perf: Provide a new deterministic events reordering algorithm
[safe/jmp/linux-2.6] / tools / perf / util / session.c
1 #define _FILE_OFFSET_BITS 64
2
3 #include <linux/kernel.h>
4
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8
9 #include "session.h"
10 #include "sort.h"
11 #include "util.h"
12
13 static int perf_session__open(struct perf_session *self, bool force)
14 {
15         struct stat input_stat;
16
17         if (!strcmp(self->filename, "-")) {
18                 self->fd_pipe = true;
19                 self->fd = STDIN_FILENO;
20
21                 if (perf_header__read(self, self->fd) < 0)
22                         pr_err("incompatible file format");
23
24                 return 0;
25         }
26
27         self->fd = open(self->filename, O_RDONLY);
28         if (self->fd < 0) {
29                 pr_err("failed to open file: %s", self->filename);
30                 if (!strcmp(self->filename, "perf.data"))
31                         pr_err("  (try 'perf record' first)");
32                 pr_err("\n");
33                 return -errno;
34         }
35
36         if (fstat(self->fd, &input_stat) < 0)
37                 goto out_close;
38
39         if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
40                 pr_err("file %s not owned by current user or root\n",
41                        self->filename);
42                 goto out_close;
43         }
44
45         if (!input_stat.st_size) {
46                 pr_info("zero-sized file (%s), nothing to do!\n",
47                         self->filename);
48                 goto out_close;
49         }
50
51         if (perf_header__read(self, self->fd) < 0) {
52                 pr_err("incompatible file format");
53                 goto out_close;
54         }
55
56         self->size = input_stat.st_size;
57         return 0;
58
59 out_close:
60         close(self->fd);
61         self->fd = -1;
62         return -1;
63 }
64
65 void perf_session__update_sample_type(struct perf_session *self)
66 {
67         self->sample_type = perf_header__sample_type(&self->header);
68 }
69
70 int perf_session__create_kernel_maps(struct perf_session *self)
71 {
72         struct rb_root *machines = &self->machines;
73         int ret = machines__create_kernel_maps(machines, HOST_KERNEL_ID);
74
75         if (ret >= 0)
76                 ret = machines__create_guest_kernel_maps(machines);
77         return ret;
78 }
79
80 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
81 {
82         size_t len = filename ? strlen(filename) + 1 : 0;
83         struct perf_session *self = zalloc(sizeof(*self) + len);
84
85         if (self == NULL)
86                 goto out;
87
88         if (perf_header__init(&self->header) < 0)
89                 goto out_free;
90
91         memcpy(self->filename, filename, len);
92         self->threads = RB_ROOT;
93         self->stats_by_id = RB_ROOT;
94         self->last_match = NULL;
95         self->mmap_window = 32;
96         self->cwd = NULL;
97         self->cwdlen = 0;
98         self->unknown_events = 0;
99         self->machines = RB_ROOT;
100         self->repipe = repipe;
101         INIT_LIST_HEAD(&self->ordered_samples.samples_head);
102
103         if (mode == O_RDONLY) {
104                 if (perf_session__open(self, force) < 0)
105                         goto out_delete;
106         } else if (mode == O_WRONLY) {
107                 /*
108                  * In O_RDONLY mode this will be performed when reading the
109                  * kernel MMAP event, in event__process_mmap().
110                  */
111                 if (perf_session__create_kernel_maps(self) < 0)
112                         goto out_delete;
113         }
114
115         perf_session__update_sample_type(self);
116 out:
117         return self;
118 out_free:
119         free(self);
120         return NULL;
121 out_delete:
122         perf_session__delete(self);
123         return NULL;
124 }
125
126 void perf_session__delete(struct perf_session *self)
127 {
128         perf_header__exit(&self->header);
129         close(self->fd);
130         free(self->cwd);
131         free(self);
132 }
133
134 static bool symbol__match_parent_regex(struct symbol *sym)
135 {
136         if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
137                 return 1;
138
139         return 0;
140 }
141
142 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
143                                                    struct thread *thread,
144                                                    struct ip_callchain *chain,
145                                                    struct symbol **parent)
146 {
147         u8 cpumode = PERF_RECORD_MISC_USER;
148         unsigned int i;
149         struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
150
151         if (!syms)
152                 return NULL;
153
154         for (i = 0; i < chain->nr; i++) {
155                 u64 ip = chain->ips[i];
156                 struct addr_location al;
157
158                 if (ip >= PERF_CONTEXT_MAX) {
159                         switch (ip) {
160                         case PERF_CONTEXT_HV:
161                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;  break;
162                         case PERF_CONTEXT_KERNEL:
163                                 cpumode = PERF_RECORD_MISC_KERNEL;      break;
164                         case PERF_CONTEXT_USER:
165                                 cpumode = PERF_RECORD_MISC_USER;        break;
166                         default:
167                                 break;
168                         }
169                         continue;
170                 }
171
172                 al.filtered = false;
173                 thread__find_addr_location(thread, self, cpumode,
174                                 MAP__FUNCTION, thread->pid, ip, &al, NULL);
175                 if (al.sym != NULL) {
176                         if (sort__has_parent && !*parent &&
177                             symbol__match_parent_regex(al.sym))
178                                 *parent = al.sym;
179                         if (!symbol_conf.use_callchain)
180                                 break;
181                         syms[i].map = al.map;
182                         syms[i].sym = al.sym;
183                 }
184         }
185
186         return syms;
187 }
188
189 static int process_event_stub(event_t *event __used,
190                               struct perf_session *session __used)
191 {
192         dump_printf(": unhandled!\n");
193         return 0;
194 }
195
196 static int process_finished_round_stub(event_t *event __used,
197                                        struct perf_session *session __used,
198                                        struct perf_event_ops *ops __used)
199 {
200         dump_printf(": unhandled!\n");
201         return 0;
202 }
203
204 static int process_finished_round(event_t *event,
205                                   struct perf_session *session,
206                                   struct perf_event_ops *ops);
207
208 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
209 {
210         if (handler->sample == NULL)
211                 handler->sample = process_event_stub;
212         if (handler->mmap == NULL)
213                 handler->mmap = process_event_stub;
214         if (handler->comm == NULL)
215                 handler->comm = process_event_stub;
216         if (handler->fork == NULL)
217                 handler->fork = process_event_stub;
218         if (handler->exit == NULL)
219                 handler->exit = process_event_stub;
220         if (handler->lost == NULL)
221                 handler->lost = process_event_stub;
222         if (handler->read == NULL)
223                 handler->read = process_event_stub;
224         if (handler->throttle == NULL)
225                 handler->throttle = process_event_stub;
226         if (handler->unthrottle == NULL)
227                 handler->unthrottle = process_event_stub;
228         if (handler->attr == NULL)
229                 handler->attr = process_event_stub;
230         if (handler->event_type == NULL)
231                 handler->event_type = process_event_stub;
232         if (handler->tracing_data == NULL)
233                 handler->tracing_data = process_event_stub;
234         if (handler->build_id == NULL)
235                 handler->build_id = process_event_stub;
236         if (handler->finished_round == NULL) {
237                 if (handler->ordered_samples)
238                         handler->finished_round = process_finished_round;
239                 else
240                         handler->finished_round = process_finished_round_stub;
241         }
242 }
243
244 static const char *event__name[] = {
245         [0]                      = "TOTAL",
246         [PERF_RECORD_MMAP]       = "MMAP",
247         [PERF_RECORD_LOST]       = "LOST",
248         [PERF_RECORD_COMM]       = "COMM",
249         [PERF_RECORD_EXIT]       = "EXIT",
250         [PERF_RECORD_THROTTLE]   = "THROTTLE",
251         [PERF_RECORD_UNTHROTTLE] = "UNTHROTTLE",
252         [PERF_RECORD_FORK]       = "FORK",
253         [PERF_RECORD_READ]       = "READ",
254         [PERF_RECORD_SAMPLE]     = "SAMPLE",
255         [PERF_RECORD_HEADER_ATTR]        = "ATTR",
256         [PERF_RECORD_HEADER_EVENT_TYPE]  = "EVENT_TYPE",
257         [PERF_RECORD_HEADER_TRACING_DATA]        = "TRACING_DATA",
258         [PERF_RECORD_HEADER_BUILD_ID]    = "BUILD_ID",
259 };
260
261 unsigned long event__total[PERF_RECORD_HEADER_MAX];
262
263 void event__print_totals(void)
264 {
265         int i;
266         for (i = 0; i < PERF_RECORD_HEADER_MAX; ++i) {
267                 if (!event__name[i])
268                         continue;
269                 pr_info("%10s events: %10ld\n",
270                         event__name[i], event__total[i]);
271         }
272 }
273
274 void mem_bswap_64(void *src, int byte_size)
275 {
276         u64 *m = src;
277
278         while (byte_size > 0) {
279                 *m = bswap_64(*m);
280                 byte_size -= sizeof(u64);
281                 ++m;
282         }
283 }
284
285 static void event__all64_swap(event_t *self)
286 {
287         struct perf_event_header *hdr = &self->header;
288         mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
289 }
290
291 static void event__comm_swap(event_t *self)
292 {
293         self->comm.pid = bswap_32(self->comm.pid);
294         self->comm.tid = bswap_32(self->comm.tid);
295 }
296
297 static void event__mmap_swap(event_t *self)
298 {
299         self->mmap.pid   = bswap_32(self->mmap.pid);
300         self->mmap.tid   = bswap_32(self->mmap.tid);
301         self->mmap.start = bswap_64(self->mmap.start);
302         self->mmap.len   = bswap_64(self->mmap.len);
303         self->mmap.pgoff = bswap_64(self->mmap.pgoff);
304 }
305
306 static void event__task_swap(event_t *self)
307 {
308         self->fork.pid  = bswap_32(self->fork.pid);
309         self->fork.tid  = bswap_32(self->fork.tid);
310         self->fork.ppid = bswap_32(self->fork.ppid);
311         self->fork.ptid = bswap_32(self->fork.ptid);
312         self->fork.time = bswap_64(self->fork.time);
313 }
314
315 static void event__read_swap(event_t *self)
316 {
317         self->read.pid          = bswap_32(self->read.pid);
318         self->read.tid          = bswap_32(self->read.tid);
319         self->read.value        = bswap_64(self->read.value);
320         self->read.time_enabled = bswap_64(self->read.time_enabled);
321         self->read.time_running = bswap_64(self->read.time_running);
322         self->read.id           = bswap_64(self->read.id);
323 }
324
325 static void event__attr_swap(event_t *self)
326 {
327         size_t size;
328
329         self->attr.attr.type            = bswap_32(self->attr.attr.type);
330         self->attr.attr.size            = bswap_32(self->attr.attr.size);
331         self->attr.attr.config          = bswap_64(self->attr.attr.config);
332         self->attr.attr.sample_period   = bswap_64(self->attr.attr.sample_period);
333         self->attr.attr.sample_type     = bswap_64(self->attr.attr.sample_type);
334         self->attr.attr.read_format     = bswap_64(self->attr.attr.read_format);
335         self->attr.attr.wakeup_events   = bswap_32(self->attr.attr.wakeup_events);
336         self->attr.attr.bp_type         = bswap_32(self->attr.attr.bp_type);
337         self->attr.attr.bp_addr         = bswap_64(self->attr.attr.bp_addr);
338         self->attr.attr.bp_len          = bswap_64(self->attr.attr.bp_len);
339
340         size = self->header.size;
341         size -= (void *)&self->attr.id - (void *)self;
342         mem_bswap_64(self->attr.id, size);
343 }
344
345 static void event__event_type_swap(event_t *self)
346 {
347         self->event_type.event_type.event_id =
348                 bswap_64(self->event_type.event_type.event_id);
349 }
350
351 static void event__tracing_data_swap(event_t *self)
352 {
353         self->tracing_data.size = bswap_32(self->tracing_data.size);
354 }
355
356 typedef void (*event__swap_op)(event_t *self);
357
358 static event__swap_op event__swap_ops[] = {
359         [PERF_RECORD_MMAP]   = event__mmap_swap,
360         [PERF_RECORD_COMM]   = event__comm_swap,
361         [PERF_RECORD_FORK]   = event__task_swap,
362         [PERF_RECORD_EXIT]   = event__task_swap,
363         [PERF_RECORD_LOST]   = event__all64_swap,
364         [PERF_RECORD_READ]   = event__read_swap,
365         [PERF_RECORD_SAMPLE] = event__all64_swap,
366         [PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
367         [PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
368         [PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
369         [PERF_RECORD_HEADER_BUILD_ID]   = NULL,
370         [PERF_RECORD_HEADER_MAX]    = NULL,
371 };
372
373 struct sample_queue {
374         u64                     timestamp;
375         struct sample_event     *event;
376         struct list_head        list;
377 };
378
379 static void flush_sample_queue(struct perf_session *s,
380                                struct perf_event_ops *ops)
381 {
382         struct list_head *head = &s->ordered_samples.samples_head;
383         u64 limit = s->ordered_samples.next_flush;
384         struct sample_queue *tmp, *iter;
385
386         if (!ops->ordered_samples || !limit)
387                 return;
388
389         list_for_each_entry_safe(iter, tmp, head, list) {
390                 if (iter->timestamp > limit)
391                         return;
392
393                 if (iter == s->ordered_samples.last_inserted)
394                         s->ordered_samples.last_inserted = NULL;
395
396                 ops->sample((event_t *)iter->event, s);
397
398                 s->ordered_samples.last_flush = iter->timestamp;
399                 list_del(&iter->list);
400                 free(iter->event);
401                 free(iter);
402         }
403 }
404
405 /*
406  * When perf record finishes a pass on every buffers, it records this pseudo
407  * event.
408  * We record the max timestamp t found in the pass n.
409  * Assuming these timestamps are monotonic across cpus, we know that if
410  * a buffer still has events with timestamps below t, they will be all
411  * available and then read in the pass n + 1.
412  * Hence when we start to read the pass n + 2, we can safely flush every
413  * events with timestamps below t.
414  *
415  *    ============ PASS n =================
416  *       CPU 0         |   CPU 1
417  *                     |
418  *    cnt1 timestamps  |   cnt2 timestamps
419  *          1          |         2
420  *          2          |         3
421  *          -          |         4  <--- max recorded
422  *
423  *    ============ PASS n + 1 ==============
424  *       CPU 0         |   CPU 1
425  *                     |
426  *    cnt1 timestamps  |   cnt2 timestamps
427  *          3          |         5
428  *          4          |         6
429  *          5          |         7 <---- max recorded
430  *
431  *      Flush every events below timestamp 4
432  *
433  *    ============ PASS n + 2 ==============
434  *       CPU 0         |   CPU 1
435  *                     |
436  *    cnt1 timestamps  |   cnt2 timestamps
437  *          6          |         8
438  *          7          |         9
439  *          -          |         10
440  *
441  *      Flush every events below timestamp 7
442  *      etc...
443  */
444 static int process_finished_round(event_t *event __used,
445                                   struct perf_session *session,
446                                   struct perf_event_ops *ops)
447 {
448         flush_sample_queue(session, ops);
449         session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
450
451         return 0;
452 }
453
454 static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
455 {
456         struct sample_queue *iter;
457
458         list_for_each_entry_reverse(iter, head, list) {
459                 if (iter->timestamp < new->timestamp) {
460                         list_add(&new->list, &iter->list);
461                         return;
462                 }
463         }
464
465         list_add(&new->list, head);
466 }
467
468 static void __queue_sample_before(struct sample_queue *new,
469                                   struct sample_queue *iter,
470                                   struct list_head *head)
471 {
472         list_for_each_entry_continue_reverse(iter, head, list) {
473                 if (iter->timestamp < new->timestamp) {
474                         list_add(&new->list, &iter->list);
475                         return;
476                 }
477         }
478
479         list_add(&new->list, head);
480 }
481
482 static void __queue_sample_after(struct sample_queue *new,
483                                  struct sample_queue *iter,
484                                  struct list_head *head)
485 {
486         list_for_each_entry_continue(iter, head, list) {
487                 if (iter->timestamp > new->timestamp) {
488                         list_add_tail(&new->list, &iter->list);
489                         return;
490                 }
491         }
492         list_add_tail(&new->list, head);
493 }
494
495 /* The queue is ordered by time */
496 static void __queue_sample_event(struct sample_queue *new,
497                                  struct perf_session *s)
498 {
499         struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
500         struct list_head *head = &s->ordered_samples.samples_head;
501
502
503         if (!last_inserted) {
504                 __queue_sample_end(new, head);
505                 return;
506         }
507
508         /*
509          * Most of the time the current event has a timestamp
510          * very close to the last event inserted, unless we just switched
511          * to another event buffer. Having a sorting based on a list and
512          * on the last inserted event that is close to the current one is
513          * probably more efficient than an rbtree based sorting.
514          */
515         if (last_inserted->timestamp >= new->timestamp)
516                 __queue_sample_before(new, last_inserted, head);
517         else
518                 __queue_sample_after(new, last_inserted, head);
519 }
520
521 static int queue_sample_event(event_t *event, struct sample_data *data,
522                               struct perf_session *s)
523 {
524         u64 timestamp = data->time;
525         struct sample_queue *new;
526
527
528         if (timestamp < s->ordered_samples.last_flush) {
529                 printf("Warning: Timestamp below last timeslice flush\n");
530                 return -EINVAL;
531         }
532
533         new = malloc(sizeof(*new));
534         if (!new)
535                 return -ENOMEM;
536
537         new->timestamp = timestamp;
538
539         new->event = malloc(event->header.size);
540         if (!new->event) {
541                 free(new);
542                 return -ENOMEM;
543         }
544
545         memcpy(new->event, event, event->header.size);
546
547         __queue_sample_event(new, s);
548         s->ordered_samples.last_inserted = new;
549
550         if (new->timestamp > s->ordered_samples.max_timestamp)
551                 s->ordered_samples.max_timestamp = new->timestamp;
552
553         return 0;
554 }
555
556 static int perf_session__process_sample(event_t *event, struct perf_session *s,
557                                         struct perf_event_ops *ops)
558 {
559         struct sample_data data;
560
561         if (!ops->ordered_samples)
562                 return ops->sample(event, s);
563
564         bzero(&data, sizeof(struct sample_data));
565         event__parse_sample(event, s->sample_type, &data);
566
567         queue_sample_event(event, &data, s);
568
569         return 0;
570 }
571
572 static int perf_session__process_event(struct perf_session *self,
573                                        event_t *event,
574                                        struct perf_event_ops *ops,
575                                        u64 offset, u64 head)
576 {
577         trace_event(event);
578
579         if (event->header.type < PERF_RECORD_HEADER_MAX) {
580                 dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
581                             offset + head, event->header.size,
582                             event__name[event->header.type]);
583                 ++event__total[0];
584                 ++event__total[event->header.type];
585         }
586
587         if (self->header.needs_swap && event__swap_ops[event->header.type])
588                 event__swap_ops[event->header.type](event);
589
590         switch (event->header.type) {
591         case PERF_RECORD_SAMPLE:
592                 return perf_session__process_sample(event, self, ops);
593         case PERF_RECORD_MMAP:
594                 return ops->mmap(event, self);
595         case PERF_RECORD_COMM:
596                 return ops->comm(event, self);
597         case PERF_RECORD_FORK:
598                 return ops->fork(event, self);
599         case PERF_RECORD_EXIT:
600                 return ops->exit(event, self);
601         case PERF_RECORD_LOST:
602                 return ops->lost(event, self);
603         case PERF_RECORD_READ:
604                 return ops->read(event, self);
605         case PERF_RECORD_THROTTLE:
606                 return ops->throttle(event, self);
607         case PERF_RECORD_UNTHROTTLE:
608                 return ops->unthrottle(event, self);
609         case PERF_RECORD_HEADER_ATTR:
610                 return ops->attr(event, self);
611         case PERF_RECORD_HEADER_EVENT_TYPE:
612                 return ops->event_type(event, self);
613         case PERF_RECORD_HEADER_TRACING_DATA:
614                 /* setup for reading amidst mmap */
615                 lseek(self->fd, offset + head, SEEK_SET);
616                 return ops->tracing_data(event, self);
617         case PERF_RECORD_HEADER_BUILD_ID:
618                 return ops->build_id(event, self);
619         case PERF_RECORD_FINISHED_ROUND:
620                 return ops->finished_round(event, self, ops);
621         default:
622                 self->unknown_events++;
623                 return -1;
624         }
625 }
626
627 void perf_event_header__bswap(struct perf_event_header *self)
628 {
629         self->type = bswap_32(self->type);
630         self->misc = bswap_16(self->misc);
631         self->size = bswap_16(self->size);
632 }
633
634 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
635 {
636         struct thread *thread = perf_session__findnew(self, 0);
637
638         if (thread == NULL || thread__set_comm(thread, "swapper")) {
639                 pr_err("problem inserting idle task.\n");
640                 thread = NULL;
641         }
642
643         return thread;
644 }
645
646 int do_read(int fd, void *buf, size_t size)
647 {
648         void *buf_start = buf;
649
650         while (size) {
651                 int ret = read(fd, buf, size);
652
653                 if (ret <= 0)
654                         return ret;
655
656                 size -= ret;
657                 buf += ret;
658         }
659
660         return buf - buf_start;
661 }
662
663 #define session_done()  (*(volatile int *)(&session_done))
664 volatile int session_done;
665
666 static int __perf_session__process_pipe_events(struct perf_session *self,
667                                                struct perf_event_ops *ops)
668 {
669         event_t event;
670         uint32_t size;
671         int skip = 0;
672         u64 head;
673         int err;
674         void *p;
675
676         perf_event_ops__fill_defaults(ops);
677
678         head = 0;
679 more:
680         err = do_read(self->fd, &event, sizeof(struct perf_event_header));
681         if (err <= 0) {
682                 if (err == 0)
683                         goto done;
684
685                 pr_err("failed to read event header\n");
686                 goto out_err;
687         }
688
689         if (self->header.needs_swap)
690                 perf_event_header__bswap(&event.header);
691
692         size = event.header.size;
693         if (size == 0)
694                 size = 8;
695
696         p = &event;
697         p += sizeof(struct perf_event_header);
698
699         err = do_read(self->fd, p, size - sizeof(struct perf_event_header));
700         if (err <= 0) {
701                 if (err == 0) {
702                         pr_err("unexpected end of event stream\n");
703                         goto done;
704                 }
705
706                 pr_err("failed to read event data\n");
707                 goto out_err;
708         }
709
710         if (size == 0 ||
711             (skip = perf_session__process_event(self, &event, ops,
712                                                 0, head)) < 0) {
713                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
714                             head, event.header.size, event.header.type);
715                 /*
716                  * assume we lost track of the stream, check alignment, and
717                  * increment a single u64 in the hope to catch on again 'soon'.
718                  */
719                 if (unlikely(head & 7))
720                         head &= ~7ULL;
721
722                 size = 8;
723         }
724
725         head += size;
726
727         dump_printf("\n%#Lx [%#x]: event: %d\n",
728                     head, event.header.size, event.header.type);
729
730         if (skip > 0)
731                 head += skip;
732
733         if (!session_done())
734                 goto more;
735 done:
736         err = 0;
737 out_err:
738         return err;
739 }
740
741 int __perf_session__process_events(struct perf_session *self,
742                                    u64 data_offset, u64 data_size,
743                                    u64 file_size, struct perf_event_ops *ops)
744 {
745         int err, mmap_prot, mmap_flags;
746         u64 head, shift;
747         u64 offset = 0;
748         size_t  page_size;
749         event_t *event;
750         uint32_t size;
751         char *buf;
752         struct ui_progress *progress = ui_progress__new("Processing events...",
753                                                         self->size);
754         if (progress == NULL)
755                 return -1;
756
757         perf_event_ops__fill_defaults(ops);
758
759         page_size = sysconf(_SC_PAGESIZE);
760
761         head = data_offset;
762         shift = page_size * (head / page_size);
763         offset += shift;
764         head -= shift;
765
766         mmap_prot  = PROT_READ;
767         mmap_flags = MAP_SHARED;
768
769         if (self->header.needs_swap) {
770                 mmap_prot  |= PROT_WRITE;
771                 mmap_flags = MAP_PRIVATE;
772         }
773 remap:
774         buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
775                    mmap_flags, self->fd, offset);
776         if (buf == MAP_FAILED) {
777                 pr_err("failed to mmap file\n");
778                 err = -errno;
779                 goto out_err;
780         }
781
782 more:
783         event = (event_t *)(buf + head);
784         ui_progress__update(progress, offset);
785
786         if (self->header.needs_swap)
787                 perf_event_header__bswap(&event->header);
788         size = event->header.size;
789         if (size == 0)
790                 size = 8;
791
792         if (head + event->header.size >= page_size * self->mmap_window) {
793                 int munmap_ret;
794
795                 shift = page_size * (head / page_size);
796
797                 munmap_ret = munmap(buf, page_size * self->mmap_window);
798                 assert(munmap_ret == 0);
799
800                 offset += shift;
801                 head -= shift;
802                 goto remap;
803         }
804
805         size = event->header.size;
806
807         dump_printf("\n%#Lx [%#x]: event: %d\n",
808                     offset + head, event->header.size, event->header.type);
809
810         if (size == 0 ||
811             perf_session__process_event(self, event, ops, offset, head) < 0) {
812                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
813                             offset + head, event->header.size,
814                             event->header.type);
815                 /*
816                  * assume we lost track of the stream, check alignment, and
817                  * increment a single u64 in the hope to catch on again 'soon'.
818                  */
819                 if (unlikely(head & 7))
820                         head &= ~7ULL;
821
822                 size = 8;
823         }
824
825         head += size;
826
827         if (offset + head >= data_offset + data_size)
828                 goto done;
829
830         if (offset + head < file_size)
831                 goto more;
832 done:
833         err = 0;
834         /* do the final flush for ordered samples */
835         self->ordered_samples.next_flush = ULLONG_MAX;
836         flush_sample_queue(self, ops);
837 out_err:
838         ui_progress__delete(progress);
839         return err;
840 }
841
842 int perf_session__process_events(struct perf_session *self,
843                                  struct perf_event_ops *ops)
844 {
845         int err;
846
847         if (perf_session__register_idle_thread(self) == NULL)
848                 return -ENOMEM;
849
850         if (!symbol_conf.full_paths) {
851                 char bf[PATH_MAX];
852
853                 if (getcwd(bf, sizeof(bf)) == NULL) {
854                         err = -errno;
855 out_getcwd_err:
856                         pr_err("failed to get the current directory\n");
857                         goto out_err;
858                 }
859                 self->cwd = strdup(bf);
860                 if (self->cwd == NULL) {
861                         err = -ENOMEM;
862                         goto out_getcwd_err;
863                 }
864                 self->cwdlen = strlen(self->cwd);
865         }
866
867         if (!self->fd_pipe)
868                 err = __perf_session__process_events(self,
869                                                      self->header.data_offset,
870                                                      self->header.data_size,
871                                                      self->size, ops);
872         else
873                 err = __perf_session__process_pipe_events(self, ops);
874 out_err:
875         return err;
876 }
877
878 bool perf_session__has_traces(struct perf_session *self, const char *msg)
879 {
880         if (!(self->sample_type & PERF_SAMPLE_RAW)) {
881                 pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
882                 return false;
883         }
884
885         return true;
886 }
887
888 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
889                                              const char *symbol_name,
890                                              u64 addr)
891 {
892         char *bracket;
893         enum map_type i;
894         struct ref_reloc_sym *ref;
895
896         ref = zalloc(sizeof(struct ref_reloc_sym));
897         if (ref == NULL)
898                 return -ENOMEM;
899
900         ref->name = strdup(symbol_name);
901         if (ref->name == NULL) {
902                 free(ref);
903                 return -ENOMEM;
904         }
905
906         bracket = strchr(ref->name, ']');
907         if (bracket)
908                 *bracket = '\0';
909
910         ref->addr = addr;
911
912         for (i = 0; i < MAP__NR_TYPES; ++i) {
913                 struct kmap *kmap = map__kmap(maps[i]);
914                 kmap->ref_reloc_sym = ref;
915         }
916
917         return 0;
918 }