1672                 imx_dma_free(drv_data->rx_channel);
1673         }
1674
1675         /* Release IRQ */
1676         irq = platform_get_irq(pdev, 0);
1677         if (irq >= 0)
1678                 free_irq(irq, drv_data);
1679
1680         clk_disable(drv_data->clk);
1681         clk_put(drv_data->clk);
1682
1683         /* Release map resources */
1684         iounmap(drv_data->regs);
1685         release_resource(drv_data->ioarea);
1686         kfree(drv_data->ioarea);
1687
1688         /* Disconnect from the SPI framework */
1689         spi_unregister_master(drv_data->master);
1690         spi_master_put(drv_data->master);
1691
1692         /* Prevent double remove */
1693         platform_set_drvdata(pdev, NULL);
1694
1695         dev_dbg(&pdev->dev, "remove succeded\n");
1696
1697         return 0;
1698 }
1699
1700 static void spi_imx_shutdown(struct platform_device *pdev)
1701 {
1702         struct driver_data *drv_data = platform_get_drvdata(pdev);
1703
1704         /* Reset SPI */
1705         writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1706         writel(0, drv_data->regs + SPI_RESET);
1707
1708         dev_dbg(&pdev->dev, "shutdown succeded\n");
1709 }
1710
1711 #ifdef CONFIG_PM
1712
1713 static int spi_imx_suspend(struct platform_device *pdev, pm_message_t state)
1714 {
1715         struct driver_data *drv_data = platform_get_drvdata(pdev);
1716         int status = 0;
1717
1718         status = stop_queue(drv_data);
1719         if (status != 0) {
1720                 dev_warn(&pdev->dev, "suspend cannot stop queue\n");
1721                 return status;
1722         }
1723
1724         dev_dbg(&pdev->dev, "suspended\n");
1725
1726         return 0;
1727 }
1728
1729 static int spi_imx_resume(struct platform_device *pdev)
1730 {
1731         struct driver_data *drv_data = platform_get_drvdata(pdev);
1732         int status = 0;
1733
1734         /* Start the queue running */
1735         status = start_queue(drv_data);
1736         if (status != 0)
1737                 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1738         else
1739                 dev_dbg(&pdev->dev, "resumed\n");
1740
1741         return status;
1742 }
1743 #else
1744 #define spi_imx_suspend NULL
1745 #define spi_imx_resume NULL
1746 #endif /* CONFIG_PM */
1747
1748 /* work with hotplug and coldplug */
1749 MODULE_ALIAS("platform:spi_imx");
1750
1751 static struct platform_driver driver = {
1752         .driver = {
1753                 .name = "spi_imx",
1754                 .owner = THIS_MODULE,
1755         },
1756         .remove = __exit_p(spi_imx_remove),
1757         .shutdown = spi_imx_shutdown,
1758         .suspend = spi_imx_suspend,
1759         .resume = spi_imx_resume,
1760 };
1761
1762 static int __init spi_imx_init(void)
1763 {
1764         return platform_driver_probe(&driver, spi_imx_probe);
1765 }
1766 module_init(spi_imx_init);
1767
1768 static void __exit spi_imx_exit(void)
1769 {
1770         platform_driver_unregister(&driver);
1771 }
1772 module_exit(spi_imx_exit);
1773
1774 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
1775 MODULE_DESCRIPTION("iMX SPI Controller Driver");
1776 MODULE_LICENSE("GPL");