KVM: take mmu_lock when updating a deleted slot
[safe/jmp/linux-2.6] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 DEFINE_SPINLOCK(kvm_lock);
66 LIST_HEAD(vm_list);
67
68 static cpumask_var_t cpus_hardware_enabled;
69
70 struct kmem_cache *kvm_vcpu_cache;
71 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
72
73 static __read_mostly struct preempt_ops kvm_preempt_ops;
74
75 struct dentry *kvm_debugfs_dir;
76
77 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
78                            unsigned long arg);
79
80 static bool kvm_rebooting;
81
82 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
83 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84                                                       int assigned_dev_id)
85 {
86         struct list_head *ptr;
87         struct kvm_assigned_dev_kernel *match;
88
89         list_for_each(ptr, head) {
90                 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
91                 if (match->assigned_dev_id == assigned_dev_id)
92                         return match;
93         }
94         return NULL;
95 }
96
97 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
98                                     *assigned_dev, int irq)
99 {
100         int i, index;
101         struct msix_entry *host_msix_entries;
102
103         host_msix_entries = assigned_dev->host_msix_entries;
104
105         index = -1;
106         for (i = 0; i < assigned_dev->entries_nr; i++)
107                 if (irq == host_msix_entries[i].vector) {
108                         index = i;
109                         break;
110                 }
111         if (index < 0) {
112                 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
113                 return 0;
114         }
115
116         return index;
117 }
118
119 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
120 {
121         struct kvm_assigned_dev_kernel *assigned_dev;
122         struct kvm *kvm;
123         int irq, i;
124
125         assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126                                     interrupt_work);
127         kvm = assigned_dev->kvm;
128
129         /* This is taken to safely inject irq inside the guest. When
130          * the interrupt injection (or the ioapic code) uses a
131          * finer-grained lock, update this
132          */
133         mutex_lock(&kvm->lock);
134         spin_lock_irq(&assigned_dev->assigned_dev_lock);
135         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
136                 struct kvm_guest_msix_entry *guest_entries =
137                         assigned_dev->guest_msix_entries;
138                 for (i = 0; i < assigned_dev->entries_nr; i++) {
139                         if (!(guest_entries[i].flags &
140                                         KVM_ASSIGNED_MSIX_PENDING))
141                                 continue;
142                         guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
143                         kvm_set_irq(assigned_dev->kvm,
144                                     assigned_dev->irq_source_id,
145                                     guest_entries[i].vector, 1);
146                         irq = assigned_dev->host_msix_entries[i].vector;
147                         if (irq != 0)
148                                 enable_irq(irq);
149                         assigned_dev->host_irq_disabled = false;
150                 }
151         } else {
152                 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
153                             assigned_dev->guest_irq, 1);
154                 if (assigned_dev->irq_requested_type &
155                                 KVM_DEV_IRQ_GUEST_MSI) {
156                         enable_irq(assigned_dev->host_irq);
157                         assigned_dev->host_irq_disabled = false;
158                 }
159         }
160
161         spin_unlock_irq(&assigned_dev->assigned_dev_lock);
162         mutex_unlock(&assigned_dev->kvm->lock);
163 }
164
165 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
166 {
167         unsigned long flags;
168         struct kvm_assigned_dev_kernel *assigned_dev =
169                 (struct kvm_assigned_dev_kernel *) dev_id;
170
171         spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
172         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
173                 int index = find_index_from_host_irq(assigned_dev, irq);
174                 if (index < 0)
175                         goto out;
176                 assigned_dev->guest_msix_entries[index].flags |=
177                         KVM_ASSIGNED_MSIX_PENDING;
178         }
179
180         schedule_work(&assigned_dev->interrupt_work);
181
182         disable_irq_nosync(irq);
183         assigned_dev->host_irq_disabled = true;
184
185 out:
186         spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
187         return IRQ_HANDLED;
188 }
189
190 /* Ack the irq line for an assigned device */
191 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
192 {
193         struct kvm_assigned_dev_kernel *dev;
194         unsigned long flags;
195
196         if (kian->gsi == -1)
197                 return;
198
199         dev = container_of(kian, struct kvm_assigned_dev_kernel,
200                            ack_notifier);
201
202         kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
203
204         /* The guest irq may be shared so this ack may be
205          * from another device.
206          */
207         spin_lock_irqsave(&dev->assigned_dev_lock, flags);
208         if (dev->host_irq_disabled) {
209                 enable_irq(dev->host_irq);
210                 dev->host_irq_disabled = false;
211         }
212         spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
213 }
214
215 static void deassign_guest_irq(struct kvm *kvm,
216                                struct kvm_assigned_dev_kernel *assigned_dev)
217 {
218         kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
219         assigned_dev->ack_notifier.gsi = -1;
220
221         if (assigned_dev->irq_source_id != -1)
222                 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
223         assigned_dev->irq_source_id = -1;
224         assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
225 }
226
227 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
228 static void deassign_host_irq(struct kvm *kvm,
229                               struct kvm_assigned_dev_kernel *assigned_dev)
230 {
231         /*
232          * In kvm_free_device_irq, cancel_work_sync return true if:
233          * 1. work is scheduled, and then cancelled.
234          * 2. work callback is executed.
235          *
236          * The first one ensured that the irq is disabled and no more events
237          * would happen. But for the second one, the irq may be enabled (e.g.
238          * for MSI). So we disable irq here to prevent further events.
239          *
240          * Notice this maybe result in nested disable if the interrupt type is
241          * INTx, but it's OK for we are going to free it.
242          *
243          * If this function is a part of VM destroy, please ensure that till
244          * now, the kvm state is still legal for probably we also have to wait
245          * interrupt_work done.
246          */
247         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
248                 int i;
249                 for (i = 0; i < assigned_dev->entries_nr; i++)
250                         disable_irq_nosync(assigned_dev->
251                                            host_msix_entries[i].vector);
252
253                 cancel_work_sync(&assigned_dev->interrupt_work);
254
255                 for (i = 0; i < assigned_dev->entries_nr; i++)
256                         free_irq(assigned_dev->host_msix_entries[i].vector,
257                                  (void *)assigned_dev);
258
259                 assigned_dev->entries_nr = 0;
260                 kfree(assigned_dev->host_msix_entries);
261                 kfree(assigned_dev->guest_msix_entries);
262                 pci_disable_msix(assigned_dev->dev);
263         } else {
264                 /* Deal with MSI and INTx */
265                 disable_irq_nosync(assigned_dev->host_irq);
266                 cancel_work_sync(&assigned_dev->interrupt_work);
267
268                 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
269
270                 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
271                         pci_disable_msi(assigned_dev->dev);
272         }
273
274         assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
275 }
276
277 static int kvm_deassign_irq(struct kvm *kvm,
278                             struct kvm_assigned_dev_kernel *assigned_dev,
279                             unsigned long irq_requested_type)
280 {
281         unsigned long guest_irq_type, host_irq_type;
282
283         if (!irqchip_in_kernel(kvm))
284                 return -EINVAL;
285         /* no irq assignment to deassign */
286         if (!assigned_dev->irq_requested_type)
287                 return -ENXIO;
288
289         host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
290         guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
291
292         if (host_irq_type)
293                 deassign_host_irq(kvm, assigned_dev);
294         if (guest_irq_type)
295                 deassign_guest_irq(kvm, assigned_dev);
296
297         return 0;
298 }
299
300 static void kvm_free_assigned_irq(struct kvm *kvm,
301                                   struct kvm_assigned_dev_kernel *assigned_dev)
302 {
303         kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
304 }
305
306 static void kvm_free_assigned_device(struct kvm *kvm,
307                                      struct kvm_assigned_dev_kernel
308                                      *assigned_dev)
309 {
310         kvm_free_assigned_irq(kvm, assigned_dev);
311
312         pci_reset_function(assigned_dev->dev);
313
314         pci_release_regions(assigned_dev->dev);
315         pci_disable_device(assigned_dev->dev);
316         pci_dev_put(assigned_dev->dev);
317
318         list_del(&assigned_dev->list);
319         kfree(assigned_dev);
320 }
321
322 void kvm_free_all_assigned_devices(struct kvm *kvm)
323 {
324         struct list_head *ptr, *ptr2;
325         struct kvm_assigned_dev_kernel *assigned_dev;
326
327         list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
328                 assigned_dev = list_entry(ptr,
329                                           struct kvm_assigned_dev_kernel,
330                                           list);
331
332                 kvm_free_assigned_device(kvm, assigned_dev);
333         }
334 }
335
336 static int assigned_device_enable_host_intx(struct kvm *kvm,
337                                             struct kvm_assigned_dev_kernel *dev)
338 {
339         dev->host_irq = dev->dev->irq;
340         /* Even though this is PCI, we don't want to use shared
341          * interrupts. Sharing host devices with guest-assigned devices
342          * on the same interrupt line is not a happy situation: there
343          * are going to be long delays in accepting, acking, etc.
344          */
345         if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
346                         0, "kvm_assigned_intx_device", (void *)dev))
347                 return -EIO;
348         return 0;
349 }
350
351 #ifdef __KVM_HAVE_MSI
352 static int assigned_device_enable_host_msi(struct kvm *kvm,
353                                            struct kvm_assigned_dev_kernel *dev)
354 {
355         int r;
356
357         if (!dev->dev->msi_enabled) {
358                 r = pci_enable_msi(dev->dev);
359                 if (r)
360                         return r;
361         }
362
363         dev->host_irq = dev->dev->irq;
364         if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
365                         "kvm_assigned_msi_device", (void *)dev)) {
366                 pci_disable_msi(dev->dev);
367                 return -EIO;
368         }
369
370         return 0;
371 }
372 #endif
373
374 #ifdef __KVM_HAVE_MSIX
375 static int assigned_device_enable_host_msix(struct kvm *kvm,
376                                             struct kvm_assigned_dev_kernel *dev)
377 {
378         int i, r = -EINVAL;
379
380         /* host_msix_entries and guest_msix_entries should have been
381          * initialized */
382         if (dev->entries_nr == 0)
383                 return r;
384
385         r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
386         if (r)
387                 return r;
388
389         for (i = 0; i < dev->entries_nr; i++) {
390                 r = request_irq(dev->host_msix_entries[i].vector,
391                                 kvm_assigned_dev_intr, 0,
392                                 "kvm_assigned_msix_device",
393                                 (void *)dev);
394                 /* FIXME: free requested_irq's on failure */
395                 if (r)
396                         return r;
397         }
398
399         return 0;
400 }
401
402 #endif
403
404 static int assigned_device_enable_guest_intx(struct kvm *kvm,
405                                 struct kvm_assigned_dev_kernel *dev,
406                                 struct kvm_assigned_irq *irq)
407 {
408         dev->guest_irq = irq->guest_irq;
409         dev->ack_notifier.gsi = irq->guest_irq;
410         return 0;
411 }
412
413 #ifdef __KVM_HAVE_MSI
414 static int assigned_device_enable_guest_msi(struct kvm *kvm,
415                         struct kvm_assigned_dev_kernel *dev,
416                         struct kvm_assigned_irq *irq)
417 {
418         dev->guest_irq = irq->guest_irq;
419         dev->ack_notifier.gsi = -1;
420         return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425                         struct kvm_assigned_dev_kernel *dev,
426                         struct kvm_assigned_irq *irq)
427 {
428         dev->guest_irq = irq->guest_irq;
429         dev->ack_notifier.gsi = -1;
430         return 0;
431 }
432 #endif
433
434 static int assign_host_irq(struct kvm *kvm,
435                            struct kvm_assigned_dev_kernel *dev,
436                            __u32 host_irq_type)
437 {
438         int r = -EEXIST;
439
440         if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
441                 return r;
442
443         switch (host_irq_type) {
444         case KVM_DEV_IRQ_HOST_INTX:
445                 r = assigned_device_enable_host_intx(kvm, dev);
446                 break;
447 #ifdef __KVM_HAVE_MSI
448         case KVM_DEV_IRQ_HOST_MSI:
449                 r = assigned_device_enable_host_msi(kvm, dev);
450                 break;
451 #endif
452 #ifdef __KVM_HAVE_MSIX
453         case KVM_DEV_IRQ_HOST_MSIX:
454                 r = assigned_device_enable_host_msix(kvm, dev);
455                 break;
456 #endif
457         default:
458                 r = -EINVAL;
459         }
460
461         if (!r)
462                 dev->irq_requested_type |= host_irq_type;
463
464         return r;
465 }
466
467 static int assign_guest_irq(struct kvm *kvm,
468                             struct kvm_assigned_dev_kernel *dev,
469                             struct kvm_assigned_irq *irq,
470                             unsigned long guest_irq_type)
471 {
472         int id;
473         int r = -EEXIST;
474
475         if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
476                 return r;
477
478         id = kvm_request_irq_source_id(kvm);
479         if (id < 0)
480                 return id;
481
482         dev->irq_source_id = id;
483
484         switch (guest_irq_type) {
485         case KVM_DEV_IRQ_GUEST_INTX:
486                 r = assigned_device_enable_guest_intx(kvm, dev, irq);
487                 break;
488 #ifdef __KVM_HAVE_MSI
489         case KVM_DEV_IRQ_GUEST_MSI:
490                 r = assigned_device_enable_guest_msi(kvm, dev, irq);
491                 break;
492 #endif
493 #ifdef __KVM_HAVE_MSIX
494         case KVM_DEV_IRQ_GUEST_MSIX:
495                 r = assigned_device_enable_guest_msix(kvm, dev, irq);
496                 break;
497 #endif
498         default:
499                 r = -EINVAL;
500         }
501
502         if (!r) {
503                 dev->irq_requested_type |= guest_irq_type;
504                 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
505         } else
506                 kvm_free_irq_source_id(kvm, dev->irq_source_id);
507
508         return r;
509 }
510
511 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
512 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
513                                    struct kvm_assigned_irq *assigned_irq)
514 {
515         int r = -EINVAL;
516         struct kvm_assigned_dev_kernel *match;
517         unsigned long host_irq_type, guest_irq_type;
518
519         if (!capable(CAP_SYS_RAWIO))
520                 return -EPERM;
521
522         if (!irqchip_in_kernel(kvm))
523                 return r;
524
525         mutex_lock(&kvm->lock);
526         r = -ENODEV;
527         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
528                                       assigned_irq->assigned_dev_id);
529         if (!match)
530                 goto out;
531
532         host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
533         guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
534
535         r = -EINVAL;
536         /* can only assign one type at a time */
537         if (hweight_long(host_irq_type) > 1)
538                 goto out;
539         if (hweight_long(guest_irq_type) > 1)
540                 goto out;
541         if (host_irq_type == 0 && guest_irq_type == 0)
542                 goto out;
543
544         r = 0;
545         if (host_irq_type)
546                 r = assign_host_irq(kvm, match, host_irq_type);
547         if (r)
548                 goto out;
549
550         if (guest_irq_type)
551                 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
552 out:
553         mutex_unlock(&kvm->lock);
554         return r;
555 }
556
557 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
558                                          struct kvm_assigned_irq
559                                          *assigned_irq)
560 {
561         int r = -ENODEV;
562         struct kvm_assigned_dev_kernel *match;
563
564         mutex_lock(&kvm->lock);
565
566         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
567                                       assigned_irq->assigned_dev_id);
568         if (!match)
569                 goto out;
570
571         r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
572 out:
573         mutex_unlock(&kvm->lock);
574         return r;
575 }
576
577 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
578                                       struct kvm_assigned_pci_dev *assigned_dev)
579 {
580         int r = 0;
581         struct kvm_assigned_dev_kernel *match;
582         struct pci_dev *dev;
583
584         down_read(&kvm->slots_lock);
585         mutex_lock(&kvm->lock);
586
587         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
588                                       assigned_dev->assigned_dev_id);
589         if (match) {
590                 /* device already assigned */
591                 r = -EEXIST;
592                 goto out;
593         }
594
595         match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
596         if (match == NULL) {
597                 printk(KERN_INFO "%s: Couldn't allocate memory\n",
598                        __func__);
599                 r = -ENOMEM;
600                 goto out;
601         }
602         dev = pci_get_bus_and_slot(assigned_dev->busnr,
603                                    assigned_dev->devfn);
604         if (!dev) {
605                 printk(KERN_INFO "%s: host device not found\n", __func__);
606                 r = -EINVAL;
607                 goto out_free;
608         }
609         if (pci_enable_device(dev)) {
610                 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
611                 r = -EBUSY;
612                 goto out_put;
613         }
614         r = pci_request_regions(dev, "kvm_assigned_device");
615         if (r) {
616                 printk(KERN_INFO "%s: Could not get access to device regions\n",
617                        __func__);
618                 goto out_disable;
619         }
620
621         pci_reset_function(dev);
622
623         match->assigned_dev_id = assigned_dev->assigned_dev_id;
624         match->host_busnr = assigned_dev->busnr;
625         match->host_devfn = assigned_dev->devfn;
626         match->flags = assigned_dev->flags;
627         match->dev = dev;
628         spin_lock_init(&match->assigned_dev_lock);
629         match->irq_source_id = -1;
630         match->kvm = kvm;
631         match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
632         INIT_WORK(&match->interrupt_work,
633                   kvm_assigned_dev_interrupt_work_handler);
634
635         list_add(&match->list, &kvm->arch.assigned_dev_head);
636
637         if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
638                 if (!kvm->arch.iommu_domain) {
639                         r = kvm_iommu_map_guest(kvm);
640                         if (r)
641                                 goto out_list_del;
642                 }
643                 r = kvm_assign_device(kvm, match);
644                 if (r)
645                         goto out_list_del;
646         }
647
648 out:
649         mutex_unlock(&kvm->lock);
650         up_read(&kvm->slots_lock);
651         return r;
652 out_list_del:
653         list_del(&match->list);
654         pci_release_regions(dev);
655 out_disable:
656         pci_disable_device(dev);
657 out_put:
658         pci_dev_put(dev);
659 out_free:
660         kfree(match);
661         mutex_unlock(&kvm->lock);
662         up_read(&kvm->slots_lock);
663         return r;
664 }
665 #endif
666
667 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
668 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
669                 struct kvm_assigned_pci_dev *assigned_dev)
670 {
671         int r = 0;
672         struct kvm_assigned_dev_kernel *match;
673
674         mutex_lock(&kvm->lock);
675
676         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
677                                       assigned_dev->assigned_dev_id);
678         if (!match) {
679                 printk(KERN_INFO "%s: device hasn't been assigned before, "
680                   "so cannot be deassigned\n", __func__);
681                 r = -EINVAL;
682                 goto out;
683         }
684
685         if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
686                 kvm_deassign_device(kvm, match);
687
688         kvm_free_assigned_device(kvm, match);
689
690 out:
691         mutex_unlock(&kvm->lock);
692         return r;
693 }
694 #endif
695
696 static inline int valid_vcpu(int n)
697 {
698         return likely(n >= 0 && n < KVM_MAX_VCPUS);
699 }
700
701 inline int kvm_is_mmio_pfn(pfn_t pfn)
702 {
703         if (pfn_valid(pfn)) {
704                 struct page *page = compound_head(pfn_to_page(pfn));
705                 return PageReserved(page);
706         }
707
708         return true;
709 }
710
711 /*
712  * Switches to specified vcpu, until a matching vcpu_put()
713  */
714 void vcpu_load(struct kvm_vcpu *vcpu)
715 {
716         int cpu;
717
718         mutex_lock(&vcpu->mutex);
719         cpu = get_cpu();
720         preempt_notifier_register(&vcpu->preempt_notifier);
721         kvm_arch_vcpu_load(vcpu, cpu);
722         put_cpu();
723 }
724
725 void vcpu_put(struct kvm_vcpu *vcpu)
726 {
727         preempt_disable();
728         kvm_arch_vcpu_put(vcpu);
729         preempt_notifier_unregister(&vcpu->preempt_notifier);
730         preempt_enable();
731         mutex_unlock(&vcpu->mutex);
732 }
733
734 static void ack_flush(void *_completed)
735 {
736 }
737
738 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
739 {
740         int i, cpu, me;
741         cpumask_var_t cpus;
742         bool called = true;
743         struct kvm_vcpu *vcpu;
744
745         if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
746                 cpumask_clear(cpus);
747
748         me = get_cpu();
749         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
750                 vcpu = kvm->vcpus[i];
751                 if (!vcpu)
752                         continue;
753                 if (test_and_set_bit(req, &vcpu->requests))
754                         continue;
755                 cpu = vcpu->cpu;
756                 if (cpus != NULL && cpu != -1 && cpu != me)
757                         cpumask_set_cpu(cpu, cpus);
758         }
759         if (unlikely(cpus == NULL))
760                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
761         else if (!cpumask_empty(cpus))
762                 smp_call_function_many(cpus, ack_flush, NULL, 1);
763         else
764                 called = false;
765         put_cpu();
766         free_cpumask_var(cpus);
767         return called;
768 }
769
770 void kvm_flush_remote_tlbs(struct kvm *kvm)
771 {
772         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
773                 ++kvm->stat.remote_tlb_flush;
774 }
775
776 void kvm_reload_remote_mmus(struct kvm *kvm)
777 {
778         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
779 }
780
781 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
782 {
783         struct page *page;
784         int r;
785
786         mutex_init(&vcpu->mutex);
787         vcpu->cpu = -1;
788         vcpu->kvm = kvm;
789         vcpu->vcpu_id = id;
790         init_waitqueue_head(&vcpu->wq);
791
792         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
793         if (!page) {
794                 r = -ENOMEM;
795                 goto fail;
796         }
797         vcpu->run = page_address(page);
798
799         r = kvm_arch_vcpu_init(vcpu);
800         if (r < 0)
801                 goto fail_free_run;
802         return 0;
803
804 fail_free_run:
805         free_page((unsigned long)vcpu->run);
806 fail:
807         return r;
808 }
809 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
810
811 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
812 {
813         kvm_arch_vcpu_uninit(vcpu);
814         free_page((unsigned long)vcpu->run);
815 }
816 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
817
818 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
819 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
820 {
821         return container_of(mn, struct kvm, mmu_notifier);
822 }
823
824 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
825                                              struct mm_struct *mm,
826                                              unsigned long address)
827 {
828         struct kvm *kvm = mmu_notifier_to_kvm(mn);
829         int need_tlb_flush;
830
831         /*
832          * When ->invalidate_page runs, the linux pte has been zapped
833          * already but the page is still allocated until
834          * ->invalidate_page returns. So if we increase the sequence
835          * here the kvm page fault will notice if the spte can't be
836          * established because the page is going to be freed. If
837          * instead the kvm page fault establishes the spte before
838          * ->invalidate_page runs, kvm_unmap_hva will release it
839          * before returning.
840          *
841          * The sequence increase only need to be seen at spin_unlock
842          * time, and not at spin_lock time.
843          *
844          * Increasing the sequence after the spin_unlock would be
845          * unsafe because the kvm page fault could then establish the
846          * pte after kvm_unmap_hva returned, without noticing the page
847          * is going to be freed.
848          */
849         spin_lock(&kvm->mmu_lock);
850         kvm->mmu_notifier_seq++;
851         need_tlb_flush = kvm_unmap_hva(kvm, address);
852         spin_unlock(&kvm->mmu_lock);
853
854         /* we've to flush the tlb before the pages can be freed */
855         if (need_tlb_flush)
856                 kvm_flush_remote_tlbs(kvm);
857
858 }
859
860 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
861                                                     struct mm_struct *mm,
862                                                     unsigned long start,
863                                                     unsigned long end)
864 {
865         struct kvm *kvm = mmu_notifier_to_kvm(mn);
866         int need_tlb_flush = 0;
867
868         spin_lock(&kvm->mmu_lock);
869         /*
870          * The count increase must become visible at unlock time as no
871          * spte can be established without taking the mmu_lock and
872          * count is also read inside the mmu_lock critical section.
873          */
874         kvm->mmu_notifier_count++;
875         for (; start < end; start += PAGE_SIZE)
876                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
877         spin_unlock(&kvm->mmu_lock);
878
879         /* we've to flush the tlb before the pages can be freed */
880         if (need_tlb_flush)
881                 kvm_flush_remote_tlbs(kvm);
882 }
883
884 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
885                                                   struct mm_struct *mm,
886                                                   unsigned long start,
887                                                   unsigned long end)
888 {
889         struct kvm *kvm = mmu_notifier_to_kvm(mn);
890
891         spin_lock(&kvm->mmu_lock);
892         /*
893          * This sequence increase will notify the kvm page fault that
894          * the page that is going to be mapped in the spte could have
895          * been freed.
896          */
897         kvm->mmu_notifier_seq++;
898         /*
899          * The above sequence increase must be visible before the
900          * below count decrease but both values are read by the kvm
901          * page fault under mmu_lock spinlock so we don't need to add
902          * a smb_wmb() here in between the two.
903          */
904         kvm->mmu_notifier_count--;
905         spin_unlock(&kvm->mmu_lock);
906
907         BUG_ON(kvm->mmu_notifier_count < 0);
908 }
909
910 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
911                                               struct mm_struct *mm,
912                                               unsigned long address)
913 {
914         struct kvm *kvm = mmu_notifier_to_kvm(mn);
915         int young;
916
917         spin_lock(&kvm->mmu_lock);
918         young = kvm_age_hva(kvm, address);
919         spin_unlock(&kvm->mmu_lock);
920
921         if (young)
922                 kvm_flush_remote_tlbs(kvm);
923
924         return young;
925 }
926
927 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
928                                      struct mm_struct *mm)
929 {
930         struct kvm *kvm = mmu_notifier_to_kvm(mn);
931         kvm_arch_flush_shadow(kvm);
932 }
933
934 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
935         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
936         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
937         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
938         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
939         .release                = kvm_mmu_notifier_release,
940 };
941 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
942
943 static struct kvm *kvm_create_vm(void)
944 {
945         struct kvm *kvm = kvm_arch_create_vm();
946 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
947         struct page *page;
948 #endif
949
950         if (IS_ERR(kvm))
951                 goto out;
952 #ifdef CONFIG_HAVE_KVM_IRQCHIP
953         INIT_LIST_HEAD(&kvm->irq_routing);
954         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
955 #endif
956
957 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
958         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
959         if (!page) {
960                 kfree(kvm);
961                 return ERR_PTR(-ENOMEM);
962         }
963         kvm->coalesced_mmio_ring =
964                         (struct kvm_coalesced_mmio_ring *)page_address(page);
965 #endif
966
967 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
968         {
969                 int err;
970                 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
971                 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
972                 if (err) {
973 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
974                         put_page(page);
975 #endif
976                         kfree(kvm);
977                         return ERR_PTR(err);
978                 }
979         }
980 #endif
981
982         kvm->mm = current->mm;
983         atomic_inc(&kvm->mm->mm_count);
984         spin_lock_init(&kvm->mmu_lock);
985         kvm_io_bus_init(&kvm->pio_bus);
986         mutex_init(&kvm->lock);
987         kvm_io_bus_init(&kvm->mmio_bus);
988         init_rwsem(&kvm->slots_lock);
989         atomic_set(&kvm->users_count, 1);
990         spin_lock(&kvm_lock);
991         list_add(&kvm->vm_list, &vm_list);
992         spin_unlock(&kvm_lock);
993 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
994         kvm_coalesced_mmio_init(kvm);
995 #endif
996 out:
997         return kvm;
998 }
999
1000 /*
1001  * Free any memory in @free but not in @dont.
1002  */
1003 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1004                                   struct kvm_memory_slot *dont)
1005 {
1006         if (!dont || free->rmap != dont->rmap)
1007                 vfree(free->rmap);
1008
1009         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1010                 vfree(free->dirty_bitmap);
1011
1012         if (!dont || free->lpage_info != dont->lpage_info)
1013                 vfree(free->lpage_info);
1014
1015         free->npages = 0;
1016         free->dirty_bitmap = NULL;
1017         free->rmap = NULL;
1018         free->lpage_info = NULL;
1019 }
1020
1021 void kvm_free_physmem(struct kvm *kvm)
1022 {
1023         int i;
1024
1025         for (i = 0; i < kvm->nmemslots; ++i)
1026                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1027 }
1028
1029 static void kvm_destroy_vm(struct kvm *kvm)
1030 {
1031         struct mm_struct *mm = kvm->mm;
1032
1033         kvm_arch_sync_events(kvm);
1034         spin_lock(&kvm_lock);
1035         list_del(&kvm->vm_list);
1036         spin_unlock(&kvm_lock);
1037         kvm_free_irq_routing(kvm);
1038         kvm_io_bus_destroy(&kvm->pio_bus);
1039         kvm_io_bus_destroy(&kvm->mmio_bus);
1040 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1041         if (kvm->coalesced_mmio_ring != NULL)
1042                 free_page((unsigned long)kvm->coalesced_mmio_ring);
1043 #endif
1044 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1045         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1046 #else
1047         kvm_arch_flush_shadow(kvm);
1048 #endif
1049         kvm_arch_destroy_vm(kvm);
1050         mmdrop(mm);
1051 }
1052
1053 void kvm_get_kvm(struct kvm *kvm)
1054 {
1055         atomic_inc(&kvm->users_count);
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1058
1059 void kvm_put_kvm(struct kvm *kvm)
1060 {
1061         if (atomic_dec_and_test(&kvm->users_count))
1062                 kvm_destroy_vm(kvm);
1063 }
1064 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1065
1066
1067 static int kvm_vm_release(struct inode *inode, struct file *filp)
1068 {
1069         struct kvm *kvm = filp->private_data;
1070
1071         kvm_put_kvm(kvm);
1072         return 0;
1073 }
1074
1075 /*
1076  * Allocate some memory and give it an address in the guest physical address
1077  * space.
1078  *
1079  * Discontiguous memory is allowed, mostly for framebuffers.
1080  *
1081  * Must be called holding mmap_sem for write.
1082  */
1083 int __kvm_set_memory_region(struct kvm *kvm,
1084                             struct kvm_userspace_memory_region *mem,
1085                             int user_alloc)
1086 {
1087         int r;
1088         gfn_t base_gfn;
1089         unsigned long npages;
1090         int largepages;
1091         unsigned long i;
1092         struct kvm_memory_slot *memslot;
1093         struct kvm_memory_slot old, new;
1094
1095         r = -EINVAL;
1096         /* General sanity checks */
1097         if (mem->memory_size & (PAGE_SIZE - 1))
1098                 goto out;
1099         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1100                 goto out;
1101         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1102                 goto out;
1103         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1104                 goto out;
1105         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1106                 goto out;
1107
1108         memslot = &kvm->memslots[mem->slot];
1109         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1110         npages = mem->memory_size >> PAGE_SHIFT;
1111
1112         if (!npages)
1113                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1114
1115         new = old = *memslot;
1116
1117         new.base_gfn = base_gfn;
1118         new.npages = npages;
1119         new.flags = mem->flags;
1120
1121         /* Disallow changing a memory slot's size. */
1122         r = -EINVAL;
1123         if (npages && old.npages && npages != old.npages)
1124                 goto out_free;
1125
1126         /* Check for overlaps */
1127         r = -EEXIST;
1128         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1129                 struct kvm_memory_slot *s = &kvm->memslots[i];
1130
1131                 if (s == memslot || !s->npages)
1132                         continue;
1133                 if (!((base_gfn + npages <= s->base_gfn) ||
1134                       (base_gfn >= s->base_gfn + s->npages)))
1135                         goto out_free;
1136         }
1137
1138         /* Free page dirty bitmap if unneeded */
1139         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1140                 new.dirty_bitmap = NULL;
1141
1142         r = -ENOMEM;
1143
1144         /* Allocate if a slot is being created */
1145 #ifndef CONFIG_S390
1146         if (npages && !new.rmap) {
1147                 new.rmap = vmalloc(npages * sizeof(struct page *));
1148
1149                 if (!new.rmap)
1150                         goto out_free;
1151
1152                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1153
1154                 new.user_alloc = user_alloc;
1155                 /*
1156                  * hva_to_rmmap() serialzies with the mmu_lock and to be
1157                  * safe it has to ignore memslots with !user_alloc &&
1158                  * !userspace_addr.
1159                  */
1160                 if (user_alloc)
1161                         new.userspace_addr = mem->userspace_addr;
1162                 else
1163                         new.userspace_addr = 0;
1164         }
1165         if (npages && !new.lpage_info) {
1166                 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1167                 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1168
1169                 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1170
1171                 if (!new.lpage_info)
1172                         goto out_free;
1173
1174                 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1175
1176                 if (base_gfn % KVM_PAGES_PER_HPAGE)
1177                         new.lpage_info[0].write_count = 1;
1178                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1179                         new.lpage_info[largepages-1].write_count = 1;
1180         }
1181
1182         /* Allocate page dirty bitmap if needed */
1183         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1184                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1185
1186                 new.dirty_bitmap = vmalloc(dirty_bytes);
1187                 if (!new.dirty_bitmap)
1188                         goto out_free;
1189                 memset(new.dirty_bitmap, 0, dirty_bytes);
1190         }
1191 #endif /* not defined CONFIG_S390 */
1192
1193         if (!npages)
1194                 kvm_arch_flush_shadow(kvm);
1195
1196         spin_lock(&kvm->mmu_lock);
1197         if (mem->slot >= kvm->nmemslots)
1198                 kvm->nmemslots = mem->slot + 1;
1199
1200         *memslot = new;
1201         spin_unlock(&kvm->mmu_lock);
1202
1203         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1204         if (r) {
1205                 spin_lock(&kvm->mmu_lock);
1206                 *memslot = old;
1207                 spin_unlock(&kvm->mmu_lock);
1208                 goto out_free;
1209         }
1210
1211         kvm_free_physmem_slot(&old, npages ? &new : NULL);
1212         /* Slot deletion case: we have to update the current slot */
1213         spin_lock(&kvm->mmu_lock);
1214         if (!npages)
1215                 *memslot = old;
1216         spin_unlock(&kvm->mmu_lock);
1217 #ifdef CONFIG_DMAR
1218         /* map the pages in iommu page table */
1219         r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1220         if (r)
1221                 goto out;
1222 #endif
1223         return 0;
1224
1225 out_free:
1226         kvm_free_physmem_slot(&new, &old);
1227 out:
1228         return r;
1229
1230 }
1231 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1232
1233 int kvm_set_memory_region(struct kvm *kvm,
1234                           struct kvm_userspace_memory_region *mem,
1235                           int user_alloc)
1236 {
1237         int r;
1238
1239         down_write(&kvm->slots_lock);
1240         r = __kvm_set_memory_region(kvm, mem, user_alloc);
1241         up_write(&kvm->slots_lock);
1242         return r;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1245
1246 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1247                                    struct
1248                                    kvm_userspace_memory_region *mem,
1249                                    int user_alloc)
1250 {
1251         if (mem->slot >= KVM_MEMORY_SLOTS)
1252                 return -EINVAL;
1253         return kvm_set_memory_region(kvm, mem, user_alloc);
1254 }
1255
1256 int kvm_get_dirty_log(struct kvm *kvm,
1257                         struct kvm_dirty_log *log, int *is_dirty)
1258 {
1259         struct kvm_memory_slot *memslot;
1260         int r, i;
1261         int n;
1262         unsigned long any = 0;
1263
1264         r = -EINVAL;
1265         if (log->slot >= KVM_MEMORY_SLOTS)
1266                 goto out;
1267
1268         memslot = &kvm->memslots[log->slot];
1269         r = -ENOENT;
1270         if (!memslot->dirty_bitmap)
1271                 goto out;
1272
1273         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1274
1275         for (i = 0; !any && i < n/sizeof(long); ++i)
1276                 any = memslot->dirty_bitmap[i];
1277
1278         r = -EFAULT;
1279         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1280                 goto out;
1281
1282         if (any)
1283                 *is_dirty = 1;
1284
1285         r = 0;
1286 out:
1287         return r;
1288 }
1289
1290 int is_error_page(struct page *page)
1291 {
1292         return page == bad_page;
1293 }
1294 EXPORT_SYMBOL_GPL(is_error_page);
1295
1296 int is_error_pfn(pfn_t pfn)
1297 {
1298         return pfn == bad_pfn;
1299 }
1300 EXPORT_SYMBOL_GPL(is_error_pfn);
1301
1302 static inline unsigned long bad_hva(void)
1303 {
1304         return PAGE_OFFSET;
1305 }
1306
1307 int kvm_is_error_hva(unsigned long addr)
1308 {
1309         return addr == bad_hva();
1310 }
1311 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1312
1313 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1314 {
1315         int i;
1316
1317         for (i = 0; i < kvm->nmemslots; ++i) {
1318                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1319
1320                 if (gfn >= memslot->base_gfn
1321                     && gfn < memslot->base_gfn + memslot->npages)
1322                         return memslot;
1323         }
1324         return NULL;
1325 }
1326 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1327
1328 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1329 {
1330         gfn = unalias_gfn(kvm, gfn);
1331         return gfn_to_memslot_unaliased(kvm, gfn);
1332 }
1333
1334 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1335 {
1336         int i;
1337
1338         gfn = unalias_gfn(kvm, gfn);
1339         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1340                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1341
1342                 if (gfn >= memslot->base_gfn
1343                     && gfn < memslot->base_gfn + memslot->npages)
1344                         return 1;
1345         }
1346         return 0;
1347 }
1348 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1349
1350 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1351 {
1352         struct kvm_memory_slot *slot;
1353
1354         gfn = unalias_gfn(kvm, gfn);
1355         slot = gfn_to_memslot_unaliased(kvm, gfn);
1356         if (!slot)
1357                 return bad_hva();
1358         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1359 }
1360 EXPORT_SYMBOL_GPL(gfn_to_hva);
1361
1362 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1363 {
1364         struct page *page[1];
1365         unsigned long addr;
1366         int npages;
1367         pfn_t pfn;
1368
1369         might_sleep();
1370
1371         addr = gfn_to_hva(kvm, gfn);
1372         if (kvm_is_error_hva(addr)) {
1373                 get_page(bad_page);
1374                 return page_to_pfn(bad_page);
1375         }
1376
1377         npages = get_user_pages_fast(addr, 1, 1, page);
1378
1379         if (unlikely(npages != 1)) {
1380                 struct vm_area_struct *vma;
1381
1382                 down_read(&current->mm->mmap_sem);
1383                 vma = find_vma(current->mm, addr);
1384
1385                 if (vma == NULL || addr < vma->vm_start ||
1386                     !(vma->vm_flags & VM_PFNMAP)) {
1387                         up_read(&current->mm->mmap_sem);
1388                         get_page(bad_page);
1389                         return page_to_pfn(bad_page);
1390                 }
1391
1392                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1393                 up_read(&current->mm->mmap_sem);
1394                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1395         } else
1396                 pfn = page_to_pfn(page[0]);
1397
1398         return pfn;
1399 }
1400
1401 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1402
1403 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1404 {
1405         pfn_t pfn;
1406
1407         pfn = gfn_to_pfn(kvm, gfn);
1408         if (!kvm_is_mmio_pfn(pfn))
1409                 return pfn_to_page(pfn);
1410
1411         WARN_ON(kvm_is_mmio_pfn(pfn));
1412
1413         get_page(bad_page);
1414         return bad_page;
1415 }
1416
1417 EXPORT_SYMBOL_GPL(gfn_to_page);
1418
1419 void kvm_release_page_clean(struct page *page)
1420 {
1421         kvm_release_pfn_clean(page_to_pfn(page));
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1424
1425 void kvm_release_pfn_clean(pfn_t pfn)
1426 {
1427         if (!kvm_is_mmio_pfn(pfn))
1428                 put_page(pfn_to_page(pfn));
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1431
1432 void kvm_release_page_dirty(struct page *page)
1433 {
1434         kvm_release_pfn_dirty(page_to_pfn(page));
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1437
1438 void kvm_release_pfn_dirty(pfn_t pfn)
1439 {
1440         kvm_set_pfn_dirty(pfn);
1441         kvm_release_pfn_clean(pfn);
1442 }
1443 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1444
1445 void kvm_set_page_dirty(struct page *page)
1446 {
1447         kvm_set_pfn_dirty(page_to_pfn(page));
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1450
1451 void kvm_set_pfn_dirty(pfn_t pfn)
1452 {
1453         if (!kvm_is_mmio_pfn(pfn)) {
1454                 struct page *page = pfn_to_page(pfn);
1455                 if (!PageReserved(page))
1456                         SetPageDirty(page);
1457         }
1458 }
1459 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1460
1461 void kvm_set_pfn_accessed(pfn_t pfn)
1462 {
1463         if (!kvm_is_mmio_pfn(pfn))
1464                 mark_page_accessed(pfn_to_page(pfn));
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1467
1468 void kvm_get_pfn(pfn_t pfn)
1469 {
1470         if (!kvm_is_mmio_pfn(pfn))
1471                 get_page(pfn_to_page(pfn));
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1474
1475 static int next_segment(unsigned long len, int offset)
1476 {
1477         if (len > PAGE_SIZE - offset)
1478                 return PAGE_SIZE - offset;
1479         else
1480                 return len;
1481 }
1482
1483 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1484                         int len)
1485 {
1486         int r;
1487         unsigned long addr;
1488
1489         addr = gfn_to_hva(kvm, gfn);
1490         if (kvm_is_error_hva(addr))
1491                 return -EFAULT;
1492         r = copy_from_user(data, (void __user *)addr + offset, len);
1493         if (r)
1494                 return -EFAULT;
1495         return 0;
1496 }
1497 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1498
1499 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1500 {
1501         gfn_t gfn = gpa >> PAGE_SHIFT;
1502         int seg;
1503         int offset = offset_in_page(gpa);
1504         int ret;
1505
1506         while ((seg = next_segment(len, offset)) != 0) {
1507                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1508                 if (ret < 0)
1509                         return ret;
1510                 offset = 0;
1511                 len -= seg;
1512                 data += seg;
1513                 ++gfn;
1514         }
1515         return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_read_guest);
1518
1519 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1520                           unsigned long len)
1521 {
1522         int r;
1523         unsigned long addr;
1524         gfn_t gfn = gpa >> PAGE_SHIFT;
1525         int offset = offset_in_page(gpa);
1526
1527         addr = gfn_to_hva(kvm, gfn);
1528         if (kvm_is_error_hva(addr))
1529                 return -EFAULT;
1530         pagefault_disable();
1531         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1532         pagefault_enable();
1533         if (r)
1534                 return -EFAULT;
1535         return 0;
1536 }
1537 EXPORT_SYMBOL(kvm_read_guest_atomic);
1538
1539 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1540                          int offset, int len)
1541 {
1542         int r;
1543         unsigned long addr;
1544
1545         addr = gfn_to_hva(kvm, gfn);
1546         if (kvm_is_error_hva(addr))
1547                 return -EFAULT;
1548         r = copy_to_user((void __user *)addr + offset, data, len);
1549         if (r)
1550                 return -EFAULT;
1551         mark_page_dirty(kvm, gfn);
1552         return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1555
1556 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1557                     unsigned long len)
1558 {
1559         gfn_t gfn = gpa >> PAGE_SHIFT;
1560         int seg;
1561         int offset = offset_in_page(gpa);
1562         int ret;
1563
1564         while ((seg = next_segment(len, offset)) != 0) {
1565                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1566                 if (ret < 0)
1567                         return ret;
1568                 offset = 0;
1569                 len -= seg;
1570                 data += seg;
1571                 ++gfn;
1572         }
1573         return 0;
1574 }
1575
1576 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1577 {
1578         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1579 }
1580 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1581
1582 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1583 {
1584         gfn_t gfn = gpa >> PAGE_SHIFT;
1585         int seg;
1586         int offset = offset_in_page(gpa);
1587         int ret;
1588
1589         while ((seg = next_segment(len, offset)) != 0) {
1590                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1591                 if (ret < 0)
1592                         return ret;
1593                 offset = 0;
1594                 len -= seg;
1595                 ++gfn;
1596         }
1597         return 0;
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1600
1601 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1602 {
1603         struct kvm_memory_slot *memslot;
1604
1605         gfn = unalias_gfn(kvm, gfn);
1606         memslot = gfn_to_memslot_unaliased(kvm, gfn);
1607         if (memslot && memslot->dirty_bitmap) {
1608                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1609
1610                 /* avoid RMW */
1611                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1612                         set_bit(rel_gfn, memslot->dirty_bitmap);
1613         }
1614 }
1615
1616 /*
1617  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1618  */
1619 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1620 {
1621         DEFINE_WAIT(wait);
1622
1623         for (;;) {
1624                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1625
1626                 if ((kvm_arch_interrupt_allowed(vcpu) &&
1627                                         kvm_cpu_has_interrupt(vcpu)) ||
1628                                 kvm_arch_vcpu_runnable(vcpu)) {
1629                         set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1630                         break;
1631                 }
1632                 if (kvm_cpu_has_pending_timer(vcpu))
1633                         break;
1634                 if (signal_pending(current))
1635                         break;
1636
1637                 vcpu_put(vcpu);
1638                 schedule();
1639                 vcpu_load(vcpu);
1640         }
1641
1642         finish_wait(&vcpu->wq, &wait);
1643 }
1644
1645 void kvm_resched(struct kvm_vcpu *vcpu)
1646 {
1647         if (!need_resched())
1648                 return;
1649         cond_resched();
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_resched);
1652
1653 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1654 {
1655         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1656         struct page *page;
1657
1658         if (vmf->pgoff == 0)
1659                 page = virt_to_page(vcpu->run);
1660 #ifdef CONFIG_X86
1661         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1662                 page = virt_to_page(vcpu->arch.pio_data);
1663 #endif
1664 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1665         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1666                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1667 #endif
1668         else
1669                 return VM_FAULT_SIGBUS;
1670         get_page(page);
1671         vmf->page = page;
1672         return 0;
1673 }
1674
1675 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1676         .fault = kvm_vcpu_fault,
1677 };
1678
1679 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1680 {
1681         vma->vm_ops = &kvm_vcpu_vm_ops;
1682         return 0;
1683 }
1684
1685 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1686 {
1687         struct kvm_vcpu *vcpu = filp->private_data;
1688
1689         kvm_put_kvm(vcpu->kvm);
1690         return 0;
1691 }
1692
1693 static struct file_operations kvm_vcpu_fops = {
1694         .release        = kvm_vcpu_release,
1695         .unlocked_ioctl = kvm_vcpu_ioctl,
1696         .compat_ioctl   = kvm_vcpu_ioctl,
1697         .mmap           = kvm_vcpu_mmap,
1698 };
1699
1700 /*
1701  * Allocates an inode for the vcpu.
1702  */
1703 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1704 {
1705         int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1706         if (fd < 0)
1707                 kvm_put_kvm(vcpu->kvm);
1708         return fd;
1709 }
1710
1711 /*
1712  * Creates some virtual cpus.  Good luck creating more than one.
1713  */
1714 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1715 {
1716         int r;
1717         struct kvm_vcpu *vcpu;
1718
1719         if (!valid_vcpu(n))
1720                 return -EINVAL;
1721
1722         vcpu = kvm_arch_vcpu_create(kvm, n);
1723         if (IS_ERR(vcpu))
1724                 return PTR_ERR(vcpu);
1725
1726         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1727
1728         r = kvm_arch_vcpu_setup(vcpu);
1729         if (r)
1730                 return r;
1731
1732         mutex_lock(&kvm->lock);
1733         if (kvm->vcpus[n]) {
1734                 r = -EEXIST;
1735                 goto vcpu_destroy;
1736         }
1737         kvm->vcpus[n] = vcpu;
1738         mutex_unlock(&kvm->lock);
1739
1740         /* Now it's all set up, let userspace reach it */
1741         kvm_get_kvm(kvm);
1742         r = create_vcpu_fd(vcpu);
1743         if (r < 0)
1744                 goto unlink;
1745         return r;
1746
1747 unlink:
1748         mutex_lock(&kvm->lock);
1749         kvm->vcpus[n] = NULL;
1750 vcpu_destroy:
1751         mutex_unlock(&kvm->lock);
1752         kvm_arch_vcpu_destroy(vcpu);
1753         return r;
1754 }
1755
1756 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1757 {
1758         if (sigset) {
1759                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1760                 vcpu->sigset_active = 1;
1761                 vcpu->sigset = *sigset;
1762         } else
1763                 vcpu->sigset_active = 0;
1764         return 0;
1765 }
1766
1767 #ifdef __KVM_HAVE_MSIX
1768 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1769                                     struct kvm_assigned_msix_nr *entry_nr)
1770 {
1771         int r = 0;
1772         struct kvm_assigned_dev_kernel *adev;
1773
1774         mutex_lock(&kvm->lock);
1775
1776         adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1777                                       entry_nr->assigned_dev_id);
1778         if (!adev) {
1779                 r = -EINVAL;
1780                 goto msix_nr_out;
1781         }
1782
1783         if (adev->entries_nr == 0) {
1784                 adev->entries_nr = entry_nr->entry_nr;
1785                 if (adev->entries_nr == 0 ||
1786                     adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1787                         r = -EINVAL;
1788                         goto msix_nr_out;
1789                 }
1790
1791                 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1792                                                 entry_nr->entry_nr,
1793                                                 GFP_KERNEL);
1794                 if (!adev->host_msix_entries) {
1795                         r = -ENOMEM;
1796                         goto msix_nr_out;
1797                 }
1798                 adev->guest_msix_entries = kzalloc(
1799                                 sizeof(struct kvm_guest_msix_entry) *
1800                                 entry_nr->entry_nr, GFP_KERNEL);
1801                 if (!adev->guest_msix_entries) {
1802                         kfree(adev->host_msix_entries);
1803                         r = -ENOMEM;
1804                         goto msix_nr_out;
1805                 }
1806         } else /* Not allowed set MSI-X number twice */
1807                 r = -EINVAL;
1808 msix_nr_out:
1809         mutex_unlock(&kvm->lock);
1810         return r;
1811 }
1812
1813 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1814                                        struct kvm_assigned_msix_entry *entry)
1815 {
1816         int r = 0, i;
1817         struct kvm_assigned_dev_kernel *adev;
1818
1819         mutex_lock(&kvm->lock);
1820
1821         adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1822                                       entry->assigned_dev_id);
1823
1824         if (!adev) {
1825                 r = -EINVAL;
1826                 goto msix_entry_out;
1827         }
1828
1829         for (i = 0; i < adev->entries_nr; i++)
1830                 if (adev->guest_msix_entries[i].vector == 0 ||
1831                     adev->guest_msix_entries[i].entry == entry->entry) {
1832                         adev->guest_msix_entries[i].entry = entry->entry;
1833                         adev->guest_msix_entries[i].vector = entry->gsi;
1834                         adev->host_msix_entries[i].entry = entry->entry;
1835                         break;
1836                 }
1837         if (i == adev->entries_nr) {
1838                 r = -ENOSPC;
1839                 goto msix_entry_out;
1840         }
1841
1842 msix_entry_out:
1843         mutex_unlock(&kvm->lock);
1844
1845         return r;
1846 }
1847 #endif
1848
1849 static long kvm_vcpu_ioctl(struct file *filp,
1850                            unsigned int ioctl, unsigned long arg)
1851 {
1852         struct kvm_vcpu *vcpu = filp->private_data;
1853         void __user *argp = (void __user *)arg;
1854         int r;
1855         struct kvm_fpu *fpu = NULL;
1856         struct kvm_sregs *kvm_sregs = NULL;
1857
1858         if (vcpu->kvm->mm != current->mm)
1859                 return -EIO;
1860         switch (ioctl) {
1861         case KVM_RUN:
1862                 r = -EINVAL;
1863                 if (arg)
1864                         goto out;
1865                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1866                 break;
1867         case KVM_GET_REGS: {
1868                 struct kvm_regs *kvm_regs;
1869
1870                 r = -ENOMEM;
1871                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1872                 if (!kvm_regs)
1873                         goto out;
1874                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1875                 if (r)
1876                         goto out_free1;
1877                 r = -EFAULT;
1878                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1879                         goto out_free1;
1880                 r = 0;
1881 out_free1:
1882                 kfree(kvm_regs);
1883                 break;
1884         }
1885         case KVM_SET_REGS: {
1886                 struct kvm_regs *kvm_regs;
1887
1888                 r = -ENOMEM;
1889                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1890                 if (!kvm_regs)
1891                         goto out;
1892                 r = -EFAULT;
1893                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1894                         goto out_free2;
1895                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1896                 if (r)
1897                         goto out_free2;
1898                 r = 0;
1899 out_free2:
1900                 kfree(kvm_regs);
1901                 break;
1902         }
1903         case KVM_GET_SREGS: {
1904                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1905                 r = -ENOMEM;
1906                 if (!kvm_sregs)
1907                         goto out;
1908                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1909                 if (r)
1910                         goto out;
1911                 r = -EFAULT;
1912                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1913                         goto out;
1914                 r = 0;
1915                 break;
1916         }
1917         case KVM_SET_SREGS: {
1918                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1919                 r = -ENOMEM;
1920                 if (!kvm_sregs)
1921                         goto out;
1922                 r = -EFAULT;
1923                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1924                         goto out;
1925                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1926                 if (r)
1927                         goto out;
1928                 r = 0;
1929                 break;
1930         }
1931         case KVM_GET_MP_STATE: {
1932                 struct kvm_mp_state mp_state;
1933
1934                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1935                 if (r)
1936                         goto out;
1937                 r = -EFAULT;
1938                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1939                         goto out;
1940                 r = 0;
1941                 break;
1942         }
1943         case KVM_SET_MP_STATE: {
1944                 struct kvm_mp_state mp_state;
1945
1946                 r = -EFAULT;
1947                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1948                         goto out;
1949                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1950                 if (r)
1951                         goto out;
1952                 r = 0;
1953                 break;
1954         }
1955         case KVM_TRANSLATE: {
1956                 struct kvm_translation tr;
1957
1958                 r = -EFAULT;
1959                 if (copy_from_user(&tr, argp, sizeof tr))
1960                         goto out;
1961                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1962                 if (r)
1963                         goto out;
1964                 r = -EFAULT;
1965                 if (copy_to_user(argp, &tr, sizeof tr))
1966                         goto out;
1967                 r = 0;
1968                 break;
1969         }
1970         case KVM_SET_GUEST_DEBUG: {
1971                 struct kvm_guest_debug dbg;
1972
1973                 r = -EFAULT;
1974                 if (copy_from_user(&dbg, argp, sizeof dbg))
1975                         goto out;
1976                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1977                 if (r)
1978                         goto out;
1979                 r = 0;
1980                 break;
1981         }
1982         case KVM_SET_SIGNAL_MASK: {
1983                 struct kvm_signal_mask __user *sigmask_arg = argp;
1984                 struct kvm_signal_mask kvm_sigmask;
1985                 sigset_t sigset, *p;
1986
1987                 p = NULL;
1988                 if (argp) {
1989                         r = -EFAULT;
1990                         if (copy_from_user(&kvm_sigmask, argp,
1991                                            sizeof kvm_sigmask))
1992                                 goto out;
1993                         r = -EINVAL;
1994                         if (kvm_sigmask.len != sizeof sigset)
1995                                 goto out;
1996                         r = -EFAULT;
1997                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1998                                            sizeof sigset))
1999                                 goto out;
2000                         p = &sigset;
2001                 }
2002                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2003                 break;
2004         }
2005         case KVM_GET_FPU: {
2006                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2007                 r = -ENOMEM;
2008                 if (!fpu)
2009                         goto out;
2010                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2011                 if (r)
2012                         goto out;
2013                 r = -EFAULT;
2014                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2015                         goto out;
2016                 r = 0;
2017                 break;
2018         }
2019         case KVM_SET_FPU: {
2020                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2021                 r = -ENOMEM;
2022                 if (!fpu)
2023                         goto out;
2024                 r = -EFAULT;
2025                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2026                         goto out;
2027                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2028                 if (r)
2029                         goto out;
2030                 r = 0;
2031                 break;
2032         }
2033         default:
2034                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2035         }
2036 out:
2037         kfree(fpu);
2038         kfree(kvm_sregs);
2039         return r;
2040 }
2041
2042 static long kvm_vm_ioctl(struct file *filp,
2043                            unsigned int ioctl, unsigned long arg)
2044 {
2045         struct kvm *kvm = filp->private_data;
2046         void __user *argp = (void __user *)arg;
2047         int r;
2048
2049         if (kvm->mm != current->mm)
2050                 return -EIO;
2051         switch (ioctl) {
2052         case KVM_CREATE_VCPU:
2053                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2054                 if (r < 0)
2055                         goto out;
2056                 break;
2057         case KVM_SET_USER_MEMORY_REGION: {
2058                 struct kvm_userspace_memory_region kvm_userspace_mem;
2059
2060                 r = -EFAULT;
2061                 if (copy_from_user(&kvm_userspace_mem, argp,
2062                                                 sizeof kvm_userspace_mem))
2063                         goto out;
2064
2065                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2066                 if (r)
2067                         goto out;
2068                 break;
2069         }
2070         case KVM_GET_DIRTY_LOG: {
2071                 struct kvm_dirty_log log;
2072
2073                 r = -EFAULT;
2074                 if (copy_from_user(&log, argp, sizeof log))
2075                         goto out;
2076                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2077                 if (r)
2078                         goto out;
2079                 break;
2080         }
2081 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2082         case KVM_REGISTER_COALESCED_MMIO: {
2083                 struct kvm_coalesced_mmio_zone zone;
2084                 r = -EFAULT;
2085                 if (copy_from_user(&zone, argp, sizeof zone))
2086                         goto out;
2087                 r = -ENXIO;
2088                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2089                 if (r)
2090                         goto out;
2091                 r = 0;
2092                 break;
2093         }
2094         case KVM_UNREGISTER_COALESCED_MMIO: {
2095                 struct kvm_coalesced_mmio_zone zone;
2096                 r = -EFAULT;
2097                 if (copy_from_user(&zone, argp, sizeof zone))
2098                         goto out;
2099                 r = -ENXIO;
2100                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2101                 if (r)
2102                         goto out;
2103                 r = 0;
2104                 break;
2105         }
2106 #endif
2107 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2108         case KVM_ASSIGN_PCI_DEVICE: {
2109                 struct kvm_assigned_pci_dev assigned_dev;
2110
2111                 r = -EFAULT;
2112                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2113                         goto out;
2114                 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2115                 if (r)
2116                         goto out;
2117                 break;
2118         }
2119         case KVM_ASSIGN_IRQ: {
2120                 r = -EOPNOTSUPP;
2121                 break;
2122         }
2123 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2124         case KVM_ASSIGN_DEV_IRQ: {
2125                 struct kvm_assigned_irq assigned_irq;
2126
2127                 r = -EFAULT;
2128                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2129                         goto out;
2130                 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2131                 if (r)
2132                         goto out;
2133                 break;
2134         }
2135         case KVM_DEASSIGN_DEV_IRQ: {
2136                 struct kvm_assigned_irq assigned_irq;
2137
2138                 r = -EFAULT;
2139                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2140                         goto out;
2141                 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2142                 if (r)
2143                         goto out;
2144                 break;
2145         }
2146 #endif
2147 #endif
2148 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2149         case KVM_DEASSIGN_PCI_DEVICE: {
2150                 struct kvm_assigned_pci_dev assigned_dev;
2151
2152                 r = -EFAULT;
2153                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2154                         goto out;
2155                 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2156                 if (r)
2157                         goto out;
2158                 break;
2159         }
2160 #endif
2161 #ifdef KVM_CAP_IRQ_ROUTING
2162         case KVM_SET_GSI_ROUTING: {
2163                 struct kvm_irq_routing routing;
2164                 struct kvm_irq_routing __user *urouting;
2165                 struct kvm_irq_routing_entry *entries;
2166
2167                 r = -EFAULT;
2168                 if (copy_from_user(&routing, argp, sizeof(routing)))
2169                         goto out;
2170                 r = -EINVAL;
2171                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2172                         goto out;
2173                 if (routing.flags)
2174                         goto out;
2175                 r = -ENOMEM;
2176                 entries = vmalloc(routing.nr * sizeof(*entries));
2177                 if (!entries)
2178                         goto out;
2179                 r = -EFAULT;
2180                 urouting = argp;
2181                 if (copy_from_user(entries, urouting->entries,
2182                                    routing.nr * sizeof(*entries)))
2183                         goto out_free_irq_routing;
2184                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2185                                         routing.flags);
2186         out_free_irq_routing:
2187                 vfree(entries);
2188                 break;
2189         }
2190 #ifdef __KVM_HAVE_MSIX
2191         case KVM_ASSIGN_SET_MSIX_NR: {
2192                 struct kvm_assigned_msix_nr entry_nr;
2193                 r = -EFAULT;
2194                 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2195                         goto out;
2196                 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2197                 if (r)
2198                         goto out;
2199                 break;
2200         }
2201         case KVM_ASSIGN_SET_MSIX_ENTRY: {
2202                 struct kvm_assigned_msix_entry entry;
2203                 r = -EFAULT;
2204                 if (copy_from_user(&entry, argp, sizeof entry))
2205                         goto out;
2206                 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2207                 if (r)
2208                         goto out;
2209                 break;
2210         }
2211 #endif
2212 #endif /* KVM_CAP_IRQ_ROUTING */
2213         default:
2214                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2215         }
2216 out:
2217         return r;
2218 }
2219
2220 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2221 {
2222         struct page *page[1];
2223         unsigned long addr;
2224         int npages;
2225         gfn_t gfn = vmf->pgoff;
2226         struct kvm *kvm = vma->vm_file->private_data;
2227
2228         addr = gfn_to_hva(kvm, gfn);
2229         if (kvm_is_error_hva(addr))
2230                 return VM_FAULT_SIGBUS;
2231
2232         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2233                                 NULL);
2234         if (unlikely(npages != 1))
2235                 return VM_FAULT_SIGBUS;
2236
2237         vmf->page = page[0];
2238         return 0;
2239 }
2240
2241 static struct vm_operations_struct kvm_vm_vm_ops = {
2242         .fault = kvm_vm_fault,
2243 };
2244
2245 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2246 {
2247         vma->vm_ops = &kvm_vm_vm_ops;
2248         return 0;
2249 }
2250
2251 static struct file_operations kvm_vm_fops = {
2252         .release        = kvm_vm_release,
2253         .unlocked_ioctl = kvm_vm_ioctl,
2254         .compat_ioctl   = kvm_vm_ioctl,
2255         .mmap           = kvm_vm_mmap,
2256 };
2257
2258 static int kvm_dev_ioctl_create_vm(void)
2259 {
2260         int fd;
2261         struct kvm *kvm;
2262
2263         kvm = kvm_create_vm();
2264         if (IS_ERR(kvm))
2265                 return PTR_ERR(kvm);
2266         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2267         if (fd < 0)
2268                 kvm_put_kvm(kvm);
2269
2270         return fd;
2271 }
2272
2273 static long kvm_dev_ioctl_check_extension_generic(long arg)
2274 {
2275         switch (arg) {
2276         case KVM_CAP_USER_MEMORY:
2277         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2278         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2279                 return 1;
2280 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2281         case KVM_CAP_IRQ_ROUTING:
2282                 return KVM_MAX_IRQ_ROUTES;
2283 #endif
2284         default:
2285                 break;
2286         }
2287         return kvm_dev_ioctl_check_extension(arg);
2288 }
2289
2290 static long kvm_dev_ioctl(struct file *filp,
2291                           unsigned int ioctl, unsigned long arg)
2292 {
2293         long r = -EINVAL;
2294
2295         switch (ioctl) {
2296         case KVM_GET_API_VERSION:
2297                 r = -EINVAL;
2298                 if (arg)
2299                         goto out;
2300                 r = KVM_API_VERSION;
2301                 break;
2302         case KVM_CREATE_VM:
2303                 r = -EINVAL;
2304                 if (arg)
2305                         goto out;
2306                 r = kvm_dev_ioctl_create_vm();
2307                 break;
2308         case KVM_CHECK_EXTENSION:
2309                 r = kvm_dev_ioctl_check_extension_generic(arg);
2310                 break;
2311         case KVM_GET_VCPU_MMAP_SIZE:
2312                 r = -EINVAL;
2313                 if (arg)
2314                         goto out;
2315                 r = PAGE_SIZE;     /* struct kvm_run */
2316 #ifdef CONFIG_X86
2317                 r += PAGE_SIZE;    /* pio data page */
2318 #endif
2319 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2320                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2321 #endif
2322                 break;
2323         case KVM_TRACE_ENABLE:
2324         case KVM_TRACE_PAUSE:
2325         case KVM_TRACE_DISABLE:
2326                 r = kvm_trace_ioctl(ioctl, arg);
2327                 break;
2328         default:
2329                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2330         }
2331 out:
2332         return r;
2333 }
2334
2335 static struct file_operations kvm_chardev_ops = {
2336         .unlocked_ioctl = kvm_dev_ioctl,
2337         .compat_ioctl   = kvm_dev_ioctl,
2338 };
2339
2340 static struct miscdevice kvm_dev = {
2341         KVM_MINOR,
2342         "kvm",
2343         &kvm_chardev_ops,
2344 };
2345
2346 static void hardware_enable(void *junk)
2347 {
2348         int cpu = raw_smp_processor_id();
2349
2350         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2351                 return;
2352         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2353         kvm_arch_hardware_enable(NULL);
2354 }
2355
2356 static void hardware_disable(void *junk)
2357 {
2358         int cpu = raw_smp_processor_id();
2359
2360         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2361                 return;
2362         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2363         kvm_arch_hardware_disable(NULL);
2364 }
2365
2366 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2367                            void *v)
2368 {
2369         int cpu = (long)v;
2370
2371         val &= ~CPU_TASKS_FROZEN;
2372         switch (val) {
2373         case CPU_DYING:
2374                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2375                        cpu);
2376                 hardware_disable(NULL);
2377                 break;
2378         case CPU_UP_CANCELED:
2379                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2380                        cpu);
2381                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2382                 break;
2383         case CPU_ONLINE:
2384                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2385                        cpu);
2386                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2387                 break;
2388         }
2389         return NOTIFY_OK;
2390 }
2391
2392
2393 asmlinkage void kvm_handle_fault_on_reboot(void)
2394 {
2395         if (kvm_rebooting)
2396                 /* spin while reset goes on */
2397                 while (true)
2398                         ;
2399         /* Fault while not rebooting.  We want the trace. */
2400         BUG();
2401 }
2402 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2403
2404 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2405                       void *v)
2406 {
2407         /*
2408          * Some (well, at least mine) BIOSes hang on reboot if
2409          * in vmx root mode.
2410          *
2411          * And Intel TXT required VMX off for all cpu when system shutdown.
2412          */
2413         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2414         kvm_rebooting = true;
2415         on_each_cpu(hardware_disable, NULL, 1);
2416         return NOTIFY_OK;
2417 }
2418
2419 static struct notifier_block kvm_reboot_notifier = {
2420         .notifier_call = kvm_reboot,
2421         .priority = 0,
2422 };
2423
2424 void kvm_io_bus_init(struct kvm_io_bus *bus)
2425 {
2426         memset(bus, 0, sizeof(*bus));
2427 }
2428
2429 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2430 {
2431         int i;
2432
2433         for (i = 0; i < bus->dev_count; i++) {
2434                 struct kvm_io_device *pos = bus->devs[i];
2435
2436                 kvm_iodevice_destructor(pos);
2437         }
2438 }
2439
2440 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2441                                           gpa_t addr, int len, int is_write)
2442 {
2443         int i;
2444
2445         for (i = 0; i < bus->dev_count; i++) {
2446                 struct kvm_io_device *pos = bus->devs[i];
2447
2448                 if (pos->in_range(pos, addr, len, is_write))
2449                         return pos;
2450         }
2451
2452         return NULL;
2453 }
2454
2455 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2456 {
2457         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2458
2459         bus->devs[bus->dev_count++] = dev;
2460 }
2461
2462 static struct notifier_block kvm_cpu_notifier = {
2463         .notifier_call = kvm_cpu_hotplug,
2464         .priority = 20, /* must be > scheduler priority */
2465 };
2466
2467 static int vm_stat_get(void *_offset, u64 *val)
2468 {
2469         unsigned offset = (long)_offset;
2470         struct kvm *kvm;
2471
2472         *val = 0;
2473         spin_lock(&kvm_lock);
2474         list_for_each_entry(kvm, &vm_list, vm_list)
2475                 *val += *(u32 *)((void *)kvm + offset);
2476         spin_unlock(&kvm_lock);
2477         return 0;
2478 }
2479
2480 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2481
2482 static int vcpu_stat_get(void *_offset, u64 *val)
2483 {
2484         unsigned offset = (long)_offset;
2485         struct kvm *kvm;
2486         struct kvm_vcpu *vcpu;
2487         int i;
2488
2489         *val = 0;
2490         spin_lock(&kvm_lock);
2491         list_for_each_entry(kvm, &vm_list, vm_list)
2492                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2493                         vcpu = kvm->vcpus[i];
2494                         if (vcpu)
2495                                 *val += *(u32 *)((void *)vcpu + offset);
2496                 }
2497         spin_unlock(&kvm_lock);
2498         return 0;
2499 }
2500
2501 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2502
2503 static struct file_operations *stat_fops[] = {
2504         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2505         [KVM_STAT_VM]   = &vm_stat_fops,
2506 };
2507
2508 static void kvm_init_debug(void)
2509 {
2510         struct kvm_stats_debugfs_item *p;
2511
2512         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2513         for (p = debugfs_entries; p->name; ++p)
2514                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2515                                                 (void *)(long)p->offset,
2516                                                 stat_fops[p->kind]);
2517 }
2518
2519 static void kvm_exit_debug(void)
2520 {
2521         struct kvm_stats_debugfs_item *p;
2522
2523         for (p = debugfs_entries; p->name; ++p)
2524                 debugfs_remove(p->dentry);
2525         debugfs_remove(kvm_debugfs_dir);
2526 }
2527
2528 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2529 {
2530         hardware_disable(NULL);
2531         return 0;
2532 }
2533
2534 static int kvm_resume(struct sys_device *dev)
2535 {
2536         hardware_enable(NULL);
2537         return 0;
2538 }
2539
2540 static struct sysdev_class kvm_sysdev_class = {
2541         .name = "kvm",
2542         .suspend = kvm_suspend,
2543         .resume = kvm_resume,
2544 };
2545
2546 static struct sys_device kvm_sysdev = {
2547         .id = 0,
2548         .cls = &kvm_sysdev_class,
2549 };
2550
2551 struct page *bad_page;
2552 pfn_t bad_pfn;
2553
2554 static inline
2555 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2556 {
2557         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2558 }
2559
2560 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2561 {
2562         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2563
2564         kvm_arch_vcpu_load(vcpu, cpu);
2565 }
2566
2567 static void kvm_sched_out(struct preempt_notifier *pn,
2568                           struct task_struct *next)
2569 {
2570         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2571
2572         kvm_arch_vcpu_put(vcpu);
2573 }
2574
2575 int kvm_init(void *opaque, unsigned int vcpu_size,
2576                   struct module *module)
2577 {
2578         int r;
2579         int cpu;
2580
2581         kvm_init_debug();
2582
2583         r = kvm_arch_init(opaque);
2584         if (r)
2585                 goto out_fail;
2586
2587         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2588
2589         if (bad_page == NULL) {
2590                 r = -ENOMEM;
2591                 goto out;
2592         }
2593
2594         bad_pfn = page_to_pfn(bad_page);
2595
2596         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2597                 r = -ENOMEM;
2598                 goto out_free_0;
2599         }
2600         cpumask_clear(cpus_hardware_enabled);
2601
2602         r = kvm_arch_hardware_setup();
2603         if (r < 0)
2604                 goto out_free_0a;
2605
2606         for_each_online_cpu(cpu) {
2607                 smp_call_function_single(cpu,
2608                                 kvm_arch_check_processor_compat,
2609                                 &r, 1);
2610                 if (r < 0)
2611                         goto out_free_1;
2612         }
2613
2614         on_each_cpu(hardware_enable, NULL, 1);
2615         r = register_cpu_notifier(&kvm_cpu_notifier);
2616         if (r)
2617                 goto out_free_2;
2618         register_reboot_notifier(&kvm_reboot_notifier);
2619
2620         r = sysdev_class_register(&kvm_sysdev_class);
2621         if (r)
2622                 goto out_free_3;
2623
2624         r = sysdev_register(&kvm_sysdev);
2625         if (r)
2626                 goto out_free_4;
2627
2628         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2629         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2630                                            __alignof__(struct kvm_vcpu),
2631                                            0, NULL);
2632         if (!kvm_vcpu_cache) {
2633                 r = -ENOMEM;
2634                 goto out_free_5;
2635         }
2636
2637         kvm_chardev_ops.owner = module;
2638         kvm_vm_fops.owner = module;
2639         kvm_vcpu_fops.owner = module;
2640
2641         r = misc_register(&kvm_dev);
2642         if (r) {
2643                 printk(KERN_ERR "kvm: misc device register failed\n");
2644                 goto out_free;
2645         }
2646
2647         kvm_preempt_ops.sched_in = kvm_sched_in;
2648         kvm_preempt_ops.sched_out = kvm_sched_out;
2649
2650         return 0;
2651
2652 out_free:
2653         kmem_cache_destroy(kvm_vcpu_cache);
2654 out_free_5:
2655         sysdev_unregister(&kvm_sysdev);
2656 out_free_4:
2657         sysdev_class_unregister(&kvm_sysdev_class);
2658 out_free_3:
2659         unregister_reboot_notifier(&kvm_reboot_notifier);
2660         unregister_cpu_notifier(&kvm_cpu_notifier);
2661 out_free_2:
2662         on_each_cpu(hardware_disable, NULL, 1);
2663 out_free_1:
2664         kvm_arch_hardware_unsetup();
2665 out_free_0a:
2666         free_cpumask_var(cpus_hardware_enabled);
2667 out_free_0:
2668         __free_page(bad_page);
2669 out:
2670         kvm_arch_exit();
2671         kvm_exit_debug();
2672 out_fail:
2673         return r;
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_init);
2676
2677 void kvm_exit(void)
2678 {
2679         kvm_trace_cleanup();
2680         misc_deregister(&kvm_dev);
2681         kmem_cache_destroy(kvm_vcpu_cache);
2682         sysdev_unregister(&kvm_sysdev);
2683         sysdev_class_unregister(&kvm_sysdev_class);
2684         unregister_reboot_notifier(&kvm_reboot_notifier);
2685         unregister_cpu_notifier(&kvm_cpu_notifier);
2686         on_each_cpu(hardware_disable, NULL, 1);
2687         kvm_arch_hardware_unsetup();
2688         kvm_arch_exit();
2689         kvm_exit_debug();
2690         free_cpumask_var(cpus_hardware_enabled);
2691         __free_page(bad_page);
2692 }
2693 EXPORT_SYMBOL_GPL(kvm_exit);