KVM: convert custom marker based tracing to event traces
[safe/jmp/linux-2.6] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69  * Ordering of locks:
70  *
71  *              kvm->lock --> kvm->irq_lock
72  */
73
74 DEFINE_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84 struct dentry *kvm_debugfs_dir;
85
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87                            unsigned long arg);
88
89 static bool kvm_rebooting;
90
91 static bool largepages_enabled = true;
92
93 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
94 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95                                                       int assigned_dev_id)
96 {
97         struct list_head *ptr;
98         struct kvm_assigned_dev_kernel *match;
99
100         list_for_each(ptr, head) {
101                 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102                 if (match->assigned_dev_id == assigned_dev_id)
103                         return match;
104         }
105         return NULL;
106 }
107
108 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109                                     *assigned_dev, int irq)
110 {
111         int i, index;
112         struct msix_entry *host_msix_entries;
113
114         host_msix_entries = assigned_dev->host_msix_entries;
115
116         index = -1;
117         for (i = 0; i < assigned_dev->entries_nr; i++)
118                 if (irq == host_msix_entries[i].vector) {
119                         index = i;
120                         break;
121                 }
122         if (index < 0) {
123                 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124                 return 0;
125         }
126
127         return index;
128 }
129
130 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131 {
132         struct kvm_assigned_dev_kernel *assigned_dev;
133         struct kvm *kvm;
134         int i;
135
136         assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137                                     interrupt_work);
138         kvm = assigned_dev->kvm;
139
140         mutex_lock(&kvm->irq_lock);
141         spin_lock_irq(&assigned_dev->assigned_dev_lock);
142         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
143                 struct kvm_guest_msix_entry *guest_entries =
144                         assigned_dev->guest_msix_entries;
145                 for (i = 0; i < assigned_dev->entries_nr; i++) {
146                         if (!(guest_entries[i].flags &
147                                         KVM_ASSIGNED_MSIX_PENDING))
148                                 continue;
149                         guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
150                         kvm_set_irq(assigned_dev->kvm,
151                                     assigned_dev->irq_source_id,
152                                     guest_entries[i].vector, 1);
153                 }
154         } else
155                 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
156                             assigned_dev->guest_irq, 1);
157
158         spin_unlock_irq(&assigned_dev->assigned_dev_lock);
159         mutex_unlock(&assigned_dev->kvm->irq_lock);
160 }
161
162 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
163 {
164         unsigned long flags;
165         struct kvm_assigned_dev_kernel *assigned_dev =
166                 (struct kvm_assigned_dev_kernel *) dev_id;
167
168         spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
169         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
170                 int index = find_index_from_host_irq(assigned_dev, irq);
171                 if (index < 0)
172                         goto out;
173                 assigned_dev->guest_msix_entries[index].flags |=
174                         KVM_ASSIGNED_MSIX_PENDING;
175         }
176
177         schedule_work(&assigned_dev->interrupt_work);
178
179         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
180                 disable_irq_nosync(irq);
181                 assigned_dev->host_irq_disabled = true;
182         }
183
184 out:
185         spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
186         return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192         struct kvm_assigned_dev_kernel *dev;
193         unsigned long flags;
194
195         if (kian->gsi == -1)
196                 return;
197
198         dev = container_of(kian, struct kvm_assigned_dev_kernel,
199                            ack_notifier);
200
201         kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
202
203         /* The guest irq may be shared so this ack may be
204          * from another device.
205          */
206         spin_lock_irqsave(&dev->assigned_dev_lock, flags);
207         if (dev->host_irq_disabled) {
208                 enable_irq(dev->host_irq);
209                 dev->host_irq_disabled = false;
210         }
211         spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
212 }
213
214 static void deassign_guest_irq(struct kvm *kvm,
215                                struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217         kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
218         assigned_dev->ack_notifier.gsi = -1;
219
220         if (assigned_dev->irq_source_id != -1)
221                 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
222         assigned_dev->irq_source_id = -1;
223         assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
224 }
225
226 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
227 static void deassign_host_irq(struct kvm *kvm,
228                               struct kvm_assigned_dev_kernel *assigned_dev)
229 {
230         /*
231          * In kvm_free_device_irq, cancel_work_sync return true if:
232          * 1. work is scheduled, and then cancelled.
233          * 2. work callback is executed.
234          *
235          * The first one ensured that the irq is disabled and no more events
236          * would happen. But for the second one, the irq may be enabled (e.g.
237          * for MSI). So we disable irq here to prevent further events.
238          *
239          * Notice this maybe result in nested disable if the interrupt type is
240          * INTx, but it's OK for we are going to free it.
241          *
242          * If this function is a part of VM destroy, please ensure that till
243          * now, the kvm state is still legal for probably we also have to wait
244          * interrupt_work done.
245          */
246         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
247                 int i;
248                 for (i = 0; i < assigned_dev->entries_nr; i++)
249                         disable_irq_nosync(assigned_dev->
250                                            host_msix_entries[i].vector);
251
252                 cancel_work_sync(&assigned_dev->interrupt_work);
253
254                 for (i = 0; i < assigned_dev->entries_nr; i++)
255                         free_irq(assigned_dev->host_msix_entries[i].vector,
256                                  (void *)assigned_dev);
257
258                 assigned_dev->entries_nr = 0;
259                 kfree(assigned_dev->host_msix_entries);
260                 kfree(assigned_dev->guest_msix_entries);
261                 pci_disable_msix(assigned_dev->dev);
262         } else {
263                 /* Deal with MSI and INTx */
264                 disable_irq_nosync(assigned_dev->host_irq);
265                 cancel_work_sync(&assigned_dev->interrupt_work);
266
267                 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
268
269                 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
270                         pci_disable_msi(assigned_dev->dev);
271         }
272
273         assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
274 }
275
276 static int kvm_deassign_irq(struct kvm *kvm,
277                             struct kvm_assigned_dev_kernel *assigned_dev,
278                             unsigned long irq_requested_type)
279 {
280         unsigned long guest_irq_type, host_irq_type;
281
282         if (!irqchip_in_kernel(kvm))
283                 return -EINVAL;
284         /* no irq assignment to deassign */
285         if (!assigned_dev->irq_requested_type)
286                 return -ENXIO;
287
288         host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
289         guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
290
291         if (host_irq_type)
292                 deassign_host_irq(kvm, assigned_dev);
293         if (guest_irq_type)
294                 deassign_guest_irq(kvm, assigned_dev);
295
296         return 0;
297 }
298
299 static void kvm_free_assigned_irq(struct kvm *kvm,
300                                   struct kvm_assigned_dev_kernel *assigned_dev)
301 {
302         kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
303 }
304
305 static void kvm_free_assigned_device(struct kvm *kvm,
306                                      struct kvm_assigned_dev_kernel
307                                      *assigned_dev)
308 {
309         kvm_free_assigned_irq(kvm, assigned_dev);
310
311         pci_reset_function(assigned_dev->dev);
312
313         pci_release_regions(assigned_dev->dev);
314         pci_disable_device(assigned_dev->dev);
315         pci_dev_put(assigned_dev->dev);
316
317         list_del(&assigned_dev->list);
318         kfree(assigned_dev);
319 }
320
321 void kvm_free_all_assigned_devices(struct kvm *kvm)
322 {
323         struct list_head *ptr, *ptr2;
324         struct kvm_assigned_dev_kernel *assigned_dev;
325
326         list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
327                 assigned_dev = list_entry(ptr,
328                                           struct kvm_assigned_dev_kernel,
329                                           list);
330
331                 kvm_free_assigned_device(kvm, assigned_dev);
332         }
333 }
334
335 static int assigned_device_enable_host_intx(struct kvm *kvm,
336                                             struct kvm_assigned_dev_kernel *dev)
337 {
338         dev->host_irq = dev->dev->irq;
339         /* Even though this is PCI, we don't want to use shared
340          * interrupts. Sharing host devices with guest-assigned devices
341          * on the same interrupt line is not a happy situation: there
342          * are going to be long delays in accepting, acking, etc.
343          */
344         if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
345                         0, "kvm_assigned_intx_device", (void *)dev))
346                 return -EIO;
347         return 0;
348 }
349
350 #ifdef __KVM_HAVE_MSI
351 static int assigned_device_enable_host_msi(struct kvm *kvm,
352                                            struct kvm_assigned_dev_kernel *dev)
353 {
354         int r;
355
356         if (!dev->dev->msi_enabled) {
357                 r = pci_enable_msi(dev->dev);
358                 if (r)
359                         return r;
360         }
361
362         dev->host_irq = dev->dev->irq;
363         if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
364                         "kvm_assigned_msi_device", (void *)dev)) {
365                 pci_disable_msi(dev->dev);
366                 return -EIO;
367         }
368
369         return 0;
370 }
371 #endif
372
373 #ifdef __KVM_HAVE_MSIX
374 static int assigned_device_enable_host_msix(struct kvm *kvm,
375                                             struct kvm_assigned_dev_kernel *dev)
376 {
377         int i, r = -EINVAL;
378
379         /* host_msix_entries and guest_msix_entries should have been
380          * initialized */
381         if (dev->entries_nr == 0)
382                 return r;
383
384         r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
385         if (r)
386                 return r;
387
388         for (i = 0; i < dev->entries_nr; i++) {
389                 r = request_irq(dev->host_msix_entries[i].vector,
390                                 kvm_assigned_dev_intr, 0,
391                                 "kvm_assigned_msix_device",
392                                 (void *)dev);
393                 /* FIXME: free requested_irq's on failure */
394                 if (r)
395                         return r;
396         }
397
398         return 0;
399 }
400
401 #endif
402
403 static int assigned_device_enable_guest_intx(struct kvm *kvm,
404                                 struct kvm_assigned_dev_kernel *dev,
405                                 struct kvm_assigned_irq *irq)
406 {
407         dev->guest_irq = irq->guest_irq;
408         dev->ack_notifier.gsi = irq->guest_irq;
409         return 0;
410 }
411
412 #ifdef __KVM_HAVE_MSI
413 static int assigned_device_enable_guest_msi(struct kvm *kvm,
414                         struct kvm_assigned_dev_kernel *dev,
415                         struct kvm_assigned_irq *irq)
416 {
417         dev->guest_irq = irq->guest_irq;
418         dev->ack_notifier.gsi = -1;
419         dev->host_irq_disabled = false;
420         return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425                         struct kvm_assigned_dev_kernel *dev,
426                         struct kvm_assigned_irq *irq)
427 {
428         dev->guest_irq = irq->guest_irq;
429         dev->ack_notifier.gsi = -1;
430         dev->host_irq_disabled = false;
431         return 0;
432 }
433 #endif
434
435 static int assign_host_irq(struct kvm *kvm,
436                            struct kvm_assigned_dev_kernel *dev,
437                            __u32 host_irq_type)
438 {
439         int r = -EEXIST;
440
441         if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
442                 return r;
443
444         switch (host_irq_type) {
445         case KVM_DEV_IRQ_HOST_INTX:
446                 r = assigned_device_enable_host_intx(kvm, dev);
447                 break;
448 #ifdef __KVM_HAVE_MSI
449         case KVM_DEV_IRQ_HOST_MSI:
450                 r = assigned_device_enable_host_msi(kvm, dev);
451                 break;
452 #endif
453 #ifdef __KVM_HAVE_MSIX
454         case KVM_DEV_IRQ_HOST_MSIX:
455                 r = assigned_device_enable_host_msix(kvm, dev);
456                 break;
457 #endif
458         default:
459                 r = -EINVAL;
460         }
461
462         if (!r)
463                 dev->irq_requested_type |= host_irq_type;
464
465         return r;
466 }
467
468 static int assign_guest_irq(struct kvm *kvm,
469                             struct kvm_assigned_dev_kernel *dev,
470                             struct kvm_assigned_irq *irq,
471                             unsigned long guest_irq_type)
472 {
473         int id;
474         int r = -EEXIST;
475
476         if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
477                 return r;
478
479         id = kvm_request_irq_source_id(kvm);
480         if (id < 0)
481                 return id;
482
483         dev->irq_source_id = id;
484
485         switch (guest_irq_type) {
486         case KVM_DEV_IRQ_GUEST_INTX:
487                 r = assigned_device_enable_guest_intx(kvm, dev, irq);
488                 break;
489 #ifdef __KVM_HAVE_MSI
490         case KVM_DEV_IRQ_GUEST_MSI:
491                 r = assigned_device_enable_guest_msi(kvm, dev, irq);
492                 break;
493 #endif
494 #ifdef __KVM_HAVE_MSIX
495         case KVM_DEV_IRQ_GUEST_MSIX:
496                 r = assigned_device_enable_guest_msix(kvm, dev, irq);
497                 break;
498 #endif
499         default:
500                 r = -EINVAL;
501         }
502
503         if (!r) {
504                 dev->irq_requested_type |= guest_irq_type;
505                 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
506         } else
507                 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508
509         return r;
510 }
511
512 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
513 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
514                                    struct kvm_assigned_irq *assigned_irq)
515 {
516         int r = -EINVAL;
517         struct kvm_assigned_dev_kernel *match;
518         unsigned long host_irq_type, guest_irq_type;
519
520         if (!capable(CAP_SYS_RAWIO))
521                 return -EPERM;
522
523         if (!irqchip_in_kernel(kvm))
524                 return r;
525
526         mutex_lock(&kvm->lock);
527         r = -ENODEV;
528         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
529                                       assigned_irq->assigned_dev_id);
530         if (!match)
531                 goto out;
532
533         host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
534         guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535
536         r = -EINVAL;
537         /* can only assign one type at a time */
538         if (hweight_long(host_irq_type) > 1)
539                 goto out;
540         if (hweight_long(guest_irq_type) > 1)
541                 goto out;
542         if (host_irq_type == 0 && guest_irq_type == 0)
543                 goto out;
544
545         r = 0;
546         if (host_irq_type)
547                 r = assign_host_irq(kvm, match, host_irq_type);
548         if (r)
549                 goto out;
550
551         if (guest_irq_type)
552                 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
553 out:
554         mutex_unlock(&kvm->lock);
555         return r;
556 }
557
558 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
559                                          struct kvm_assigned_irq
560                                          *assigned_irq)
561 {
562         int r = -ENODEV;
563         struct kvm_assigned_dev_kernel *match;
564
565         mutex_lock(&kvm->lock);
566
567         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
568                                       assigned_irq->assigned_dev_id);
569         if (!match)
570                 goto out;
571
572         r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
573 out:
574         mutex_unlock(&kvm->lock);
575         return r;
576 }
577
578 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
579                                       struct kvm_assigned_pci_dev *assigned_dev)
580 {
581         int r = 0;
582         struct kvm_assigned_dev_kernel *match;
583         struct pci_dev *dev;
584
585         down_read(&kvm->slots_lock);
586         mutex_lock(&kvm->lock);
587
588         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
589                                       assigned_dev->assigned_dev_id);
590         if (match) {
591                 /* device already assigned */
592                 r = -EEXIST;
593                 goto out;
594         }
595
596         match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
597         if (match == NULL) {
598                 printk(KERN_INFO "%s: Couldn't allocate memory\n",
599                        __func__);
600                 r = -ENOMEM;
601                 goto out;
602         }
603         dev = pci_get_bus_and_slot(assigned_dev->busnr,
604                                    assigned_dev->devfn);
605         if (!dev) {
606                 printk(KERN_INFO "%s: host device not found\n", __func__);
607                 r = -EINVAL;
608                 goto out_free;
609         }
610         if (pci_enable_device(dev)) {
611                 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
612                 r = -EBUSY;
613                 goto out_put;
614         }
615         r = pci_request_regions(dev, "kvm_assigned_device");
616         if (r) {
617                 printk(KERN_INFO "%s: Could not get access to device regions\n",
618                        __func__);
619                 goto out_disable;
620         }
621
622         pci_reset_function(dev);
623
624         match->assigned_dev_id = assigned_dev->assigned_dev_id;
625         match->host_busnr = assigned_dev->busnr;
626         match->host_devfn = assigned_dev->devfn;
627         match->flags = assigned_dev->flags;
628         match->dev = dev;
629         spin_lock_init(&match->assigned_dev_lock);
630         match->irq_source_id = -1;
631         match->kvm = kvm;
632         match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
633         INIT_WORK(&match->interrupt_work,
634                   kvm_assigned_dev_interrupt_work_handler);
635
636         list_add(&match->list, &kvm->arch.assigned_dev_head);
637
638         if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
639                 if (!kvm->arch.iommu_domain) {
640                         r = kvm_iommu_map_guest(kvm);
641                         if (r)
642                                 goto out_list_del;
643                 }
644                 r = kvm_assign_device(kvm, match);
645                 if (r)
646                         goto out_list_del;
647         }
648
649 out:
650         mutex_unlock(&kvm->lock);
651         up_read(&kvm->slots_lock);
652         return r;
653 out_list_del:
654         list_del(&match->list);
655         pci_release_regions(dev);
656 out_disable:
657         pci_disable_device(dev);
658 out_put:
659         pci_dev_put(dev);
660 out_free:
661         kfree(match);
662         mutex_unlock(&kvm->lock);
663         up_read(&kvm->slots_lock);
664         return r;
665 }
666 #endif
667
668 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
669 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
670                 struct kvm_assigned_pci_dev *assigned_dev)
671 {
672         int r = 0;
673         struct kvm_assigned_dev_kernel *match;
674
675         mutex_lock(&kvm->lock);
676
677         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
678                                       assigned_dev->assigned_dev_id);
679         if (!match) {
680                 printk(KERN_INFO "%s: device hasn't been assigned before, "
681                   "so cannot be deassigned\n", __func__);
682                 r = -EINVAL;
683                 goto out;
684         }
685
686         if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
687                 kvm_deassign_device(kvm, match);
688
689         kvm_free_assigned_device(kvm, match);
690
691 out:
692         mutex_unlock(&kvm->lock);
693         return r;
694 }
695 #endif
696
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699         if (pfn_valid(pfn)) {
700                 struct page *page = compound_head(pfn_to_page(pfn));
701                 return PageReserved(page);
702         }
703
704         return true;
705 }
706
707 /*
708  * Switches to specified vcpu, until a matching vcpu_put()
709  */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712         int cpu;
713
714         mutex_lock(&vcpu->mutex);
715         cpu = get_cpu();
716         preempt_notifier_register(&vcpu->preempt_notifier);
717         kvm_arch_vcpu_load(vcpu, cpu);
718         put_cpu();
719 }
720
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723         preempt_disable();
724         kvm_arch_vcpu_put(vcpu);
725         preempt_notifier_unregister(&vcpu->preempt_notifier);
726         preempt_enable();
727         mutex_unlock(&vcpu->mutex);
728 }
729
730 static void ack_flush(void *_completed)
731 {
732 }
733
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736         int i, cpu, me;
737         cpumask_var_t cpus;
738         bool called = true;
739         struct kvm_vcpu *vcpu;
740
741         if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
742                 cpumask_clear(cpus);
743
744         me = get_cpu();
745         spin_lock(&kvm->requests_lock);
746         kvm_for_each_vcpu(i, vcpu, kvm) {
747                 if (test_and_set_bit(req, &vcpu->requests))
748                         continue;
749                 cpu = vcpu->cpu;
750                 if (cpus != NULL && cpu != -1 && cpu != me)
751                         cpumask_set_cpu(cpu, cpus);
752         }
753         if (unlikely(cpus == NULL))
754                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
755         else if (!cpumask_empty(cpus))
756                 smp_call_function_many(cpus, ack_flush, NULL, 1);
757         else
758                 called = false;
759         spin_unlock(&kvm->requests_lock);
760         put_cpu();
761         free_cpumask_var(cpus);
762         return called;
763 }
764
765 void kvm_flush_remote_tlbs(struct kvm *kvm)
766 {
767         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
768                 ++kvm->stat.remote_tlb_flush;
769 }
770
771 void kvm_reload_remote_mmus(struct kvm *kvm)
772 {
773         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
774 }
775
776 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
777 {
778         struct page *page;
779         int r;
780
781         mutex_init(&vcpu->mutex);
782         vcpu->cpu = -1;
783         vcpu->kvm = kvm;
784         vcpu->vcpu_id = id;
785         init_waitqueue_head(&vcpu->wq);
786
787         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
788         if (!page) {
789                 r = -ENOMEM;
790                 goto fail;
791         }
792         vcpu->run = page_address(page);
793
794         r = kvm_arch_vcpu_init(vcpu);
795         if (r < 0)
796                 goto fail_free_run;
797         return 0;
798
799 fail_free_run:
800         free_page((unsigned long)vcpu->run);
801 fail:
802         return r;
803 }
804 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
805
806 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
807 {
808         kvm_arch_vcpu_uninit(vcpu);
809         free_page((unsigned long)vcpu->run);
810 }
811 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
812
813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
815 {
816         return container_of(mn, struct kvm, mmu_notifier);
817 }
818
819 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
820                                              struct mm_struct *mm,
821                                              unsigned long address)
822 {
823         struct kvm *kvm = mmu_notifier_to_kvm(mn);
824         int need_tlb_flush;
825
826         /*
827          * When ->invalidate_page runs, the linux pte has been zapped
828          * already but the page is still allocated until
829          * ->invalidate_page returns. So if we increase the sequence
830          * here the kvm page fault will notice if the spte can't be
831          * established because the page is going to be freed. If
832          * instead the kvm page fault establishes the spte before
833          * ->invalidate_page runs, kvm_unmap_hva will release it
834          * before returning.
835          *
836          * The sequence increase only need to be seen at spin_unlock
837          * time, and not at spin_lock time.
838          *
839          * Increasing the sequence after the spin_unlock would be
840          * unsafe because the kvm page fault could then establish the
841          * pte after kvm_unmap_hva returned, without noticing the page
842          * is going to be freed.
843          */
844         spin_lock(&kvm->mmu_lock);
845         kvm->mmu_notifier_seq++;
846         need_tlb_flush = kvm_unmap_hva(kvm, address);
847         spin_unlock(&kvm->mmu_lock);
848
849         /* we've to flush the tlb before the pages can be freed */
850         if (need_tlb_flush)
851                 kvm_flush_remote_tlbs(kvm);
852
853 }
854
855 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
856                                                     struct mm_struct *mm,
857                                                     unsigned long start,
858                                                     unsigned long end)
859 {
860         struct kvm *kvm = mmu_notifier_to_kvm(mn);
861         int need_tlb_flush = 0;
862
863         spin_lock(&kvm->mmu_lock);
864         /*
865          * The count increase must become visible at unlock time as no
866          * spte can be established without taking the mmu_lock and
867          * count is also read inside the mmu_lock critical section.
868          */
869         kvm->mmu_notifier_count++;
870         for (; start < end; start += PAGE_SIZE)
871                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
872         spin_unlock(&kvm->mmu_lock);
873
874         /* we've to flush the tlb before the pages can be freed */
875         if (need_tlb_flush)
876                 kvm_flush_remote_tlbs(kvm);
877 }
878
879 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
880                                                   struct mm_struct *mm,
881                                                   unsigned long start,
882                                                   unsigned long end)
883 {
884         struct kvm *kvm = mmu_notifier_to_kvm(mn);
885
886         spin_lock(&kvm->mmu_lock);
887         /*
888          * This sequence increase will notify the kvm page fault that
889          * the page that is going to be mapped in the spte could have
890          * been freed.
891          */
892         kvm->mmu_notifier_seq++;
893         /*
894          * The above sequence increase must be visible before the
895          * below count decrease but both values are read by the kvm
896          * page fault under mmu_lock spinlock so we don't need to add
897          * a smb_wmb() here in between the two.
898          */
899         kvm->mmu_notifier_count--;
900         spin_unlock(&kvm->mmu_lock);
901
902         BUG_ON(kvm->mmu_notifier_count < 0);
903 }
904
905 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906                                               struct mm_struct *mm,
907                                               unsigned long address)
908 {
909         struct kvm *kvm = mmu_notifier_to_kvm(mn);
910         int young;
911
912         spin_lock(&kvm->mmu_lock);
913         young = kvm_age_hva(kvm, address);
914         spin_unlock(&kvm->mmu_lock);
915
916         if (young)
917                 kvm_flush_remote_tlbs(kvm);
918
919         return young;
920 }
921
922 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
923                                      struct mm_struct *mm)
924 {
925         struct kvm *kvm = mmu_notifier_to_kvm(mn);
926         kvm_arch_flush_shadow(kvm);
927 }
928
929 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
930         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
931         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
932         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
933         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
934         .release                = kvm_mmu_notifier_release,
935 };
936 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
937
938 static struct kvm *kvm_create_vm(void)
939 {
940         struct kvm *kvm = kvm_arch_create_vm();
941 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
942         struct page *page;
943 #endif
944
945         if (IS_ERR(kvm))
946                 goto out;
947 #ifdef CONFIG_HAVE_KVM_IRQCHIP
948         INIT_LIST_HEAD(&kvm->irq_routing);
949         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
950 #endif
951
952 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
953         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
954         if (!page) {
955                 kfree(kvm);
956                 return ERR_PTR(-ENOMEM);
957         }
958         kvm->coalesced_mmio_ring =
959                         (struct kvm_coalesced_mmio_ring *)page_address(page);
960 #endif
961
962 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
963         {
964                 int err;
965                 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
966                 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
967                 if (err) {
968 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
969                         put_page(page);
970 #endif
971                         kfree(kvm);
972                         return ERR_PTR(err);
973                 }
974         }
975 #endif
976
977         kvm->mm = current->mm;
978         atomic_inc(&kvm->mm->mm_count);
979         spin_lock_init(&kvm->mmu_lock);
980         spin_lock_init(&kvm->requests_lock);
981         kvm_io_bus_init(&kvm->pio_bus);
982         kvm_irqfd_init(kvm);
983         mutex_init(&kvm->lock);
984         mutex_init(&kvm->irq_lock);
985         kvm_io_bus_init(&kvm->mmio_bus);
986         init_rwsem(&kvm->slots_lock);
987         atomic_set(&kvm->users_count, 1);
988         spin_lock(&kvm_lock);
989         list_add(&kvm->vm_list, &vm_list);
990         spin_unlock(&kvm_lock);
991 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
992         kvm_coalesced_mmio_init(kvm);
993 #endif
994 out:
995         return kvm;
996 }
997
998 /*
999  * Free any memory in @free but not in @dont.
1000  */
1001 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1002                                   struct kvm_memory_slot *dont)
1003 {
1004         if (!dont || free->rmap != dont->rmap)
1005                 vfree(free->rmap);
1006
1007         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1008                 vfree(free->dirty_bitmap);
1009
1010         if (!dont || free->lpage_info != dont->lpage_info)
1011                 vfree(free->lpage_info);
1012
1013         free->npages = 0;
1014         free->dirty_bitmap = NULL;
1015         free->rmap = NULL;
1016         free->lpage_info = NULL;
1017 }
1018
1019 void kvm_free_physmem(struct kvm *kvm)
1020 {
1021         int i;
1022
1023         for (i = 0; i < kvm->nmemslots; ++i)
1024                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1025 }
1026
1027 static void kvm_destroy_vm(struct kvm *kvm)
1028 {
1029         struct mm_struct *mm = kvm->mm;
1030
1031         kvm_arch_sync_events(kvm);
1032         spin_lock(&kvm_lock);
1033         list_del(&kvm->vm_list);
1034         spin_unlock(&kvm_lock);
1035         kvm_free_irq_routing(kvm);
1036         kvm_io_bus_destroy(&kvm->pio_bus);
1037         kvm_io_bus_destroy(&kvm->mmio_bus);
1038 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1039         if (kvm->coalesced_mmio_ring != NULL)
1040                 free_page((unsigned long)kvm->coalesced_mmio_ring);
1041 #endif
1042 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1043         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1044 #else
1045         kvm_arch_flush_shadow(kvm);
1046 #endif
1047         kvm_arch_destroy_vm(kvm);
1048         mmdrop(mm);
1049 }
1050
1051 void kvm_get_kvm(struct kvm *kvm)
1052 {
1053         atomic_inc(&kvm->users_count);
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1056
1057 void kvm_put_kvm(struct kvm *kvm)
1058 {
1059         if (atomic_dec_and_test(&kvm->users_count))
1060                 kvm_destroy_vm(kvm);
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1063
1064
1065 static int kvm_vm_release(struct inode *inode, struct file *filp)
1066 {
1067         struct kvm *kvm = filp->private_data;
1068
1069         kvm_irqfd_release(kvm);
1070
1071         kvm_put_kvm(kvm);
1072         return 0;
1073 }
1074
1075 /*
1076  * Allocate some memory and give it an address in the guest physical address
1077  * space.
1078  *
1079  * Discontiguous memory is allowed, mostly for framebuffers.
1080  *
1081  * Must be called holding mmap_sem for write.
1082  */
1083 int __kvm_set_memory_region(struct kvm *kvm,
1084                             struct kvm_userspace_memory_region *mem,
1085                             int user_alloc)
1086 {
1087         int r;
1088         gfn_t base_gfn;
1089         unsigned long npages, ugfn;
1090         unsigned long largepages, i;
1091         struct kvm_memory_slot *memslot;
1092         struct kvm_memory_slot old, new;
1093
1094         r = -EINVAL;
1095         /* General sanity checks */
1096         if (mem->memory_size & (PAGE_SIZE - 1))
1097                 goto out;
1098         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1099                 goto out;
1100         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1101                 goto out;
1102         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1103                 goto out;
1104         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1105                 goto out;
1106
1107         memslot = &kvm->memslots[mem->slot];
1108         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1109         npages = mem->memory_size >> PAGE_SHIFT;
1110
1111         if (!npages)
1112                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1113
1114         new = old = *memslot;
1115
1116         new.base_gfn = base_gfn;
1117         new.npages = npages;
1118         new.flags = mem->flags;
1119
1120         /* Disallow changing a memory slot's size. */
1121         r = -EINVAL;
1122         if (npages && old.npages && npages != old.npages)
1123                 goto out_free;
1124
1125         /* Check for overlaps */
1126         r = -EEXIST;
1127         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1128                 struct kvm_memory_slot *s = &kvm->memslots[i];
1129
1130                 if (s == memslot || !s->npages)
1131                         continue;
1132                 if (!((base_gfn + npages <= s->base_gfn) ||
1133                       (base_gfn >= s->base_gfn + s->npages)))
1134                         goto out_free;
1135         }
1136
1137         /* Free page dirty bitmap if unneeded */
1138         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1139                 new.dirty_bitmap = NULL;
1140
1141         r = -ENOMEM;
1142
1143         /* Allocate if a slot is being created */
1144 #ifndef CONFIG_S390
1145         if (npages && !new.rmap) {
1146                 new.rmap = vmalloc(npages * sizeof(struct page *));
1147
1148                 if (!new.rmap)
1149                         goto out_free;
1150
1151                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1152
1153                 new.user_alloc = user_alloc;
1154                 /*
1155                  * hva_to_rmmap() serialzies with the mmu_lock and to be
1156                  * safe it has to ignore memslots with !user_alloc &&
1157                  * !userspace_addr.
1158                  */
1159                 if (user_alloc)
1160                         new.userspace_addr = mem->userspace_addr;
1161                 else
1162                         new.userspace_addr = 0;
1163         }
1164         if (npages && !new.lpage_info) {
1165                 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1166                 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1167
1168                 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1169
1170                 if (!new.lpage_info)
1171                         goto out_free;
1172
1173                 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1174
1175                 if (base_gfn % KVM_PAGES_PER_HPAGE)
1176                         new.lpage_info[0].write_count = 1;
1177                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1178                         new.lpage_info[largepages-1].write_count = 1;
1179                 ugfn = new.userspace_addr >> PAGE_SHIFT;
1180                 /*
1181                  * If the gfn and userspace address are not aligned wrt each
1182                  * other, or if explicitly asked to, disable large page
1183                  * support for this slot
1184                  */
1185                 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1) ||
1186                     !largepages_enabled)
1187                         for (i = 0; i < largepages; ++i)
1188                                 new.lpage_info[i].write_count = 1;
1189         }
1190
1191         /* Allocate page dirty bitmap if needed */
1192         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1193                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1194
1195                 new.dirty_bitmap = vmalloc(dirty_bytes);
1196                 if (!new.dirty_bitmap)
1197                         goto out_free;
1198                 memset(new.dirty_bitmap, 0, dirty_bytes);
1199                 if (old.npages)
1200                         kvm_arch_flush_shadow(kvm);
1201         }
1202 #endif /* not defined CONFIG_S390 */
1203
1204         if (!npages)
1205                 kvm_arch_flush_shadow(kvm);
1206
1207         spin_lock(&kvm->mmu_lock);
1208         if (mem->slot >= kvm->nmemslots)
1209                 kvm->nmemslots = mem->slot + 1;
1210
1211         *memslot = new;
1212         spin_unlock(&kvm->mmu_lock);
1213
1214         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1215         if (r) {
1216                 spin_lock(&kvm->mmu_lock);
1217                 *memslot = old;
1218                 spin_unlock(&kvm->mmu_lock);
1219                 goto out_free;
1220         }
1221
1222         kvm_free_physmem_slot(&old, npages ? &new : NULL);
1223         /* Slot deletion case: we have to update the current slot */
1224         spin_lock(&kvm->mmu_lock);
1225         if (!npages)
1226                 *memslot = old;
1227         spin_unlock(&kvm->mmu_lock);
1228 #ifdef CONFIG_DMAR
1229         /* map the pages in iommu page table */
1230         r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1231         if (r)
1232                 goto out;
1233 #endif
1234         return 0;
1235
1236 out_free:
1237         kvm_free_physmem_slot(&new, &old);
1238 out:
1239         return r;
1240
1241 }
1242 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1243
1244 int kvm_set_memory_region(struct kvm *kvm,
1245                           struct kvm_userspace_memory_region *mem,
1246                           int user_alloc)
1247 {
1248         int r;
1249
1250         down_write(&kvm->slots_lock);
1251         r = __kvm_set_memory_region(kvm, mem, user_alloc);
1252         up_write(&kvm->slots_lock);
1253         return r;
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1256
1257 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1258                                    struct
1259                                    kvm_userspace_memory_region *mem,
1260                                    int user_alloc)
1261 {
1262         if (mem->slot >= KVM_MEMORY_SLOTS)
1263                 return -EINVAL;
1264         return kvm_set_memory_region(kvm, mem, user_alloc);
1265 }
1266
1267 int kvm_get_dirty_log(struct kvm *kvm,
1268                         struct kvm_dirty_log *log, int *is_dirty)
1269 {
1270         struct kvm_memory_slot *memslot;
1271         int r, i;
1272         int n;
1273         unsigned long any = 0;
1274
1275         r = -EINVAL;
1276         if (log->slot >= KVM_MEMORY_SLOTS)
1277                 goto out;
1278
1279         memslot = &kvm->memslots[log->slot];
1280         r = -ENOENT;
1281         if (!memslot->dirty_bitmap)
1282                 goto out;
1283
1284         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1285
1286         for (i = 0; !any && i < n/sizeof(long); ++i)
1287                 any = memslot->dirty_bitmap[i];
1288
1289         r = -EFAULT;
1290         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1291                 goto out;
1292
1293         if (any)
1294                 *is_dirty = 1;
1295
1296         r = 0;
1297 out:
1298         return r;
1299 }
1300
1301 void kvm_disable_largepages(void)
1302 {
1303         largepages_enabled = false;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306
1307 int is_error_page(struct page *page)
1308 {
1309         return page == bad_page;
1310 }
1311 EXPORT_SYMBOL_GPL(is_error_page);
1312
1313 int is_error_pfn(pfn_t pfn)
1314 {
1315         return pfn == bad_pfn;
1316 }
1317 EXPORT_SYMBOL_GPL(is_error_pfn);
1318
1319 static inline unsigned long bad_hva(void)
1320 {
1321         return PAGE_OFFSET;
1322 }
1323
1324 int kvm_is_error_hva(unsigned long addr)
1325 {
1326         return addr == bad_hva();
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1329
1330 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1331 {
1332         int i;
1333
1334         for (i = 0; i < kvm->nmemslots; ++i) {
1335                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1336
1337                 if (gfn >= memslot->base_gfn
1338                     && gfn < memslot->base_gfn + memslot->npages)
1339                         return memslot;
1340         }
1341         return NULL;
1342 }
1343 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1344
1345 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1346 {
1347         gfn = unalias_gfn(kvm, gfn);
1348         return gfn_to_memslot_unaliased(kvm, gfn);
1349 }
1350
1351 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1352 {
1353         int i;
1354
1355         gfn = unalias_gfn(kvm, gfn);
1356         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1357                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1358
1359                 if (gfn >= memslot->base_gfn
1360                     && gfn < memslot->base_gfn + memslot->npages)
1361                         return 1;
1362         }
1363         return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1366
1367 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1368 {
1369         struct kvm_memory_slot *slot;
1370
1371         gfn = unalias_gfn(kvm, gfn);
1372         slot = gfn_to_memslot_unaliased(kvm, gfn);
1373         if (!slot)
1374                 return bad_hva();
1375         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1376 }
1377 EXPORT_SYMBOL_GPL(gfn_to_hva);
1378
1379 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1380 {
1381         struct page *page[1];
1382         unsigned long addr;
1383         int npages;
1384         pfn_t pfn;
1385
1386         might_sleep();
1387
1388         addr = gfn_to_hva(kvm, gfn);
1389         if (kvm_is_error_hva(addr)) {
1390                 get_page(bad_page);
1391                 return page_to_pfn(bad_page);
1392         }
1393
1394         npages = get_user_pages_fast(addr, 1, 1, page);
1395
1396         if (unlikely(npages != 1)) {
1397                 struct vm_area_struct *vma;
1398
1399                 down_read(&current->mm->mmap_sem);
1400                 vma = find_vma(current->mm, addr);
1401
1402                 if (vma == NULL || addr < vma->vm_start ||
1403                     !(vma->vm_flags & VM_PFNMAP)) {
1404                         up_read(&current->mm->mmap_sem);
1405                         get_page(bad_page);
1406                         return page_to_pfn(bad_page);
1407                 }
1408
1409                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1410                 up_read(&current->mm->mmap_sem);
1411                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1412         } else
1413                 pfn = page_to_pfn(page[0]);
1414
1415         return pfn;
1416 }
1417
1418 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1419
1420 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1421 {
1422         pfn_t pfn;
1423
1424         pfn = gfn_to_pfn(kvm, gfn);
1425         if (!kvm_is_mmio_pfn(pfn))
1426                 return pfn_to_page(pfn);
1427
1428         WARN_ON(kvm_is_mmio_pfn(pfn));
1429
1430         get_page(bad_page);
1431         return bad_page;
1432 }
1433
1434 EXPORT_SYMBOL_GPL(gfn_to_page);
1435
1436 void kvm_release_page_clean(struct page *page)
1437 {
1438         kvm_release_pfn_clean(page_to_pfn(page));
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1441
1442 void kvm_release_pfn_clean(pfn_t pfn)
1443 {
1444         if (!kvm_is_mmio_pfn(pfn))
1445                 put_page(pfn_to_page(pfn));
1446 }
1447 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1448
1449 void kvm_release_page_dirty(struct page *page)
1450 {
1451         kvm_release_pfn_dirty(page_to_pfn(page));
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1454
1455 void kvm_release_pfn_dirty(pfn_t pfn)
1456 {
1457         kvm_set_pfn_dirty(pfn);
1458         kvm_release_pfn_clean(pfn);
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1461
1462 void kvm_set_page_dirty(struct page *page)
1463 {
1464         kvm_set_pfn_dirty(page_to_pfn(page));
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1467
1468 void kvm_set_pfn_dirty(pfn_t pfn)
1469 {
1470         if (!kvm_is_mmio_pfn(pfn)) {
1471                 struct page *page = pfn_to_page(pfn);
1472                 if (!PageReserved(page))
1473                         SetPageDirty(page);
1474         }
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1477
1478 void kvm_set_pfn_accessed(pfn_t pfn)
1479 {
1480         if (!kvm_is_mmio_pfn(pfn))
1481                 mark_page_accessed(pfn_to_page(pfn));
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1484
1485 void kvm_get_pfn(pfn_t pfn)
1486 {
1487         if (!kvm_is_mmio_pfn(pfn))
1488                 get_page(pfn_to_page(pfn));
1489 }
1490 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1491
1492 static int next_segment(unsigned long len, int offset)
1493 {
1494         if (len > PAGE_SIZE - offset)
1495                 return PAGE_SIZE - offset;
1496         else
1497                 return len;
1498 }
1499
1500 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1501                         int len)
1502 {
1503         int r;
1504         unsigned long addr;
1505
1506         addr = gfn_to_hva(kvm, gfn);
1507         if (kvm_is_error_hva(addr))
1508                 return -EFAULT;
1509         r = copy_from_user(data, (void __user *)addr + offset, len);
1510         if (r)
1511                 return -EFAULT;
1512         return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1515
1516 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1517 {
1518         gfn_t gfn = gpa >> PAGE_SHIFT;
1519         int seg;
1520         int offset = offset_in_page(gpa);
1521         int ret;
1522
1523         while ((seg = next_segment(len, offset)) != 0) {
1524                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1525                 if (ret < 0)
1526                         return ret;
1527                 offset = 0;
1528                 len -= seg;
1529                 data += seg;
1530                 ++gfn;
1531         }
1532         return 0;
1533 }
1534 EXPORT_SYMBOL_GPL(kvm_read_guest);
1535
1536 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1537                           unsigned long len)
1538 {
1539         int r;
1540         unsigned long addr;
1541         gfn_t gfn = gpa >> PAGE_SHIFT;
1542         int offset = offset_in_page(gpa);
1543
1544         addr = gfn_to_hva(kvm, gfn);
1545         if (kvm_is_error_hva(addr))
1546                 return -EFAULT;
1547         pagefault_disable();
1548         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1549         pagefault_enable();
1550         if (r)
1551                 return -EFAULT;
1552         return 0;
1553 }
1554 EXPORT_SYMBOL(kvm_read_guest_atomic);
1555
1556 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1557                          int offset, int len)
1558 {
1559         int r;
1560         unsigned long addr;
1561
1562         addr = gfn_to_hva(kvm, gfn);
1563         if (kvm_is_error_hva(addr))
1564                 return -EFAULT;
1565         r = copy_to_user((void __user *)addr + offset, data, len);
1566         if (r)
1567                 return -EFAULT;
1568         mark_page_dirty(kvm, gfn);
1569         return 0;
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1572
1573 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1574                     unsigned long len)
1575 {
1576         gfn_t gfn = gpa >> PAGE_SHIFT;
1577         int seg;
1578         int offset = offset_in_page(gpa);
1579         int ret;
1580
1581         while ((seg = next_segment(len, offset)) != 0) {
1582                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1583                 if (ret < 0)
1584                         return ret;
1585                 offset = 0;
1586                 len -= seg;
1587                 data += seg;
1588                 ++gfn;
1589         }
1590         return 0;
1591 }
1592
1593 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1594 {
1595         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1596 }
1597 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1598
1599 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1600 {
1601         gfn_t gfn = gpa >> PAGE_SHIFT;
1602         int seg;
1603         int offset = offset_in_page(gpa);
1604         int ret;
1605
1606         while ((seg = next_segment(len, offset)) != 0) {
1607                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1608                 if (ret < 0)
1609                         return ret;
1610                 offset = 0;
1611                 len -= seg;
1612                 ++gfn;
1613         }
1614         return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1617
1618 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1619 {
1620         struct kvm_memory_slot *memslot;
1621
1622         gfn = unalias_gfn(kvm, gfn);
1623         memslot = gfn_to_memslot_unaliased(kvm, gfn);
1624         if (memslot && memslot->dirty_bitmap) {
1625                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1626
1627                 /* avoid RMW */
1628                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1629                         set_bit(rel_gfn, memslot->dirty_bitmap);
1630         }
1631 }
1632
1633 /*
1634  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1635  */
1636 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1637 {
1638         DEFINE_WAIT(wait);
1639
1640         for (;;) {
1641                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1642
1643                 if ((kvm_arch_interrupt_allowed(vcpu) &&
1644                                         kvm_cpu_has_interrupt(vcpu)) ||
1645                                 kvm_arch_vcpu_runnable(vcpu)) {
1646                         set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1647                         break;
1648                 }
1649                 if (kvm_cpu_has_pending_timer(vcpu))
1650                         break;
1651                 if (signal_pending(current))
1652                         break;
1653
1654                 vcpu_put(vcpu);
1655                 schedule();
1656                 vcpu_load(vcpu);
1657         }
1658
1659         finish_wait(&vcpu->wq, &wait);
1660 }
1661
1662 void kvm_resched(struct kvm_vcpu *vcpu)
1663 {
1664         if (!need_resched())
1665                 return;
1666         cond_resched();
1667 }
1668 EXPORT_SYMBOL_GPL(kvm_resched);
1669
1670 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1671 {
1672         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1673         struct page *page;
1674
1675         if (vmf->pgoff == 0)
1676                 page = virt_to_page(vcpu->run);
1677 #ifdef CONFIG_X86
1678         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1679                 page = virt_to_page(vcpu->arch.pio_data);
1680 #endif
1681 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1682         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1683                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1684 #endif
1685         else
1686                 return VM_FAULT_SIGBUS;
1687         get_page(page);
1688         vmf->page = page;
1689         return 0;
1690 }
1691
1692 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1693         .fault = kvm_vcpu_fault,
1694 };
1695
1696 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1697 {
1698         vma->vm_ops = &kvm_vcpu_vm_ops;
1699         return 0;
1700 }
1701
1702 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1703 {
1704         struct kvm_vcpu *vcpu = filp->private_data;
1705
1706         kvm_put_kvm(vcpu->kvm);
1707         return 0;
1708 }
1709
1710 static struct file_operations kvm_vcpu_fops = {
1711         .release        = kvm_vcpu_release,
1712         .unlocked_ioctl = kvm_vcpu_ioctl,
1713         .compat_ioctl   = kvm_vcpu_ioctl,
1714         .mmap           = kvm_vcpu_mmap,
1715 };
1716
1717 /*
1718  * Allocates an inode for the vcpu.
1719  */
1720 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1721 {
1722         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1723 }
1724
1725 /*
1726  * Creates some virtual cpus.  Good luck creating more than one.
1727  */
1728 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1729 {
1730         int r;
1731         struct kvm_vcpu *vcpu, *v;
1732
1733         vcpu = kvm_arch_vcpu_create(kvm, id);
1734         if (IS_ERR(vcpu))
1735                 return PTR_ERR(vcpu);
1736
1737         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1738
1739         r = kvm_arch_vcpu_setup(vcpu);
1740         if (r)
1741                 return r;
1742
1743         mutex_lock(&kvm->lock);
1744         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1745                 r = -EINVAL;
1746                 goto vcpu_destroy;
1747         }
1748
1749         kvm_for_each_vcpu(r, v, kvm)
1750                 if (v->vcpu_id == id) {
1751                         r = -EEXIST;
1752                         goto vcpu_destroy;
1753                 }
1754
1755         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1756
1757         /* Now it's all set up, let userspace reach it */
1758         kvm_get_kvm(kvm);
1759         r = create_vcpu_fd(vcpu);
1760         if (r < 0) {
1761                 kvm_put_kvm(kvm);
1762                 goto vcpu_destroy;
1763         }
1764
1765         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1766         smp_wmb();
1767         atomic_inc(&kvm->online_vcpus);
1768
1769 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1770         if (kvm->bsp_vcpu_id == id)
1771                 kvm->bsp_vcpu = vcpu;
1772 #endif
1773         mutex_unlock(&kvm->lock);
1774         return r;
1775
1776 vcpu_destroy:
1777         mutex_unlock(&kvm->lock);
1778         kvm_arch_vcpu_destroy(vcpu);
1779         return r;
1780 }
1781
1782 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1783 {
1784         if (sigset) {
1785                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1786                 vcpu->sigset_active = 1;
1787                 vcpu->sigset = *sigset;
1788         } else
1789                 vcpu->sigset_active = 0;
1790         return 0;
1791 }
1792
1793 #ifdef __KVM_HAVE_MSIX
1794 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1795                                     struct kvm_assigned_msix_nr *entry_nr)
1796 {
1797         int r = 0;
1798         struct kvm_assigned_dev_kernel *adev;
1799
1800         mutex_lock(&kvm->lock);
1801
1802         adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1803                                       entry_nr->assigned_dev_id);
1804         if (!adev) {
1805                 r = -EINVAL;
1806                 goto msix_nr_out;
1807         }
1808
1809         if (adev->entries_nr == 0) {
1810                 adev->entries_nr = entry_nr->entry_nr;
1811                 if (adev->entries_nr == 0 ||
1812                     adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1813                         r = -EINVAL;
1814                         goto msix_nr_out;
1815                 }
1816
1817                 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1818                                                 entry_nr->entry_nr,
1819                                                 GFP_KERNEL);
1820                 if (!adev->host_msix_entries) {
1821                         r = -ENOMEM;
1822                         goto msix_nr_out;
1823                 }
1824                 adev->guest_msix_entries = kzalloc(
1825                                 sizeof(struct kvm_guest_msix_entry) *
1826                                 entry_nr->entry_nr, GFP_KERNEL);
1827                 if (!adev->guest_msix_entries) {
1828                         kfree(adev->host_msix_entries);
1829                         r = -ENOMEM;
1830                         goto msix_nr_out;
1831                 }
1832         } else /* Not allowed set MSI-X number twice */
1833                 r = -EINVAL;
1834 msix_nr_out:
1835         mutex_unlock(&kvm->lock);
1836         return r;
1837 }
1838
1839 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1840                                        struct kvm_assigned_msix_entry *entry)
1841 {
1842         int r = 0, i;
1843         struct kvm_assigned_dev_kernel *adev;
1844
1845         mutex_lock(&kvm->lock);
1846
1847         adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1848                                       entry->assigned_dev_id);
1849
1850         if (!adev) {
1851                 r = -EINVAL;
1852                 goto msix_entry_out;
1853         }
1854
1855         for (i = 0; i < adev->entries_nr; i++)
1856                 if (adev->guest_msix_entries[i].vector == 0 ||
1857                     adev->guest_msix_entries[i].entry == entry->entry) {
1858                         adev->guest_msix_entries[i].entry = entry->entry;
1859                         adev->guest_msix_entries[i].vector = entry->gsi;
1860                         adev->host_msix_entries[i].entry = entry->entry;
1861                         break;
1862                 }
1863         if (i == adev->entries_nr) {
1864                 r = -ENOSPC;
1865                 goto msix_entry_out;
1866         }
1867
1868 msix_entry_out:
1869         mutex_unlock(&kvm->lock);
1870
1871         return r;
1872 }
1873 #endif
1874
1875 static long kvm_vcpu_ioctl(struct file *filp,
1876                            unsigned int ioctl, unsigned long arg)
1877 {
1878         struct kvm_vcpu *vcpu = filp->private_data;
1879         void __user *argp = (void __user *)arg;
1880         int r;
1881         struct kvm_fpu *fpu = NULL;
1882         struct kvm_sregs *kvm_sregs = NULL;
1883
1884         if (vcpu->kvm->mm != current->mm)
1885                 return -EIO;
1886         switch (ioctl) {
1887         case KVM_RUN:
1888                 r = -EINVAL;
1889                 if (arg)
1890                         goto out;
1891                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1892                 break;
1893         case KVM_GET_REGS: {
1894                 struct kvm_regs *kvm_regs;
1895
1896                 r = -ENOMEM;
1897                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1898                 if (!kvm_regs)
1899                         goto out;
1900                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1901                 if (r)
1902                         goto out_free1;
1903                 r = -EFAULT;
1904                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1905                         goto out_free1;
1906                 r = 0;
1907 out_free1:
1908                 kfree(kvm_regs);
1909                 break;
1910         }
1911         case KVM_SET_REGS: {
1912                 struct kvm_regs *kvm_regs;
1913
1914                 r = -ENOMEM;
1915                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1916                 if (!kvm_regs)
1917                         goto out;
1918                 r = -EFAULT;
1919                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1920                         goto out_free2;
1921                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1922                 if (r)
1923                         goto out_free2;
1924                 r = 0;
1925 out_free2:
1926                 kfree(kvm_regs);
1927                 break;
1928         }
1929         case KVM_GET_SREGS: {
1930                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1931                 r = -ENOMEM;
1932                 if (!kvm_sregs)
1933                         goto out;
1934                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1935                 if (r)
1936                         goto out;
1937                 r = -EFAULT;
1938                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1939                         goto out;
1940                 r = 0;
1941                 break;
1942         }
1943         case KVM_SET_SREGS: {
1944                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1945                 r = -ENOMEM;
1946                 if (!kvm_sregs)
1947                         goto out;
1948                 r = -EFAULT;
1949                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1950                         goto out;
1951                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1952                 if (r)
1953                         goto out;
1954                 r = 0;
1955                 break;
1956         }
1957         case KVM_GET_MP_STATE: {
1958                 struct kvm_mp_state mp_state;
1959
1960                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1961                 if (r)
1962                         goto out;
1963                 r = -EFAULT;
1964                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1965                         goto out;
1966                 r = 0;
1967                 break;
1968         }
1969         case KVM_SET_MP_STATE: {
1970                 struct kvm_mp_state mp_state;
1971
1972                 r = -EFAULT;
1973                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1974                         goto out;
1975                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1976                 if (r)
1977                         goto out;
1978                 r = 0;
1979                 break;
1980         }
1981         case KVM_TRANSLATE: {
1982                 struct kvm_translation tr;
1983
1984                 r = -EFAULT;
1985                 if (copy_from_user(&tr, argp, sizeof tr))
1986                         goto out;
1987                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1988                 if (r)
1989                         goto out;
1990                 r = -EFAULT;
1991                 if (copy_to_user(argp, &tr, sizeof tr))
1992                         goto out;
1993                 r = 0;
1994                 break;
1995         }
1996         case KVM_SET_GUEST_DEBUG: {
1997                 struct kvm_guest_debug dbg;
1998
1999                 r = -EFAULT;
2000                 if (copy_from_user(&dbg, argp, sizeof dbg))
2001                         goto out;
2002                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2003                 if (r)
2004                         goto out;
2005                 r = 0;
2006                 break;
2007         }
2008         case KVM_SET_SIGNAL_MASK: {
2009                 struct kvm_signal_mask __user *sigmask_arg = argp;
2010                 struct kvm_signal_mask kvm_sigmask;
2011                 sigset_t sigset, *p;
2012
2013                 p = NULL;
2014                 if (argp) {
2015                         r = -EFAULT;
2016                         if (copy_from_user(&kvm_sigmask, argp,
2017                                            sizeof kvm_sigmask))
2018                                 goto out;
2019                         r = -EINVAL;
2020                         if (kvm_sigmask.len != sizeof sigset)
2021                                 goto out;
2022                         r = -EFAULT;
2023                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2024                                            sizeof sigset))
2025                                 goto out;
2026                         p = &sigset;
2027                 }
2028                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2029                 break;
2030         }
2031         case KVM_GET_FPU: {
2032                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2033                 r = -ENOMEM;
2034                 if (!fpu)
2035                         goto out;
2036                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2037                 if (r)
2038                         goto out;
2039                 r = -EFAULT;
2040                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2041                         goto out;
2042                 r = 0;
2043                 break;
2044         }
2045         case KVM_SET_FPU: {
2046                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2047                 r = -ENOMEM;
2048                 if (!fpu)
2049                         goto out;
2050                 r = -EFAULT;
2051                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2052                         goto out;
2053                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2054                 if (r)
2055                         goto out;
2056                 r = 0;
2057                 break;
2058         }
2059         default:
2060                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2061         }
2062 out:
2063         kfree(fpu);
2064         kfree(kvm_sregs);
2065         return r;
2066 }
2067
2068 static long kvm_vm_ioctl(struct file *filp,
2069                            unsigned int ioctl, unsigned long arg)
2070 {
2071         struct kvm *kvm = filp->private_data;
2072         void __user *argp = (void __user *)arg;
2073         int r;
2074
2075         if (kvm->mm != current->mm)
2076                 return -EIO;
2077         switch (ioctl) {
2078         case KVM_CREATE_VCPU:
2079                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2080                 if (r < 0)
2081                         goto out;
2082                 break;
2083         case KVM_SET_USER_MEMORY_REGION: {
2084                 struct kvm_userspace_memory_region kvm_userspace_mem;
2085
2086                 r = -EFAULT;
2087                 if (copy_from_user(&kvm_userspace_mem, argp,
2088                                                 sizeof kvm_userspace_mem))
2089                         goto out;
2090
2091                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2092                 if (r)
2093                         goto out;
2094                 break;
2095         }
2096         case KVM_GET_DIRTY_LOG: {
2097                 struct kvm_dirty_log log;
2098
2099                 r = -EFAULT;
2100                 if (copy_from_user(&log, argp, sizeof log))
2101                         goto out;
2102                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2103                 if (r)
2104                         goto out;
2105                 break;
2106         }
2107 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2108         case KVM_REGISTER_COALESCED_MMIO: {
2109                 struct kvm_coalesced_mmio_zone zone;
2110                 r = -EFAULT;
2111                 if (copy_from_user(&zone, argp, sizeof zone))
2112                         goto out;
2113                 r = -ENXIO;
2114                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2115                 if (r)
2116                         goto out;
2117                 r = 0;
2118                 break;
2119         }
2120         case KVM_UNREGISTER_COALESCED_MMIO: {
2121                 struct kvm_coalesced_mmio_zone zone;
2122                 r = -EFAULT;
2123                 if (copy_from_user(&zone, argp, sizeof zone))
2124                         goto out;
2125                 r = -ENXIO;
2126                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2127                 if (r)
2128                         goto out;
2129                 r = 0;
2130                 break;
2131         }
2132 #endif
2133 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2134         case KVM_ASSIGN_PCI_DEVICE: {
2135                 struct kvm_assigned_pci_dev assigned_dev;
2136
2137                 r = -EFAULT;
2138                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2139                         goto out;
2140                 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2141                 if (r)
2142                         goto out;
2143                 break;
2144         }
2145         case KVM_ASSIGN_IRQ: {
2146                 r = -EOPNOTSUPP;
2147                 break;
2148         }
2149 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2150         case KVM_ASSIGN_DEV_IRQ: {
2151                 struct kvm_assigned_irq assigned_irq;
2152
2153                 r = -EFAULT;
2154                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2155                         goto out;
2156                 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2157                 if (r)
2158                         goto out;
2159                 break;
2160         }
2161         case KVM_DEASSIGN_DEV_IRQ: {
2162                 struct kvm_assigned_irq assigned_irq;
2163
2164                 r = -EFAULT;
2165                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2166                         goto out;
2167                 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2168                 if (r)
2169                         goto out;
2170                 break;
2171         }
2172 #endif
2173 #endif
2174 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2175         case KVM_DEASSIGN_PCI_DEVICE: {
2176                 struct kvm_assigned_pci_dev assigned_dev;
2177
2178                 r = -EFAULT;
2179                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2180                         goto out;
2181                 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2182                 if (r)
2183                         goto out;
2184                 break;
2185         }
2186 #endif
2187 #ifdef KVM_CAP_IRQ_ROUTING
2188         case KVM_SET_GSI_ROUTING: {
2189                 struct kvm_irq_routing routing;
2190                 struct kvm_irq_routing __user *urouting;
2191                 struct kvm_irq_routing_entry *entries;
2192
2193                 r = -EFAULT;
2194                 if (copy_from_user(&routing, argp, sizeof(routing)))
2195                         goto out;
2196                 r = -EINVAL;
2197                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2198                         goto out;
2199                 if (routing.flags)
2200                         goto out;
2201                 r = -ENOMEM;
2202                 entries = vmalloc(routing.nr * sizeof(*entries));
2203                 if (!entries)
2204                         goto out;
2205                 r = -EFAULT;
2206                 urouting = argp;
2207                 if (copy_from_user(entries, urouting->entries,
2208                                    routing.nr * sizeof(*entries)))
2209                         goto out_free_irq_routing;
2210                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2211                                         routing.flags);
2212         out_free_irq_routing:
2213                 vfree(entries);
2214                 break;
2215         }
2216 #ifdef __KVM_HAVE_MSIX
2217         case KVM_ASSIGN_SET_MSIX_NR: {
2218                 struct kvm_assigned_msix_nr entry_nr;
2219                 r = -EFAULT;
2220                 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2221                         goto out;
2222                 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2223                 if (r)
2224                         goto out;
2225                 break;
2226         }
2227         case KVM_ASSIGN_SET_MSIX_ENTRY: {
2228                 struct kvm_assigned_msix_entry entry;
2229                 r = -EFAULT;
2230                 if (copy_from_user(&entry, argp, sizeof entry))
2231                         goto out;
2232                 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2233                 if (r)
2234                         goto out;
2235                 break;
2236         }
2237 #endif
2238 #endif /* KVM_CAP_IRQ_ROUTING */
2239         case KVM_IRQFD: {
2240                 struct kvm_irqfd data;
2241
2242                 r = -EFAULT;
2243                 if (copy_from_user(&data, argp, sizeof data))
2244                         goto out;
2245                 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2246                 break;
2247         }
2248 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2249         case KVM_SET_BOOT_CPU_ID:
2250                 r = 0;
2251                 if (atomic_read(&kvm->online_vcpus) != 0)
2252                         r = -EBUSY;
2253                 else
2254                         kvm->bsp_vcpu_id = arg;
2255                 break;
2256 #endif
2257         default:
2258                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2259         }
2260 out:
2261         return r;
2262 }
2263
2264 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2265 {
2266         struct page *page[1];
2267         unsigned long addr;
2268         int npages;
2269         gfn_t gfn = vmf->pgoff;
2270         struct kvm *kvm = vma->vm_file->private_data;
2271
2272         addr = gfn_to_hva(kvm, gfn);
2273         if (kvm_is_error_hva(addr))
2274                 return VM_FAULT_SIGBUS;
2275
2276         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2277                                 NULL);
2278         if (unlikely(npages != 1))
2279                 return VM_FAULT_SIGBUS;
2280
2281         vmf->page = page[0];
2282         return 0;
2283 }
2284
2285 static struct vm_operations_struct kvm_vm_vm_ops = {
2286         .fault = kvm_vm_fault,
2287 };
2288
2289 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2290 {
2291         vma->vm_ops = &kvm_vm_vm_ops;
2292         return 0;
2293 }
2294
2295 static struct file_operations kvm_vm_fops = {
2296         .release        = kvm_vm_release,
2297         .unlocked_ioctl = kvm_vm_ioctl,
2298         .compat_ioctl   = kvm_vm_ioctl,
2299         .mmap           = kvm_vm_mmap,
2300 };
2301
2302 static int kvm_dev_ioctl_create_vm(void)
2303 {
2304         int fd;
2305         struct kvm *kvm;
2306
2307         kvm = kvm_create_vm();
2308         if (IS_ERR(kvm))
2309                 return PTR_ERR(kvm);
2310         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2311         if (fd < 0)
2312                 kvm_put_kvm(kvm);
2313
2314         return fd;
2315 }
2316
2317 static long kvm_dev_ioctl_check_extension_generic(long arg)
2318 {
2319         switch (arg) {
2320         case KVM_CAP_USER_MEMORY:
2321         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2322         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2323 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2324         case KVM_CAP_SET_BOOT_CPU_ID:
2325 #endif
2326                 return 1;
2327 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2328         case KVM_CAP_IRQ_ROUTING:
2329                 return KVM_MAX_IRQ_ROUTES;
2330 #endif
2331         default:
2332                 break;
2333         }
2334         return kvm_dev_ioctl_check_extension(arg);
2335 }
2336
2337 static long kvm_dev_ioctl(struct file *filp,
2338                           unsigned int ioctl, unsigned long arg)
2339 {
2340         long r = -EINVAL;
2341
2342         switch (ioctl) {
2343         case KVM_GET_API_VERSION:
2344                 r = -EINVAL;
2345                 if (arg)
2346                         goto out;
2347                 r = KVM_API_VERSION;
2348                 break;
2349         case KVM_CREATE_VM:
2350                 r = -EINVAL;
2351                 if (arg)
2352                         goto out;
2353                 r = kvm_dev_ioctl_create_vm();
2354                 break;
2355         case KVM_CHECK_EXTENSION:
2356                 r = kvm_dev_ioctl_check_extension_generic(arg);
2357                 break;
2358         case KVM_GET_VCPU_MMAP_SIZE:
2359                 r = -EINVAL;
2360                 if (arg)
2361                         goto out;
2362                 r = PAGE_SIZE;     /* struct kvm_run */
2363 #ifdef CONFIG_X86
2364                 r += PAGE_SIZE;    /* pio data page */
2365 #endif
2366 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2367                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2368 #endif
2369                 break;
2370         case KVM_TRACE_ENABLE:
2371         case KVM_TRACE_PAUSE:
2372         case KVM_TRACE_DISABLE:
2373                 r = kvm_trace_ioctl(ioctl, arg);
2374                 break;
2375         default:
2376                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2377         }
2378 out:
2379         return r;
2380 }
2381
2382 static struct file_operations kvm_chardev_ops = {
2383         .unlocked_ioctl = kvm_dev_ioctl,
2384         .compat_ioctl   = kvm_dev_ioctl,
2385 };
2386
2387 static struct miscdevice kvm_dev = {
2388         KVM_MINOR,
2389         "kvm",
2390         &kvm_chardev_ops,
2391 };
2392
2393 static void hardware_enable(void *junk)
2394 {
2395         int cpu = raw_smp_processor_id();
2396
2397         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2398                 return;
2399         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2400         kvm_arch_hardware_enable(NULL);
2401 }
2402
2403 static void hardware_disable(void *junk)
2404 {
2405         int cpu = raw_smp_processor_id();
2406
2407         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2408                 return;
2409         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2410         kvm_arch_hardware_disable(NULL);
2411 }
2412
2413 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2414                            void *v)
2415 {
2416         int cpu = (long)v;
2417
2418         val &= ~CPU_TASKS_FROZEN;
2419         switch (val) {
2420         case CPU_DYING:
2421                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2422                        cpu);
2423                 hardware_disable(NULL);
2424                 break;
2425         case CPU_UP_CANCELED:
2426                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2427                        cpu);
2428                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2429                 break;
2430         case CPU_ONLINE:
2431                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2432                        cpu);
2433                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2434                 break;
2435         }
2436         return NOTIFY_OK;
2437 }
2438
2439
2440 asmlinkage void kvm_handle_fault_on_reboot(void)
2441 {
2442         if (kvm_rebooting)
2443                 /* spin while reset goes on */
2444                 while (true)
2445                         ;
2446         /* Fault while not rebooting.  We want the trace. */
2447         BUG();
2448 }
2449 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2450
2451 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2452                       void *v)
2453 {
2454         /*
2455          * Some (well, at least mine) BIOSes hang on reboot if
2456          * in vmx root mode.
2457          *
2458          * And Intel TXT required VMX off for all cpu when system shutdown.
2459          */
2460         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2461         kvm_rebooting = true;
2462         on_each_cpu(hardware_disable, NULL, 1);
2463         return NOTIFY_OK;
2464 }
2465
2466 static struct notifier_block kvm_reboot_notifier = {
2467         .notifier_call = kvm_reboot,
2468         .priority = 0,
2469 };
2470
2471 void kvm_io_bus_init(struct kvm_io_bus *bus)
2472 {
2473         memset(bus, 0, sizeof(*bus));
2474 }
2475
2476 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2477 {
2478         int i;
2479
2480         for (i = 0; i < bus->dev_count; i++) {
2481                 struct kvm_io_device *pos = bus->devs[i];
2482
2483                 kvm_iodevice_destructor(pos);
2484         }
2485 }
2486
2487 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2488                                           gpa_t addr, int len, int is_write)
2489 {
2490         int i;
2491
2492         for (i = 0; i < bus->dev_count; i++) {
2493                 struct kvm_io_device *pos = bus->devs[i];
2494
2495                 if (kvm_iodevice_in_range(pos, addr, len, is_write))
2496                         return pos;
2497         }
2498
2499         return NULL;
2500 }
2501
2502 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2503 {
2504         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2505
2506         bus->devs[bus->dev_count++] = dev;
2507 }
2508
2509 static struct notifier_block kvm_cpu_notifier = {
2510         .notifier_call = kvm_cpu_hotplug,
2511         .priority = 20, /* must be > scheduler priority */
2512 };
2513
2514 static int vm_stat_get(void *_offset, u64 *val)
2515 {
2516         unsigned offset = (long)_offset;
2517         struct kvm *kvm;
2518
2519         *val = 0;
2520         spin_lock(&kvm_lock);
2521         list_for_each_entry(kvm, &vm_list, vm_list)
2522                 *val += *(u32 *)((void *)kvm + offset);
2523         spin_unlock(&kvm_lock);
2524         return 0;
2525 }
2526
2527 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2528
2529 static int vcpu_stat_get(void *_offset, u64 *val)
2530 {
2531         unsigned offset = (long)_offset;
2532         struct kvm *kvm;
2533         struct kvm_vcpu *vcpu;
2534         int i;
2535
2536         *val = 0;
2537         spin_lock(&kvm_lock);
2538         list_for_each_entry(kvm, &vm_list, vm_list)
2539                 kvm_for_each_vcpu(i, vcpu, kvm)
2540                         *val += *(u32 *)((void *)vcpu + offset);
2541
2542         spin_unlock(&kvm_lock);
2543         return 0;
2544 }
2545
2546 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2547
2548 static struct file_operations *stat_fops[] = {
2549         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2550         [KVM_STAT_VM]   = &vm_stat_fops,
2551 };
2552
2553 static void kvm_init_debug(void)
2554 {
2555         struct kvm_stats_debugfs_item *p;
2556
2557         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2558         for (p = debugfs_entries; p->name; ++p)
2559                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2560                                                 (void *)(long)p->offset,
2561                                                 stat_fops[p->kind]);
2562 }
2563
2564 static void kvm_exit_debug(void)
2565 {
2566         struct kvm_stats_debugfs_item *p;
2567
2568         for (p = debugfs_entries; p->name; ++p)
2569                 debugfs_remove(p->dentry);
2570         debugfs_remove(kvm_debugfs_dir);
2571 }
2572
2573 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2574 {
2575         hardware_disable(NULL);
2576         return 0;
2577 }
2578
2579 static int kvm_resume(struct sys_device *dev)
2580 {
2581         hardware_enable(NULL);
2582         return 0;
2583 }
2584
2585 static struct sysdev_class kvm_sysdev_class = {
2586         .name = "kvm",
2587         .suspend = kvm_suspend,
2588         .resume = kvm_resume,
2589 };
2590
2591 static struct sys_device kvm_sysdev = {
2592         .id = 0,
2593         .cls = &kvm_sysdev_class,
2594 };
2595
2596 struct page *bad_page;
2597 pfn_t bad_pfn;
2598
2599 static inline
2600 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2601 {
2602         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2603 }
2604
2605 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2606 {
2607         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2608
2609         kvm_arch_vcpu_load(vcpu, cpu);
2610 }
2611
2612 static void kvm_sched_out(struct preempt_notifier *pn,
2613                           struct task_struct *next)
2614 {
2615         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2616
2617         kvm_arch_vcpu_put(vcpu);
2618 }
2619
2620 int kvm_init(void *opaque, unsigned int vcpu_size,
2621                   struct module *module)
2622 {
2623         int r;
2624         int cpu;
2625
2626         kvm_init_debug();
2627
2628         r = kvm_arch_init(opaque);
2629         if (r)
2630                 goto out_fail;
2631
2632         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2633
2634         if (bad_page == NULL) {
2635                 r = -ENOMEM;
2636                 goto out;
2637         }
2638
2639         bad_pfn = page_to_pfn(bad_page);
2640
2641         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2642                 r = -ENOMEM;
2643                 goto out_free_0;
2644         }
2645
2646         r = kvm_arch_hardware_setup();
2647         if (r < 0)
2648                 goto out_free_0a;
2649
2650         for_each_online_cpu(cpu) {
2651                 smp_call_function_single(cpu,
2652                                 kvm_arch_check_processor_compat,
2653                                 &r, 1);
2654                 if (r < 0)
2655                         goto out_free_1;
2656         }
2657
2658         on_each_cpu(hardware_enable, NULL, 1);
2659         r = register_cpu_notifier(&kvm_cpu_notifier);
2660         if (r)
2661                 goto out_free_2;
2662         register_reboot_notifier(&kvm_reboot_notifier);
2663
2664         r = sysdev_class_register(&kvm_sysdev_class);
2665         if (r)
2666                 goto out_free_3;
2667
2668         r = sysdev_register(&kvm_sysdev);
2669         if (r)
2670                 goto out_free_4;
2671
2672         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2673         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2674                                            __alignof__(struct kvm_vcpu),
2675                                            0, NULL);
2676         if (!kvm_vcpu_cache) {
2677                 r = -ENOMEM;
2678                 goto out_free_5;
2679         }
2680
2681         kvm_chardev_ops.owner = module;
2682         kvm_vm_fops.owner = module;
2683         kvm_vcpu_fops.owner = module;
2684
2685         r = misc_register(&kvm_dev);
2686         if (r) {
2687                 printk(KERN_ERR "kvm: misc device register failed\n");
2688                 goto out_free;
2689         }
2690
2691         kvm_preempt_ops.sched_in = kvm_sched_in;
2692         kvm_preempt_ops.sched_out = kvm_sched_out;
2693
2694         return 0;
2695
2696 out_free:
2697         kmem_cache_destroy(kvm_vcpu_cache);
2698 out_free_5:
2699         sysdev_unregister(&kvm_sysdev);
2700 out_free_4:
2701         sysdev_class_unregister(&kvm_sysdev_class);
2702 out_free_3:
2703         unregister_reboot_notifier(&kvm_reboot_notifier);
2704         unregister_cpu_notifier(&kvm_cpu_notifier);
2705 out_free_2:
2706         on_each_cpu(hardware_disable, NULL, 1);
2707 out_free_1:
2708         kvm_arch_hardware_unsetup();
2709 out_free_0a:
2710         free_cpumask_var(cpus_hardware_enabled);
2711 out_free_0:
2712         __free_page(bad_page);
2713 out:
2714         kvm_arch_exit();
2715         kvm_exit_debug();
2716 out_fail:
2717         return r;
2718 }
2719 EXPORT_SYMBOL_GPL(kvm_init);
2720
2721 void kvm_exit(void)
2722 {
2723         kvm_trace_cleanup();
2724         tracepoint_synchronize_unregister();
2725         misc_deregister(&kvm_dev);
2726         kmem_cache_destroy(kvm_vcpu_cache);
2727         sysdev_unregister(&kvm_sysdev);
2728         sysdev_class_unregister(&kvm_sysdev_class);
2729         unregister_reboot_notifier(&kvm_reboot_notifier);
2730         unregister_cpu_notifier(&kvm_cpu_notifier);
2731         on_each_cpu(hardware_disable, NULL, 1);
2732         kvm_arch_hardware_unsetup();
2733         kvm_arch_exit();
2734         kvm_exit_debug();
2735         free_cpumask_var(cpus_hardware_enabled);
2736         __free_page(bad_page);
2737 }
2738 EXPORT_SYMBOL_GPL(kvm_exit);