perf sched: Add support for sched:sched_stat_runtime events
[safe/jmp/linux-2.6] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9
10 #include "util/parse-options.h"
11 #include "util/trace-event.h"
12
13 #include "util/debug.h"
14
15 #include <sys/types.h>
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23 static int                      input;
24 static unsigned long            page_size;
25 static unsigned long            mmap_window = 32;
26
27 static unsigned long            total_comm = 0;
28
29 static struct rb_root           threads;
30 static struct thread            *last_match;
31
32 static struct perf_header       *header;
33 static u64                      sample_type;
34
35 static char                     default_sort_order[] = "avg, max, switch, runtime";
36 static char                     *sort_order = default_sort_order;
37
38 #define PR_SET_NAME             15               /* Set process name */
39 #define MAX_CPUS                4096
40
41 #define BUG_ON(x)               assert(!(x))
42
43 static u64                      run_measurement_overhead;
44 static u64                      sleep_measurement_overhead;
45
46 #define COMM_LEN                20
47 #define SYM_LEN                 129
48
49 #define MAX_PID                 65536
50
51 static unsigned long            nr_tasks;
52
53 struct sched_atom;
54
55 struct task_desc {
56         unsigned long           nr;
57         unsigned long           pid;
58         char                    comm[COMM_LEN];
59
60         unsigned long           nr_events;
61         unsigned long           curr_event;
62         struct sched_atom       **atoms;
63
64         pthread_t               thread;
65         sem_t                   sleep_sem;
66
67         sem_t                   ready_for_work;
68         sem_t                   work_done_sem;
69
70         u64                     cpu_usage;
71 };
72
73 enum sched_event_type {
74         SCHED_EVENT_RUN,
75         SCHED_EVENT_SLEEP,
76         SCHED_EVENT_WAKEUP,
77 };
78
79 struct sched_atom {
80         enum sched_event_type   type;
81         u64                     timestamp;
82         u64                     duration;
83         unsigned long           nr;
84         int                     specific_wait;
85         sem_t                   *wait_sem;
86         struct task_desc        *wakee;
87 };
88
89 static struct task_desc         *pid_to_task[MAX_PID];
90
91 static struct task_desc         **tasks;
92
93 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
94 static u64                      start_time;
95
96 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
97
98 static unsigned long            nr_run_events;
99 static unsigned long            nr_sleep_events;
100 static unsigned long            nr_wakeup_events;
101
102 static unsigned long            nr_sleep_corrections;
103 static unsigned long            nr_run_events_optimized;
104
105 static unsigned long            targetless_wakeups;
106 static unsigned long            multitarget_wakeups;
107
108 static u64                      cpu_usage;
109 static u64                      runavg_cpu_usage;
110 static u64                      parent_cpu_usage;
111 static u64                      runavg_parent_cpu_usage;
112
113 static unsigned long            nr_runs;
114 static u64                      sum_runtime;
115 static u64                      sum_fluct;
116 static u64                      run_avg;
117
118 static unsigned long            replay_repeat = 10;
119 static unsigned long            nr_timestamps;
120 static unsigned long            unordered_timestamps;
121
122 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
123
124 enum thread_state {
125         THREAD_SLEEPING = 0,
126         THREAD_WAIT_CPU,
127         THREAD_SCHED_IN,
128         THREAD_IGNORE
129 };
130
131 struct work_atom {
132         struct list_head        list;
133         enum thread_state       state;
134         u64                     sched_out_time;
135         u64                     wake_up_time;
136         u64                     sched_in_time;
137         u64                     runtime;
138 };
139
140 struct work_atoms {
141         struct list_head        work_list;
142         struct thread           *thread;
143         struct rb_node          node;
144         u64                     max_lat;
145         u64                     total_lat;
146         u64                     nb_atoms;
147         u64                     total_runtime;
148 };
149
150 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
151
152 static struct rb_root           atom_root, sorted_atom_root;
153
154 static u64                      all_runtime;
155 static u64                      all_count;
156
157 static int read_events(void);
158
159
160 static u64 get_nsecs(void)
161 {
162         struct timespec ts;
163
164         clock_gettime(CLOCK_MONOTONIC, &ts);
165
166         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
167 }
168
169 static void burn_nsecs(u64 nsecs)
170 {
171         u64 T0 = get_nsecs(), T1;
172
173         do {
174                 T1 = get_nsecs();
175         } while (T1 + run_measurement_overhead < T0 + nsecs);
176 }
177
178 static void sleep_nsecs(u64 nsecs)
179 {
180         struct timespec ts;
181
182         ts.tv_nsec = nsecs % 999999999;
183         ts.tv_sec = nsecs / 999999999;
184
185         nanosleep(&ts, NULL);
186 }
187
188 static void calibrate_run_measurement_overhead(void)
189 {
190         u64 T0, T1, delta, min_delta = 1000000000ULL;
191         int i;
192
193         for (i = 0; i < 10; i++) {
194                 T0 = get_nsecs();
195                 burn_nsecs(0);
196                 T1 = get_nsecs();
197                 delta = T1-T0;
198                 min_delta = min(min_delta, delta);
199         }
200         run_measurement_overhead = min_delta;
201
202         printf("run measurement overhead: %Ld nsecs\n", min_delta);
203 }
204
205 static void calibrate_sleep_measurement_overhead(void)
206 {
207         u64 T0, T1, delta, min_delta = 1000000000ULL;
208         int i;
209
210         for (i = 0; i < 10; i++) {
211                 T0 = get_nsecs();
212                 sleep_nsecs(10000);
213                 T1 = get_nsecs();
214                 delta = T1-T0;
215                 min_delta = min(min_delta, delta);
216         }
217         min_delta -= 10000;
218         sleep_measurement_overhead = min_delta;
219
220         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
221 }
222
223 static struct sched_atom *
224 get_new_event(struct task_desc *task, u64 timestamp)
225 {
226         struct sched_atom *event = calloc(1, sizeof(*event));
227         unsigned long idx = task->nr_events;
228         size_t size;
229
230         event->timestamp = timestamp;
231         event->nr = idx;
232
233         task->nr_events++;
234         size = sizeof(struct sched_atom *) * task->nr_events;
235         task->atoms = realloc(task->atoms, size);
236         BUG_ON(!task->atoms);
237
238         task->atoms[idx] = event;
239
240         return event;
241 }
242
243 static struct sched_atom *last_event(struct task_desc *task)
244 {
245         if (!task->nr_events)
246                 return NULL;
247
248         return task->atoms[task->nr_events - 1];
249 }
250
251 static void
252 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
253 {
254         struct sched_atom *event, *curr_event = last_event(task);
255
256         /*
257          * optimize an existing RUN event by merging this one
258          * to it:
259          */
260         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
261                 nr_run_events_optimized++;
262                 curr_event->duration += duration;
263                 return;
264         }
265
266         event = get_new_event(task, timestamp);
267
268         event->type = SCHED_EVENT_RUN;
269         event->duration = duration;
270
271         nr_run_events++;
272 }
273
274 static void
275 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
276                        struct task_desc *wakee)
277 {
278         struct sched_atom *event, *wakee_event;
279
280         event = get_new_event(task, timestamp);
281         event->type = SCHED_EVENT_WAKEUP;
282         event->wakee = wakee;
283
284         wakee_event = last_event(wakee);
285         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
286                 targetless_wakeups++;
287                 return;
288         }
289         if (wakee_event->wait_sem) {
290                 multitarget_wakeups++;
291                 return;
292         }
293
294         wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
295         sem_init(wakee_event->wait_sem, 0, 0);
296         wakee_event->specific_wait = 1;
297         event->wait_sem = wakee_event->wait_sem;
298
299         nr_wakeup_events++;
300 }
301
302 static void
303 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
304                       u64 task_state __used)
305 {
306         struct sched_atom *event = get_new_event(task, timestamp);
307
308         event->type = SCHED_EVENT_SLEEP;
309
310         nr_sleep_events++;
311 }
312
313 static struct task_desc *register_pid(unsigned long pid, const char *comm)
314 {
315         struct task_desc *task;
316
317         BUG_ON(pid >= MAX_PID);
318
319         task = pid_to_task[pid];
320
321         if (task)
322                 return task;
323
324         task = calloc(1, sizeof(*task));
325         task->pid = pid;
326         task->nr = nr_tasks;
327         strcpy(task->comm, comm);
328         /*
329          * every task starts in sleeping state - this gets ignored
330          * if there's no wakeup pointing to this sleep state:
331          */
332         add_sched_event_sleep(task, 0, 0);
333
334         pid_to_task[pid] = task;
335         nr_tasks++;
336         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
337         BUG_ON(!tasks);
338         tasks[task->nr] = task;
339
340         if (verbose)
341                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
342
343         return task;
344 }
345
346
347 static void print_task_traces(void)
348 {
349         struct task_desc *task;
350         unsigned long i;
351
352         for (i = 0; i < nr_tasks; i++) {
353                 task = tasks[i];
354                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
355                         task->nr, task->comm, task->pid, task->nr_events);
356         }
357 }
358
359 static void add_cross_task_wakeups(void)
360 {
361         struct task_desc *task1, *task2;
362         unsigned long i, j;
363
364         for (i = 0; i < nr_tasks; i++) {
365                 task1 = tasks[i];
366                 j = i + 1;
367                 if (j == nr_tasks)
368                         j = 0;
369                 task2 = tasks[j];
370                 add_sched_event_wakeup(task1, 0, task2);
371         }
372 }
373
374 static void
375 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
376 {
377         int ret = 0;
378         u64 now;
379         long long delta;
380
381         now = get_nsecs();
382         delta = start_time + atom->timestamp - now;
383
384         switch (atom->type) {
385                 case SCHED_EVENT_RUN:
386                         burn_nsecs(atom->duration);
387                         break;
388                 case SCHED_EVENT_SLEEP:
389                         if (atom->wait_sem)
390                                 ret = sem_wait(atom->wait_sem);
391                         BUG_ON(ret);
392                         break;
393                 case SCHED_EVENT_WAKEUP:
394                         if (atom->wait_sem)
395                                 ret = sem_post(atom->wait_sem);
396                         BUG_ON(ret);
397                         break;
398                 default:
399                         BUG_ON(1);
400         }
401 }
402
403 static u64 get_cpu_usage_nsec_parent(void)
404 {
405         struct rusage ru;
406         u64 sum;
407         int err;
408
409         err = getrusage(RUSAGE_SELF, &ru);
410         BUG_ON(err);
411
412         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
413         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
414
415         return sum;
416 }
417
418 static u64 get_cpu_usage_nsec_self(void)
419 {
420         char filename [] = "/proc/1234567890/sched";
421         unsigned long msecs, nsecs;
422         char *line = NULL;
423         u64 total = 0;
424         size_t len = 0;
425         ssize_t chars;
426         FILE *file;
427         int ret;
428
429         sprintf(filename, "/proc/%d/sched", getpid());
430         file = fopen(filename, "r");
431         BUG_ON(!file);
432
433         while ((chars = getline(&line, &len, file)) != -1) {
434                 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
435                         &msecs, &nsecs);
436                 if (ret == 2) {
437                         total = msecs*1e6 + nsecs;
438                         break;
439                 }
440         }
441         if (line)
442                 free(line);
443         fclose(file);
444
445         return total;
446 }
447
448 static void *thread_func(void *ctx)
449 {
450         struct task_desc *this_task = ctx;
451         u64 cpu_usage_0, cpu_usage_1;
452         unsigned long i, ret;
453         char comm2[22];
454
455         sprintf(comm2, ":%s", this_task->comm);
456         prctl(PR_SET_NAME, comm2);
457
458 again:
459         ret = sem_post(&this_task->ready_for_work);
460         BUG_ON(ret);
461         ret = pthread_mutex_lock(&start_work_mutex);
462         BUG_ON(ret);
463         ret = pthread_mutex_unlock(&start_work_mutex);
464         BUG_ON(ret);
465
466         cpu_usage_0 = get_cpu_usage_nsec_self();
467
468         for (i = 0; i < this_task->nr_events; i++) {
469                 this_task->curr_event = i;
470                 process_sched_event(this_task, this_task->atoms[i]);
471         }
472
473         cpu_usage_1 = get_cpu_usage_nsec_self();
474         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
475
476         ret = sem_post(&this_task->work_done_sem);
477         BUG_ON(ret);
478
479         ret = pthread_mutex_lock(&work_done_wait_mutex);
480         BUG_ON(ret);
481         ret = pthread_mutex_unlock(&work_done_wait_mutex);
482         BUG_ON(ret);
483
484         goto again;
485 }
486
487 static void create_tasks(void)
488 {
489         struct task_desc *task;
490         pthread_attr_t attr;
491         unsigned long i;
492         int err;
493
494         err = pthread_attr_init(&attr);
495         BUG_ON(err);
496         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
497         BUG_ON(err);
498         err = pthread_mutex_lock(&start_work_mutex);
499         BUG_ON(err);
500         err = pthread_mutex_lock(&work_done_wait_mutex);
501         BUG_ON(err);
502         for (i = 0; i < nr_tasks; i++) {
503                 task = tasks[i];
504                 sem_init(&task->sleep_sem, 0, 0);
505                 sem_init(&task->ready_for_work, 0, 0);
506                 sem_init(&task->work_done_sem, 0, 0);
507                 task->curr_event = 0;
508                 err = pthread_create(&task->thread, &attr, thread_func, task);
509                 BUG_ON(err);
510         }
511 }
512
513 static void wait_for_tasks(void)
514 {
515         u64 cpu_usage_0, cpu_usage_1;
516         struct task_desc *task;
517         unsigned long i, ret;
518
519         start_time = get_nsecs();
520         cpu_usage = 0;
521         pthread_mutex_unlock(&work_done_wait_mutex);
522
523         for (i = 0; i < nr_tasks; i++) {
524                 task = tasks[i];
525                 ret = sem_wait(&task->ready_for_work);
526                 BUG_ON(ret);
527                 sem_init(&task->ready_for_work, 0, 0);
528         }
529         ret = pthread_mutex_lock(&work_done_wait_mutex);
530         BUG_ON(ret);
531
532         cpu_usage_0 = get_cpu_usage_nsec_parent();
533
534         pthread_mutex_unlock(&start_work_mutex);
535
536         for (i = 0; i < nr_tasks; i++) {
537                 task = tasks[i];
538                 ret = sem_wait(&task->work_done_sem);
539                 BUG_ON(ret);
540                 sem_init(&task->work_done_sem, 0, 0);
541                 cpu_usage += task->cpu_usage;
542                 task->cpu_usage = 0;
543         }
544
545         cpu_usage_1 = get_cpu_usage_nsec_parent();
546         if (!runavg_cpu_usage)
547                 runavg_cpu_usage = cpu_usage;
548         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
549
550         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
551         if (!runavg_parent_cpu_usage)
552                 runavg_parent_cpu_usage = parent_cpu_usage;
553         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
554                                    parent_cpu_usage)/10;
555
556         ret = pthread_mutex_lock(&start_work_mutex);
557         BUG_ON(ret);
558
559         for (i = 0; i < nr_tasks; i++) {
560                 task = tasks[i];
561                 sem_init(&task->sleep_sem, 0, 0);
562                 task->curr_event = 0;
563         }
564 }
565
566 static void run_one_test(void)
567 {
568         u64 T0, T1, delta, avg_delta, fluct, std_dev;
569
570         T0 = get_nsecs();
571         wait_for_tasks();
572         T1 = get_nsecs();
573
574         delta = T1 - T0;
575         sum_runtime += delta;
576         nr_runs++;
577
578         avg_delta = sum_runtime / nr_runs;
579         if (delta < avg_delta)
580                 fluct = avg_delta - delta;
581         else
582                 fluct = delta - avg_delta;
583         sum_fluct += fluct;
584         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
585         if (!run_avg)
586                 run_avg = delta;
587         run_avg = (run_avg*9 + delta)/10;
588
589         printf("#%-3ld: %0.3f, ",
590                 nr_runs, (double)delta/1000000.0);
591
592         printf("ravg: %0.2f, ",
593                 (double)run_avg/1e6);
594
595         printf("cpu: %0.2f / %0.2f",
596                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
597
598 #if 0
599         /*
600          * rusage statistics done by the parent, these are less
601          * accurate than the sum_exec_runtime based statistics:
602          */
603         printf(" [%0.2f / %0.2f]",
604                 (double)parent_cpu_usage/1e6,
605                 (double)runavg_parent_cpu_usage/1e6);
606 #endif
607
608         printf("\n");
609
610         if (nr_sleep_corrections)
611                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
612         nr_sleep_corrections = 0;
613 }
614
615 static void test_calibrations(void)
616 {
617         u64 T0, T1;
618
619         T0 = get_nsecs();
620         burn_nsecs(1e6);
621         T1 = get_nsecs();
622
623         printf("the run test took %Ld nsecs\n", T1-T0);
624
625         T0 = get_nsecs();
626         sleep_nsecs(1e6);
627         T1 = get_nsecs();
628
629         printf("the sleep test took %Ld nsecs\n", T1-T0);
630 }
631
632 static void __cmd_replay(void)
633 {
634         unsigned long i;
635
636         calibrate_run_measurement_overhead();
637         calibrate_sleep_measurement_overhead();
638
639         test_calibrations();
640
641         read_events();
642
643         printf("nr_run_events:        %ld\n", nr_run_events);
644         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
645         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
646
647         if (targetless_wakeups)
648                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
649         if (multitarget_wakeups)
650                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
651         if (nr_run_events_optimized)
652                 printf("run atoms optimized: %ld\n",
653                         nr_run_events_optimized);
654
655         print_task_traces();
656         add_cross_task_wakeups();
657
658         create_tasks();
659         printf("------------------------------------------------------------\n");
660         for (i = 0; i < replay_repeat; i++)
661                 run_one_test();
662 }
663
664 static int
665 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
666 {
667         struct thread *thread;
668
669         thread = threads__findnew(event->comm.pid, &threads, &last_match);
670
671         dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
672                 (void *)(offset + head),
673                 (void *)(long)(event->header.size),
674                 event->comm.comm, event->comm.pid);
675
676         if (thread == NULL ||
677             thread__set_comm(thread, event->comm.comm)) {
678                 dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
679                 return -1;
680         }
681         total_comm++;
682
683         return 0;
684 }
685
686
687 struct raw_event_sample {
688         u32 size;
689         char data[0];
690 };
691
692 #define FILL_FIELD(ptr, field, event, data)     \
693         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
694
695 #define FILL_ARRAY(ptr, array, event, data)                     \
696 do {                                                            \
697         void *__array = raw_field_ptr(event, #array, data);     \
698         memcpy(ptr.array, __array, sizeof(ptr.array));  \
699 } while(0)
700
701 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
702 do {                                                            \
703         FILL_FIELD(ptr, common_type, event, data);              \
704         FILL_FIELD(ptr, common_flags, event, data);             \
705         FILL_FIELD(ptr, common_preempt_count, event, data);     \
706         FILL_FIELD(ptr, common_pid, event, data);               \
707         FILL_FIELD(ptr, common_tgid, event, data);              \
708 } while (0)
709
710
711
712 struct trace_switch_event {
713         u32 size;
714
715         u16 common_type;
716         u8 common_flags;
717         u8 common_preempt_count;
718         u32 common_pid;
719         u32 common_tgid;
720
721         char prev_comm[16];
722         u32 prev_pid;
723         u32 prev_prio;
724         u64 prev_state;
725         char next_comm[16];
726         u32 next_pid;
727         u32 next_prio;
728 };
729
730 struct trace_runtime_event {
731         u32 size;
732
733         u16 common_type;
734         u8 common_flags;
735         u8 common_preempt_count;
736         u32 common_pid;
737         u32 common_tgid;
738
739         char comm[16];
740         u32 pid;
741         u64 runtime;
742         u64 vruntime;
743 };
744
745 struct trace_wakeup_event {
746         u32 size;
747
748         u16 common_type;
749         u8 common_flags;
750         u8 common_preempt_count;
751         u32 common_pid;
752         u32 common_tgid;
753
754         char comm[16];
755         u32 pid;
756
757         u32 prio;
758         u32 success;
759         u32 cpu;
760 };
761
762 struct trace_fork_event {
763         u32 size;
764
765         u16 common_type;
766         u8 common_flags;
767         u8 common_preempt_count;
768         u32 common_pid;
769         u32 common_tgid;
770
771         char parent_comm[16];
772         u32 parent_pid;
773         char child_comm[16];
774         u32 child_pid;
775 };
776
777 struct trace_sched_handler {
778         void (*switch_event)(struct trace_switch_event *,
779                              struct event *,
780                              int cpu,
781                              u64 timestamp,
782                              struct thread *thread);
783
784         void (*runtime_event)(struct trace_runtime_event *,
785                               struct event *,
786                               int cpu,
787                               u64 timestamp,
788                               struct thread *thread);
789
790         void (*wakeup_event)(struct trace_wakeup_event *,
791                              struct event *,
792                              int cpu,
793                              u64 timestamp,
794                              struct thread *thread);
795
796         void (*fork_event)(struct trace_fork_event *,
797                            struct event *,
798                            int cpu,
799                            u64 timestamp,
800                            struct thread *thread);
801 };
802
803
804 static void
805 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
806                     struct event *event,
807                     int cpu __used,
808                     u64 timestamp __used,
809                     struct thread *thread __used)
810 {
811         struct task_desc *waker, *wakee;
812
813         if (verbose) {
814                 printf("sched_wakeup event %p\n", event);
815
816                 printf(" ... pid %d woke up %s/%d\n",
817                         wakeup_event->common_pid,
818                         wakeup_event->comm,
819                         wakeup_event->pid);
820         }
821
822         waker = register_pid(wakeup_event->common_pid, "<unknown>");
823         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
824
825         add_sched_event_wakeup(waker, timestamp, wakee);
826 }
827
828 static u64 cpu_last_switched[MAX_CPUS];
829
830 static void
831 replay_switch_event(struct trace_switch_event *switch_event,
832                     struct event *event,
833                     int cpu,
834                     u64 timestamp,
835                     struct thread *thread __used)
836 {
837         struct task_desc *prev, *next;
838         u64 timestamp0;
839         s64 delta;
840
841         if (verbose)
842                 printf("sched_switch event %p\n", event);
843
844         if (cpu >= MAX_CPUS || cpu < 0)
845                 return;
846
847         timestamp0 = cpu_last_switched[cpu];
848         if (timestamp0)
849                 delta = timestamp - timestamp0;
850         else
851                 delta = 0;
852
853         if (delta < 0)
854                 die("hm, delta: %Ld < 0 ?\n", delta);
855
856         if (verbose) {
857                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
858                         switch_event->prev_comm, switch_event->prev_pid,
859                         switch_event->next_comm, switch_event->next_pid,
860                         delta);
861         }
862
863         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
864         next = register_pid(switch_event->next_pid, switch_event->next_comm);
865
866         cpu_last_switched[cpu] = timestamp;
867
868         add_sched_event_run(prev, timestamp, delta);
869         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
870 }
871
872
873 static void
874 replay_fork_event(struct trace_fork_event *fork_event,
875                   struct event *event,
876                   int cpu __used,
877                   u64 timestamp __used,
878                   struct thread *thread __used)
879 {
880         if (verbose) {
881                 printf("sched_fork event %p\n", event);
882                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
883                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
884         }
885         register_pid(fork_event->parent_pid, fork_event->parent_comm);
886         register_pid(fork_event->child_pid, fork_event->child_comm);
887 }
888
889 static struct trace_sched_handler replay_ops  = {
890         .wakeup_event           = replay_wakeup_event,
891         .switch_event           = replay_switch_event,
892         .fork_event             = replay_fork_event,
893 };
894
895 struct sort_dimension {
896         const char              *name;
897         sort_fn_t               cmp;
898         struct list_head        list;
899 };
900
901 static LIST_HEAD(cmp_pid);
902
903 static int
904 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
905 {
906         struct sort_dimension *sort;
907         int ret = 0;
908
909         BUG_ON(list_empty(list));
910
911         list_for_each_entry(sort, list, list) {
912                 ret = sort->cmp(l, r);
913                 if (ret)
914                         return ret;
915         }
916
917         return ret;
918 }
919
920 static struct work_atoms *
921 thread_atoms_search(struct rb_root *root, struct thread *thread,
922                          struct list_head *sort_list)
923 {
924         struct rb_node *node = root->rb_node;
925         struct work_atoms key = { .thread = thread };
926
927         while (node) {
928                 struct work_atoms *atoms;
929                 int cmp;
930
931                 atoms = container_of(node, struct work_atoms, node);
932
933                 cmp = thread_lat_cmp(sort_list, &key, atoms);
934                 if (cmp > 0)
935                         node = node->rb_left;
936                 else if (cmp < 0)
937                         node = node->rb_right;
938                 else {
939                         BUG_ON(thread != atoms->thread);
940                         return atoms;
941                 }
942         }
943         return NULL;
944 }
945
946 static void
947 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
948                          struct list_head *sort_list)
949 {
950         struct rb_node **new = &(root->rb_node), *parent = NULL;
951
952         while (*new) {
953                 struct work_atoms *this;
954                 int cmp;
955
956                 this = container_of(*new, struct work_atoms, node);
957                 parent = *new;
958
959                 cmp = thread_lat_cmp(sort_list, data, this);
960
961                 if (cmp > 0)
962                         new = &((*new)->rb_left);
963                 else
964                         new = &((*new)->rb_right);
965         }
966
967         rb_link_node(&data->node, parent, new);
968         rb_insert_color(&data->node, root);
969 }
970
971 static void thread_atoms_insert(struct thread *thread)
972 {
973         struct work_atoms *atoms;
974
975         atoms = calloc(sizeof(*atoms), 1);
976         if (!atoms)
977                 die("No memory");
978
979         atoms->thread = thread;
980         INIT_LIST_HEAD(&atoms->work_list);
981         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
982 }
983
984 static void
985 latency_fork_event(struct trace_fork_event *fork_event __used,
986                    struct event *event __used,
987                    int cpu __used,
988                    u64 timestamp __used,
989                    struct thread *thread __used)
990 {
991         /* should insert the newcomer */
992 }
993
994 __used
995 static char sched_out_state(struct trace_switch_event *switch_event)
996 {
997         const char *str = TASK_STATE_TO_CHAR_STR;
998
999         return str[switch_event->prev_state];
1000 }
1001
1002 static void
1003 add_sched_out_event(struct work_atoms *atoms,
1004                     char run_state,
1005                     u64 timestamp)
1006 {
1007         struct work_atom *atom;
1008
1009         atom = calloc(sizeof(*atom), 1);
1010         if (!atom)
1011                 die("Non memory");
1012
1013         atom->sched_out_time = timestamp;
1014
1015         if (run_state == 'R') {
1016                 atom->state = THREAD_WAIT_CPU;
1017                 atom->wake_up_time = atom->sched_out_time;
1018         }
1019
1020         list_add_tail(&atom->list, &atoms->work_list);
1021 }
1022
1023 static void
1024 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
1025 {
1026         struct work_atom *atom;
1027
1028         BUG_ON(list_empty(&atoms->work_list));
1029
1030         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1031
1032         atom->runtime += delta;
1033         atoms->total_runtime += delta;
1034 }
1035
1036 static void
1037 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1038 {
1039         struct work_atom *atom;
1040         u64 delta;
1041
1042         if (list_empty(&atoms->work_list))
1043                 return;
1044
1045         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1046
1047         if (atom->state != THREAD_WAIT_CPU)
1048                 return;
1049
1050         if (timestamp < atom->wake_up_time) {
1051                 atom->state = THREAD_IGNORE;
1052                 return;
1053         }
1054
1055         atom->state = THREAD_SCHED_IN;
1056         atom->sched_in_time = timestamp;
1057
1058         delta = atom->sched_in_time - atom->wake_up_time;
1059         atoms->total_lat += delta;
1060         if (delta > atoms->max_lat)
1061                 atoms->max_lat = delta;
1062         atoms->nb_atoms++;
1063 }
1064
1065 static void
1066 latency_switch_event(struct trace_switch_event *switch_event,
1067                      struct event *event __used,
1068                      int cpu,
1069                      u64 timestamp,
1070                      struct thread *thread __used)
1071 {
1072         struct work_atoms *out_events, *in_events;
1073         struct thread *sched_out, *sched_in;
1074         u64 timestamp0;
1075         s64 delta;
1076
1077         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1078
1079         timestamp0 = cpu_last_switched[cpu];
1080         cpu_last_switched[cpu] = timestamp;
1081         if (timestamp0)
1082                 delta = timestamp - timestamp0;
1083         else
1084                 delta = 0;
1085
1086         if (delta < 0)
1087                 die("hm, delta: %Ld < 0 ?\n", delta);
1088
1089
1090         sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1091         sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1092
1093         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1094         if (!out_events) {
1095                 thread_atoms_insert(sched_out);
1096                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1097                 if (!out_events)
1098                         die("out-event: Internal tree error");
1099         }
1100         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1101
1102         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1103         if (!in_events) {
1104                 thread_atoms_insert(sched_in);
1105                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1106                 if (!in_events)
1107                         die("in-event: Internal tree error");
1108                 /*
1109                  * Take came in we have not heard about yet,
1110                  * add in an initial atom in runnable state:
1111                  */
1112                 add_sched_out_event(in_events, 'R', timestamp);
1113         }
1114         add_sched_in_event(in_events, timestamp);
1115 }
1116
1117 static void
1118 latency_runtime_event(struct trace_runtime_event *runtime_event,
1119                      struct event *event __used,
1120                      int cpu,
1121                      u64 timestamp,
1122                      struct thread *this_thread __used)
1123 {
1124         struct work_atoms *atoms;
1125         struct thread *thread;
1126
1127         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1128
1129         thread = threads__findnew(runtime_event->pid, &threads, &last_match);
1130         atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1131         if (!atoms) {
1132                 thread_atoms_insert(thread);
1133                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1134                 if (!atoms)
1135                         die("in-event: Internal tree error");
1136                 add_sched_out_event(atoms, 'R', timestamp);
1137         }
1138
1139         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1140 }
1141
1142 static void
1143 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1144                      struct event *__event __used,
1145                      int cpu __used,
1146                      u64 timestamp,
1147                      struct thread *thread __used)
1148 {
1149         struct work_atoms *atoms;
1150         struct work_atom *atom;
1151         struct thread *wakee;
1152
1153         /* Note for later, it may be interesting to observe the failing cases */
1154         if (!wakeup_event->success)
1155                 return;
1156
1157         wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
1158         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1159         if (!atoms) {
1160                 thread_atoms_insert(wakee);
1161                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1162                 if (!atoms)
1163                         die("wakeup-event: Internal tree error");
1164                 add_sched_out_event(atoms, 'S', timestamp);
1165         }
1166
1167         BUG_ON(list_empty(&atoms->work_list));
1168
1169         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1170
1171         if (atom->state != THREAD_SLEEPING) {
1172                 printf("boo2\n");
1173                 return;
1174         }
1175
1176         nr_timestamps++;
1177         if (atom->sched_out_time > timestamp) {
1178                 unordered_timestamps++;
1179                 return;
1180         }
1181
1182         atom->state = THREAD_WAIT_CPU;
1183         atom->wake_up_time = timestamp;
1184 }
1185
1186 static struct trace_sched_handler lat_ops  = {
1187         .wakeup_event           = latency_wakeup_event,
1188         .switch_event           = latency_switch_event,
1189         .runtime_event          = latency_runtime_event,
1190         .fork_event             = latency_fork_event,
1191 };
1192
1193 static void output_lat_thread(struct work_atoms *work_list)
1194 {
1195         int i;
1196         int ret;
1197         u64 avg;
1198
1199         if (!work_list->nb_atoms)
1200                 return;
1201         /*
1202          * Ignore idle threads:
1203          */
1204         if (!work_list->thread->pid)
1205                 return;
1206
1207         all_runtime += work_list->total_runtime;
1208         all_count += work_list->nb_atoms;
1209
1210         ret = printf("  %s-%d ", work_list->thread->comm, work_list->thread->pid);
1211
1212         for (i = 0; i < 24 - ret; i++)
1213                 printf(" ");
1214
1215         avg = work_list->total_lat / work_list->nb_atoms;
1216
1217         printf("|%9.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
1218               (double)work_list->total_runtime / 1e6,
1219                  work_list->nb_atoms, (double)avg / 1e6,
1220                  (double)work_list->max_lat / 1e6);
1221 }
1222
1223 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1224 {
1225         if (l->thread->pid < r->thread->pid)
1226                 return -1;
1227         if (l->thread->pid > r->thread->pid)
1228                 return 1;
1229
1230         return 0;
1231 }
1232
1233 static struct sort_dimension pid_sort_dimension = {
1234         .name                   = "pid",
1235         .cmp                    = pid_cmp,
1236 };
1237
1238 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1239 {
1240         u64 avgl, avgr;
1241
1242         if (!l->nb_atoms)
1243                 return -1;
1244
1245         if (!r->nb_atoms)
1246                 return 1;
1247
1248         avgl = l->total_lat / l->nb_atoms;
1249         avgr = r->total_lat / r->nb_atoms;
1250
1251         if (avgl < avgr)
1252                 return -1;
1253         if (avgl > avgr)
1254                 return 1;
1255
1256         return 0;
1257 }
1258
1259 static struct sort_dimension avg_sort_dimension = {
1260         .name                   = "avg",
1261         .cmp                    = avg_cmp,
1262 };
1263
1264 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1265 {
1266         if (l->max_lat < r->max_lat)
1267                 return -1;
1268         if (l->max_lat > r->max_lat)
1269                 return 1;
1270
1271         return 0;
1272 }
1273
1274 static struct sort_dimension max_sort_dimension = {
1275         .name                   = "max",
1276         .cmp                    = max_cmp,
1277 };
1278
1279 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1280 {
1281         if (l->nb_atoms < r->nb_atoms)
1282                 return -1;
1283         if (l->nb_atoms > r->nb_atoms)
1284                 return 1;
1285
1286         return 0;
1287 }
1288
1289 static struct sort_dimension switch_sort_dimension = {
1290         .name                   = "switch",
1291         .cmp                    = switch_cmp,
1292 };
1293
1294 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1295 {
1296         if (l->total_runtime < r->total_runtime)
1297                 return -1;
1298         if (l->total_runtime > r->total_runtime)
1299                 return 1;
1300
1301         return 0;
1302 }
1303
1304 static struct sort_dimension runtime_sort_dimension = {
1305         .name                   = "runtime",
1306         .cmp                    = runtime_cmp,
1307 };
1308
1309 static struct sort_dimension *available_sorts[] = {
1310         &pid_sort_dimension,
1311         &avg_sort_dimension,
1312         &max_sort_dimension,
1313         &switch_sort_dimension,
1314         &runtime_sort_dimension,
1315 };
1316
1317 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1318
1319 static LIST_HEAD(sort_list);
1320
1321 static int sort_dimension__add(char *tok, struct list_head *list)
1322 {
1323         int i;
1324
1325         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1326                 if (!strcmp(available_sorts[i]->name, tok)) {
1327                         list_add_tail(&available_sorts[i]->list, list);
1328
1329                         return 0;
1330                 }
1331         }
1332
1333         return -1;
1334 }
1335
1336 static void setup_sorting(void);
1337
1338 static void sort_lat(void)
1339 {
1340         struct rb_node *node;
1341
1342         for (;;) {
1343                 struct work_atoms *data;
1344                 node = rb_first(&atom_root);
1345                 if (!node)
1346                         break;
1347
1348                 rb_erase(node, &atom_root);
1349                 data = rb_entry(node, struct work_atoms, node);
1350                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1351         }
1352 }
1353
1354 static void __cmd_lat(void)
1355 {
1356         struct rb_node *next;
1357
1358         setup_pager();
1359         read_events();
1360         sort_lat();
1361
1362         printf("\n ---------------------------------------------------------------------------------------\n");
1363         printf("  Task                  |  Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
1364         printf(" ---------------------------------------------------------------------------------------\n");
1365
1366         next = rb_first(&sorted_atom_root);
1367
1368         while (next) {
1369                 struct work_atoms *work_list;
1370
1371                 work_list = rb_entry(next, struct work_atoms, node);
1372                 output_lat_thread(work_list);
1373                 next = rb_next(next);
1374         }
1375
1376         printf(" ---------------------------------------------------------------------------------------\n");
1377         printf("  TOTAL:                |%9.3f ms |%9Ld |",
1378                 (double)all_runtime/1e6, all_count);
1379
1380         if (unordered_timestamps && nr_timestamps) {
1381                 printf(" INFO: %.2f%% unordered events.\n",
1382                         (double)unordered_timestamps/(double)nr_timestamps*100.0);
1383         } else {
1384                 printf("\n");
1385         }
1386
1387         printf(" -------------------------------------------------\n\n");
1388 }
1389
1390 static struct trace_sched_handler *trace_handler;
1391
1392 static void
1393 process_sched_wakeup_event(struct raw_event_sample *raw,
1394                            struct event *event,
1395                            int cpu __used,
1396                            u64 timestamp __used,
1397                            struct thread *thread __used)
1398 {
1399         struct trace_wakeup_event wakeup_event;
1400
1401         FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1402
1403         FILL_ARRAY(wakeup_event, comm, event, raw->data);
1404         FILL_FIELD(wakeup_event, pid, event, raw->data);
1405         FILL_FIELD(wakeup_event, prio, event, raw->data);
1406         FILL_FIELD(wakeup_event, success, event, raw->data);
1407         FILL_FIELD(wakeup_event, cpu, event, raw->data);
1408
1409         trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1410 }
1411
1412 static void
1413 process_sched_switch_event(struct raw_event_sample *raw,
1414                            struct event *event,
1415                            int cpu __used,
1416                            u64 timestamp __used,
1417                            struct thread *thread __used)
1418 {
1419         struct trace_switch_event switch_event;
1420
1421         FILL_COMMON_FIELDS(switch_event, event, raw->data);
1422
1423         FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1424         FILL_FIELD(switch_event, prev_pid, event, raw->data);
1425         FILL_FIELD(switch_event, prev_prio, event, raw->data);
1426         FILL_FIELD(switch_event, prev_state, event, raw->data);
1427         FILL_ARRAY(switch_event, next_comm, event, raw->data);
1428         FILL_FIELD(switch_event, next_pid, event, raw->data);
1429         FILL_FIELD(switch_event, next_prio, event, raw->data);
1430
1431         trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
1432 }
1433
1434 static void
1435 process_sched_runtime_event(struct raw_event_sample *raw,
1436                            struct event *event,
1437                            int cpu __used,
1438                            u64 timestamp __used,
1439                            struct thread *thread __used)
1440 {
1441         struct trace_runtime_event runtime_event;
1442
1443         FILL_ARRAY(runtime_event, comm, event, raw->data);
1444         FILL_FIELD(runtime_event, pid, event, raw->data);
1445         FILL_FIELD(runtime_event, runtime, event, raw->data);
1446         FILL_FIELD(runtime_event, vruntime, event, raw->data);
1447
1448         trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
1449 }
1450
1451 static void
1452 process_sched_fork_event(struct raw_event_sample *raw,
1453                          struct event *event,
1454                          int cpu __used,
1455                          u64 timestamp __used,
1456                          struct thread *thread __used)
1457 {
1458         struct trace_fork_event fork_event;
1459
1460         FILL_COMMON_FIELDS(fork_event, event, raw->data);
1461
1462         FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1463         FILL_FIELD(fork_event, parent_pid, event, raw->data);
1464         FILL_ARRAY(fork_event, child_comm, event, raw->data);
1465         FILL_FIELD(fork_event, child_pid, event, raw->data);
1466
1467         trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1468 }
1469
1470 static void
1471 process_sched_exit_event(struct event *event,
1472                          int cpu __used,
1473                          u64 timestamp __used,
1474                          struct thread *thread __used)
1475 {
1476         if (verbose)
1477                 printf("sched_exit event %p\n", event);
1478 }
1479
1480 static void
1481 process_raw_event(event_t *raw_event __used, void *more_data,
1482                   int cpu, u64 timestamp, struct thread *thread)
1483 {
1484         struct raw_event_sample *raw = more_data;
1485         struct event *event;
1486         int type;
1487
1488         type = trace_parse_common_type(raw->data);
1489         event = trace_find_event(type);
1490
1491         if (!strcmp(event->name, "sched_switch"))
1492                 process_sched_switch_event(raw, event, cpu, timestamp, thread);
1493         if (!strcmp(event->name, "sched_stat_runtime"))
1494                 process_sched_runtime_event(raw, event, cpu, timestamp, thread);
1495         if (!strcmp(event->name, "sched_wakeup"))
1496                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1497         if (!strcmp(event->name, "sched_wakeup_new"))
1498                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1499         if (!strcmp(event->name, "sched_process_fork"))
1500                 process_sched_fork_event(raw, event, cpu, timestamp, thread);
1501         if (!strcmp(event->name, "sched_process_exit"))
1502                 process_sched_exit_event(event, cpu, timestamp, thread);
1503 }
1504
1505 static int
1506 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1507 {
1508         char level;
1509         int show = 0;
1510         struct dso *dso = NULL;
1511         struct thread *thread;
1512         u64 ip = event->ip.ip;
1513         u64 timestamp = -1;
1514         u32 cpu = -1;
1515         u64 period = 1;
1516         void *more_data = event->ip.__more_data;
1517         int cpumode;
1518
1519         thread = threads__findnew(event->ip.pid, &threads, &last_match);
1520
1521         if (sample_type & PERF_SAMPLE_TIME) {
1522                 timestamp = *(u64 *)more_data;
1523                 more_data += sizeof(u64);
1524         }
1525
1526         if (sample_type & PERF_SAMPLE_CPU) {
1527                 cpu = *(u32 *)more_data;
1528                 more_data += sizeof(u32);
1529                 more_data += sizeof(u32); /* reserved */
1530         }
1531
1532         if (sample_type & PERF_SAMPLE_PERIOD) {
1533                 period = *(u64 *)more_data;
1534                 more_data += sizeof(u64);
1535         }
1536
1537         dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1538                 (void *)(offset + head),
1539                 (void *)(long)(event->header.size),
1540                 event->header.misc,
1541                 event->ip.pid, event->ip.tid,
1542                 (void *)(long)ip,
1543                 (long long)period);
1544
1545         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1546
1547         if (thread == NULL) {
1548                 eprintf("problem processing %d event, skipping it.\n",
1549                         event->header.type);
1550                 return -1;
1551         }
1552
1553         cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
1554
1555         if (cpumode == PERF_EVENT_MISC_KERNEL) {
1556                 show = SHOW_KERNEL;
1557                 level = 'k';
1558
1559                 dso = kernel_dso;
1560
1561                 dump_printf(" ...... dso: %s\n", dso->name);
1562
1563         } else if (cpumode == PERF_EVENT_MISC_USER) {
1564
1565                 show = SHOW_USER;
1566                 level = '.';
1567
1568         } else {
1569                 show = SHOW_HV;
1570                 level = 'H';
1571
1572                 dso = hypervisor_dso;
1573
1574                 dump_printf(" ...... dso: [hypervisor]\n");
1575         }
1576
1577         if (sample_type & PERF_SAMPLE_RAW)
1578                 process_raw_event(event, more_data, cpu, timestamp, thread);
1579
1580         return 0;
1581 }
1582
1583 static int
1584 process_event(event_t *event, unsigned long offset, unsigned long head)
1585 {
1586         trace_event(event);
1587
1588         switch (event->header.type) {
1589         case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
1590                 return 0;
1591
1592         case PERF_EVENT_COMM:
1593                 return process_comm_event(event, offset, head);
1594
1595         case PERF_EVENT_EXIT ... PERF_EVENT_READ:
1596                 return 0;
1597
1598         case PERF_EVENT_SAMPLE:
1599                 return process_sample_event(event, offset, head);
1600
1601         case PERF_EVENT_MAX:
1602         default:
1603                 return -1;
1604         }
1605
1606         return 0;
1607 }
1608
1609 static int read_events(void)
1610 {
1611         int ret, rc = EXIT_FAILURE;
1612         unsigned long offset = 0;
1613         unsigned long head = 0;
1614         struct stat perf_stat;
1615         event_t *event;
1616         uint32_t size;
1617         char *buf;
1618
1619         trace_report();
1620         register_idle_thread(&threads, &last_match);
1621
1622         input = open(input_name, O_RDONLY);
1623         if (input < 0) {
1624                 perror("failed to open file");
1625                 exit(-1);
1626         }
1627
1628         ret = fstat(input, &perf_stat);
1629         if (ret < 0) {
1630                 perror("failed to stat file");
1631                 exit(-1);
1632         }
1633
1634         if (!perf_stat.st_size) {
1635                 fprintf(stderr, "zero-sized file, nothing to do!\n");
1636                 exit(0);
1637         }
1638         header = perf_header__read(input);
1639         head = header->data_offset;
1640         sample_type = perf_header__sample_type(header);
1641
1642         if (!(sample_type & PERF_SAMPLE_RAW))
1643                 die("No trace sample to read. Did you call perf record "
1644                     "without -R?");
1645
1646         if (load_kernel() < 0) {
1647                 perror("failed to load kernel symbols");
1648                 return EXIT_FAILURE;
1649         }
1650
1651 remap:
1652         buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1653                            MAP_SHARED, input, offset);
1654         if (buf == MAP_FAILED) {
1655                 perror("failed to mmap file");
1656                 exit(-1);
1657         }
1658
1659 more:
1660         event = (event_t *)(buf + head);
1661
1662         size = event->header.size;
1663         if (!size)
1664                 size = 8;
1665
1666         if (head + event->header.size >= page_size * mmap_window) {
1667                 unsigned long shift = page_size * (head / page_size);
1668                 int res;
1669
1670                 res = munmap(buf, page_size * mmap_window);
1671                 assert(res == 0);
1672
1673                 offset += shift;
1674                 head -= shift;
1675                 goto remap;
1676         }
1677
1678         size = event->header.size;
1679
1680
1681         if (!size || process_event(event, offset, head) < 0) {
1682
1683                 /*
1684                  * assume we lost track of the stream, check alignment, and
1685                  * increment a single u64 in the hope to catch on again 'soon'.
1686                  */
1687
1688                 if (unlikely(head & 7))
1689                         head &= ~7ULL;
1690
1691                 size = 8;
1692         }
1693
1694         head += size;
1695
1696         if (offset + head < (unsigned long)perf_stat.st_size)
1697                 goto more;
1698
1699         rc = EXIT_SUCCESS;
1700         close(input);
1701
1702         return rc;
1703 }
1704
1705 static const char * const sched_usage[] = {
1706         "perf sched [<options>] {record|latency|replay|trace}",
1707         NULL
1708 };
1709
1710 static const struct option sched_options[] = {
1711         OPT_BOOLEAN('v', "verbose", &verbose,
1712                     "be more verbose (show symbol address, etc)"),
1713         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1714                     "dump raw trace in ASCII"),
1715         OPT_END()
1716 };
1717
1718 static const char * const latency_usage[] = {
1719         "perf sched latency [<options>]",
1720         NULL
1721 };
1722
1723 static const struct option latency_options[] = {
1724         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1725                    "sort by key(s): runtime, switch, avg, max"),
1726         OPT_BOOLEAN('v', "verbose", &verbose,
1727                     "be more verbose (show symbol address, etc)"),
1728         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1729                     "dump raw trace in ASCII"),
1730         OPT_END()
1731 };
1732
1733 static const char * const replay_usage[] = {
1734         "perf sched replay [<options>]",
1735         NULL
1736 };
1737
1738 static const struct option replay_options[] = {
1739         OPT_INTEGER('r', "repeat", &replay_repeat,
1740                     "repeat the workload replay N times (-1: infinite)"),
1741         OPT_BOOLEAN('v', "verbose", &verbose,
1742                     "be more verbose (show symbol address, etc)"),
1743         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1744                     "dump raw trace in ASCII"),
1745         OPT_END()
1746 };
1747
1748 static void setup_sorting(void)
1749 {
1750         char *tmp, *tok, *str = strdup(sort_order);
1751
1752         for (tok = strtok_r(str, ", ", &tmp);
1753                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1754                 if (sort_dimension__add(tok, &sort_list) < 0) {
1755                         error("Unknown --sort key: `%s'", tok);
1756                         usage_with_options(latency_usage, latency_options);
1757                 }
1758         }
1759
1760         free(str);
1761
1762         sort_dimension__add((char *)"pid", &cmp_pid);
1763 }
1764
1765 static const char *record_args[] = {
1766         "record",
1767         "-a",
1768         "-R",
1769         "-M",
1770         "-f",
1771         "-c", "1",
1772         "-e", "sched:sched_switch:r",
1773         "-e", "sched:sched_stat_wait:r",
1774         "-e", "sched:sched_stat_sleep:r",
1775         "-e", "sched:sched_stat_iowait:r",
1776         "-e", "sched:sched_stat_runtime:r",
1777         "-e", "sched:sched_process_exit:r",
1778         "-e", "sched:sched_process_fork:r",
1779         "-e", "sched:sched_wakeup:r",
1780         "-e", "sched:sched_migrate_task:r",
1781 };
1782
1783 static int __cmd_record(int argc, const char **argv)
1784 {
1785         unsigned int rec_argc, i, j;
1786         const char **rec_argv;
1787
1788         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1789         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1790
1791         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1792                 rec_argv[i] = strdup(record_args[i]);
1793
1794         for (j = 1; j < (unsigned int)argc; j++, i++)
1795                 rec_argv[i] = argv[j];
1796
1797         BUG_ON(i != rec_argc);
1798
1799         return cmd_record(i, rec_argv, NULL);
1800 }
1801
1802 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1803 {
1804         symbol__init();
1805         page_size = getpagesize();
1806
1807         argc = parse_options(argc, argv, sched_options, sched_usage,
1808                              PARSE_OPT_STOP_AT_NON_OPTION);
1809         if (!argc)
1810                 usage_with_options(sched_usage, sched_options);
1811
1812         if (!strncmp(argv[0], "rec", 3)) {
1813                 return __cmd_record(argc, argv);
1814         } else if (!strncmp(argv[0], "lat", 3)) {
1815                 trace_handler = &lat_ops;
1816                 if (argc > 1) {
1817                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1818                         if (argc)
1819                                 usage_with_options(latency_usage, latency_options);
1820                 }
1821                 setup_sorting();
1822                 __cmd_lat();
1823         } else if (!strncmp(argv[0], "rep", 3)) {
1824                 trace_handler = &replay_ops;
1825                 if (argc) {
1826                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1827                         if (argc)
1828                                 usage_with_options(replay_usage, replay_options);
1829                 }
1830                 __cmd_replay();
1831         } else if (!strcmp(argv[0], "trace")) {
1832                 /*
1833                  * Aliased to 'perf trace' for now:
1834                  */
1835                 return cmd_trace(argc, argv, prefix);
1836         } else {
1837                 usage_with_options(sched_usage, sched_options);
1838         }
1839
1840         return 0;
1841 }