ALSA: usb-audio: add support for Akai MPD16
[safe/jmp/linux-2.6] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = new_hw_ptr;
83                         } else {
84                                 runtime->silence_start = ofs;
85                         }
86                 }
87                 frames = runtime->buffer_size - runtime->silence_filled;
88         }
89         if (snd_BUG_ON(frames > runtime->buffer_size))
90                 return;
91         if (frames == 0)
92                 return;
93         ofs = runtime->silence_start % runtime->buffer_size;
94         while (frames > 0) {
95                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
96                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
97                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
98                         if (substream->ops->silence) {
99                                 int err;
100                                 err = substream->ops->silence(substream, -1, ofs, transfer);
101                                 snd_BUG_ON(err < 0);
102                         } else {
103                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
104                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
105                         }
106                 } else {
107                         unsigned int c;
108                         unsigned int channels = runtime->channels;
109                         if (substream->ops->silence) {
110                                 for (c = 0; c < channels; ++c) {
111                                         int err;
112                                         err = substream->ops->silence(substream, c, ofs, transfer);
113                                         snd_BUG_ON(err < 0);
114                                 }
115                         } else {
116                                 size_t dma_csize = runtime->dma_bytes / channels;
117                                 for (c = 0; c < channels; ++c) {
118                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
119                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
120                                 }
121                         }
122                 }
123                 runtime->silence_filled += transfer;
124                 frames -= transfer;
125                 ofs = 0;
126         }
127 }
128
129 static void pcm_debug_name(struct snd_pcm_substream *substream,
130                            char *name, size_t len)
131 {
132         snprintf(name, len, "pcmC%dD%d%c:%d",
133                  substream->pcm->card->number,
134                  substream->pcm->device,
135                  substream->stream ? 'c' : 'p',
136                  substream->number);
137 }
138
139 #define XRUN_DEBUG_BASIC        (1<<0)
140 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
142 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
143 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
144 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
145 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
146
147 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
148
149 #define xrun_debug(substream, mask) \
150                         ((substream)->pstr->xrun_debug & (mask))
151 #else
152 #define xrun_debug(substream, mask)     0
153 #endif
154
155 #define dump_stack_on_xrun(substream) do {                      \
156                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
157                         dump_stack();                           \
158         } while (0)
159
160 static void xrun(struct snd_pcm_substream *substream)
161 {
162         struct snd_pcm_runtime *runtime = substream->runtime;
163
164         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
165                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
166         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
167         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
168                 char name[16];
169                 pcm_debug_name(substream, name, sizeof(name));
170                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
171                 dump_stack_on_xrun(substream);
172         }
173 }
174
175 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
176 #define hw_ptr_error(substream, fmt, args...)                           \
177         do {                                                            \
178                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
179                         xrun_log_show(substream);                       \
180                         if (printk_ratelimit()) {                       \
181                                 snd_printd("PCM: " fmt, ##args);        \
182                         }                                               \
183                         dump_stack_on_xrun(substream);                  \
184                 }                                                       \
185         } while (0)
186
187 #define XRUN_LOG_CNT    10
188
189 struct hwptr_log_entry {
190         unsigned long jiffies;
191         snd_pcm_uframes_t pos;
192         snd_pcm_uframes_t period_size;
193         snd_pcm_uframes_t buffer_size;
194         snd_pcm_uframes_t old_hw_ptr;
195         snd_pcm_uframes_t hw_ptr_base;
196 };
197
198 struct snd_pcm_hwptr_log {
199         unsigned int idx;
200         unsigned int hit: 1;
201         struct hwptr_log_entry entries[XRUN_LOG_CNT];
202 };
203
204 static void xrun_log(struct snd_pcm_substream *substream,
205                      snd_pcm_uframes_t pos)
206 {
207         struct snd_pcm_runtime *runtime = substream->runtime;
208         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
209         struct hwptr_log_entry *entry;
210
211         if (log == NULL) {
212                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
213                 if (log == NULL)
214                         return;
215                 runtime->hwptr_log = log;
216         } else {
217                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
218                         return;
219         }
220         entry = &log->entries[log->idx];
221         entry->jiffies = jiffies;
222         entry->pos = pos;
223         entry->period_size = runtime->period_size;
224         entry->buffer_size = runtime->buffer_size;;
225         entry->old_hw_ptr = runtime->status->hw_ptr;
226         entry->hw_ptr_base = runtime->hw_ptr_base;
227         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
228 }
229
230 static void xrun_log_show(struct snd_pcm_substream *substream)
231 {
232         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
233         struct hwptr_log_entry *entry;
234         char name[16];
235         unsigned int idx;
236         int cnt;
237
238         if (log == NULL)
239                 return;
240         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
241                 return;
242         pcm_debug_name(substream, name, sizeof(name));
243         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
244                 entry = &log->entries[idx];
245                 if (entry->period_size == 0)
246                         break;
247                 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
248                            "hwptr=%ld/%ld\n",
249                            name, entry->jiffies, (unsigned long)entry->pos,
250                            (unsigned long)entry->period_size,
251                            (unsigned long)entry->buffer_size,
252                            (unsigned long)entry->old_hw_ptr,
253                            (unsigned long)entry->hw_ptr_base);
254                 idx++;
255                 idx %= XRUN_LOG_CNT;
256         }
257         log->hit = 1;
258 }
259
260 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
261
262 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
263 #define xrun_log(substream, pos)        do { } while (0)
264 #define xrun_log_show(substream)        do { } while (0)
265
266 #endif
267
268 int snd_pcm_update_state(struct snd_pcm_substream *substream,
269                          struct snd_pcm_runtime *runtime)
270 {
271         snd_pcm_uframes_t avail;
272
273         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
274                 avail = snd_pcm_playback_avail(runtime);
275         else
276                 avail = snd_pcm_capture_avail(runtime);
277         if (avail > runtime->avail_max)
278                 runtime->avail_max = avail;
279         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
280                 if (avail >= runtime->buffer_size) {
281                         snd_pcm_drain_done(substream);
282                         return -EPIPE;
283                 }
284         } else {
285                 if (avail >= runtime->stop_threshold) {
286                         xrun(substream);
287                         return -EPIPE;
288                 }
289         }
290         if (avail >= runtime->control->avail_min)
291                 wake_up(runtime->twake ? &runtime->tsleep : &runtime->sleep);
292         return 0;
293 }
294
295 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
296                                   unsigned int in_interrupt)
297 {
298         struct snd_pcm_runtime *runtime = substream->runtime;
299         snd_pcm_uframes_t pos;
300         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
301         snd_pcm_sframes_t hdelta, delta;
302         unsigned long jdelta;
303
304         old_hw_ptr = runtime->status->hw_ptr;
305         pos = substream->ops->pointer(substream);
306         if (pos == SNDRV_PCM_POS_XRUN) {
307                 xrun(substream);
308                 return -EPIPE;
309         }
310         if (pos >= runtime->buffer_size) {
311                 if (printk_ratelimit()) {
312                         char name[16];
313                         pcm_debug_name(substream, name, sizeof(name));
314                         xrun_log_show(substream);
315                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
316                                    "buffer size = %ld, period size = %ld\n",
317                                    name, pos, runtime->buffer_size,
318                                    runtime->period_size);
319                 }
320                 pos = 0;
321         }
322         pos -= pos % runtime->min_align;
323         if (xrun_debug(substream, XRUN_DEBUG_LOG))
324                 xrun_log(substream, pos);
325         hw_base = runtime->hw_ptr_base;
326         new_hw_ptr = hw_base + pos;
327         if (in_interrupt) {
328                 /* we know that one period was processed */
329                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
330                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
331                 if (delta > new_hw_ptr) {
332                         hw_base += runtime->buffer_size;
333                         if (hw_base >= runtime->boundary)
334                                 hw_base = 0;
335                         new_hw_ptr = hw_base + pos;
336                         goto __delta;
337                 }
338         }
339         /* new_hw_ptr might be lower than old_hw_ptr in case when */
340         /* pointer crosses the end of the ring buffer */
341         if (new_hw_ptr < old_hw_ptr) {
342                 hw_base += runtime->buffer_size;
343                 if (hw_base >= runtime->boundary)
344                         hw_base = 0;
345                 new_hw_ptr = hw_base + pos;
346         }
347       __delta:
348         delta = (new_hw_ptr - old_hw_ptr) % runtime->boundary;
349         if (xrun_debug(substream, in_interrupt ?
350                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
351                 char name[16];
352                 pcm_debug_name(substream, name, sizeof(name));
353                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
354                            "hwptr=%ld/%ld/%ld/%ld\n",
355                            in_interrupt ? "period" : "hwptr",
356                            name,
357                            (unsigned int)pos,
358                            (unsigned int)runtime->period_size,
359                            (unsigned int)runtime->buffer_size,
360                            (unsigned long)delta,
361                            (unsigned long)old_hw_ptr,
362                            (unsigned long)new_hw_ptr,
363                            (unsigned long)runtime->hw_ptr_base);
364         }
365         /* something must be really wrong */
366         if (delta >= runtime->buffer_size + runtime->period_size) {
367                 hw_ptr_error(substream,
368                                "Unexpected hw_pointer value %s"
369                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
370                                "old_hw_ptr=%ld)\n",
371                                      in_interrupt ? "[Q] " : "[P]",
372                                      substream->stream, (long)pos,
373                                      (long)new_hw_ptr, (long)old_hw_ptr);
374                 return 0;
375         }
376
377         /* Do jiffies check only in xrun_debug mode */
378         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
379                 goto no_jiffies_check;
380
381         /* Skip the jiffies check for hardwares with BATCH flag.
382          * Such hardware usually just increases the position at each IRQ,
383          * thus it can't give any strange position.
384          */
385         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
386                 goto no_jiffies_check;
387         hdelta = delta;
388         if (hdelta < runtime->delay)
389                 goto no_jiffies_check;
390         hdelta -= runtime->delay;
391         jdelta = jiffies - runtime->hw_ptr_jiffies;
392         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
393                 delta = jdelta /
394                         (((runtime->period_size * HZ) / runtime->rate)
395                                                                 + HZ/100);
396                 /* move new_hw_ptr according jiffies not pos variable */
397                 new_hw_ptr = old_hw_ptr;
398                 hw_base = delta;
399                 /* use loop to avoid checks for delta overflows */
400                 /* the delta value is small or zero in most cases */
401                 while (delta > 0) {
402                         new_hw_ptr += runtime->period_size;
403                         if (new_hw_ptr >= runtime->boundary)
404                                 new_hw_ptr -= runtime->boundary;
405                         delta--;
406                 }
407                 /* align hw_base to buffer_size */
408                 hw_ptr_error(substream,
409                              "hw_ptr skipping! %s"
410                              "(pos=%ld, delta=%ld, period=%ld, "
411                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
412                              in_interrupt ? "[Q] " : "",
413                              (long)pos, (long)hdelta,
414                              (long)runtime->period_size, jdelta,
415                              ((hdelta * HZ) / runtime->rate), hw_base,
416                              (unsigned long)old_hw_ptr,
417                              (unsigned long)new_hw_ptr);
418                 /* reset values to proper state */
419                 delta = 0;
420                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
421         }
422  no_jiffies_check:
423         if (delta > runtime->period_size + runtime->period_size / 2) {
424                 hw_ptr_error(substream,
425                              "Lost interrupts? %s"
426                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
427                              "old_hw_ptr=%ld)\n",
428                              in_interrupt ? "[Q] " : "",
429                              substream->stream, (long)delta,
430                              (long)new_hw_ptr,
431                              (long)old_hw_ptr);
432         }
433
434         if (runtime->status->hw_ptr == new_hw_ptr)
435                 return 0;
436
437         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
438             runtime->silence_size > 0)
439                 snd_pcm_playback_silence(substream, new_hw_ptr);
440
441         if (in_interrupt) {
442                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
443                 if (delta < 0)
444                         delta += runtime->boundary;
445                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
446                 runtime->hw_ptr_interrupt += delta;
447                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
448                         runtime->hw_ptr_interrupt -= runtime->boundary;
449         }
450         runtime->hw_ptr_base = hw_base;
451         runtime->status->hw_ptr = new_hw_ptr;
452         runtime->hw_ptr_jiffies = jiffies;
453         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
454                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
455
456         return snd_pcm_update_state(substream, runtime);
457 }
458
459 /* CAUTION: call it with irq disabled */
460 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
461 {
462         return snd_pcm_update_hw_ptr0(substream, 0);
463 }
464
465 /**
466  * snd_pcm_set_ops - set the PCM operators
467  * @pcm: the pcm instance
468  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
469  * @ops: the operator table
470  *
471  * Sets the given PCM operators to the pcm instance.
472  */
473 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
474 {
475         struct snd_pcm_str *stream = &pcm->streams[direction];
476         struct snd_pcm_substream *substream;
477         
478         for (substream = stream->substream; substream != NULL; substream = substream->next)
479                 substream->ops = ops;
480 }
481
482 EXPORT_SYMBOL(snd_pcm_set_ops);
483
484 /**
485  * snd_pcm_sync - set the PCM sync id
486  * @substream: the pcm substream
487  *
488  * Sets the PCM sync identifier for the card.
489  */
490 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
491 {
492         struct snd_pcm_runtime *runtime = substream->runtime;
493         
494         runtime->sync.id32[0] = substream->pcm->card->number;
495         runtime->sync.id32[1] = -1;
496         runtime->sync.id32[2] = -1;
497         runtime->sync.id32[3] = -1;
498 }
499
500 EXPORT_SYMBOL(snd_pcm_set_sync);
501
502 /*
503  *  Standard ioctl routine
504  */
505
506 static inline unsigned int div32(unsigned int a, unsigned int b, 
507                                  unsigned int *r)
508 {
509         if (b == 0) {
510                 *r = 0;
511                 return UINT_MAX;
512         }
513         *r = a % b;
514         return a / b;
515 }
516
517 static inline unsigned int div_down(unsigned int a, unsigned int b)
518 {
519         if (b == 0)
520                 return UINT_MAX;
521         return a / b;
522 }
523
524 static inline unsigned int div_up(unsigned int a, unsigned int b)
525 {
526         unsigned int r;
527         unsigned int q;
528         if (b == 0)
529                 return UINT_MAX;
530         q = div32(a, b, &r);
531         if (r)
532                 ++q;
533         return q;
534 }
535
536 static inline unsigned int mul(unsigned int a, unsigned int b)
537 {
538         if (a == 0)
539                 return 0;
540         if (div_down(UINT_MAX, a) < b)
541                 return UINT_MAX;
542         return a * b;
543 }
544
545 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
546                                     unsigned int c, unsigned int *r)
547 {
548         u_int64_t n = (u_int64_t) a * b;
549         if (c == 0) {
550                 snd_BUG_ON(!n);
551                 *r = 0;
552                 return UINT_MAX;
553         }
554         n = div_u64_rem(n, c, r);
555         if (n >= UINT_MAX) {
556                 *r = 0;
557                 return UINT_MAX;
558         }
559         return n;
560 }
561
562 /**
563  * snd_interval_refine - refine the interval value of configurator
564  * @i: the interval value to refine
565  * @v: the interval value to refer to
566  *
567  * Refines the interval value with the reference value.
568  * The interval is changed to the range satisfying both intervals.
569  * The interval status (min, max, integer, etc.) are evaluated.
570  *
571  * Returns non-zero if the value is changed, zero if not changed.
572  */
573 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
574 {
575         int changed = 0;
576         if (snd_BUG_ON(snd_interval_empty(i)))
577                 return -EINVAL;
578         if (i->min < v->min) {
579                 i->min = v->min;
580                 i->openmin = v->openmin;
581                 changed = 1;
582         } else if (i->min == v->min && !i->openmin && v->openmin) {
583                 i->openmin = 1;
584                 changed = 1;
585         }
586         if (i->max > v->max) {
587                 i->max = v->max;
588                 i->openmax = v->openmax;
589                 changed = 1;
590         } else if (i->max == v->max && !i->openmax && v->openmax) {
591                 i->openmax = 1;
592                 changed = 1;
593         }
594         if (!i->integer && v->integer) {
595                 i->integer = 1;
596                 changed = 1;
597         }
598         if (i->integer) {
599                 if (i->openmin) {
600                         i->min++;
601                         i->openmin = 0;
602                 }
603                 if (i->openmax) {
604                         i->max--;
605                         i->openmax = 0;
606                 }
607         } else if (!i->openmin && !i->openmax && i->min == i->max)
608                 i->integer = 1;
609         if (snd_interval_checkempty(i)) {
610                 snd_interval_none(i);
611                 return -EINVAL;
612         }
613         return changed;
614 }
615
616 EXPORT_SYMBOL(snd_interval_refine);
617
618 static int snd_interval_refine_first(struct snd_interval *i)
619 {
620         if (snd_BUG_ON(snd_interval_empty(i)))
621                 return -EINVAL;
622         if (snd_interval_single(i))
623                 return 0;
624         i->max = i->min;
625         i->openmax = i->openmin;
626         if (i->openmax)
627                 i->max++;
628         return 1;
629 }
630
631 static int snd_interval_refine_last(struct snd_interval *i)
632 {
633         if (snd_BUG_ON(snd_interval_empty(i)))
634                 return -EINVAL;
635         if (snd_interval_single(i))
636                 return 0;
637         i->min = i->max;
638         i->openmin = i->openmax;
639         if (i->openmin)
640                 i->min--;
641         return 1;
642 }
643
644 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
645 {
646         if (a->empty || b->empty) {
647                 snd_interval_none(c);
648                 return;
649         }
650         c->empty = 0;
651         c->min = mul(a->min, b->min);
652         c->openmin = (a->openmin || b->openmin);
653         c->max = mul(a->max,  b->max);
654         c->openmax = (a->openmax || b->openmax);
655         c->integer = (a->integer && b->integer);
656 }
657
658 /**
659  * snd_interval_div - refine the interval value with division
660  * @a: dividend
661  * @b: divisor
662  * @c: quotient
663  *
664  * c = a / b
665  *
666  * Returns non-zero if the value is changed, zero if not changed.
667  */
668 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
669 {
670         unsigned int r;
671         if (a->empty || b->empty) {
672                 snd_interval_none(c);
673                 return;
674         }
675         c->empty = 0;
676         c->min = div32(a->min, b->max, &r);
677         c->openmin = (r || a->openmin || b->openmax);
678         if (b->min > 0) {
679                 c->max = div32(a->max, b->min, &r);
680                 if (r) {
681                         c->max++;
682                         c->openmax = 1;
683                 } else
684                         c->openmax = (a->openmax || b->openmin);
685         } else {
686                 c->max = UINT_MAX;
687                 c->openmax = 0;
688         }
689         c->integer = 0;
690 }
691
692 /**
693  * snd_interval_muldivk - refine the interval value
694  * @a: dividend 1
695  * @b: dividend 2
696  * @k: divisor (as integer)
697  * @c: result
698   *
699  * c = a * b / k
700  *
701  * Returns non-zero if the value is changed, zero if not changed.
702  */
703 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
704                       unsigned int k, struct snd_interval *c)
705 {
706         unsigned int r;
707         if (a->empty || b->empty) {
708                 snd_interval_none(c);
709                 return;
710         }
711         c->empty = 0;
712         c->min = muldiv32(a->min, b->min, k, &r);
713         c->openmin = (r || a->openmin || b->openmin);
714         c->max = muldiv32(a->max, b->max, k, &r);
715         if (r) {
716                 c->max++;
717                 c->openmax = 1;
718         } else
719                 c->openmax = (a->openmax || b->openmax);
720         c->integer = 0;
721 }
722
723 /**
724  * snd_interval_mulkdiv - refine the interval value
725  * @a: dividend 1
726  * @k: dividend 2 (as integer)
727  * @b: divisor
728  * @c: result
729  *
730  * c = a * k / b
731  *
732  * Returns non-zero if the value is changed, zero if not changed.
733  */
734 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
735                       const struct snd_interval *b, struct snd_interval *c)
736 {
737         unsigned int r;
738         if (a->empty || b->empty) {
739                 snd_interval_none(c);
740                 return;
741         }
742         c->empty = 0;
743         c->min = muldiv32(a->min, k, b->max, &r);
744         c->openmin = (r || a->openmin || b->openmax);
745         if (b->min > 0) {
746                 c->max = muldiv32(a->max, k, b->min, &r);
747                 if (r) {
748                         c->max++;
749                         c->openmax = 1;
750                 } else
751                         c->openmax = (a->openmax || b->openmin);
752         } else {
753                 c->max = UINT_MAX;
754                 c->openmax = 0;
755         }
756         c->integer = 0;
757 }
758
759 /* ---- */
760
761
762 /**
763  * snd_interval_ratnum - refine the interval value
764  * @i: interval to refine
765  * @rats_count: number of ratnum_t 
766  * @rats: ratnum_t array
767  * @nump: pointer to store the resultant numerator
768  * @denp: pointer to store the resultant denominator
769  *
770  * Returns non-zero if the value is changed, zero if not changed.
771  */
772 int snd_interval_ratnum(struct snd_interval *i,
773                         unsigned int rats_count, struct snd_ratnum *rats,
774                         unsigned int *nump, unsigned int *denp)
775 {
776         unsigned int best_num, best_den;
777         int best_diff;
778         unsigned int k;
779         struct snd_interval t;
780         int err;
781         unsigned int result_num, result_den;
782         int result_diff;
783
784         best_num = best_den = best_diff = 0;
785         for (k = 0; k < rats_count; ++k) {
786                 unsigned int num = rats[k].num;
787                 unsigned int den;
788                 unsigned int q = i->min;
789                 int diff;
790                 if (q == 0)
791                         q = 1;
792                 den = div_up(num, q);
793                 if (den < rats[k].den_min)
794                         continue;
795                 if (den > rats[k].den_max)
796                         den = rats[k].den_max;
797                 else {
798                         unsigned int r;
799                         r = (den - rats[k].den_min) % rats[k].den_step;
800                         if (r != 0)
801                                 den -= r;
802                 }
803                 diff = num - q * den;
804                 if (diff < 0)
805                         diff = -diff;
806                 if (best_num == 0 ||
807                     diff * best_den < best_diff * den) {
808                         best_diff = diff;
809                         best_den = den;
810                         best_num = num;
811                 }
812         }
813         if (best_den == 0) {
814                 i->empty = 1;
815                 return -EINVAL;
816         }
817         t.min = div_down(best_num, best_den);
818         t.openmin = !!(best_num % best_den);
819         
820         result_num = best_num;
821         result_diff = best_diff;
822         result_den = best_den;
823         best_num = best_den = best_diff = 0;
824         for (k = 0; k < rats_count; ++k) {
825                 unsigned int num = rats[k].num;
826                 unsigned int den;
827                 unsigned int q = i->max;
828                 int diff;
829                 if (q == 0) {
830                         i->empty = 1;
831                         return -EINVAL;
832                 }
833                 den = div_down(num, q);
834                 if (den > rats[k].den_max)
835                         continue;
836                 if (den < rats[k].den_min)
837                         den = rats[k].den_min;
838                 else {
839                         unsigned int r;
840                         r = (den - rats[k].den_min) % rats[k].den_step;
841                         if (r != 0)
842                                 den += rats[k].den_step - r;
843                 }
844                 diff = q * den - num;
845                 if (diff < 0)
846                         diff = -diff;
847                 if (best_num == 0 ||
848                     diff * best_den < best_diff * den) {
849                         best_diff = diff;
850                         best_den = den;
851                         best_num = num;
852                 }
853         }
854         if (best_den == 0) {
855                 i->empty = 1;
856                 return -EINVAL;
857         }
858         t.max = div_up(best_num, best_den);
859         t.openmax = !!(best_num % best_den);
860         t.integer = 0;
861         err = snd_interval_refine(i, &t);
862         if (err < 0)
863                 return err;
864
865         if (snd_interval_single(i)) {
866                 if (best_diff * result_den < result_diff * best_den) {
867                         result_num = best_num;
868                         result_den = best_den;
869                 }
870                 if (nump)
871                         *nump = result_num;
872                 if (denp)
873                         *denp = result_den;
874         }
875         return err;
876 }
877
878 EXPORT_SYMBOL(snd_interval_ratnum);
879
880 /**
881  * snd_interval_ratden - refine the interval value
882  * @i: interval to refine
883  * @rats_count: number of struct ratden
884  * @rats: struct ratden array
885  * @nump: pointer to store the resultant numerator
886  * @denp: pointer to store the resultant denominator
887  *
888  * Returns non-zero if the value is changed, zero if not changed.
889  */
890 static int snd_interval_ratden(struct snd_interval *i,
891                                unsigned int rats_count, struct snd_ratden *rats,
892                                unsigned int *nump, unsigned int *denp)
893 {
894         unsigned int best_num, best_diff, best_den;
895         unsigned int k;
896         struct snd_interval t;
897         int err;
898
899         best_num = best_den = best_diff = 0;
900         for (k = 0; k < rats_count; ++k) {
901                 unsigned int num;
902                 unsigned int den = rats[k].den;
903                 unsigned int q = i->min;
904                 int diff;
905                 num = mul(q, den);
906                 if (num > rats[k].num_max)
907                         continue;
908                 if (num < rats[k].num_min)
909                         num = rats[k].num_max;
910                 else {
911                         unsigned int r;
912                         r = (num - rats[k].num_min) % rats[k].num_step;
913                         if (r != 0)
914                                 num += rats[k].num_step - r;
915                 }
916                 diff = num - q * den;
917                 if (best_num == 0 ||
918                     diff * best_den < best_diff * den) {
919                         best_diff = diff;
920                         best_den = den;
921                         best_num = num;
922                 }
923         }
924         if (best_den == 0) {
925                 i->empty = 1;
926                 return -EINVAL;
927         }
928         t.min = div_down(best_num, best_den);
929         t.openmin = !!(best_num % best_den);
930         
931         best_num = best_den = best_diff = 0;
932         for (k = 0; k < rats_count; ++k) {
933                 unsigned int num;
934                 unsigned int den = rats[k].den;
935                 unsigned int q = i->max;
936                 int diff;
937                 num = mul(q, den);
938                 if (num < rats[k].num_min)
939                         continue;
940                 if (num > rats[k].num_max)
941                         num = rats[k].num_max;
942                 else {
943                         unsigned int r;
944                         r = (num - rats[k].num_min) % rats[k].num_step;
945                         if (r != 0)
946                                 num -= r;
947                 }
948                 diff = q * den - num;
949                 if (best_num == 0 ||
950                     diff * best_den < best_diff * den) {
951                         best_diff = diff;
952                         best_den = den;
953                         best_num = num;
954                 }
955         }
956         if (best_den == 0) {
957                 i->empty = 1;
958                 return -EINVAL;
959         }
960         t.max = div_up(best_num, best_den);
961         t.openmax = !!(best_num % best_den);
962         t.integer = 0;
963         err = snd_interval_refine(i, &t);
964         if (err < 0)
965                 return err;
966
967         if (snd_interval_single(i)) {
968                 if (nump)
969                         *nump = best_num;
970                 if (denp)
971                         *denp = best_den;
972         }
973         return err;
974 }
975
976 /**
977  * snd_interval_list - refine the interval value from the list
978  * @i: the interval value to refine
979  * @count: the number of elements in the list
980  * @list: the value list
981  * @mask: the bit-mask to evaluate
982  *
983  * Refines the interval value from the list.
984  * When mask is non-zero, only the elements corresponding to bit 1 are
985  * evaluated.
986  *
987  * Returns non-zero if the value is changed, zero if not changed.
988  */
989 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
990 {
991         unsigned int k;
992         struct snd_interval list_range;
993
994         if (!count) {
995                 i->empty = 1;
996                 return -EINVAL;
997         }
998         snd_interval_any(&list_range);
999         list_range.min = UINT_MAX;
1000         list_range.max = 0;
1001         for (k = 0; k < count; k++) {
1002                 if (mask && !(mask & (1 << k)))
1003                         continue;
1004                 if (!snd_interval_test(i, list[k]))
1005                         continue;
1006                 list_range.min = min(list_range.min, list[k]);
1007                 list_range.max = max(list_range.max, list[k]);
1008         }
1009         return snd_interval_refine(i, &list_range);
1010 }
1011
1012 EXPORT_SYMBOL(snd_interval_list);
1013
1014 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1015 {
1016         unsigned int n;
1017         int changed = 0;
1018         n = (i->min - min) % step;
1019         if (n != 0 || i->openmin) {
1020                 i->min += step - n;
1021                 changed = 1;
1022         }
1023         n = (i->max - min) % step;
1024         if (n != 0 || i->openmax) {
1025                 i->max -= n;
1026                 changed = 1;
1027         }
1028         if (snd_interval_checkempty(i)) {
1029                 i->empty = 1;
1030                 return -EINVAL;
1031         }
1032         return changed;
1033 }
1034
1035 /* Info constraints helpers */
1036
1037 /**
1038  * snd_pcm_hw_rule_add - add the hw-constraint rule
1039  * @runtime: the pcm runtime instance
1040  * @cond: condition bits
1041  * @var: the variable to evaluate
1042  * @func: the evaluation function
1043  * @private: the private data pointer passed to function
1044  * @dep: the dependent variables
1045  *
1046  * Returns zero if successful, or a negative error code on failure.
1047  */
1048 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1049                         int var,
1050                         snd_pcm_hw_rule_func_t func, void *private,
1051                         int dep, ...)
1052 {
1053         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1054         struct snd_pcm_hw_rule *c;
1055         unsigned int k;
1056         va_list args;
1057         va_start(args, dep);
1058         if (constrs->rules_num >= constrs->rules_all) {
1059                 struct snd_pcm_hw_rule *new;
1060                 unsigned int new_rules = constrs->rules_all + 16;
1061                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1062                 if (!new)
1063                         return -ENOMEM;
1064                 if (constrs->rules) {
1065                         memcpy(new, constrs->rules,
1066                                constrs->rules_num * sizeof(*c));
1067                         kfree(constrs->rules);
1068                 }
1069                 constrs->rules = new;
1070                 constrs->rules_all = new_rules;
1071         }
1072         c = &constrs->rules[constrs->rules_num];
1073         c->cond = cond;
1074         c->func = func;
1075         c->var = var;
1076         c->private = private;
1077         k = 0;
1078         while (1) {
1079                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1080                         return -EINVAL;
1081                 c->deps[k++] = dep;
1082                 if (dep < 0)
1083                         break;
1084                 dep = va_arg(args, int);
1085         }
1086         constrs->rules_num++;
1087         va_end(args);
1088         return 0;
1089 }                                   
1090
1091 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1092
1093 /**
1094  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1095  * @runtime: PCM runtime instance
1096  * @var: hw_params variable to apply the mask
1097  * @mask: the bitmap mask
1098  *
1099  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1100  */
1101 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1102                                u_int32_t mask)
1103 {
1104         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1105         struct snd_mask *maskp = constrs_mask(constrs, var);
1106         *maskp->bits &= mask;
1107         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1108         if (*maskp->bits == 0)
1109                 return -EINVAL;
1110         return 0;
1111 }
1112
1113 /**
1114  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1115  * @runtime: PCM runtime instance
1116  * @var: hw_params variable to apply the mask
1117  * @mask: the 64bit bitmap mask
1118  *
1119  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1120  */
1121 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1122                                  u_int64_t mask)
1123 {
1124         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1125         struct snd_mask *maskp = constrs_mask(constrs, var);
1126         maskp->bits[0] &= (u_int32_t)mask;
1127         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1128         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1129         if (! maskp->bits[0] && ! maskp->bits[1])
1130                 return -EINVAL;
1131         return 0;
1132 }
1133
1134 /**
1135  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1136  * @runtime: PCM runtime instance
1137  * @var: hw_params variable to apply the integer constraint
1138  *
1139  * Apply the constraint of integer to an interval parameter.
1140  */
1141 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1142 {
1143         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1144         return snd_interval_setinteger(constrs_interval(constrs, var));
1145 }
1146
1147 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1148
1149 /**
1150  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1151  * @runtime: PCM runtime instance
1152  * @var: hw_params variable to apply the range
1153  * @min: the minimal value
1154  * @max: the maximal value
1155  * 
1156  * Apply the min/max range constraint to an interval parameter.
1157  */
1158 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1159                                  unsigned int min, unsigned int max)
1160 {
1161         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1162         struct snd_interval t;
1163         t.min = min;
1164         t.max = max;
1165         t.openmin = t.openmax = 0;
1166         t.integer = 0;
1167         return snd_interval_refine(constrs_interval(constrs, var), &t);
1168 }
1169
1170 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1171
1172 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1173                                 struct snd_pcm_hw_rule *rule)
1174 {
1175         struct snd_pcm_hw_constraint_list *list = rule->private;
1176         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1177 }               
1178
1179
1180 /**
1181  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1182  * @runtime: PCM runtime instance
1183  * @cond: condition bits
1184  * @var: hw_params variable to apply the list constraint
1185  * @l: list
1186  * 
1187  * Apply the list of constraints to an interval parameter.
1188  */
1189 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1190                                unsigned int cond,
1191                                snd_pcm_hw_param_t var,
1192                                struct snd_pcm_hw_constraint_list *l)
1193 {
1194         return snd_pcm_hw_rule_add(runtime, cond, var,
1195                                    snd_pcm_hw_rule_list, l,
1196                                    var, -1);
1197 }
1198
1199 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1200
1201 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1202                                    struct snd_pcm_hw_rule *rule)
1203 {
1204         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1205         unsigned int num = 0, den = 0;
1206         int err;
1207         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1208                                   r->nrats, r->rats, &num, &den);
1209         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1210                 params->rate_num = num;
1211                 params->rate_den = den;
1212         }
1213         return err;
1214 }
1215
1216 /**
1217  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1218  * @runtime: PCM runtime instance
1219  * @cond: condition bits
1220  * @var: hw_params variable to apply the ratnums constraint
1221  * @r: struct snd_ratnums constriants
1222  */
1223 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1224                                   unsigned int cond,
1225                                   snd_pcm_hw_param_t var,
1226                                   struct snd_pcm_hw_constraint_ratnums *r)
1227 {
1228         return snd_pcm_hw_rule_add(runtime, cond, var,
1229                                    snd_pcm_hw_rule_ratnums, r,
1230                                    var, -1);
1231 }
1232
1233 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1234
1235 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1236                                    struct snd_pcm_hw_rule *rule)
1237 {
1238         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1239         unsigned int num = 0, den = 0;
1240         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1241                                   r->nrats, r->rats, &num, &den);
1242         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1243                 params->rate_num = num;
1244                 params->rate_den = den;
1245         }
1246         return err;
1247 }
1248
1249 /**
1250  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1251  * @runtime: PCM runtime instance
1252  * @cond: condition bits
1253  * @var: hw_params variable to apply the ratdens constraint
1254  * @r: struct snd_ratdens constriants
1255  */
1256 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1257                                   unsigned int cond,
1258                                   snd_pcm_hw_param_t var,
1259                                   struct snd_pcm_hw_constraint_ratdens *r)
1260 {
1261         return snd_pcm_hw_rule_add(runtime, cond, var,
1262                                    snd_pcm_hw_rule_ratdens, r,
1263                                    var, -1);
1264 }
1265
1266 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1267
1268 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1269                                   struct snd_pcm_hw_rule *rule)
1270 {
1271         unsigned int l = (unsigned long) rule->private;
1272         int width = l & 0xffff;
1273         unsigned int msbits = l >> 16;
1274         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1275         if (snd_interval_single(i) && snd_interval_value(i) == width)
1276                 params->msbits = msbits;
1277         return 0;
1278 }
1279
1280 /**
1281  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1282  * @runtime: PCM runtime instance
1283  * @cond: condition bits
1284  * @width: sample bits width
1285  * @msbits: msbits width
1286  */
1287 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1288                                  unsigned int cond,
1289                                  unsigned int width,
1290                                  unsigned int msbits)
1291 {
1292         unsigned long l = (msbits << 16) | width;
1293         return snd_pcm_hw_rule_add(runtime, cond, -1,
1294                                     snd_pcm_hw_rule_msbits,
1295                                     (void*) l,
1296                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1297 }
1298
1299 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1300
1301 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1302                                 struct snd_pcm_hw_rule *rule)
1303 {
1304         unsigned long step = (unsigned long) rule->private;
1305         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1306 }
1307
1308 /**
1309  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1310  * @runtime: PCM runtime instance
1311  * @cond: condition bits
1312  * @var: hw_params variable to apply the step constraint
1313  * @step: step size
1314  */
1315 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1316                                unsigned int cond,
1317                                snd_pcm_hw_param_t var,
1318                                unsigned long step)
1319 {
1320         return snd_pcm_hw_rule_add(runtime, cond, var, 
1321                                    snd_pcm_hw_rule_step, (void *) step,
1322                                    var, -1);
1323 }
1324
1325 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1326
1327 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1328 {
1329         static unsigned int pow2_sizes[] = {
1330                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1331                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1332                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1333                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1334         };
1335         return snd_interval_list(hw_param_interval(params, rule->var),
1336                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1337 }               
1338
1339 /**
1340  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1341  * @runtime: PCM runtime instance
1342  * @cond: condition bits
1343  * @var: hw_params variable to apply the power-of-2 constraint
1344  */
1345 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1346                                unsigned int cond,
1347                                snd_pcm_hw_param_t var)
1348 {
1349         return snd_pcm_hw_rule_add(runtime, cond, var, 
1350                                    snd_pcm_hw_rule_pow2, NULL,
1351                                    var, -1);
1352 }
1353
1354 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1355
1356 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1357                                   snd_pcm_hw_param_t var)
1358 {
1359         if (hw_is_mask(var)) {
1360                 snd_mask_any(hw_param_mask(params, var));
1361                 params->cmask |= 1 << var;
1362                 params->rmask |= 1 << var;
1363                 return;
1364         }
1365         if (hw_is_interval(var)) {
1366                 snd_interval_any(hw_param_interval(params, var));
1367                 params->cmask |= 1 << var;
1368                 params->rmask |= 1 << var;
1369                 return;
1370         }
1371         snd_BUG();
1372 }
1373
1374 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1375 {
1376         unsigned int k;
1377         memset(params, 0, sizeof(*params));
1378         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1379                 _snd_pcm_hw_param_any(params, k);
1380         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1381                 _snd_pcm_hw_param_any(params, k);
1382         params->info = ~0U;
1383 }
1384
1385 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1386
1387 /**
1388  * snd_pcm_hw_param_value - return @params field @var value
1389  * @params: the hw_params instance
1390  * @var: parameter to retrieve
1391  * @dir: pointer to the direction (-1,0,1) or %NULL
1392  *
1393  * Return the value for field @var if it's fixed in configuration space
1394  * defined by @params. Return -%EINVAL otherwise.
1395  */
1396 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1397                            snd_pcm_hw_param_t var, int *dir)
1398 {
1399         if (hw_is_mask(var)) {
1400                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1401                 if (!snd_mask_single(mask))
1402                         return -EINVAL;
1403                 if (dir)
1404                         *dir = 0;
1405                 return snd_mask_value(mask);
1406         }
1407         if (hw_is_interval(var)) {
1408                 const struct snd_interval *i = hw_param_interval_c(params, var);
1409                 if (!snd_interval_single(i))
1410                         return -EINVAL;
1411                 if (dir)
1412                         *dir = i->openmin;
1413                 return snd_interval_value(i);
1414         }
1415         return -EINVAL;
1416 }
1417
1418 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1419
1420 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1421                                 snd_pcm_hw_param_t var)
1422 {
1423         if (hw_is_mask(var)) {
1424                 snd_mask_none(hw_param_mask(params, var));
1425                 params->cmask |= 1 << var;
1426                 params->rmask |= 1 << var;
1427         } else if (hw_is_interval(var)) {
1428                 snd_interval_none(hw_param_interval(params, var));
1429                 params->cmask |= 1 << var;
1430                 params->rmask |= 1 << var;
1431         } else {
1432                 snd_BUG();
1433         }
1434 }
1435
1436 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1437
1438 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1439                                    snd_pcm_hw_param_t var)
1440 {
1441         int changed;
1442         if (hw_is_mask(var))
1443                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1444         else if (hw_is_interval(var))
1445                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1446         else
1447                 return -EINVAL;
1448         if (changed) {
1449                 params->cmask |= 1 << var;
1450                 params->rmask |= 1 << var;
1451         }
1452         return changed;
1453 }
1454
1455
1456 /**
1457  * snd_pcm_hw_param_first - refine config space and return minimum value
1458  * @pcm: PCM instance
1459  * @params: the hw_params instance
1460  * @var: parameter to retrieve
1461  * @dir: pointer to the direction (-1,0,1) or %NULL
1462  *
1463  * Inside configuration space defined by @params remove from @var all
1464  * values > minimum. Reduce configuration space accordingly.
1465  * Return the minimum.
1466  */
1467 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1468                            struct snd_pcm_hw_params *params, 
1469                            snd_pcm_hw_param_t var, int *dir)
1470 {
1471         int changed = _snd_pcm_hw_param_first(params, var);
1472         if (changed < 0)
1473                 return changed;
1474         if (params->rmask) {
1475                 int err = snd_pcm_hw_refine(pcm, params);
1476                 if (snd_BUG_ON(err < 0))
1477                         return err;
1478         }
1479         return snd_pcm_hw_param_value(params, var, dir);
1480 }
1481
1482 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1483
1484 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1485                                   snd_pcm_hw_param_t var)
1486 {
1487         int changed;
1488         if (hw_is_mask(var))
1489                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1490         else if (hw_is_interval(var))
1491                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1492         else
1493                 return -EINVAL;
1494         if (changed) {
1495                 params->cmask |= 1 << var;
1496                 params->rmask |= 1 << var;
1497         }
1498         return changed;
1499 }
1500
1501
1502 /**
1503  * snd_pcm_hw_param_last - refine config space and return maximum value
1504  * @pcm: PCM instance
1505  * @params: the hw_params instance
1506  * @var: parameter to retrieve
1507  * @dir: pointer to the direction (-1,0,1) or %NULL
1508  *
1509  * Inside configuration space defined by @params remove from @var all
1510  * values < maximum. Reduce configuration space accordingly.
1511  * Return the maximum.
1512  */
1513 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1514                           struct snd_pcm_hw_params *params,
1515                           snd_pcm_hw_param_t var, int *dir)
1516 {
1517         int changed = _snd_pcm_hw_param_last(params, var);
1518         if (changed < 0)
1519                 return changed;
1520         if (params->rmask) {
1521                 int err = snd_pcm_hw_refine(pcm, params);
1522                 if (snd_BUG_ON(err < 0))
1523                         return err;
1524         }
1525         return snd_pcm_hw_param_value(params, var, dir);
1526 }
1527
1528 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1529
1530 /**
1531  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1532  * @pcm: PCM instance
1533  * @params: the hw_params instance
1534  *
1535  * Choose one configuration from configuration space defined by @params.
1536  * The configuration chosen is that obtained fixing in this order:
1537  * first access, first format, first subformat, min channels,
1538  * min rate, min period time, max buffer size, min tick time
1539  */
1540 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1541                              struct snd_pcm_hw_params *params)
1542 {
1543         static int vars[] = {
1544                 SNDRV_PCM_HW_PARAM_ACCESS,
1545                 SNDRV_PCM_HW_PARAM_FORMAT,
1546                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1547                 SNDRV_PCM_HW_PARAM_CHANNELS,
1548                 SNDRV_PCM_HW_PARAM_RATE,
1549                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1550                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1551                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1552                 -1
1553         };
1554         int err, *v;
1555
1556         for (v = vars; *v != -1; v++) {
1557                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1558                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1559                 else
1560                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1561                 if (snd_BUG_ON(err < 0))
1562                         return err;
1563         }
1564         return 0;
1565 }
1566
1567 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1568                                    void *arg)
1569 {
1570         struct snd_pcm_runtime *runtime = substream->runtime;
1571         unsigned long flags;
1572         snd_pcm_stream_lock_irqsave(substream, flags);
1573         if (snd_pcm_running(substream) &&
1574             snd_pcm_update_hw_ptr(substream) >= 0)
1575                 runtime->status->hw_ptr %= runtime->buffer_size;
1576         else
1577                 runtime->status->hw_ptr = 0;
1578         snd_pcm_stream_unlock_irqrestore(substream, flags);
1579         return 0;
1580 }
1581
1582 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1583                                           void *arg)
1584 {
1585         struct snd_pcm_channel_info *info = arg;
1586         struct snd_pcm_runtime *runtime = substream->runtime;
1587         int width;
1588         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1589                 info->offset = -1;
1590                 return 0;
1591         }
1592         width = snd_pcm_format_physical_width(runtime->format);
1593         if (width < 0)
1594                 return width;
1595         info->offset = 0;
1596         switch (runtime->access) {
1597         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1598         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1599                 info->first = info->channel * width;
1600                 info->step = runtime->channels * width;
1601                 break;
1602         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1603         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1604         {
1605                 size_t size = runtime->dma_bytes / runtime->channels;
1606                 info->first = info->channel * size * 8;
1607                 info->step = width;
1608                 break;
1609         }
1610         default:
1611                 snd_BUG();
1612                 break;
1613         }
1614         return 0;
1615 }
1616
1617 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1618                                        void *arg)
1619 {
1620         struct snd_pcm_hw_params *params = arg;
1621         snd_pcm_format_t format;
1622         int channels, width;
1623
1624         params->fifo_size = substream->runtime->hw.fifo_size;
1625         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1626                 format = params_format(params);
1627                 channels = params_channels(params);
1628                 width = snd_pcm_format_physical_width(format);
1629                 params->fifo_size /= width * channels;
1630         }
1631         return 0;
1632 }
1633
1634 /**
1635  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1636  * @substream: the pcm substream instance
1637  * @cmd: ioctl command
1638  * @arg: ioctl argument
1639  *
1640  * Processes the generic ioctl commands for PCM.
1641  * Can be passed as the ioctl callback for PCM ops.
1642  *
1643  * Returns zero if successful, or a negative error code on failure.
1644  */
1645 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1646                       unsigned int cmd, void *arg)
1647 {
1648         switch (cmd) {
1649         case SNDRV_PCM_IOCTL1_INFO:
1650                 return 0;
1651         case SNDRV_PCM_IOCTL1_RESET:
1652                 return snd_pcm_lib_ioctl_reset(substream, arg);
1653         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1654                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1655         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1656                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1657         }
1658         return -ENXIO;
1659 }
1660
1661 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1662
1663 /**
1664  * snd_pcm_period_elapsed - update the pcm status for the next period
1665  * @substream: the pcm substream instance
1666  *
1667  * This function is called from the interrupt handler when the
1668  * PCM has processed the period size.  It will update the current
1669  * pointer, wake up sleepers, etc.
1670  *
1671  * Even if more than one periods have elapsed since the last call, you
1672  * have to call this only once.
1673  */
1674 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1675 {
1676         struct snd_pcm_runtime *runtime;
1677         unsigned long flags;
1678
1679         if (PCM_RUNTIME_CHECK(substream))
1680                 return;
1681         runtime = substream->runtime;
1682
1683         if (runtime->transfer_ack_begin)
1684                 runtime->transfer_ack_begin(substream);
1685
1686         snd_pcm_stream_lock_irqsave(substream, flags);
1687         if (!snd_pcm_running(substream) ||
1688             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1689                 goto _end;
1690
1691         if (substream->timer_running)
1692                 snd_timer_interrupt(substream->timer, 1);
1693  _end:
1694         snd_pcm_stream_unlock_irqrestore(substream, flags);
1695         if (runtime->transfer_ack_end)
1696                 runtime->transfer_ack_end(substream);
1697         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1698 }
1699
1700 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1701
1702 /*
1703  * Wait until avail_min data becomes available
1704  * Returns a negative error code if any error occurs during operation.
1705  * The available space is stored on availp.  When err = 0 and avail = 0
1706  * on the capture stream, it indicates the stream is in DRAINING state.
1707  */
1708 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1709                               snd_pcm_uframes_t *availp)
1710 {
1711         struct snd_pcm_runtime *runtime = substream->runtime;
1712         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1713         wait_queue_t wait;
1714         int err = 0;
1715         snd_pcm_uframes_t avail = 0;
1716         long tout;
1717
1718         init_waitqueue_entry(&wait, current);
1719         add_wait_queue(&runtime->tsleep, &wait);
1720         for (;;) {
1721                 if (signal_pending(current)) {
1722                         err = -ERESTARTSYS;
1723                         break;
1724                 }
1725                 set_current_state(TASK_INTERRUPTIBLE);
1726                 snd_pcm_stream_unlock_irq(substream);
1727                 tout = schedule_timeout(msecs_to_jiffies(10000));
1728                 snd_pcm_stream_lock_irq(substream);
1729                 switch (runtime->status->state) {
1730                 case SNDRV_PCM_STATE_SUSPENDED:
1731                         err = -ESTRPIPE;
1732                         goto _endloop;
1733                 case SNDRV_PCM_STATE_XRUN:
1734                         err = -EPIPE;
1735                         goto _endloop;
1736                 case SNDRV_PCM_STATE_DRAINING:
1737                         if (is_playback)
1738                                 err = -EPIPE;
1739                         else 
1740                                 avail = 0; /* indicate draining */
1741                         goto _endloop;
1742                 case SNDRV_PCM_STATE_OPEN:
1743                 case SNDRV_PCM_STATE_SETUP:
1744                 case SNDRV_PCM_STATE_DISCONNECTED:
1745                         err = -EBADFD;
1746                         goto _endloop;
1747                 }
1748                 if (!tout) {
1749                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1750                                    is_playback ? "playback" : "capture");
1751                         err = -EIO;
1752                         break;
1753                 }
1754                 if (is_playback)
1755                         avail = snd_pcm_playback_avail(runtime);
1756                 else
1757                         avail = snd_pcm_capture_avail(runtime);
1758                 if (avail >= runtime->control->avail_min)
1759                         break;
1760         }
1761  _endloop:
1762         remove_wait_queue(&runtime->tsleep, &wait);
1763         *availp = avail;
1764         return err;
1765 }
1766         
1767 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1768                                       unsigned int hwoff,
1769                                       unsigned long data, unsigned int off,
1770                                       snd_pcm_uframes_t frames)
1771 {
1772         struct snd_pcm_runtime *runtime = substream->runtime;
1773         int err;
1774         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1775         if (substream->ops->copy) {
1776                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1777                         return err;
1778         } else {
1779                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1780                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1781                         return -EFAULT;
1782         }
1783         return 0;
1784 }
1785  
1786 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1787                           unsigned long data, unsigned int off,
1788                           snd_pcm_uframes_t size);
1789
1790 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1791                                             unsigned long data,
1792                                             snd_pcm_uframes_t size,
1793                                             int nonblock,
1794                                             transfer_f transfer)
1795 {
1796         struct snd_pcm_runtime *runtime = substream->runtime;
1797         snd_pcm_uframes_t xfer = 0;
1798         snd_pcm_uframes_t offset = 0;
1799         int err = 0;
1800
1801         if (size == 0)
1802                 return 0;
1803
1804         snd_pcm_stream_lock_irq(substream);
1805         switch (runtime->status->state) {
1806         case SNDRV_PCM_STATE_PREPARED:
1807         case SNDRV_PCM_STATE_RUNNING:
1808         case SNDRV_PCM_STATE_PAUSED:
1809                 break;
1810         case SNDRV_PCM_STATE_XRUN:
1811                 err = -EPIPE;
1812                 goto _end_unlock;
1813         case SNDRV_PCM_STATE_SUSPENDED:
1814                 err = -ESTRPIPE;
1815                 goto _end_unlock;
1816         default:
1817                 err = -EBADFD;
1818                 goto _end_unlock;
1819         }
1820
1821         runtime->twake = 1;
1822         while (size > 0) {
1823                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1824                 snd_pcm_uframes_t avail;
1825                 snd_pcm_uframes_t cont;
1826                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1827                         snd_pcm_update_hw_ptr(substream);
1828                 avail = snd_pcm_playback_avail(runtime);
1829                 if (!avail) {
1830                         if (nonblock) {
1831                                 err = -EAGAIN;
1832                                 goto _end_unlock;
1833                         }
1834                         err = wait_for_avail_min(substream, &avail);
1835                         if (err < 0)
1836                                 goto _end_unlock;
1837                 }
1838                 frames = size > avail ? avail : size;
1839                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1840                 if (frames > cont)
1841                         frames = cont;
1842                 if (snd_BUG_ON(!frames)) {
1843                         runtime->twake = 0;
1844                         snd_pcm_stream_unlock_irq(substream);
1845                         return -EINVAL;
1846                 }
1847                 appl_ptr = runtime->control->appl_ptr;
1848                 appl_ofs = appl_ptr % runtime->buffer_size;
1849                 snd_pcm_stream_unlock_irq(substream);
1850                 err = transfer(substream, appl_ofs, data, offset, frames);
1851                 snd_pcm_stream_lock_irq(substream);
1852                 if (err < 0)
1853                         goto _end_unlock;
1854                 switch (runtime->status->state) {
1855                 case SNDRV_PCM_STATE_XRUN:
1856                         err = -EPIPE;
1857                         goto _end_unlock;
1858                 case SNDRV_PCM_STATE_SUSPENDED:
1859                         err = -ESTRPIPE;
1860                         goto _end_unlock;
1861                 default:
1862                         break;
1863                 }
1864                 appl_ptr += frames;
1865                 if (appl_ptr >= runtime->boundary)
1866                         appl_ptr -= runtime->boundary;
1867                 runtime->control->appl_ptr = appl_ptr;
1868                 if (substream->ops->ack)
1869                         substream->ops->ack(substream);
1870
1871                 offset += frames;
1872                 size -= frames;
1873                 xfer += frames;
1874                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1875                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1876                         err = snd_pcm_start(substream);
1877                         if (err < 0)
1878                                 goto _end_unlock;
1879                 }
1880         }
1881  _end_unlock:
1882         runtime->twake = 0;
1883         if (xfer > 0 && err >= 0)
1884                 snd_pcm_update_state(substream, runtime);
1885         snd_pcm_stream_unlock_irq(substream);
1886         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1887 }
1888
1889 /* sanity-check for read/write methods */
1890 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1891 {
1892         struct snd_pcm_runtime *runtime;
1893         if (PCM_RUNTIME_CHECK(substream))
1894                 return -ENXIO;
1895         runtime = substream->runtime;
1896         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1897                 return -EINVAL;
1898         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1899                 return -EBADFD;
1900         return 0;
1901 }
1902
1903 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1904 {
1905         struct snd_pcm_runtime *runtime;
1906         int nonblock;
1907         int err;
1908
1909         err = pcm_sanity_check(substream);
1910         if (err < 0)
1911                 return err;
1912         runtime = substream->runtime;
1913         nonblock = !!(substream->f_flags & O_NONBLOCK);
1914
1915         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1916             runtime->channels > 1)
1917                 return -EINVAL;
1918         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1919                                   snd_pcm_lib_write_transfer);
1920 }
1921
1922 EXPORT_SYMBOL(snd_pcm_lib_write);
1923
1924 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1925                                        unsigned int hwoff,
1926                                        unsigned long data, unsigned int off,
1927                                        snd_pcm_uframes_t frames)
1928 {
1929         struct snd_pcm_runtime *runtime = substream->runtime;
1930         int err;
1931         void __user **bufs = (void __user **)data;
1932         int channels = runtime->channels;
1933         int c;
1934         if (substream->ops->copy) {
1935                 if (snd_BUG_ON(!substream->ops->silence))
1936                         return -EINVAL;
1937                 for (c = 0; c < channels; ++c, ++bufs) {
1938                         if (*bufs == NULL) {
1939                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1940                                         return err;
1941                         } else {
1942                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1943                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1944                                         return err;
1945                         }
1946                 }
1947         } else {
1948                 /* default transfer behaviour */
1949                 size_t dma_csize = runtime->dma_bytes / channels;
1950                 for (c = 0; c < channels; ++c, ++bufs) {
1951                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1952                         if (*bufs == NULL) {
1953                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1954                         } else {
1955                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1956                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1957                                         return -EFAULT;
1958                         }
1959                 }
1960         }
1961         return 0;
1962 }
1963  
1964 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1965                                      void __user **bufs,
1966                                      snd_pcm_uframes_t frames)
1967 {
1968         struct snd_pcm_runtime *runtime;
1969         int nonblock;
1970         int err;
1971
1972         err = pcm_sanity_check(substream);
1973         if (err < 0)
1974                 return err;
1975         runtime = substream->runtime;
1976         nonblock = !!(substream->f_flags & O_NONBLOCK);
1977
1978         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1979                 return -EINVAL;
1980         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1981                                   nonblock, snd_pcm_lib_writev_transfer);
1982 }
1983
1984 EXPORT_SYMBOL(snd_pcm_lib_writev);
1985
1986 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1987                                      unsigned int hwoff,
1988                                      unsigned long data, unsigned int off,
1989                                      snd_pcm_uframes_t frames)
1990 {
1991         struct snd_pcm_runtime *runtime = substream->runtime;
1992         int err;
1993         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1994         if (substream->ops->copy) {
1995                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1996                         return err;
1997         } else {
1998                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1999                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2000                         return -EFAULT;
2001         }
2002         return 0;
2003 }
2004
2005 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2006                                            unsigned long data,
2007                                            snd_pcm_uframes_t size,
2008                                            int nonblock,
2009                                            transfer_f transfer)
2010 {
2011         struct snd_pcm_runtime *runtime = substream->runtime;
2012         snd_pcm_uframes_t xfer = 0;
2013         snd_pcm_uframes_t offset = 0;
2014         int err = 0;
2015
2016         if (size == 0)
2017                 return 0;
2018
2019         snd_pcm_stream_lock_irq(substream);
2020         switch (runtime->status->state) {
2021         case SNDRV_PCM_STATE_PREPARED:
2022                 if (size >= runtime->start_threshold) {
2023                         err = snd_pcm_start(substream);
2024                         if (err < 0)
2025                                 goto _end_unlock;
2026                 }
2027                 break;
2028         case SNDRV_PCM_STATE_DRAINING:
2029         case SNDRV_PCM_STATE_RUNNING:
2030         case SNDRV_PCM_STATE_PAUSED:
2031                 break;
2032         case SNDRV_PCM_STATE_XRUN:
2033                 err = -EPIPE;
2034                 goto _end_unlock;
2035         case SNDRV_PCM_STATE_SUSPENDED:
2036                 err = -ESTRPIPE;
2037                 goto _end_unlock;
2038         default:
2039                 err = -EBADFD;
2040                 goto _end_unlock;
2041         }
2042
2043         runtime->twake = 1;
2044         while (size > 0) {
2045                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2046                 snd_pcm_uframes_t avail;
2047                 snd_pcm_uframes_t cont;
2048                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2049                         snd_pcm_update_hw_ptr(substream);
2050                 avail = snd_pcm_capture_avail(runtime);
2051                 if (!avail) {
2052                         if (runtime->status->state ==
2053                             SNDRV_PCM_STATE_DRAINING) {
2054                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2055                                 goto _end_unlock;
2056                         }
2057                         if (nonblock) {
2058                                 err = -EAGAIN;
2059                                 goto _end_unlock;
2060                         }
2061                         err = wait_for_avail_min(substream, &avail);
2062                         if (err < 0)
2063                                 goto _end_unlock;
2064                         if (!avail)
2065                                 continue; /* draining */
2066                 }
2067                 frames = size > avail ? avail : size;
2068                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2069                 if (frames > cont)
2070                         frames = cont;
2071                 if (snd_BUG_ON(!frames)) {
2072                         runtime->twake = 0;
2073                         snd_pcm_stream_unlock_irq(substream);
2074                         return -EINVAL;
2075                 }
2076                 appl_ptr = runtime->control->appl_ptr;
2077                 appl_ofs = appl_ptr % runtime->buffer_size;
2078                 snd_pcm_stream_unlock_irq(substream);
2079                 err = transfer(substream, appl_ofs, data, offset, frames);
2080                 snd_pcm_stream_lock_irq(substream);
2081                 if (err < 0)
2082                         goto _end_unlock;
2083                 switch (runtime->status->state) {
2084                 case SNDRV_PCM_STATE_XRUN:
2085                         err = -EPIPE;
2086                         goto _end_unlock;
2087                 case SNDRV_PCM_STATE_SUSPENDED:
2088                         err = -ESTRPIPE;
2089                         goto _end_unlock;
2090                 default:
2091                         break;
2092                 }
2093                 appl_ptr += frames;
2094                 if (appl_ptr >= runtime->boundary)
2095                         appl_ptr -= runtime->boundary;
2096                 runtime->control->appl_ptr = appl_ptr;
2097                 if (substream->ops->ack)
2098                         substream->ops->ack(substream);
2099
2100                 offset += frames;
2101                 size -= frames;
2102                 xfer += frames;
2103         }
2104  _end_unlock:
2105         runtime->twake = 0;
2106         if (xfer > 0 && err >= 0)
2107                 snd_pcm_update_state(substream, runtime);
2108         snd_pcm_stream_unlock_irq(substream);
2109         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2110 }
2111
2112 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2113 {
2114         struct snd_pcm_runtime *runtime;
2115         int nonblock;
2116         int err;
2117         
2118         err = pcm_sanity_check(substream);
2119         if (err < 0)
2120                 return err;
2121         runtime = substream->runtime;
2122         nonblock = !!(substream->f_flags & O_NONBLOCK);
2123         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2124                 return -EINVAL;
2125         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2126 }
2127
2128 EXPORT_SYMBOL(snd_pcm_lib_read);
2129
2130 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2131                                       unsigned int hwoff,
2132                                       unsigned long data, unsigned int off,
2133                                       snd_pcm_uframes_t frames)
2134 {
2135         struct snd_pcm_runtime *runtime = substream->runtime;
2136         int err;
2137         void __user **bufs = (void __user **)data;
2138         int channels = runtime->channels;
2139         int c;
2140         if (substream->ops->copy) {
2141                 for (c = 0; c < channels; ++c, ++bufs) {
2142                         char __user *buf;
2143                         if (*bufs == NULL)
2144                                 continue;
2145                         buf = *bufs + samples_to_bytes(runtime, off);
2146                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2147                                 return err;
2148                 }
2149         } else {
2150                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2151                 for (c = 0; c < channels; ++c, ++bufs) {
2152                         char *hwbuf;
2153                         char __user *buf;
2154                         if (*bufs == NULL)
2155                                 continue;
2156
2157                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2158                         buf = *bufs + samples_to_bytes(runtime, off);
2159                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2160                                 return -EFAULT;
2161                 }
2162         }
2163         return 0;
2164 }
2165  
2166 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2167                                     void __user **bufs,
2168                                     snd_pcm_uframes_t frames)
2169 {
2170         struct snd_pcm_runtime *runtime;
2171         int nonblock;
2172         int err;
2173
2174         err = pcm_sanity_check(substream);
2175         if (err < 0)
2176                 return err;
2177         runtime = substream->runtime;
2178         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2179                 return -EBADFD;
2180
2181         nonblock = !!(substream->f_flags & O_NONBLOCK);
2182         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2183                 return -EINVAL;
2184         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2185 }
2186
2187 EXPORT_SYMBOL(snd_pcm_lib_readv);