Merge branch 'linus' into cont_syslog
[safe/jmp/linux-2.6] / sound / pci / sis7019.c
1 /*
2  *  Driver for SiS7019 Audio Accelerator
3  *
4  *  Copyright (C) 2004-2007, David Dillow
5  *  Written by David Dillow <dave@thedillows.org>
6  *  Inspired by the Trident 4D-WaveDX/NX driver.
7  *
8  *  All rights reserved.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation, version 2.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
22  */
23
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
34 #include "sis7019.h"
35
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40
41 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
43 static int enable = 1;
44
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
49 module_param(enable, bool, 0444);
50 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
51
52 static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = {
53         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
54         { 0, }
55 };
56
57 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
58
59 /* There are three timing modes for the voices.
60  *
61  * For both playback and capture, when the buffer is one or two periods long,
62  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
63  * to let us know when the periods have ended.
64  *
65  * When performing playback with more than two periods per buffer, we set
66  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
67  * reach it. We then update the offset and continue on until we are
68  * interrupted for the next period.
69  *
70  * Capture channels do not have a SSO, so we allocate a playback channel to
71  * use as a timer for the capture periods. We use the SSO on the playback
72  * channel to clock out virtual periods, and adjust the virtual period length
73  * to maintain synchronization. This algorithm came from the Trident driver.
74  *
75  * FIXME: It'd be nice to make use of some of the synth features in the
76  * hardware, but a woeful lack of documentation is a significant roadblock.
77  */
78 struct voice {
79         u16 flags;
80 #define         VOICE_IN_USE            1
81 #define         VOICE_CAPTURE           2
82 #define         VOICE_SSO_TIMING        4
83 #define         VOICE_SYNC_TIMING       8
84         u16 sync_cso;
85         u16 period_size;
86         u16 buffer_size;
87         u16 sync_period_size;
88         u16 sync_buffer_size;
89         u32 sso;
90         u32 vperiod;
91         struct snd_pcm_substream *substream;
92         struct voice *timing;
93         void __iomem *ctrl_base;
94         void __iomem *wave_base;
95         void __iomem *sync_base;
96         int num;
97 };
98
99 /* We need four pages to store our wave parameters during a suspend. If
100  * we're not doing power management, we still need to allocate a page
101  * for the silence buffer.
102  */
103 #ifdef CONFIG_PM
104 #define SIS_SUSPEND_PAGES       4
105 #else
106 #define SIS_SUSPEND_PAGES       1
107 #endif
108
109 struct sis7019 {
110         unsigned long ioport;
111         void __iomem *ioaddr;
112         int irq;
113         int codecs_present;
114
115         struct pci_dev *pci;
116         struct snd_pcm *pcm;
117         struct snd_card *card;
118         struct snd_ac97 *ac97[3];
119
120         /* Protect against more than one thread hitting the AC97
121          * registers (in a more polite manner than pounding the hardware
122          * semaphore)
123          */
124         struct mutex ac97_mutex;
125
126         /* voice_lock protects allocation/freeing of the voice descriptions
127          */
128         spinlock_t voice_lock;
129
130         struct voice voices[64];
131         struct voice capture_voice;
132
133         /* Allocate pages to store the internal wave state during
134          * suspends. When we're operating, this can be used as a silence
135          * buffer for a timing channel.
136          */
137         void *suspend_state[SIS_SUSPEND_PAGES];
138
139         int silence_users;
140         dma_addr_t silence_dma_addr;
141 };
142
143 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
144 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
145 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
146
147 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
148  * documented range of 8-0xfff8 samples. Given that they are 0-based,
149  * that places our period/buffer range at 9-0xfff9 samples. That makes the
150  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
151  * max samples / min samples gives us the max periods in a buffer.
152  *
153  * We'll add a constraint upon open that limits the period and buffer sample
154  * size to values that are legal for the hardware.
155  */
156 static struct snd_pcm_hardware sis_playback_hw_info = {
157         .info = (SNDRV_PCM_INFO_MMAP |
158                  SNDRV_PCM_INFO_MMAP_VALID |
159                  SNDRV_PCM_INFO_INTERLEAVED |
160                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
161                  SNDRV_PCM_INFO_SYNC_START |
162                  SNDRV_PCM_INFO_RESUME),
163         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
164                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
165         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
166         .rate_min = 4000,
167         .rate_max = 48000,
168         .channels_min = 1,
169         .channels_max = 2,
170         .buffer_bytes_max = (0xfff9 * 4),
171         .period_bytes_min = 9,
172         .period_bytes_max = (0xfff9 * 4),
173         .periods_min = 1,
174         .periods_max = (0xfff9 / 9),
175 };
176
177 static struct snd_pcm_hardware sis_capture_hw_info = {
178         .info = (SNDRV_PCM_INFO_MMAP |
179                  SNDRV_PCM_INFO_MMAP_VALID |
180                  SNDRV_PCM_INFO_INTERLEAVED |
181                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
182                  SNDRV_PCM_INFO_SYNC_START |
183                  SNDRV_PCM_INFO_RESUME),
184         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
185                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
186         .rates = SNDRV_PCM_RATE_48000,
187         .rate_min = 4000,
188         .rate_max = 48000,
189         .channels_min = 1,
190         .channels_max = 2,
191         .buffer_bytes_max = (0xfff9 * 4),
192         .period_bytes_min = 9,
193         .period_bytes_max = (0xfff9 * 4),
194         .periods_min = 1,
195         .periods_max = (0xfff9 / 9),
196 };
197
198 static void sis_update_sso(struct voice *voice, u16 period)
199 {
200         void __iomem *base = voice->ctrl_base;
201
202         voice->sso += period;
203         if (voice->sso >= voice->buffer_size)
204                 voice->sso -= voice->buffer_size;
205
206         /* Enforce the documented hardware minimum offset */
207         if (voice->sso < 8)
208                 voice->sso = 8;
209
210         /* The SSO is in the upper 16 bits of the register. */
211         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
212 }
213
214 static void sis_update_voice(struct voice *voice)
215 {
216         if (voice->flags & VOICE_SSO_TIMING) {
217                 sis_update_sso(voice, voice->period_size);
218         } else if (voice->flags & VOICE_SYNC_TIMING) {
219                 int sync;
220
221                 /* If we've not hit the end of the virtual period, update
222                  * our records and keep going.
223                  */
224                 if (voice->vperiod > voice->period_size) {
225                         voice->vperiod -= voice->period_size;
226                         if (voice->vperiod < voice->period_size)
227                                 sis_update_sso(voice, voice->vperiod);
228                         else
229                                 sis_update_sso(voice, voice->period_size);
230                         return;
231                 }
232
233                 /* Calculate our relative offset between the target and
234                  * the actual CSO value. Since we're operating in a loop,
235                  * if the value is more than half way around, we can
236                  * consider ourselves wrapped.
237                  */
238                 sync = voice->sync_cso;
239                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
240                 if (sync > (voice->sync_buffer_size / 2))
241                         sync -= voice->sync_buffer_size;
242
243                 /* If sync is positive, then we interrupted too early, and
244                  * we'll need to come back in a few samples and try again.
245                  * There's a minimum wait, as it takes some time for the DMA
246                  * engine to startup, etc...
247                  */
248                 if (sync > 0) {
249                         if (sync < 16)
250                                 sync = 16;
251                         sis_update_sso(voice, sync);
252                         return;
253                 }
254
255                 /* Ok, we interrupted right on time, or (hopefully) just
256                  * a bit late. We'll adjst our next waiting period based
257                  * on how close we got.
258                  *
259                  * We need to stay just behind the actual channel to ensure
260                  * it really is past a period when we get our interrupt --
261                  * otherwise we'll fall into the early code above and have
262                  * a minimum wait time, which makes us quite late here,
263                  * eating into the user's time to refresh the buffer, esp.
264                  * if using small periods.
265                  *
266                  * If we're less than 9 samples behind, we're on target.
267                  */
268                 if (sync > -9)
269                         voice->vperiod = voice->sync_period_size + 1;
270                 else
271                         voice->vperiod = voice->sync_period_size - 4;
272
273                 if (voice->vperiod < voice->buffer_size) {
274                         sis_update_sso(voice, voice->vperiod);
275                         voice->vperiod = 0;
276                 } else
277                         sis_update_sso(voice, voice->period_size);
278
279                 sync = voice->sync_cso + voice->sync_period_size;
280                 if (sync >= voice->sync_buffer_size)
281                         sync -= voice->sync_buffer_size;
282                 voice->sync_cso = sync;
283         }
284
285         snd_pcm_period_elapsed(voice->substream);
286 }
287
288 static void sis_voice_irq(u32 status, struct voice *voice)
289 {
290         int bit;
291
292         while (status) {
293                 bit = __ffs(status);
294                 status >>= bit + 1;
295                 voice += bit;
296                 sis_update_voice(voice);
297                 voice++;
298         }
299 }
300
301 static irqreturn_t sis_interrupt(int irq, void *dev)
302 {
303         struct sis7019 *sis = dev;
304         unsigned long io = sis->ioport;
305         struct voice *voice;
306         u32 intr, status;
307
308         /* We only use the DMA interrupts, and we don't enable any other
309          * source of interrupts. But, it is possible to see an interupt
310          * status that didn't actually interrupt us, so eliminate anything
311          * we're not expecting to avoid falsely claiming an IRQ, and an
312          * ensuing endless loop.
313          */
314         intr = inl(io + SIS_GISR);
315         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
316                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
317         if (!intr)
318                 return IRQ_NONE;
319
320         do {
321                 status = inl(io + SIS_PISR_A);
322                 if (status) {
323                         sis_voice_irq(status, sis->voices);
324                         outl(status, io + SIS_PISR_A);
325                 }
326
327                 status = inl(io + SIS_PISR_B);
328                 if (status) {
329                         sis_voice_irq(status, &sis->voices[32]);
330                         outl(status, io + SIS_PISR_B);
331                 }
332
333                 status = inl(io + SIS_RISR);
334                 if (status) {
335                         voice = &sis->capture_voice;
336                         if (!voice->timing)
337                                 snd_pcm_period_elapsed(voice->substream);
338
339                         outl(status, io + SIS_RISR);
340                 }
341
342                 outl(intr, io + SIS_GISR);
343                 intr = inl(io + SIS_GISR);
344                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
345                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
346         } while (intr);
347
348         return IRQ_HANDLED;
349 }
350
351 static u32 sis_rate_to_delta(unsigned int rate)
352 {
353         u32 delta;
354
355         /* This was copied from the trident driver, but it seems its gotten
356          * around a bit... nevertheless, it works well.
357          *
358          * We special case 44100 and 8000 since rounding with the equation
359          * does not give us an accurate enough value. For 11025 and 22050
360          * the equation gives us the best answer. All other frequencies will
361          * also use the equation. JDW
362          */
363         if (rate == 44100)
364                 delta = 0xeb3;
365         else if (rate == 8000)
366                 delta = 0x2ab;
367         else if (rate == 48000)
368                 delta = 0x1000;
369         else
370                 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
371         return delta;
372 }
373
374 static void __sis_map_silence(struct sis7019 *sis)
375 {
376         /* Helper function: must hold sis->voice_lock on entry */
377         if (!sis->silence_users)
378                 sis->silence_dma_addr = pci_map_single(sis->pci,
379                                                 sis->suspend_state[0],
380                                                 4096, PCI_DMA_TODEVICE);
381         sis->silence_users++;
382 }
383
384 static void __sis_unmap_silence(struct sis7019 *sis)
385 {
386         /* Helper function: must hold sis->voice_lock on entry */
387         sis->silence_users--;
388         if (!sis->silence_users)
389                 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
390                                         PCI_DMA_TODEVICE);
391 }
392
393 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
394 {
395         unsigned long flags;
396
397         spin_lock_irqsave(&sis->voice_lock, flags);
398         if (voice->timing) {
399                 __sis_unmap_silence(sis);
400                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
401                                                 VOICE_SYNC_TIMING);
402                 voice->timing = NULL;
403         }
404         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
405         spin_unlock_irqrestore(&sis->voice_lock, flags);
406 }
407
408 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
409 {
410         /* Must hold the voice_lock on entry */
411         struct voice *voice;
412         int i;
413
414         for (i = 0; i < 64; i++) {
415                 voice = &sis->voices[i];
416                 if (voice->flags & VOICE_IN_USE)
417                         continue;
418                 voice->flags |= VOICE_IN_USE;
419                 goto found_one;
420         }
421         voice = NULL;
422
423 found_one:
424         return voice;
425 }
426
427 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
428 {
429         struct voice *voice;
430         unsigned long flags;
431
432         spin_lock_irqsave(&sis->voice_lock, flags);
433         voice = __sis_alloc_playback_voice(sis);
434         spin_unlock_irqrestore(&sis->voice_lock, flags);
435
436         return voice;
437 }
438
439 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
440                                         struct snd_pcm_hw_params *hw_params)
441 {
442         struct sis7019 *sis = snd_pcm_substream_chip(substream);
443         struct snd_pcm_runtime *runtime = substream->runtime;
444         struct voice *voice = runtime->private_data;
445         unsigned int period_size, buffer_size;
446         unsigned long flags;
447         int needed;
448
449         /* If there are one or two periods per buffer, we don't need a
450          * timing voice, as we can use the capture channel's interrupts
451          * to clock out the periods.
452          */
453         period_size = params_period_size(hw_params);
454         buffer_size = params_buffer_size(hw_params);
455         needed = (period_size != buffer_size &&
456                         period_size != (buffer_size / 2));
457
458         if (needed && !voice->timing) {
459                 spin_lock_irqsave(&sis->voice_lock, flags);
460                 voice->timing = __sis_alloc_playback_voice(sis);
461                 if (voice->timing)
462                         __sis_map_silence(sis);
463                 spin_unlock_irqrestore(&sis->voice_lock, flags);
464                 if (!voice->timing)
465                         return -ENOMEM;
466                 voice->timing->substream = substream;
467         } else if (!needed && voice->timing) {
468                 sis_free_voice(sis, voice);
469                 voice->timing = NULL;
470         }
471
472         return 0;
473 }
474
475 static int sis_playback_open(struct snd_pcm_substream *substream)
476 {
477         struct sis7019 *sis = snd_pcm_substream_chip(substream);
478         struct snd_pcm_runtime *runtime = substream->runtime;
479         struct voice *voice;
480
481         voice = sis_alloc_playback_voice(sis);
482         if (!voice)
483                 return -EAGAIN;
484
485         voice->substream = substream;
486         runtime->private_data = voice;
487         runtime->hw = sis_playback_hw_info;
488         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
489                                                 9, 0xfff9);
490         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
491                                                 9, 0xfff9);
492         snd_pcm_set_sync(substream);
493         return 0;
494 }
495
496 static int sis_substream_close(struct snd_pcm_substream *substream)
497 {
498         struct sis7019 *sis = snd_pcm_substream_chip(substream);
499         struct snd_pcm_runtime *runtime = substream->runtime;
500         struct voice *voice = runtime->private_data;
501
502         sis_free_voice(sis, voice);
503         return 0;
504 }
505
506 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
507                                         struct snd_pcm_hw_params *hw_params)
508 {
509         return snd_pcm_lib_malloc_pages(substream,
510                                         params_buffer_bytes(hw_params));
511 }
512
513 static int sis_hw_free(struct snd_pcm_substream *substream)
514 {
515         return snd_pcm_lib_free_pages(substream);
516 }
517
518 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
519 {
520         struct snd_pcm_runtime *runtime = substream->runtime;
521         struct voice *voice = runtime->private_data;
522         void __iomem *ctrl_base = voice->ctrl_base;
523         void __iomem *wave_base = voice->wave_base;
524         u32 format, dma_addr, control, sso_eso, delta, reg;
525         u16 leo;
526
527         /* We rely on the PCM core to ensure that the parameters for this
528          * substream do not change on us while we're programming the HW.
529          */
530         format = 0;
531         if (snd_pcm_format_width(runtime->format) == 8)
532                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
533         if (!snd_pcm_format_signed(runtime->format))
534                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
535         if (runtime->channels == 1)
536                 format |= SIS_PLAY_DMA_FORMAT_MONO;
537
538         /* The baseline setup is for a single period per buffer, and
539          * we add bells and whistles as needed from there.
540          */
541         dma_addr = runtime->dma_addr;
542         leo = runtime->buffer_size - 1;
543         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
544         sso_eso = leo;
545
546         if (runtime->period_size == (runtime->buffer_size / 2)) {
547                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
548         } else if (runtime->period_size != runtime->buffer_size) {
549                 voice->flags |= VOICE_SSO_TIMING;
550                 voice->sso = runtime->period_size - 1;
551                 voice->period_size = runtime->period_size;
552                 voice->buffer_size = runtime->buffer_size;
553
554                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
555                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
556                 sso_eso |= (runtime->period_size - 1) << 16;
557         }
558
559         delta = sis_rate_to_delta(runtime->rate);
560
561         /* Ok, we're ready to go, set up the channel.
562          */
563         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
564         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
565         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
566         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
567
568         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
569                 writel(0, wave_base + reg);
570
571         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
572         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
573         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
574                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
575                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
576                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
577
578         /* Force PCI writes to post. */
579         readl(ctrl_base);
580
581         return 0;
582 }
583
584 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
585 {
586         struct sis7019 *sis = snd_pcm_substream_chip(substream);
587         unsigned long io = sis->ioport;
588         struct snd_pcm_substream *s;
589         struct voice *voice;
590         void *chip;
591         int starting;
592         u32 record = 0;
593         u32 play[2] = { 0, 0 };
594
595         /* No locks needed, as the PCM core will hold the locks on the
596          * substreams, and the HW will only start/stop the indicated voices
597          * without changing the state of the others.
598          */
599         switch (cmd) {
600         case SNDRV_PCM_TRIGGER_START:
601         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
602         case SNDRV_PCM_TRIGGER_RESUME:
603                 starting = 1;
604                 break;
605         case SNDRV_PCM_TRIGGER_STOP:
606         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
607         case SNDRV_PCM_TRIGGER_SUSPEND:
608                 starting = 0;
609                 break;
610         default:
611                 return -EINVAL;
612         }
613
614         snd_pcm_group_for_each_entry(s, substream) {
615                 /* Make sure it is for us... */
616                 chip = snd_pcm_substream_chip(s);
617                 if (chip != sis)
618                         continue;
619
620                 voice = s->runtime->private_data;
621                 if (voice->flags & VOICE_CAPTURE) {
622                         record |= 1 << voice->num;
623                         voice = voice->timing;
624                 }
625
626                 /* voice could be NULL if this a recording stream, and it
627                  * doesn't have an external timing channel.
628                  */
629                 if (voice)
630                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
631
632                 snd_pcm_trigger_done(s, substream);
633         }
634
635         if (starting) {
636                 if (record)
637                         outl(record, io + SIS_RECORD_START_REG);
638                 if (play[0])
639                         outl(play[0], io + SIS_PLAY_START_A_REG);
640                 if (play[1])
641                         outl(play[1], io + SIS_PLAY_START_B_REG);
642         } else {
643                 if (record)
644                         outl(record, io + SIS_RECORD_STOP_REG);
645                 if (play[0])
646                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
647                 if (play[1])
648                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
649         }
650         return 0;
651 }
652
653 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
654 {
655         struct snd_pcm_runtime *runtime = substream->runtime;
656         struct voice *voice = runtime->private_data;
657         u32 cso;
658
659         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
660         cso &= 0xffff;
661         return cso;
662 }
663
664 static int sis_capture_open(struct snd_pcm_substream *substream)
665 {
666         struct sis7019 *sis = snd_pcm_substream_chip(substream);
667         struct snd_pcm_runtime *runtime = substream->runtime;
668         struct voice *voice = &sis->capture_voice;
669         unsigned long flags;
670
671         /* FIXME: The driver only supports recording from one channel
672          * at the moment, but it could support more.
673          */
674         spin_lock_irqsave(&sis->voice_lock, flags);
675         if (voice->flags & VOICE_IN_USE)
676                 voice = NULL;
677         else
678                 voice->flags |= VOICE_IN_USE;
679         spin_unlock_irqrestore(&sis->voice_lock, flags);
680
681         if (!voice)
682                 return -EAGAIN;
683
684         voice->substream = substream;
685         runtime->private_data = voice;
686         runtime->hw = sis_capture_hw_info;
687         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
688         snd_pcm_limit_hw_rates(runtime);
689         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
690                                                 9, 0xfff9);
691         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
692                                                 9, 0xfff9);
693         snd_pcm_set_sync(substream);
694         return 0;
695 }
696
697 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
698                                         struct snd_pcm_hw_params *hw_params)
699 {
700         struct sis7019 *sis = snd_pcm_substream_chip(substream);
701         int rc;
702
703         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
704                                                 params_rate(hw_params));
705         if (rc)
706                 goto out;
707
708         rc = snd_pcm_lib_malloc_pages(substream,
709                                         params_buffer_bytes(hw_params));
710         if (rc < 0)
711                 goto out;
712
713         rc = sis_alloc_timing_voice(substream, hw_params);
714
715 out:
716         return rc;
717 }
718
719 static void sis_prepare_timing_voice(struct voice *voice,
720                                         struct snd_pcm_substream *substream)
721 {
722         struct sis7019 *sis = snd_pcm_substream_chip(substream);
723         struct snd_pcm_runtime *runtime = substream->runtime;
724         struct voice *timing = voice->timing;
725         void __iomem *play_base = timing->ctrl_base;
726         void __iomem *wave_base = timing->wave_base;
727         u16 buffer_size, period_size;
728         u32 format, control, sso_eso, delta;
729         u32 vperiod, sso, reg;
730
731         /* Set our initial buffer and period as large as we can given a
732          * single page of silence.
733          */
734         buffer_size = 4096 / runtime->channels;
735         buffer_size /= snd_pcm_format_size(runtime->format, 1);
736         period_size = buffer_size;
737
738         /* Initially, we want to interrupt just a bit behind the end of
739          * the period we're clocking out. 10 samples seems to give a good
740          * delay.
741          *
742          * We want to spread our interrupts throughout the virtual period,
743          * so that we don't end up with two interrupts back to back at the
744          * end -- this helps minimize the effects of any jitter. Adjust our
745          * clocking period size so that the last period is at least a fourth
746          * of a full period.
747          *
748          * This is all moot if we don't need to use virtual periods.
749          */
750         vperiod = runtime->period_size + 10;
751         if (vperiod > period_size) {
752                 u16 tail = vperiod % period_size;
753                 u16 quarter_period = period_size / 4;
754
755                 if (tail && tail < quarter_period) {
756                         u16 loops = vperiod / period_size;
757
758                         tail = quarter_period - tail;
759                         tail += loops - 1;
760                         tail /= loops;
761                         period_size -= tail;
762                 }
763
764                 sso = period_size - 1;
765         } else {
766                 /* The initial period will fit inside the buffer, so we
767                  * don't need to use virtual periods -- disable them.
768                  */
769                 period_size = runtime->period_size;
770                 sso = vperiod - 1;
771                 vperiod = 0;
772         }
773
774         /* The interrupt handler implements the timing syncronization, so
775          * setup its state.
776          */
777         timing->flags |= VOICE_SYNC_TIMING;
778         timing->sync_base = voice->ctrl_base;
779         timing->sync_cso = runtime->period_size - 1;
780         timing->sync_period_size = runtime->period_size;
781         timing->sync_buffer_size = runtime->buffer_size;
782         timing->period_size = period_size;
783         timing->buffer_size = buffer_size;
784         timing->sso = sso;
785         timing->vperiod = vperiod;
786
787         /* Using unsigned samples with the all-zero silence buffer
788          * forces the output to the lower rail, killing playback.
789          * So ignore unsigned vs signed -- it doesn't change the timing.
790          */
791         format = 0;
792         if (snd_pcm_format_width(runtime->format) == 8)
793                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
794         if (runtime->channels == 1)
795                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
796
797         control = timing->buffer_size - 1;
798         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
799         sso_eso = timing->buffer_size - 1;
800         sso_eso |= timing->sso << 16;
801
802         delta = sis_rate_to_delta(runtime->rate);
803
804         /* We've done the math, now configure the channel.
805          */
806         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
807         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
808         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
809         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
810
811         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
812                 writel(0, wave_base + reg);
813
814         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
815         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
816         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
817                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
818                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
819                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
820 }
821
822 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
823 {
824         struct snd_pcm_runtime *runtime = substream->runtime;
825         struct voice *voice = runtime->private_data;
826         void __iomem *rec_base = voice->ctrl_base;
827         u32 format, dma_addr, control;
828         u16 leo;
829
830         /* We rely on the PCM core to ensure that the parameters for this
831          * substream do not change on us while we're programming the HW.
832          */
833         format = 0;
834         if (snd_pcm_format_width(runtime->format) == 8)
835                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
836         if (!snd_pcm_format_signed(runtime->format))
837                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
838         if (runtime->channels == 1)
839                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
840
841         dma_addr = runtime->dma_addr;
842         leo = runtime->buffer_size - 1;
843         control = leo | SIS_CAPTURE_DMA_LOOP;
844
845         /* If we've got more than two periods per buffer, then we have
846          * use a timing voice to clock out the periods. Otherwise, we can
847          * use the capture channel's interrupts.
848          */
849         if (voice->timing) {
850                 sis_prepare_timing_voice(voice, substream);
851         } else {
852                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
853                 if (runtime->period_size != runtime->buffer_size)
854                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
855         }
856
857         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
858         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
859         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
860
861         /* Force the writes to post. */
862         readl(rec_base);
863
864         return 0;
865 }
866
867 static struct snd_pcm_ops sis_playback_ops = {
868         .open = sis_playback_open,
869         .close = sis_substream_close,
870         .ioctl = snd_pcm_lib_ioctl,
871         .hw_params = sis_playback_hw_params,
872         .hw_free = sis_hw_free,
873         .prepare = sis_pcm_playback_prepare,
874         .trigger = sis_pcm_trigger,
875         .pointer = sis_pcm_pointer,
876 };
877
878 static struct snd_pcm_ops sis_capture_ops = {
879         .open = sis_capture_open,
880         .close = sis_substream_close,
881         .ioctl = snd_pcm_lib_ioctl,
882         .hw_params = sis_capture_hw_params,
883         .hw_free = sis_hw_free,
884         .prepare = sis_pcm_capture_prepare,
885         .trigger = sis_pcm_trigger,
886         .pointer = sis_pcm_pointer,
887 };
888
889 static int __devinit sis_pcm_create(struct sis7019 *sis)
890 {
891         struct snd_pcm *pcm;
892         int rc;
893
894         /* We have 64 voices, and the driver currently records from
895          * only one channel, though that could change in the future.
896          */
897         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
898         if (rc)
899                 return rc;
900
901         pcm->private_data = sis;
902         strcpy(pcm->name, "SiS7019");
903         sis->pcm = pcm;
904
905         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
906         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
907
908         /* Try to preallocate some memory, but it's not the end of the
909          * world if this fails.
910          */
911         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
912                                 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
913
914         return 0;
915 }
916
917 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
918 {
919         unsigned long io = sis->ioport;
920         unsigned short val = 0xffff;
921         u16 status;
922         u16 rdy;
923         int count;
924         static const u16 codec_ready[3] = {
925                 SIS_AC97_STATUS_CODEC_READY,
926                 SIS_AC97_STATUS_CODEC2_READY,
927                 SIS_AC97_STATUS_CODEC3_READY,
928         };
929
930         rdy = codec_ready[codec];
931
932
933         /* Get the AC97 semaphore -- software first, so we don't spin
934          * pounding out IO reads on the hardware semaphore...
935          */
936         mutex_lock(&sis->ac97_mutex);
937
938         count = 0xffff;
939         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
940                 udelay(1);
941
942         if (!count)
943                 goto timeout;
944
945         /* ... and wait for any outstanding commands to complete ...
946          */
947         count = 0xffff;
948         do {
949                 status = inw(io + SIS_AC97_STATUS);
950                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
951                         break;
952
953                 udelay(1);
954         } while (--count);
955
956         if (!count)
957                 goto timeout_sema;
958
959         /* ... before sending our command and waiting for it to finish ...
960          */
961         outl(cmd, io + SIS_AC97_CMD);
962         udelay(10);
963
964         count = 0xffff;
965         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
966                 udelay(1);
967
968         /* ... and reading the results (if any).
969          */
970         val = inl(io + SIS_AC97_CMD) >> 16;
971
972 timeout_sema:
973         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
974 timeout:
975         mutex_unlock(&sis->ac97_mutex);
976
977         if (!count) {
978                 printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
979                                         codec, cmd);
980         }
981
982         return val;
983 }
984
985 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
986                                 unsigned short val)
987 {
988         static const u32 cmd[3] = {
989                 SIS_AC97_CMD_CODEC_WRITE,
990                 SIS_AC97_CMD_CODEC2_WRITE,
991                 SIS_AC97_CMD_CODEC3_WRITE,
992         };
993         sis_ac97_rw(ac97->private_data, ac97->num,
994                         (val << 16) | (reg << 8) | cmd[ac97->num]);
995 }
996
997 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
998 {
999         static const u32 cmd[3] = {
1000                 SIS_AC97_CMD_CODEC_READ,
1001                 SIS_AC97_CMD_CODEC2_READ,
1002                 SIS_AC97_CMD_CODEC3_READ,
1003         };
1004         return sis_ac97_rw(ac97->private_data, ac97->num,
1005                                         (reg << 8) | cmd[ac97->num]);
1006 }
1007
1008 static int __devinit sis_mixer_create(struct sis7019 *sis)
1009 {
1010         struct snd_ac97_bus *bus;
1011         struct snd_ac97_template ac97;
1012         static struct snd_ac97_bus_ops ops = {
1013                 .write = sis_ac97_write,
1014                 .read = sis_ac97_read,
1015         };
1016         int rc;
1017
1018         memset(&ac97, 0, sizeof(ac97));
1019         ac97.private_data = sis;
1020
1021         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1022         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1023                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1024         ac97.num = 1;
1025         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1026                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1027         ac97.num = 2;
1028         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1029                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1030
1031         /* If we return an error here, then snd_card_free() should
1032          * free up any ac97 codecs that got created, as well as the bus.
1033          */
1034         return rc;
1035 }
1036
1037 static void sis_free_suspend(struct sis7019 *sis)
1038 {
1039         int i;
1040
1041         for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1042                 kfree(sis->suspend_state[i]);
1043 }
1044
1045 static int sis_chip_free(struct sis7019 *sis)
1046 {
1047         /* Reset the chip, and disable all interrputs.
1048          */
1049         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1050         udelay(10);
1051         outl(0, sis->ioport + SIS_GCR);
1052         outl(0, sis->ioport + SIS_GIER);
1053
1054         /* Now, free everything we allocated.
1055          */
1056         if (sis->irq >= 0)
1057                 free_irq(sis->irq, sis);
1058
1059         if (sis->ioaddr)
1060                 iounmap(sis->ioaddr);
1061
1062         pci_release_regions(sis->pci);
1063         pci_disable_device(sis->pci);
1064
1065         sis_free_suspend(sis);
1066         return 0;
1067 }
1068
1069 static int sis_dev_free(struct snd_device *dev)
1070 {
1071         struct sis7019 *sis = dev->device_data;
1072         return sis_chip_free(sis);
1073 }
1074
1075 static int sis_chip_init(struct sis7019 *sis)
1076 {
1077         unsigned long io = sis->ioport;
1078         void __iomem *ioaddr = sis->ioaddr;
1079         u16 status;
1080         int count;
1081         int i;
1082
1083         /* Reset the audio controller
1084          */
1085         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1086         udelay(10);
1087         outl(0, io + SIS_GCR);
1088
1089         /* Get the AC-link semaphore, and reset the codecs
1090          */
1091         count = 0xffff;
1092         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1093                 udelay(1);
1094
1095         if (!count)
1096                 return -EIO;
1097
1098         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1099         udelay(10);
1100
1101         count = 0xffff;
1102         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1103                 udelay(1);
1104
1105         /* Now that we've finished the reset, find out what's attached.
1106          */
1107         status = inl(io + SIS_AC97_STATUS);
1108         if (status & SIS_AC97_STATUS_CODEC_READY)
1109                 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1110         if (status & SIS_AC97_STATUS_CODEC2_READY)
1111                 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1112         if (status & SIS_AC97_STATUS_CODEC3_READY)
1113                 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1114
1115         /* All done, let go of the semaphore, and check for errors
1116          */
1117         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1118         if (!sis->codecs_present || !count)
1119                 return -EIO;
1120
1121         /* Let the hardware know that the audio driver is alive,
1122          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1123          * record channels. We're going to want to use Variable Rate Audio
1124          * for recording, to avoid needlessly resampling from 48kHZ.
1125          */
1126         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1127         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1128                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1129                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1130                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1131
1132         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1133          */
1134         outl(0, io + SIS_AC97_PSR);
1135
1136         /* There is only one valid DMA setup for a PCI environment.
1137          */
1138         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1139
1140         /* Reset the syncronization groups for all of the channels
1141          * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1142          * we'll need to change how we handle these. Until then, we just
1143          * assign sub-mixer 0 to all playback channels, and avoid any
1144          * attenuation on the audio.
1145          */
1146         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1147         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1148         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1149         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1150         outl(0, io + SIS_MIXER_SYNC_GROUP);
1151
1152         for (i = 0; i < 64; i++) {
1153                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1154                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1155                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1156         }
1157
1158         /* Don't attenuate any audio set for the wave amplifier.
1159          *
1160          * FIXME: Maximum attenuation is set for the music amp, which will
1161          * need to change if we start using the synth engine.
1162          */
1163         outl(0xffff0000, io + SIS_WEVCR);
1164
1165         /* Ensure that the wave engine is in normal operating mode.
1166          */
1167         outl(0, io + SIS_WECCR);
1168
1169         /* Go ahead and enable the DMA interrupts. They won't go live
1170          * until we start a channel.
1171          */
1172         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1173                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1174
1175         return 0;
1176 }
1177
1178 #ifdef CONFIG_PM
1179 static int sis_suspend(struct pci_dev *pci, pm_message_t state)
1180 {
1181         struct snd_card *card = pci_get_drvdata(pci);
1182         struct sis7019 *sis = card->private_data;
1183         void __iomem *ioaddr = sis->ioaddr;
1184         int i;
1185
1186         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1187         snd_pcm_suspend_all(sis->pcm);
1188         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1189                 snd_ac97_suspend(sis->ac97[0]);
1190         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1191                 snd_ac97_suspend(sis->ac97[1]);
1192         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1193                 snd_ac97_suspend(sis->ac97[2]);
1194
1195         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1196          */
1197         if (sis->irq >= 0) {
1198                 free_irq(sis->irq, sis);
1199                 sis->irq = -1;
1200         }
1201
1202         /* Save the internal state away
1203          */
1204         for (i = 0; i < 4; i++) {
1205                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1206                 ioaddr += 4096;
1207         }
1208
1209         pci_disable_device(pci);
1210         pci_save_state(pci);
1211         pci_set_power_state(pci, pci_choose_state(pci, state));
1212         return 0;
1213 }
1214
1215 static int sis_resume(struct pci_dev *pci)
1216 {
1217         struct snd_card *card = pci_get_drvdata(pci);
1218         struct sis7019 *sis = card->private_data;
1219         void __iomem *ioaddr = sis->ioaddr;
1220         int i;
1221
1222         pci_set_power_state(pci, PCI_D0);
1223         pci_restore_state(pci);
1224
1225         if (pci_enable_device(pci) < 0) {
1226                 printk(KERN_ERR "sis7019: unable to re-enable device\n");
1227                 goto error;
1228         }
1229
1230         if (sis_chip_init(sis)) {
1231                 printk(KERN_ERR "sis7019: unable to re-init controller\n");
1232                 goto error;
1233         }
1234
1235         if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1236                                 card->shortname, sis)) {
1237                 printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
1238                 goto error;
1239         }
1240
1241         /* Restore saved state, then clear out the page we use for the
1242          * silence buffer.
1243          */
1244         for (i = 0; i < 4; i++) {
1245                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1246                 ioaddr += 4096;
1247         }
1248
1249         memset(sis->suspend_state[0], 0, 4096);
1250
1251         sis->irq = pci->irq;
1252         pci_set_master(pci);
1253
1254         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1255                 snd_ac97_resume(sis->ac97[0]);
1256         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1257                 snd_ac97_resume(sis->ac97[1]);
1258         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1259                 snd_ac97_resume(sis->ac97[2]);
1260
1261         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1262         return 0;
1263
1264 error:
1265         snd_card_disconnect(card);
1266         return -EIO;
1267 }
1268 #endif /* CONFIG_PM */
1269
1270 static int sis_alloc_suspend(struct sis7019 *sis)
1271 {
1272         int i;
1273
1274         /* We need 16K to store the internal wave engine state during a
1275          * suspend, but we don't need it to be contiguous, so play nice
1276          * with the memory system. We'll also use this area for a silence
1277          * buffer.
1278          */
1279         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1280                 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1281                 if (!sis->suspend_state[i])
1282                         return -ENOMEM;
1283         }
1284         memset(sis->suspend_state[0], 0, 4096);
1285
1286         return 0;
1287 }
1288
1289 static int __devinit sis_chip_create(struct snd_card *card,
1290                                         struct pci_dev *pci)
1291 {
1292         struct sis7019 *sis = card->private_data;
1293         struct voice *voice;
1294         static struct snd_device_ops ops = {
1295                 .dev_free = sis_dev_free,
1296         };
1297         int rc;
1298         int i;
1299
1300         rc = pci_enable_device(pci);
1301         if (rc)
1302                 goto error_out;
1303
1304         if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
1305                 printk(KERN_ERR "sis7019: architecture does not support "
1306                                         "30-bit PCI busmaster DMA");
1307                 goto error_out_enabled;
1308         }
1309
1310         memset(sis, 0, sizeof(*sis));
1311         mutex_init(&sis->ac97_mutex);
1312         spin_lock_init(&sis->voice_lock);
1313         sis->card = card;
1314         sis->pci = pci;
1315         sis->irq = -1;
1316         sis->ioport = pci_resource_start(pci, 0);
1317
1318         rc = pci_request_regions(pci, "SiS7019");
1319         if (rc) {
1320                 printk(KERN_ERR "sis7019: unable request regions\n");
1321                 goto error_out_enabled;
1322         }
1323
1324         rc = -EIO;
1325         sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1326         if (!sis->ioaddr) {
1327                 printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
1328                 goto error_out_cleanup;
1329         }
1330
1331         rc = sis_alloc_suspend(sis);
1332         if (rc < 0) {
1333                 printk(KERN_ERR "sis7019: unable to allocate state storage\n");
1334                 goto error_out_cleanup;
1335         }
1336
1337         rc = sis_chip_init(sis);
1338         if (rc)
1339                 goto error_out_cleanup;
1340
1341         if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1342                                 card->shortname, sis)) {
1343                 printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
1344                 goto error_out_cleanup;
1345         }
1346
1347         sis->irq = pci->irq;
1348         pci_set_master(pci);
1349
1350         for (i = 0; i < 64; i++) {
1351                 voice = &sis->voices[i];
1352                 voice->num = i;
1353                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1354                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1355         }
1356
1357         voice = &sis->capture_voice;
1358         voice->flags = VOICE_CAPTURE;
1359         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1360         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1361
1362         rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1363         if (rc)
1364                 goto error_out_cleanup;
1365
1366         snd_card_set_dev(card, &pci->dev);
1367
1368         return 0;
1369
1370 error_out_cleanup:
1371         sis_chip_free(sis);
1372
1373 error_out_enabled:
1374         pci_disable_device(pci);
1375
1376 error_out:
1377         return rc;
1378 }
1379
1380 static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1381                                         const struct pci_device_id *pci_id)
1382 {
1383         struct snd_card *card;
1384         struct sis7019 *sis;
1385         int rc;
1386
1387         rc = -ENOENT;
1388         if (!enable)
1389                 goto error_out;
1390
1391         rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1392         if (rc < 0)
1393                 goto error_out;
1394
1395         strcpy(card->driver, "SiS7019");
1396         strcpy(card->shortname, "SiS7019");
1397         rc = sis_chip_create(card, pci);
1398         if (rc)
1399                 goto card_error_out;
1400
1401         sis = card->private_data;
1402
1403         rc = sis_mixer_create(sis);
1404         if (rc)
1405                 goto card_error_out;
1406
1407         rc = sis_pcm_create(sis);
1408         if (rc)
1409                 goto card_error_out;
1410
1411         snprintf(card->longname, sizeof(card->longname),
1412                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1413                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1414                         sis->ioport, sis->irq);
1415
1416         rc = snd_card_register(card);
1417         if (rc)
1418                 goto card_error_out;
1419
1420         pci_set_drvdata(pci, card);
1421         return 0;
1422
1423 card_error_out:
1424         snd_card_free(card);
1425
1426 error_out:
1427         return rc;
1428 }
1429
1430 static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1431 {
1432         snd_card_free(pci_get_drvdata(pci));
1433         pci_set_drvdata(pci, NULL);
1434 }
1435
1436 static struct pci_driver sis7019_driver = {
1437         .name = "SiS7019",
1438         .id_table = snd_sis7019_ids,
1439         .probe = snd_sis7019_probe,
1440         .remove = __devexit_p(snd_sis7019_remove),
1441
1442 #ifdef CONFIG_PM
1443         .suspend = sis_suspend,
1444         .resume = sis_resume,
1445 #endif
1446 };
1447
1448 static int __init sis7019_init(void)
1449 {
1450         return pci_register_driver(&sis7019_driver);
1451 }
1452
1453 static void __exit sis7019_exit(void)
1454 {
1455         pci_unregister_driver(&sis7019_driver);
1456 }
1457
1458 module_init(sis7019_init);
1459 module_exit(sis7019_exit);