21b8318979e37597d02918b378852b3bc9edbb6b
[safe/jmp/linux-2.6] / security / selinux / ss / services.c
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *      Support for enhanced MLS infrastructure.
10  *      Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *
20  * Updated: Chad Sellers <csellers@tresys.com>
21  *
22  *  Added validation of kernel classes and permissions
23  *
24  * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
25  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
26  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
27  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28  *      This program is free software; you can redistribute it and/or modify
29  *      it under the terms of the GNU General Public License as published by
30  *      the Free Software Foundation, version 2.
31  */
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/spinlock.h>
36 #include <linux/rcupdate.h>
37 #include <linux/errno.h>
38 #include <linux/in.h>
39 #include <linux/sched.h>
40 #include <linux/audit.h>
41 #include <linux/mutex.h>
42 #include <net/netlabel.h>
43
44 #include "flask.h"
45 #include "avc.h"
46 #include "avc_ss.h"
47 #include "security.h"
48 #include "context.h"
49 #include "policydb.h"
50 #include "sidtab.h"
51 #include "services.h"
52 #include "conditional.h"
53 #include "mls.h"
54 #include "objsec.h"
55 #include "netlabel.h"
56 #include "xfrm.h"
57 #include "ebitmap.h"
58
59 extern void selnl_notify_policyload(u32 seqno);
60 unsigned int policydb_loaded_version;
61
62 /*
63  * This is declared in avc.c
64  */
65 extern const struct selinux_class_perm selinux_class_perm;
66
67 static DEFINE_RWLOCK(policy_rwlock);
68 #define POLICY_RDLOCK read_lock(&policy_rwlock)
69 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
70 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
71 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
72
73 static DEFINE_MUTEX(load_mutex);
74 #define LOAD_LOCK mutex_lock(&load_mutex)
75 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
76
77 static struct sidtab sidtab;
78 struct policydb policydb;
79 int ss_initialized = 0;
80
81 /*
82  * The largest sequence number that has been used when
83  * providing an access decision to the access vector cache.
84  * The sequence number only changes when a policy change
85  * occurs.
86  */
87 static u32 latest_granting = 0;
88
89 /* Forward declaration. */
90 static int context_struct_to_string(struct context *context, char **scontext,
91                                     u32 *scontext_len);
92
93 /*
94  * Return the boolean value of a constraint expression
95  * when it is applied to the specified source and target
96  * security contexts.
97  *
98  * xcontext is a special beast...  It is used by the validatetrans rules
99  * only.  For these rules, scontext is the context before the transition,
100  * tcontext is the context after the transition, and xcontext is the context
101  * of the process performing the transition.  All other callers of
102  * constraint_expr_eval should pass in NULL for xcontext.
103  */
104 static int constraint_expr_eval(struct context *scontext,
105                                 struct context *tcontext,
106                                 struct context *xcontext,
107                                 struct constraint_expr *cexpr)
108 {
109         u32 val1, val2;
110         struct context *c;
111         struct role_datum *r1, *r2;
112         struct mls_level *l1, *l2;
113         struct constraint_expr *e;
114         int s[CEXPR_MAXDEPTH];
115         int sp = -1;
116
117         for (e = cexpr; e; e = e->next) {
118                 switch (e->expr_type) {
119                 case CEXPR_NOT:
120                         BUG_ON(sp < 0);
121                         s[sp] = !s[sp];
122                         break;
123                 case CEXPR_AND:
124                         BUG_ON(sp < 1);
125                         sp--;
126                         s[sp] &= s[sp+1];
127                         break;
128                 case CEXPR_OR:
129                         BUG_ON(sp < 1);
130                         sp--;
131                         s[sp] |= s[sp+1];
132                         break;
133                 case CEXPR_ATTR:
134                         if (sp == (CEXPR_MAXDEPTH-1))
135                                 return 0;
136                         switch (e->attr) {
137                         case CEXPR_USER:
138                                 val1 = scontext->user;
139                                 val2 = tcontext->user;
140                                 break;
141                         case CEXPR_TYPE:
142                                 val1 = scontext->type;
143                                 val2 = tcontext->type;
144                                 break;
145                         case CEXPR_ROLE:
146                                 val1 = scontext->role;
147                                 val2 = tcontext->role;
148                                 r1 = policydb.role_val_to_struct[val1 - 1];
149                                 r2 = policydb.role_val_to_struct[val2 - 1];
150                                 switch (e->op) {
151                                 case CEXPR_DOM:
152                                         s[++sp] = ebitmap_get_bit(&r1->dominates,
153                                                                   val2 - 1);
154                                         continue;
155                                 case CEXPR_DOMBY:
156                                         s[++sp] = ebitmap_get_bit(&r2->dominates,
157                                                                   val1 - 1);
158                                         continue;
159                                 case CEXPR_INCOMP:
160                                         s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
161                                                                      val2 - 1) &&
162                                                     !ebitmap_get_bit(&r2->dominates,
163                                                                      val1 - 1) );
164                                         continue;
165                                 default:
166                                         break;
167                                 }
168                                 break;
169                         case CEXPR_L1L2:
170                                 l1 = &(scontext->range.level[0]);
171                                 l2 = &(tcontext->range.level[0]);
172                                 goto mls_ops;
173                         case CEXPR_L1H2:
174                                 l1 = &(scontext->range.level[0]);
175                                 l2 = &(tcontext->range.level[1]);
176                                 goto mls_ops;
177                         case CEXPR_H1L2:
178                                 l1 = &(scontext->range.level[1]);
179                                 l2 = &(tcontext->range.level[0]);
180                                 goto mls_ops;
181                         case CEXPR_H1H2:
182                                 l1 = &(scontext->range.level[1]);
183                                 l2 = &(tcontext->range.level[1]);
184                                 goto mls_ops;
185                         case CEXPR_L1H1:
186                                 l1 = &(scontext->range.level[0]);
187                                 l2 = &(scontext->range.level[1]);
188                                 goto mls_ops;
189                         case CEXPR_L2H2:
190                                 l1 = &(tcontext->range.level[0]);
191                                 l2 = &(tcontext->range.level[1]);
192                                 goto mls_ops;
193 mls_ops:
194                         switch (e->op) {
195                         case CEXPR_EQ:
196                                 s[++sp] = mls_level_eq(l1, l2);
197                                 continue;
198                         case CEXPR_NEQ:
199                                 s[++sp] = !mls_level_eq(l1, l2);
200                                 continue;
201                         case CEXPR_DOM:
202                                 s[++sp] = mls_level_dom(l1, l2);
203                                 continue;
204                         case CEXPR_DOMBY:
205                                 s[++sp] = mls_level_dom(l2, l1);
206                                 continue;
207                         case CEXPR_INCOMP:
208                                 s[++sp] = mls_level_incomp(l2, l1);
209                                 continue;
210                         default:
211                                 BUG();
212                                 return 0;
213                         }
214                         break;
215                         default:
216                                 BUG();
217                                 return 0;
218                         }
219
220                         switch (e->op) {
221                         case CEXPR_EQ:
222                                 s[++sp] = (val1 == val2);
223                                 break;
224                         case CEXPR_NEQ:
225                                 s[++sp] = (val1 != val2);
226                                 break;
227                         default:
228                                 BUG();
229                                 return 0;
230                         }
231                         break;
232                 case CEXPR_NAMES:
233                         if (sp == (CEXPR_MAXDEPTH-1))
234                                 return 0;
235                         c = scontext;
236                         if (e->attr & CEXPR_TARGET)
237                                 c = tcontext;
238                         else if (e->attr & CEXPR_XTARGET) {
239                                 c = xcontext;
240                                 if (!c) {
241                                         BUG();
242                                         return 0;
243                                 }
244                         }
245                         if (e->attr & CEXPR_USER)
246                                 val1 = c->user;
247                         else if (e->attr & CEXPR_ROLE)
248                                 val1 = c->role;
249                         else if (e->attr & CEXPR_TYPE)
250                                 val1 = c->type;
251                         else {
252                                 BUG();
253                                 return 0;
254                         }
255
256                         switch (e->op) {
257                         case CEXPR_EQ:
258                                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
259                                 break;
260                         case CEXPR_NEQ:
261                                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
262                                 break;
263                         default:
264                                 BUG();
265                                 return 0;
266                         }
267                         break;
268                 default:
269                         BUG();
270                         return 0;
271                 }
272         }
273
274         BUG_ON(sp != 0);
275         return s[0];
276 }
277
278 /*
279  * Compute access vectors based on a context structure pair for
280  * the permissions in a particular class.
281  */
282 static int context_struct_compute_av(struct context *scontext,
283                                      struct context *tcontext,
284                                      u16 tclass,
285                                      u32 requested,
286                                      struct av_decision *avd)
287 {
288         struct constraint_node *constraint;
289         struct role_allow *ra;
290         struct avtab_key avkey;
291         struct avtab_node *node;
292         struct class_datum *tclass_datum;
293         struct ebitmap *sattr, *tattr;
294         struct ebitmap_node *snode, *tnode;
295         unsigned int i, j;
296
297         /*
298          * Remap extended Netlink classes for old policy versions.
299          * Do this here rather than socket_type_to_security_class()
300          * in case a newer policy version is loaded, allowing sockets
301          * to remain in the correct class.
302          */
303         if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
304                 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
305                     tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
306                         tclass = SECCLASS_NETLINK_SOCKET;
307
308         if (!tclass || tclass > policydb.p_classes.nprim) {
309                 printk(KERN_ERR "security_compute_av:  unrecognized class %d\n",
310                        tclass);
311                 return -EINVAL;
312         }
313         tclass_datum = policydb.class_val_to_struct[tclass - 1];
314
315         /*
316          * Initialize the access vectors to the default values.
317          */
318         avd->allowed = 0;
319         avd->decided = 0xffffffff;
320         avd->auditallow = 0;
321         avd->auditdeny = 0xffffffff;
322         avd->seqno = latest_granting;
323
324         /*
325          * If a specific type enforcement rule was defined for
326          * this permission check, then use it.
327          */
328         avkey.target_class = tclass;
329         avkey.specified = AVTAB_AV;
330         sattr = &policydb.type_attr_map[scontext->type - 1];
331         tattr = &policydb.type_attr_map[tcontext->type - 1];
332         ebitmap_for_each_bit(sattr, snode, i) {
333                 if (!ebitmap_node_get_bit(snode, i))
334                         continue;
335                 ebitmap_for_each_bit(tattr, tnode, j) {
336                         if (!ebitmap_node_get_bit(tnode, j))
337                                 continue;
338                         avkey.source_type = i + 1;
339                         avkey.target_type = j + 1;
340                         for (node = avtab_search_node(&policydb.te_avtab, &avkey);
341                              node != NULL;
342                              node = avtab_search_node_next(node, avkey.specified)) {
343                                 if (node->key.specified == AVTAB_ALLOWED)
344                                         avd->allowed |= node->datum.data;
345                                 else if (node->key.specified == AVTAB_AUDITALLOW)
346                                         avd->auditallow |= node->datum.data;
347                                 else if (node->key.specified == AVTAB_AUDITDENY)
348                                         avd->auditdeny &= node->datum.data;
349                         }
350
351                         /* Check conditional av table for additional permissions */
352                         cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
353
354                 }
355         }
356
357         /*
358          * Remove any permissions prohibited by a constraint (this includes
359          * the MLS policy).
360          */
361         constraint = tclass_datum->constraints;
362         while (constraint) {
363                 if ((constraint->permissions & (avd->allowed)) &&
364                     !constraint_expr_eval(scontext, tcontext, NULL,
365                                           constraint->expr)) {
366                         avd->allowed = (avd->allowed) & ~(constraint->permissions);
367                 }
368                 constraint = constraint->next;
369         }
370
371         /*
372          * If checking process transition permission and the
373          * role is changing, then check the (current_role, new_role)
374          * pair.
375          */
376         if (tclass == SECCLASS_PROCESS &&
377             (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
378             scontext->role != tcontext->role) {
379                 for (ra = policydb.role_allow; ra; ra = ra->next) {
380                         if (scontext->role == ra->role &&
381                             tcontext->role == ra->new_role)
382                                 break;
383                 }
384                 if (!ra)
385                         avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
386                                                         PROCESS__DYNTRANSITION);
387         }
388
389         return 0;
390 }
391
392 static int security_validtrans_handle_fail(struct context *ocontext,
393                                            struct context *ncontext,
394                                            struct context *tcontext,
395                                            u16 tclass)
396 {
397         char *o = NULL, *n = NULL, *t = NULL;
398         u32 olen, nlen, tlen;
399
400         if (context_struct_to_string(ocontext, &o, &olen) < 0)
401                 goto out;
402         if (context_struct_to_string(ncontext, &n, &nlen) < 0)
403                 goto out;
404         if (context_struct_to_string(tcontext, &t, &tlen) < 0)
405                 goto out;
406         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
407                   "security_validate_transition:  denied for"
408                   " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
409                   o, n, t, policydb.p_class_val_to_name[tclass-1]);
410 out:
411         kfree(o);
412         kfree(n);
413         kfree(t);
414
415         if (!selinux_enforcing)
416                 return 0;
417         return -EPERM;
418 }
419
420 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
421                                  u16 tclass)
422 {
423         struct context *ocontext;
424         struct context *ncontext;
425         struct context *tcontext;
426         struct class_datum *tclass_datum;
427         struct constraint_node *constraint;
428         int rc = 0;
429
430         if (!ss_initialized)
431                 return 0;
432
433         POLICY_RDLOCK;
434
435         /*
436          * Remap extended Netlink classes for old policy versions.
437          * Do this here rather than socket_type_to_security_class()
438          * in case a newer policy version is loaded, allowing sockets
439          * to remain in the correct class.
440          */
441         if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
442                 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
443                     tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
444                         tclass = SECCLASS_NETLINK_SOCKET;
445
446         if (!tclass || tclass > policydb.p_classes.nprim) {
447                 printk(KERN_ERR "security_validate_transition:  "
448                        "unrecognized class %d\n", tclass);
449                 rc = -EINVAL;
450                 goto out;
451         }
452         tclass_datum = policydb.class_val_to_struct[tclass - 1];
453
454         ocontext = sidtab_search(&sidtab, oldsid);
455         if (!ocontext) {
456                 printk(KERN_ERR "security_validate_transition: "
457                        " unrecognized SID %d\n", oldsid);
458                 rc = -EINVAL;
459                 goto out;
460         }
461
462         ncontext = sidtab_search(&sidtab, newsid);
463         if (!ncontext) {
464                 printk(KERN_ERR "security_validate_transition: "
465                        " unrecognized SID %d\n", newsid);
466                 rc = -EINVAL;
467                 goto out;
468         }
469
470         tcontext = sidtab_search(&sidtab, tasksid);
471         if (!tcontext) {
472                 printk(KERN_ERR "security_validate_transition: "
473                        " unrecognized SID %d\n", tasksid);
474                 rc = -EINVAL;
475                 goto out;
476         }
477
478         constraint = tclass_datum->validatetrans;
479         while (constraint) {
480                 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
481                                           constraint->expr)) {
482                         rc = security_validtrans_handle_fail(ocontext, ncontext,
483                                                              tcontext, tclass);
484                         goto out;
485                 }
486                 constraint = constraint->next;
487         }
488
489 out:
490         POLICY_RDUNLOCK;
491         return rc;
492 }
493
494 /**
495  * security_compute_av - Compute access vector decisions.
496  * @ssid: source security identifier
497  * @tsid: target security identifier
498  * @tclass: target security class
499  * @requested: requested permissions
500  * @avd: access vector decisions
501  *
502  * Compute a set of access vector decisions based on the
503  * SID pair (@ssid, @tsid) for the permissions in @tclass.
504  * Return -%EINVAL if any of the parameters are invalid or %0
505  * if the access vector decisions were computed successfully.
506  */
507 int security_compute_av(u32 ssid,
508                         u32 tsid,
509                         u16 tclass,
510                         u32 requested,
511                         struct av_decision *avd)
512 {
513         struct context *scontext = NULL, *tcontext = NULL;
514         int rc = 0;
515
516         if (!ss_initialized) {
517                 avd->allowed = 0xffffffff;
518                 avd->decided = 0xffffffff;
519                 avd->auditallow = 0;
520                 avd->auditdeny = 0xffffffff;
521                 avd->seqno = latest_granting;
522                 return 0;
523         }
524
525         POLICY_RDLOCK;
526
527         scontext = sidtab_search(&sidtab, ssid);
528         if (!scontext) {
529                 printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
530                        ssid);
531                 rc = -EINVAL;
532                 goto out;
533         }
534         tcontext = sidtab_search(&sidtab, tsid);
535         if (!tcontext) {
536                 printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
537                        tsid);
538                 rc = -EINVAL;
539                 goto out;
540         }
541
542         rc = context_struct_compute_av(scontext, tcontext, tclass,
543                                        requested, avd);
544 out:
545         POLICY_RDUNLOCK;
546         return rc;
547 }
548
549 /*
550  * Write the security context string representation of
551  * the context structure `context' into a dynamically
552  * allocated string of the correct size.  Set `*scontext'
553  * to point to this string and set `*scontext_len' to
554  * the length of the string.
555  */
556 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
557 {
558         char *scontextp;
559
560         *scontext = NULL;
561         *scontext_len = 0;
562
563         /* Compute the size of the context. */
564         *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
565         *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
566         *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
567         *scontext_len += mls_compute_context_len(context);
568
569         /* Allocate space for the context; caller must free this space. */
570         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
571         if (!scontextp) {
572                 return -ENOMEM;
573         }
574         *scontext = scontextp;
575
576         /*
577          * Copy the user name, role name and type name into the context.
578          */
579         sprintf(scontextp, "%s:%s:%s",
580                 policydb.p_user_val_to_name[context->user - 1],
581                 policydb.p_role_val_to_name[context->role - 1],
582                 policydb.p_type_val_to_name[context->type - 1]);
583         scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
584                      1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
585                      1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
586
587         mls_sid_to_context(context, &scontextp);
588
589         *scontextp = 0;
590
591         return 0;
592 }
593
594 #include "initial_sid_to_string.h"
595
596 const char *security_get_initial_sid_context(u32 sid)
597 {
598         if (unlikely(sid > SECINITSID_NUM))
599                 return NULL;
600         return initial_sid_to_string[sid];
601 }
602
603 /**
604  * security_sid_to_context - Obtain a context for a given SID.
605  * @sid: security identifier, SID
606  * @scontext: security context
607  * @scontext_len: length in bytes
608  *
609  * Write the string representation of the context associated with @sid
610  * into a dynamically allocated string of the correct size.  Set @scontext
611  * to point to this string and set @scontext_len to the length of the string.
612  */
613 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
614 {
615         struct context *context;
616         int rc = 0;
617
618         *scontext = NULL;
619         *scontext_len  = 0;
620
621         if (!ss_initialized) {
622                 if (sid <= SECINITSID_NUM) {
623                         char *scontextp;
624
625                         *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
626                         scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
627                         if (!scontextp) {
628                                 rc = -ENOMEM;
629                                 goto out;
630                         }
631                         strcpy(scontextp, initial_sid_to_string[sid]);
632                         *scontext = scontextp;
633                         goto out;
634                 }
635                 printk(KERN_ERR "security_sid_to_context:  called before initial "
636                        "load_policy on unknown SID %d\n", sid);
637                 rc = -EINVAL;
638                 goto out;
639         }
640         POLICY_RDLOCK;
641         context = sidtab_search(&sidtab, sid);
642         if (!context) {
643                 printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
644                        "%d\n", sid);
645                 rc = -EINVAL;
646                 goto out_unlock;
647         }
648         rc = context_struct_to_string(context, scontext, scontext_len);
649 out_unlock:
650         POLICY_RDUNLOCK;
651 out:
652         return rc;
653
654 }
655
656 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
657 {
658         char *scontext2;
659         struct context context;
660         struct role_datum *role;
661         struct type_datum *typdatum;
662         struct user_datum *usrdatum;
663         char *scontextp, *p, oldc;
664         int rc = 0;
665
666         if (!ss_initialized) {
667                 int i;
668
669                 for (i = 1; i < SECINITSID_NUM; i++) {
670                         if (!strcmp(initial_sid_to_string[i], scontext)) {
671                                 *sid = i;
672                                 goto out;
673                         }
674                 }
675                 *sid = SECINITSID_KERNEL;
676                 goto out;
677         }
678         *sid = SECSID_NULL;
679
680         /* Copy the string so that we can modify the copy as we parse it.
681            The string should already by null terminated, but we append a
682            null suffix to the copy to avoid problems with the existing
683            attr package, which doesn't view the null terminator as part
684            of the attribute value. */
685         scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
686         if (!scontext2) {
687                 rc = -ENOMEM;
688                 goto out;
689         }
690         memcpy(scontext2, scontext, scontext_len);
691         scontext2[scontext_len] = 0;
692
693         context_init(&context);
694         *sid = SECSID_NULL;
695
696         POLICY_RDLOCK;
697
698         /* Parse the security context. */
699
700         rc = -EINVAL;
701         scontextp = (char *) scontext2;
702
703         /* Extract the user. */
704         p = scontextp;
705         while (*p && *p != ':')
706                 p++;
707
708         if (*p == 0)
709                 goto out_unlock;
710
711         *p++ = 0;
712
713         usrdatum = hashtab_search(policydb.p_users.table, scontextp);
714         if (!usrdatum)
715                 goto out_unlock;
716
717         context.user = usrdatum->value;
718
719         /* Extract role. */
720         scontextp = p;
721         while (*p && *p != ':')
722                 p++;
723
724         if (*p == 0)
725                 goto out_unlock;
726
727         *p++ = 0;
728
729         role = hashtab_search(policydb.p_roles.table, scontextp);
730         if (!role)
731                 goto out_unlock;
732         context.role = role->value;
733
734         /* Extract type. */
735         scontextp = p;
736         while (*p && *p != ':')
737                 p++;
738         oldc = *p;
739         *p++ = 0;
740
741         typdatum = hashtab_search(policydb.p_types.table, scontextp);
742         if (!typdatum)
743                 goto out_unlock;
744
745         context.type = typdatum->value;
746
747         rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
748         if (rc)
749                 goto out_unlock;
750
751         if ((p - scontext2) < scontext_len) {
752                 rc = -EINVAL;
753                 goto out_unlock;
754         }
755
756         /* Check the validity of the new context. */
757         if (!policydb_context_isvalid(&policydb, &context)) {
758                 rc = -EINVAL;
759                 goto out_unlock;
760         }
761         /* Obtain the new sid. */
762         rc = sidtab_context_to_sid(&sidtab, &context, sid);
763 out_unlock:
764         POLICY_RDUNLOCK;
765         context_destroy(&context);
766         kfree(scontext2);
767 out:
768         return rc;
769 }
770
771 /**
772  * security_context_to_sid - Obtain a SID for a given security context.
773  * @scontext: security context
774  * @scontext_len: length in bytes
775  * @sid: security identifier, SID
776  *
777  * Obtains a SID associated with the security context that
778  * has the string representation specified by @scontext.
779  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
780  * memory is available, or 0 on success.
781  */
782 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
783 {
784         return security_context_to_sid_core(scontext, scontext_len,
785                                             sid, SECSID_NULL);
786 }
787
788 /**
789  * security_context_to_sid_default - Obtain a SID for a given security context,
790  * falling back to specified default if needed.
791  *
792  * @scontext: security context
793  * @scontext_len: length in bytes
794  * @sid: security identifier, SID
795  * @def_sid: default SID to assign on errror
796  *
797  * Obtains a SID associated with the security context that
798  * has the string representation specified by @scontext.
799  * The default SID is passed to the MLS layer to be used to allow
800  * kernel labeling of the MLS field if the MLS field is not present
801  * (for upgrading to MLS without full relabel).
802  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
803  * memory is available, or 0 on success.
804  */
805 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
806 {
807         return security_context_to_sid_core(scontext, scontext_len,
808                                             sid, def_sid);
809 }
810
811 static int compute_sid_handle_invalid_context(
812         struct context *scontext,
813         struct context *tcontext,
814         u16 tclass,
815         struct context *newcontext)
816 {
817         char *s = NULL, *t = NULL, *n = NULL;
818         u32 slen, tlen, nlen;
819
820         if (context_struct_to_string(scontext, &s, &slen) < 0)
821                 goto out;
822         if (context_struct_to_string(tcontext, &t, &tlen) < 0)
823                 goto out;
824         if (context_struct_to_string(newcontext, &n, &nlen) < 0)
825                 goto out;
826         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
827                   "security_compute_sid:  invalid context %s"
828                   " for scontext=%s"
829                   " tcontext=%s"
830                   " tclass=%s",
831                   n, s, t, policydb.p_class_val_to_name[tclass-1]);
832 out:
833         kfree(s);
834         kfree(t);
835         kfree(n);
836         if (!selinux_enforcing)
837                 return 0;
838         return -EACCES;
839 }
840
841 static int security_compute_sid(u32 ssid,
842                                 u32 tsid,
843                                 u16 tclass,
844                                 u32 specified,
845                                 u32 *out_sid)
846 {
847         struct context *scontext = NULL, *tcontext = NULL, newcontext;
848         struct role_trans *roletr = NULL;
849         struct avtab_key avkey;
850         struct avtab_datum *avdatum;
851         struct avtab_node *node;
852         int rc = 0;
853
854         if (!ss_initialized) {
855                 switch (tclass) {
856                 case SECCLASS_PROCESS:
857                         *out_sid = ssid;
858                         break;
859                 default:
860                         *out_sid = tsid;
861                         break;
862                 }
863                 goto out;
864         }
865
866         context_init(&newcontext);
867
868         POLICY_RDLOCK;
869
870         scontext = sidtab_search(&sidtab, ssid);
871         if (!scontext) {
872                 printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
873                        ssid);
874                 rc = -EINVAL;
875                 goto out_unlock;
876         }
877         tcontext = sidtab_search(&sidtab, tsid);
878         if (!tcontext) {
879                 printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
880                        tsid);
881                 rc = -EINVAL;
882                 goto out_unlock;
883         }
884
885         /* Set the user identity. */
886         switch (specified) {
887         case AVTAB_TRANSITION:
888         case AVTAB_CHANGE:
889                 /* Use the process user identity. */
890                 newcontext.user = scontext->user;
891                 break;
892         case AVTAB_MEMBER:
893                 /* Use the related object owner. */
894                 newcontext.user = tcontext->user;
895                 break;
896         }
897
898         /* Set the role and type to default values. */
899         switch (tclass) {
900         case SECCLASS_PROCESS:
901                 /* Use the current role and type of process. */
902                 newcontext.role = scontext->role;
903                 newcontext.type = scontext->type;
904                 break;
905         default:
906                 /* Use the well-defined object role. */
907                 newcontext.role = OBJECT_R_VAL;
908                 /* Use the type of the related object. */
909                 newcontext.type = tcontext->type;
910         }
911
912         /* Look for a type transition/member/change rule. */
913         avkey.source_type = scontext->type;
914         avkey.target_type = tcontext->type;
915         avkey.target_class = tclass;
916         avkey.specified = specified;
917         avdatum = avtab_search(&policydb.te_avtab, &avkey);
918
919         /* If no permanent rule, also check for enabled conditional rules */
920         if(!avdatum) {
921                 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
922                 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
923                         if (node->key.specified & AVTAB_ENABLED) {
924                                 avdatum = &node->datum;
925                                 break;
926                         }
927                 }
928         }
929
930         if (avdatum) {
931                 /* Use the type from the type transition/member/change rule. */
932                 newcontext.type = avdatum->data;
933         }
934
935         /* Check for class-specific changes. */
936         switch (tclass) {
937         case SECCLASS_PROCESS:
938                 if (specified & AVTAB_TRANSITION) {
939                         /* Look for a role transition rule. */
940                         for (roletr = policydb.role_tr; roletr;
941                              roletr = roletr->next) {
942                                 if (roletr->role == scontext->role &&
943                                     roletr->type == tcontext->type) {
944                                         /* Use the role transition rule. */
945                                         newcontext.role = roletr->new_role;
946                                         break;
947                                 }
948                         }
949                 }
950                 break;
951         default:
952                 break;
953         }
954
955         /* Set the MLS attributes.
956            This is done last because it may allocate memory. */
957         rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
958         if (rc)
959                 goto out_unlock;
960
961         /* Check the validity of the context. */
962         if (!policydb_context_isvalid(&policydb, &newcontext)) {
963                 rc = compute_sid_handle_invalid_context(scontext,
964                                                         tcontext,
965                                                         tclass,
966                                                         &newcontext);
967                 if (rc)
968                         goto out_unlock;
969         }
970         /* Obtain the sid for the context. */
971         rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
972 out_unlock:
973         POLICY_RDUNLOCK;
974         context_destroy(&newcontext);
975 out:
976         return rc;
977 }
978
979 /**
980  * security_transition_sid - Compute the SID for a new subject/object.
981  * @ssid: source security identifier
982  * @tsid: target security identifier
983  * @tclass: target security class
984  * @out_sid: security identifier for new subject/object
985  *
986  * Compute a SID to use for labeling a new subject or object in the
987  * class @tclass based on a SID pair (@ssid, @tsid).
988  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
989  * if insufficient memory is available, or %0 if the new SID was
990  * computed successfully.
991  */
992 int security_transition_sid(u32 ssid,
993                             u32 tsid,
994                             u16 tclass,
995                             u32 *out_sid)
996 {
997         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
998 }
999
1000 /**
1001  * security_member_sid - Compute the SID for member selection.
1002  * @ssid: source security identifier
1003  * @tsid: target security identifier
1004  * @tclass: target security class
1005  * @out_sid: security identifier for selected member
1006  *
1007  * Compute a SID to use when selecting a member of a polyinstantiated
1008  * object of class @tclass based on a SID pair (@ssid, @tsid).
1009  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1010  * if insufficient memory is available, or %0 if the SID was
1011  * computed successfully.
1012  */
1013 int security_member_sid(u32 ssid,
1014                         u32 tsid,
1015                         u16 tclass,
1016                         u32 *out_sid)
1017 {
1018         return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1019 }
1020
1021 /**
1022  * security_change_sid - Compute the SID for object relabeling.
1023  * @ssid: source security identifier
1024  * @tsid: target security identifier
1025  * @tclass: target security class
1026  * @out_sid: security identifier for selected member
1027  *
1028  * Compute a SID to use for relabeling an object of class @tclass
1029  * based on a SID pair (@ssid, @tsid).
1030  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1031  * if insufficient memory is available, or %0 if the SID was
1032  * computed successfully.
1033  */
1034 int security_change_sid(u32 ssid,
1035                         u32 tsid,
1036                         u16 tclass,
1037                         u32 *out_sid)
1038 {
1039         return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1040 }
1041
1042 /*
1043  * Verify that each kernel class that is defined in the
1044  * policy is correct
1045  */
1046 static int validate_classes(struct policydb *p)
1047 {
1048         int i, j;
1049         struct class_datum *cladatum;
1050         struct perm_datum *perdatum;
1051         u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1052         u16 class_val;
1053         const struct selinux_class_perm *kdefs = &selinux_class_perm;
1054         const char *def_class, *def_perm, *pol_class;
1055         struct symtab *perms;
1056
1057         for (i = 1; i < kdefs->cts_len; i++) {
1058                 def_class = kdefs->class_to_string[i];
1059                 if (!def_class)
1060                         continue;
1061                 if (i > p->p_classes.nprim) {
1062                         printk(KERN_INFO
1063                                "security:  class %s not defined in policy\n",
1064                                def_class);
1065                         continue;
1066                 }
1067                 pol_class = p->p_class_val_to_name[i-1];
1068                 if (strcmp(pol_class, def_class)) {
1069                         printk(KERN_ERR
1070                                "security:  class %d is incorrect, found %s but should be %s\n",
1071                                i, pol_class, def_class);
1072                         return -EINVAL;
1073                 }
1074         }
1075         for (i = 0; i < kdefs->av_pts_len; i++) {
1076                 class_val = kdefs->av_perm_to_string[i].tclass;
1077                 perm_val = kdefs->av_perm_to_string[i].value;
1078                 def_perm = kdefs->av_perm_to_string[i].name;
1079                 if (class_val > p->p_classes.nprim)
1080                         continue;
1081                 pol_class = p->p_class_val_to_name[class_val-1];
1082                 cladatum = hashtab_search(p->p_classes.table, pol_class);
1083                 BUG_ON(!cladatum);
1084                 perms = &cladatum->permissions;
1085                 nprim = 1 << (perms->nprim - 1);
1086                 if (perm_val > nprim) {
1087                         printk(KERN_INFO
1088                                "security:  permission %s in class %s not defined in policy\n",
1089                                def_perm, pol_class);
1090                         continue;
1091                 }
1092                 perdatum = hashtab_search(perms->table, def_perm);
1093                 if (perdatum == NULL) {
1094                         printk(KERN_ERR
1095                                "security:  permission %s in class %s not found in policy\n",
1096                                def_perm, pol_class);
1097                         return -EINVAL;
1098                 }
1099                 pol_val = 1 << (perdatum->value - 1);
1100                 if (pol_val != perm_val) {
1101                         printk(KERN_ERR
1102                                "security:  permission %s in class %s has incorrect value\n",
1103                                def_perm, pol_class);
1104                         return -EINVAL;
1105                 }
1106         }
1107         for (i = 0; i < kdefs->av_inherit_len; i++) {
1108                 class_val = kdefs->av_inherit[i].tclass;
1109                 if (class_val > p->p_classes.nprim)
1110                         continue;
1111                 pol_class = p->p_class_val_to_name[class_val-1];
1112                 cladatum = hashtab_search(p->p_classes.table, pol_class);
1113                 BUG_ON(!cladatum);
1114                 if (!cladatum->comdatum) {
1115                         printk(KERN_ERR
1116                                "security:  class %s should have an inherits clause but does not\n",
1117                                pol_class);
1118                         return -EINVAL;
1119                 }
1120                 tmp = kdefs->av_inherit[i].common_base;
1121                 common_pts_len = 0;
1122                 while (!(tmp & 0x01)) {
1123                         common_pts_len++;
1124                         tmp >>= 1;
1125                 }
1126                 perms = &cladatum->comdatum->permissions;
1127                 for (j = 0; j < common_pts_len; j++) {
1128                         def_perm = kdefs->av_inherit[i].common_pts[j];
1129                         if (j >= perms->nprim) {
1130                                 printk(KERN_INFO
1131                                        "security:  permission %s in class %s not defined in policy\n",
1132                                        def_perm, pol_class);
1133                                 continue;
1134                         }
1135                         perdatum = hashtab_search(perms->table, def_perm);
1136                         if (perdatum == NULL) {
1137                                 printk(KERN_ERR
1138                                        "security:  permission %s in class %s not found in policy\n",
1139                                        def_perm, pol_class);
1140                                 return -EINVAL;
1141                         }
1142                         if (perdatum->value != j + 1) {
1143                                 printk(KERN_ERR
1144                                        "security:  permission %s in class %s has incorrect value\n",
1145                                        def_perm, pol_class);
1146                                 return -EINVAL;
1147                         }
1148                 }
1149         }
1150         return 0;
1151 }
1152
1153 /* Clone the SID into the new SID table. */
1154 static int clone_sid(u32 sid,
1155                      struct context *context,
1156                      void *arg)
1157 {
1158         struct sidtab *s = arg;
1159
1160         return sidtab_insert(s, sid, context);
1161 }
1162
1163 static inline int convert_context_handle_invalid_context(struct context *context)
1164 {
1165         int rc = 0;
1166
1167         if (selinux_enforcing) {
1168                 rc = -EINVAL;
1169         } else {
1170                 char *s;
1171                 u32 len;
1172
1173                 context_struct_to_string(context, &s, &len);
1174                 printk(KERN_ERR "security:  context %s is invalid\n", s);
1175                 kfree(s);
1176         }
1177         return rc;
1178 }
1179
1180 struct convert_context_args {
1181         struct policydb *oldp;
1182         struct policydb *newp;
1183 };
1184
1185 /*
1186  * Convert the values in the security context
1187  * structure `c' from the values specified
1188  * in the policy `p->oldp' to the values specified
1189  * in the policy `p->newp'.  Verify that the
1190  * context is valid under the new policy.
1191  */
1192 static int convert_context(u32 key,
1193                            struct context *c,
1194                            void *p)
1195 {
1196         struct convert_context_args *args;
1197         struct context oldc;
1198         struct role_datum *role;
1199         struct type_datum *typdatum;
1200         struct user_datum *usrdatum;
1201         char *s;
1202         u32 len;
1203         int rc;
1204
1205         args = p;
1206
1207         rc = context_cpy(&oldc, c);
1208         if (rc)
1209                 goto out;
1210
1211         rc = -EINVAL;
1212
1213         /* Convert the user. */
1214         usrdatum = hashtab_search(args->newp->p_users.table,
1215                                   args->oldp->p_user_val_to_name[c->user - 1]);
1216         if (!usrdatum) {
1217                 goto bad;
1218         }
1219         c->user = usrdatum->value;
1220
1221         /* Convert the role. */
1222         role = hashtab_search(args->newp->p_roles.table,
1223                               args->oldp->p_role_val_to_name[c->role - 1]);
1224         if (!role) {
1225                 goto bad;
1226         }
1227         c->role = role->value;
1228
1229         /* Convert the type. */
1230         typdatum = hashtab_search(args->newp->p_types.table,
1231                                   args->oldp->p_type_val_to_name[c->type - 1]);
1232         if (!typdatum) {
1233                 goto bad;
1234         }
1235         c->type = typdatum->value;
1236
1237         rc = mls_convert_context(args->oldp, args->newp, c);
1238         if (rc)
1239                 goto bad;
1240
1241         /* Check the validity of the new context. */
1242         if (!policydb_context_isvalid(args->newp, c)) {
1243                 rc = convert_context_handle_invalid_context(&oldc);
1244                 if (rc)
1245                         goto bad;
1246         }
1247
1248         context_destroy(&oldc);
1249 out:
1250         return rc;
1251 bad:
1252         context_struct_to_string(&oldc, &s, &len);
1253         context_destroy(&oldc);
1254         printk(KERN_ERR "security:  invalidating context %s\n", s);
1255         kfree(s);
1256         goto out;
1257 }
1258
1259 extern void selinux_complete_init(void);
1260
1261 /**
1262  * security_load_policy - Load a security policy configuration.
1263  * @data: binary policy data
1264  * @len: length of data in bytes
1265  *
1266  * Load a new set of security policy configuration data,
1267  * validate it and convert the SID table as necessary.
1268  * This function will flush the access vector cache after
1269  * loading the new policy.
1270  */
1271 int security_load_policy(void *data, size_t len)
1272 {
1273         struct policydb oldpolicydb, newpolicydb;
1274         struct sidtab oldsidtab, newsidtab;
1275         struct convert_context_args args;
1276         u32 seqno;
1277         int rc = 0;
1278         struct policy_file file = { data, len }, *fp = &file;
1279
1280         LOAD_LOCK;
1281
1282         if (!ss_initialized) {
1283                 avtab_cache_init();
1284                 if (policydb_read(&policydb, fp)) {
1285                         LOAD_UNLOCK;
1286                         avtab_cache_destroy();
1287                         return -EINVAL;
1288                 }
1289                 if (policydb_load_isids(&policydb, &sidtab)) {
1290                         LOAD_UNLOCK;
1291                         policydb_destroy(&policydb);
1292                         avtab_cache_destroy();
1293                         return -EINVAL;
1294                 }
1295                 /* Verify that the kernel defined classes are correct. */
1296                 if (validate_classes(&policydb)) {
1297                         printk(KERN_ERR
1298                                "security:  the definition of a class is incorrect\n");
1299                         LOAD_UNLOCK;
1300                         sidtab_destroy(&sidtab);
1301                         policydb_destroy(&policydb);
1302                         avtab_cache_destroy();
1303                         return -EINVAL;
1304                 }
1305                 policydb_loaded_version = policydb.policyvers;
1306                 ss_initialized = 1;
1307                 seqno = ++latest_granting;
1308                 LOAD_UNLOCK;
1309                 selinux_complete_init();
1310                 avc_ss_reset(seqno);
1311                 selnl_notify_policyload(seqno);
1312                 selinux_netlbl_cache_invalidate();
1313                 selinux_xfrm_notify_policyload();
1314                 return 0;
1315         }
1316
1317 #if 0
1318         sidtab_hash_eval(&sidtab, "sids");
1319 #endif
1320
1321         if (policydb_read(&newpolicydb, fp)) {
1322                 LOAD_UNLOCK;
1323                 return -EINVAL;
1324         }
1325
1326         sidtab_init(&newsidtab);
1327
1328         /* Verify that the kernel defined classes are correct. */
1329         if (validate_classes(&newpolicydb)) {
1330                 printk(KERN_ERR
1331                        "security:  the definition of a class is incorrect\n");
1332                 rc = -EINVAL;
1333                 goto err;
1334         }
1335
1336         /* Clone the SID table. */
1337         sidtab_shutdown(&sidtab);
1338         if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1339                 rc = -ENOMEM;
1340                 goto err;
1341         }
1342
1343         /* Convert the internal representations of contexts
1344            in the new SID table and remove invalid SIDs. */
1345         args.oldp = &policydb;
1346         args.newp = &newpolicydb;
1347         sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1348
1349         /* Save the old policydb and SID table to free later. */
1350         memcpy(&oldpolicydb, &policydb, sizeof policydb);
1351         sidtab_set(&oldsidtab, &sidtab);
1352
1353         /* Install the new policydb and SID table. */
1354         POLICY_WRLOCK;
1355         memcpy(&policydb, &newpolicydb, sizeof policydb);
1356         sidtab_set(&sidtab, &newsidtab);
1357         seqno = ++latest_granting;
1358         policydb_loaded_version = policydb.policyvers;
1359         POLICY_WRUNLOCK;
1360         LOAD_UNLOCK;
1361
1362         /* Free the old policydb and SID table. */
1363         policydb_destroy(&oldpolicydb);
1364         sidtab_destroy(&oldsidtab);
1365
1366         avc_ss_reset(seqno);
1367         selnl_notify_policyload(seqno);
1368         selinux_netlbl_cache_invalidate();
1369         selinux_xfrm_notify_policyload();
1370
1371         return 0;
1372
1373 err:
1374         LOAD_UNLOCK;
1375         sidtab_destroy(&newsidtab);
1376         policydb_destroy(&newpolicydb);
1377         return rc;
1378
1379 }
1380
1381 /**
1382  * security_port_sid - Obtain the SID for a port.
1383  * @domain: communication domain aka address family
1384  * @type: socket type
1385  * @protocol: protocol number
1386  * @port: port number
1387  * @out_sid: security identifier
1388  */
1389 int security_port_sid(u16 domain,
1390                       u16 type,
1391                       u8 protocol,
1392                       u16 port,
1393                       u32 *out_sid)
1394 {
1395         struct ocontext *c;
1396         int rc = 0;
1397
1398         POLICY_RDLOCK;
1399
1400         c = policydb.ocontexts[OCON_PORT];
1401         while (c) {
1402                 if (c->u.port.protocol == protocol &&
1403                     c->u.port.low_port <= port &&
1404                     c->u.port.high_port >= port)
1405                         break;
1406                 c = c->next;
1407         }
1408
1409         if (c) {
1410                 if (!c->sid[0]) {
1411                         rc = sidtab_context_to_sid(&sidtab,
1412                                                    &c->context[0],
1413                                                    &c->sid[0]);
1414                         if (rc)
1415                                 goto out;
1416                 }
1417                 *out_sid = c->sid[0];
1418         } else {
1419                 *out_sid = SECINITSID_PORT;
1420         }
1421
1422 out:
1423         POLICY_RDUNLOCK;
1424         return rc;
1425 }
1426
1427 /**
1428  * security_netif_sid - Obtain the SID for a network interface.
1429  * @name: interface name
1430  * @if_sid: interface SID
1431  * @msg_sid: default SID for received packets
1432  */
1433 int security_netif_sid(char *name,
1434                        u32 *if_sid,
1435                        u32 *msg_sid)
1436 {
1437         int rc = 0;
1438         struct ocontext *c;
1439
1440         POLICY_RDLOCK;
1441
1442         c = policydb.ocontexts[OCON_NETIF];
1443         while (c) {
1444                 if (strcmp(name, c->u.name) == 0)
1445                         break;
1446                 c = c->next;
1447         }
1448
1449         if (c) {
1450                 if (!c->sid[0] || !c->sid[1]) {
1451                         rc = sidtab_context_to_sid(&sidtab,
1452                                                   &c->context[0],
1453                                                   &c->sid[0]);
1454                         if (rc)
1455                                 goto out;
1456                         rc = sidtab_context_to_sid(&sidtab,
1457                                                    &c->context[1],
1458                                                    &c->sid[1]);
1459                         if (rc)
1460                                 goto out;
1461                 }
1462                 *if_sid = c->sid[0];
1463                 *msg_sid = c->sid[1];
1464         } else {
1465                 *if_sid = SECINITSID_NETIF;
1466                 *msg_sid = SECINITSID_NETMSG;
1467         }
1468
1469 out:
1470         POLICY_RDUNLOCK;
1471         return rc;
1472 }
1473
1474 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1475 {
1476         int i, fail = 0;
1477
1478         for(i = 0; i < 4; i++)
1479                 if(addr[i] != (input[i] & mask[i])) {
1480                         fail = 1;
1481                         break;
1482                 }
1483
1484         return !fail;
1485 }
1486
1487 /**
1488  * security_node_sid - Obtain the SID for a node (host).
1489  * @domain: communication domain aka address family
1490  * @addrp: address
1491  * @addrlen: address length in bytes
1492  * @out_sid: security identifier
1493  */
1494 int security_node_sid(u16 domain,
1495                       void *addrp,
1496                       u32 addrlen,
1497                       u32 *out_sid)
1498 {
1499         int rc = 0;
1500         struct ocontext *c;
1501
1502         POLICY_RDLOCK;
1503
1504         switch (domain) {
1505         case AF_INET: {
1506                 u32 addr;
1507
1508                 if (addrlen != sizeof(u32)) {
1509                         rc = -EINVAL;
1510                         goto out;
1511                 }
1512
1513                 addr = *((u32 *)addrp);
1514
1515                 c = policydb.ocontexts[OCON_NODE];
1516                 while (c) {
1517                         if (c->u.node.addr == (addr & c->u.node.mask))
1518                                 break;
1519                         c = c->next;
1520                 }
1521                 break;
1522         }
1523
1524         case AF_INET6:
1525                 if (addrlen != sizeof(u64) * 2) {
1526                         rc = -EINVAL;
1527                         goto out;
1528                 }
1529                 c = policydb.ocontexts[OCON_NODE6];
1530                 while (c) {
1531                         if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1532                                                 c->u.node6.mask))
1533                                 break;
1534                         c = c->next;
1535                 }
1536                 break;
1537
1538         default:
1539                 *out_sid = SECINITSID_NODE;
1540                 goto out;
1541         }
1542
1543         if (c) {
1544                 if (!c->sid[0]) {
1545                         rc = sidtab_context_to_sid(&sidtab,
1546                                                    &c->context[0],
1547                                                    &c->sid[0]);
1548                         if (rc)
1549                                 goto out;
1550                 }
1551                 *out_sid = c->sid[0];
1552         } else {
1553                 *out_sid = SECINITSID_NODE;
1554         }
1555
1556 out:
1557         POLICY_RDUNLOCK;
1558         return rc;
1559 }
1560
1561 #define SIDS_NEL 25
1562
1563 /**
1564  * security_get_user_sids - Obtain reachable SIDs for a user.
1565  * @fromsid: starting SID
1566  * @username: username
1567  * @sids: array of reachable SIDs for user
1568  * @nel: number of elements in @sids
1569  *
1570  * Generate the set of SIDs for legal security contexts
1571  * for a given user that can be reached by @fromsid.
1572  * Set *@sids to point to a dynamically allocated
1573  * array containing the set of SIDs.  Set *@nel to the
1574  * number of elements in the array.
1575  */
1576
1577 int security_get_user_sids(u32 fromsid,
1578                            char *username,
1579                            u32 **sids,
1580                            u32 *nel)
1581 {
1582         struct context *fromcon, usercon;
1583         u32 *mysids, *mysids2, sid;
1584         u32 mynel = 0, maxnel = SIDS_NEL;
1585         struct user_datum *user;
1586         struct role_datum *role;
1587         struct av_decision avd;
1588         struct ebitmap_node *rnode, *tnode;
1589         int rc = 0, i, j;
1590
1591         if (!ss_initialized) {
1592                 *sids = NULL;
1593                 *nel = 0;
1594                 goto out;
1595         }
1596
1597         POLICY_RDLOCK;
1598
1599         fromcon = sidtab_search(&sidtab, fromsid);
1600         if (!fromcon) {
1601                 rc = -EINVAL;
1602                 goto out_unlock;
1603         }
1604
1605         user = hashtab_search(policydb.p_users.table, username);
1606         if (!user) {
1607                 rc = -EINVAL;
1608                 goto out_unlock;
1609         }
1610         usercon.user = user->value;
1611
1612         mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1613         if (!mysids) {
1614                 rc = -ENOMEM;
1615                 goto out_unlock;
1616         }
1617
1618         ebitmap_for_each_bit(&user->roles, rnode, i) {
1619                 if (!ebitmap_node_get_bit(rnode, i))
1620                         continue;
1621                 role = policydb.role_val_to_struct[i];
1622                 usercon.role = i+1;
1623                 ebitmap_for_each_bit(&role->types, tnode, j) {
1624                         if (!ebitmap_node_get_bit(tnode, j))
1625                                 continue;
1626                         usercon.type = j+1;
1627
1628                         if (mls_setup_user_range(fromcon, user, &usercon))
1629                                 continue;
1630
1631                         rc = context_struct_compute_av(fromcon, &usercon,
1632                                                        SECCLASS_PROCESS,
1633                                                        PROCESS__TRANSITION,
1634                                                        &avd);
1635                         if (rc ||  !(avd.allowed & PROCESS__TRANSITION))
1636                                 continue;
1637                         rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1638                         if (rc) {
1639                                 kfree(mysids);
1640                                 goto out_unlock;
1641                         }
1642                         if (mynel < maxnel) {
1643                                 mysids[mynel++] = sid;
1644                         } else {
1645                                 maxnel += SIDS_NEL;
1646                                 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1647                                 if (!mysids2) {
1648                                         rc = -ENOMEM;
1649                                         kfree(mysids);
1650                                         goto out_unlock;
1651                                 }
1652                                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1653                                 kfree(mysids);
1654                                 mysids = mysids2;
1655                                 mysids[mynel++] = sid;
1656                         }
1657                 }
1658         }
1659
1660         *sids = mysids;
1661         *nel = mynel;
1662
1663 out_unlock:
1664         POLICY_RDUNLOCK;
1665 out:
1666         return rc;
1667 }
1668
1669 /**
1670  * security_genfs_sid - Obtain a SID for a file in a filesystem
1671  * @fstype: filesystem type
1672  * @path: path from root of mount
1673  * @sclass: file security class
1674  * @sid: SID for path
1675  *
1676  * Obtain a SID to use for a file in a filesystem that
1677  * cannot support xattr or use a fixed labeling behavior like
1678  * transition SIDs or task SIDs.
1679  */
1680 int security_genfs_sid(const char *fstype,
1681                        char *path,
1682                        u16 sclass,
1683                        u32 *sid)
1684 {
1685         int len;
1686         struct genfs *genfs;
1687         struct ocontext *c;
1688         int rc = 0, cmp = 0;
1689
1690         POLICY_RDLOCK;
1691
1692         for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1693                 cmp = strcmp(fstype, genfs->fstype);
1694                 if (cmp <= 0)
1695                         break;
1696         }
1697
1698         if (!genfs || cmp) {
1699                 *sid = SECINITSID_UNLABELED;
1700                 rc = -ENOENT;
1701                 goto out;
1702         }
1703
1704         for (c = genfs->head; c; c = c->next) {
1705                 len = strlen(c->u.name);
1706                 if ((!c->v.sclass || sclass == c->v.sclass) &&
1707                     (strncmp(c->u.name, path, len) == 0))
1708                         break;
1709         }
1710
1711         if (!c) {
1712                 *sid = SECINITSID_UNLABELED;
1713                 rc = -ENOENT;
1714                 goto out;
1715         }
1716
1717         if (!c->sid[0]) {
1718                 rc = sidtab_context_to_sid(&sidtab,
1719                                            &c->context[0],
1720                                            &c->sid[0]);
1721                 if (rc)
1722                         goto out;
1723         }
1724
1725         *sid = c->sid[0];
1726 out:
1727         POLICY_RDUNLOCK;
1728         return rc;
1729 }
1730
1731 /**
1732  * security_fs_use - Determine how to handle labeling for a filesystem.
1733  * @fstype: filesystem type
1734  * @behavior: labeling behavior
1735  * @sid: SID for filesystem (superblock)
1736  */
1737 int security_fs_use(
1738         const char *fstype,
1739         unsigned int *behavior,
1740         u32 *sid)
1741 {
1742         int rc = 0;
1743         struct ocontext *c;
1744
1745         POLICY_RDLOCK;
1746
1747         c = policydb.ocontexts[OCON_FSUSE];
1748         while (c) {
1749                 if (strcmp(fstype, c->u.name) == 0)
1750                         break;
1751                 c = c->next;
1752         }
1753
1754         if (c) {
1755                 *behavior = c->v.behavior;
1756                 if (!c->sid[0]) {
1757                         rc = sidtab_context_to_sid(&sidtab,
1758                                                    &c->context[0],
1759                                                    &c->sid[0]);
1760                         if (rc)
1761                                 goto out;
1762                 }
1763                 *sid = c->sid[0];
1764         } else {
1765                 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1766                 if (rc) {
1767                         *behavior = SECURITY_FS_USE_NONE;
1768                         rc = 0;
1769                 } else {
1770                         *behavior = SECURITY_FS_USE_GENFS;
1771                 }
1772         }
1773
1774 out:
1775         POLICY_RDUNLOCK;
1776         return rc;
1777 }
1778
1779 int security_get_bools(int *len, char ***names, int **values)
1780 {
1781         int i, rc = -ENOMEM;
1782
1783         POLICY_RDLOCK;
1784         *names = NULL;
1785         *values = NULL;
1786
1787         *len = policydb.p_bools.nprim;
1788         if (!*len) {
1789                 rc = 0;
1790                 goto out;
1791         }
1792
1793        *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1794         if (!*names)
1795                 goto err;
1796
1797        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1798         if (!*values)
1799                 goto err;
1800
1801         for (i = 0; i < *len; i++) {
1802                 size_t name_len;
1803                 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1804                 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1805                (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1806                 if (!(*names)[i])
1807                         goto err;
1808                 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1809                 (*names)[i][name_len - 1] = 0;
1810         }
1811         rc = 0;
1812 out:
1813         POLICY_RDUNLOCK;
1814         return rc;
1815 err:
1816         if (*names) {
1817                 for (i = 0; i < *len; i++)
1818                         kfree((*names)[i]);
1819         }
1820         kfree(*values);
1821         goto out;
1822 }
1823
1824
1825 int security_set_bools(int len, int *values)
1826 {
1827         int i, rc = 0;
1828         int lenp, seqno = 0;
1829         struct cond_node *cur;
1830
1831         POLICY_WRLOCK;
1832
1833         lenp = policydb.p_bools.nprim;
1834         if (len != lenp) {
1835                 rc = -EFAULT;
1836                 goto out;
1837         }
1838
1839         for (i = 0; i < len; i++) {
1840                 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1841                         audit_log(current->audit_context, GFP_ATOMIC,
1842                                 AUDIT_MAC_CONFIG_CHANGE,
1843                                 "bool=%s val=%d old_val=%d auid=%u",
1844                                 policydb.p_bool_val_to_name[i],
1845                                 !!values[i],
1846                                 policydb.bool_val_to_struct[i]->state,
1847                                 audit_get_loginuid(current->audit_context));
1848                 }
1849                 if (values[i]) {
1850                         policydb.bool_val_to_struct[i]->state = 1;
1851                 } else {
1852                         policydb.bool_val_to_struct[i]->state = 0;
1853                 }
1854         }
1855
1856         for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1857                 rc = evaluate_cond_node(&policydb, cur);
1858                 if (rc)
1859                         goto out;
1860         }
1861
1862         seqno = ++latest_granting;
1863
1864 out:
1865         POLICY_WRUNLOCK;
1866         if (!rc) {
1867                 avc_ss_reset(seqno);
1868                 selnl_notify_policyload(seqno);
1869                 selinux_xfrm_notify_policyload();
1870         }
1871         return rc;
1872 }
1873
1874 int security_get_bool_value(int bool)
1875 {
1876         int rc = 0;
1877         int len;
1878
1879         POLICY_RDLOCK;
1880
1881         len = policydb.p_bools.nprim;
1882         if (bool >= len) {
1883                 rc = -EFAULT;
1884                 goto out;
1885         }
1886
1887         rc = policydb.bool_val_to_struct[bool]->state;
1888 out:
1889         POLICY_RDUNLOCK;
1890         return rc;
1891 }
1892
1893 /*
1894  * security_sid_mls_copy() - computes a new sid based on the given
1895  * sid and the mls portion of mls_sid.
1896  */
1897 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
1898 {
1899         struct context *context1;
1900         struct context *context2;
1901         struct context newcon;
1902         char *s;
1903         u32 len;
1904         int rc = 0;
1905
1906         if (!ss_initialized || !selinux_mls_enabled) {
1907                 *new_sid = sid;
1908                 goto out;
1909         }
1910
1911         context_init(&newcon);
1912
1913         POLICY_RDLOCK;
1914         context1 = sidtab_search(&sidtab, sid);
1915         if (!context1) {
1916                 printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
1917                        "%d\n", sid);
1918                 rc = -EINVAL;
1919                 goto out_unlock;
1920         }
1921
1922         context2 = sidtab_search(&sidtab, mls_sid);
1923         if (!context2) {
1924                 printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
1925                        "%d\n", mls_sid);
1926                 rc = -EINVAL;
1927                 goto out_unlock;
1928         }
1929
1930         newcon.user = context1->user;
1931         newcon.role = context1->role;
1932         newcon.type = context1->type;
1933         rc = mls_context_cpy(&newcon, context2);
1934         if (rc)
1935                 goto out_unlock;
1936
1937         /* Check the validity of the new context. */
1938         if (!policydb_context_isvalid(&policydb, &newcon)) {
1939                 rc = convert_context_handle_invalid_context(&newcon);
1940                 if (rc)
1941                         goto bad;
1942         }
1943
1944         rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
1945         goto out_unlock;
1946
1947 bad:
1948         if (!context_struct_to_string(&newcon, &s, &len)) {
1949                 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1950                           "security_sid_mls_copy: invalid context %s", s);
1951                 kfree(s);
1952         }
1953
1954 out_unlock:
1955         POLICY_RDUNLOCK;
1956         context_destroy(&newcon);
1957 out:
1958         return rc;
1959 }
1960
1961 struct selinux_audit_rule {
1962         u32 au_seqno;
1963         struct context au_ctxt;
1964 };
1965
1966 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
1967 {
1968         if (rule) {
1969                 context_destroy(&rule->au_ctxt);
1970                 kfree(rule);
1971         }
1972 }
1973
1974 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
1975                             struct selinux_audit_rule **rule)
1976 {
1977         struct selinux_audit_rule *tmprule;
1978         struct role_datum *roledatum;
1979         struct type_datum *typedatum;
1980         struct user_datum *userdatum;
1981         int rc = 0;
1982
1983         *rule = NULL;
1984
1985         if (!ss_initialized)
1986                 return -ENOTSUPP;
1987
1988         switch (field) {
1989         case AUDIT_SUBJ_USER:
1990         case AUDIT_SUBJ_ROLE:
1991         case AUDIT_SUBJ_TYPE:
1992         case AUDIT_OBJ_USER:
1993         case AUDIT_OBJ_ROLE:
1994         case AUDIT_OBJ_TYPE:
1995                 /* only 'equals' and 'not equals' fit user, role, and type */
1996                 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
1997                         return -EINVAL;
1998                 break;
1999         case AUDIT_SUBJ_SEN:
2000         case AUDIT_SUBJ_CLR:
2001         case AUDIT_OBJ_LEV_LOW:
2002         case AUDIT_OBJ_LEV_HIGH:
2003                 /* we do not allow a range, indicated by the presense of '-' */
2004                 if (strchr(rulestr, '-'))
2005                         return -EINVAL;
2006                 break;
2007         default:
2008                 /* only the above fields are valid */
2009                 return -EINVAL;
2010         }
2011
2012         tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2013         if (!tmprule)
2014                 return -ENOMEM;
2015
2016         context_init(&tmprule->au_ctxt);
2017
2018         POLICY_RDLOCK;
2019
2020         tmprule->au_seqno = latest_granting;
2021
2022         switch (field) {
2023         case AUDIT_SUBJ_USER:
2024         case AUDIT_OBJ_USER:
2025                 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2026                 if (!userdatum)
2027                         rc = -EINVAL;
2028                 else
2029                         tmprule->au_ctxt.user = userdatum->value;
2030                 break;
2031         case AUDIT_SUBJ_ROLE:
2032         case AUDIT_OBJ_ROLE:
2033                 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2034                 if (!roledatum)
2035                         rc = -EINVAL;
2036                 else
2037                         tmprule->au_ctxt.role = roledatum->value;
2038                 break;
2039         case AUDIT_SUBJ_TYPE:
2040         case AUDIT_OBJ_TYPE:
2041                 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2042                 if (!typedatum)
2043                         rc = -EINVAL;
2044                 else
2045                         tmprule->au_ctxt.type = typedatum->value;
2046                 break;
2047         case AUDIT_SUBJ_SEN:
2048         case AUDIT_SUBJ_CLR:
2049         case AUDIT_OBJ_LEV_LOW:
2050         case AUDIT_OBJ_LEV_HIGH:
2051                 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2052                 break;
2053         }
2054
2055         POLICY_RDUNLOCK;
2056
2057         if (rc) {
2058                 selinux_audit_rule_free(tmprule);
2059                 tmprule = NULL;
2060         }
2061
2062         *rule = tmprule;
2063
2064         return rc;
2065 }
2066
2067 int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
2068                              struct selinux_audit_rule *rule,
2069                              struct audit_context *actx)
2070 {
2071         struct context *ctxt;
2072         struct mls_level *level;
2073         int match = 0;
2074
2075         if (!rule) {
2076                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2077                           "selinux_audit_rule_match: missing rule\n");
2078                 return -ENOENT;
2079         }
2080
2081         POLICY_RDLOCK;
2082
2083         if (rule->au_seqno < latest_granting) {
2084                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2085                           "selinux_audit_rule_match: stale rule\n");
2086                 match = -ESTALE;
2087                 goto out;
2088         }
2089
2090         ctxt = sidtab_search(&sidtab, sid);
2091         if (!ctxt) {
2092                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2093                           "selinux_audit_rule_match: unrecognized SID %d\n",
2094                           sid);
2095                 match = -ENOENT;
2096                 goto out;
2097         }
2098
2099         /* a field/op pair that is not caught here will simply fall through
2100            without a match */
2101         switch (field) {
2102         case AUDIT_SUBJ_USER:
2103         case AUDIT_OBJ_USER:
2104                 switch (op) {
2105                 case AUDIT_EQUAL:
2106                         match = (ctxt->user == rule->au_ctxt.user);
2107                         break;
2108                 case AUDIT_NOT_EQUAL:
2109                         match = (ctxt->user != rule->au_ctxt.user);
2110                         break;
2111                 }
2112                 break;
2113         case AUDIT_SUBJ_ROLE:
2114         case AUDIT_OBJ_ROLE:
2115                 switch (op) {
2116                 case AUDIT_EQUAL:
2117                         match = (ctxt->role == rule->au_ctxt.role);
2118                         break;
2119                 case AUDIT_NOT_EQUAL:
2120                         match = (ctxt->role != rule->au_ctxt.role);
2121                         break;
2122                 }
2123                 break;
2124         case AUDIT_SUBJ_TYPE:
2125         case AUDIT_OBJ_TYPE:
2126                 switch (op) {
2127                 case AUDIT_EQUAL:
2128                         match = (ctxt->type == rule->au_ctxt.type);
2129                         break;
2130                 case AUDIT_NOT_EQUAL:
2131                         match = (ctxt->type != rule->au_ctxt.type);
2132                         break;
2133                 }
2134                 break;
2135         case AUDIT_SUBJ_SEN:
2136         case AUDIT_SUBJ_CLR:
2137         case AUDIT_OBJ_LEV_LOW:
2138         case AUDIT_OBJ_LEV_HIGH:
2139                 level = ((field == AUDIT_SUBJ_SEN ||
2140                           field == AUDIT_OBJ_LEV_LOW) ?
2141                          &ctxt->range.level[0] : &ctxt->range.level[1]);
2142                 switch (op) {
2143                 case AUDIT_EQUAL:
2144                         match = mls_level_eq(&rule->au_ctxt.range.level[0],
2145                                              level);
2146                         break;
2147                 case AUDIT_NOT_EQUAL:
2148                         match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2149                                               level);
2150                         break;
2151                 case AUDIT_LESS_THAN:
2152                         match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2153                                                level) &&
2154                                  !mls_level_eq(&rule->au_ctxt.range.level[0],
2155                                                level));
2156                         break;
2157                 case AUDIT_LESS_THAN_OR_EQUAL:
2158                         match = mls_level_dom(&rule->au_ctxt.range.level[0],
2159                                               level);
2160                         break;
2161                 case AUDIT_GREATER_THAN:
2162                         match = (mls_level_dom(level,
2163                                               &rule->au_ctxt.range.level[0]) &&
2164                                  !mls_level_eq(level,
2165                                                &rule->au_ctxt.range.level[0]));
2166                         break;
2167                 case AUDIT_GREATER_THAN_OR_EQUAL:
2168                         match = mls_level_dom(level,
2169                                               &rule->au_ctxt.range.level[0]);
2170                         break;
2171                 }
2172         }
2173
2174 out:
2175         POLICY_RDUNLOCK;
2176         return match;
2177 }
2178
2179 static int (*aurule_callback)(void) = NULL;
2180
2181 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2182                                u16 class, u32 perms, u32 *retained)
2183 {
2184         int err = 0;
2185
2186         if (event == AVC_CALLBACK_RESET && aurule_callback)
2187                 err = aurule_callback();
2188         return err;
2189 }
2190
2191 static int __init aurule_init(void)
2192 {
2193         int err;
2194
2195         err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2196                                SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2197         if (err)
2198                 panic("avc_add_callback() failed, error %d\n", err);
2199
2200         return err;
2201 }
2202 __initcall(aurule_init);
2203
2204 void selinux_audit_set_callback(int (*callback)(void))
2205 {
2206         aurule_callback = callback;
2207 }
2208
2209 #ifdef CONFIG_NETLABEL
2210 /*
2211  * NetLabel cache structure
2212  */
2213 #define NETLBL_CACHE(x)           ((struct selinux_netlbl_cache *)(x))
2214 #define NETLBL_CACHE_T_NONE       0
2215 #define NETLBL_CACHE_T_SID        1
2216 #define NETLBL_CACHE_T_MLS        2
2217 struct selinux_netlbl_cache {
2218         u32 type;
2219         union {
2220                 u32 sid;
2221                 struct mls_range mls_label;
2222         } data;
2223 };
2224
2225 /**
2226  * security_netlbl_cache_free - Free the NetLabel cached data
2227  * @data: the data to free
2228  *
2229  * Description:
2230  * This function is intended to be used as the free() callback inside the
2231  * netlbl_lsm_cache structure.
2232  *
2233  */
2234 static void security_netlbl_cache_free(const void *data)
2235 {
2236         struct selinux_netlbl_cache *cache;
2237
2238         if (data == NULL)
2239                 return;
2240
2241         cache = NETLBL_CACHE(data);
2242         switch (cache->type) {
2243         case NETLBL_CACHE_T_MLS:
2244                 ebitmap_destroy(&cache->data.mls_label.level[0].cat);
2245                 break;
2246         }
2247         kfree(data);
2248 }
2249
2250 /**
2251  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2252  * @secattr: the NetLabel packet security attributes
2253  * @ctx: the SELinux context
2254  *
2255  * Description:
2256  * Attempt to cache the context in @ctx, which was derived from the packet in
2257  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2258  * already been initialized.
2259  *
2260  */
2261 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2262                                       struct context *ctx)
2263 {
2264         struct selinux_netlbl_cache *cache = NULL;
2265
2266         secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2267         if (secattr->cache == NULL)
2268                 return;
2269
2270         cache = kzalloc(sizeof(*cache), GFP_ATOMIC);
2271         if (cache == NULL)
2272                 return;
2273
2274         cache->type = NETLBL_CACHE_T_MLS;
2275         if (ebitmap_cpy(&cache->data.mls_label.level[0].cat,
2276                         &ctx->range.level[0].cat) != 0)
2277                 return;
2278         cache->data.mls_label.level[1].cat.highbit =
2279                 cache->data.mls_label.level[0].cat.highbit;
2280         cache->data.mls_label.level[1].cat.node =
2281                 cache->data.mls_label.level[0].cat.node;
2282         cache->data.mls_label.level[0].sens = ctx->range.level[0].sens;
2283         cache->data.mls_label.level[1].sens = ctx->range.level[0].sens;
2284
2285         secattr->cache->free = security_netlbl_cache_free;
2286         secattr->cache->data = (void *)cache;
2287         secattr->flags |= NETLBL_SECATTR_CACHE;
2288 }
2289
2290 /**
2291  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2292  * @secattr: the NetLabel packet security attributes
2293  * @base_sid: the SELinux SID to use as a context for MLS only attributes
2294  * @sid: the SELinux SID
2295  *
2296  * Description:
2297  * Convert the given NetLabel security attributes in @secattr into a
2298  * SELinux SID.  If the @secattr field does not contain a full SELinux
2299  * SID/context then use the context in @base_sid as the foundation.  If
2300  * possibile the 'cache' field of @secattr is set and the CACHE flag is set;
2301  * this is to allow the @secattr to be used by NetLabel to cache the secattr to
2302  * SID conversion for future lookups.  Returns zero on success, negative
2303  * values on failure.
2304  *
2305  */
2306 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2307                                    u32 base_sid,
2308                                    u32 *sid)
2309 {
2310         int rc = -EIDRM;
2311         struct context *ctx;
2312         struct context ctx_new;
2313         struct selinux_netlbl_cache *cache;
2314
2315         if (!ss_initialized) {
2316                 *sid = SECSID_NULL;
2317                 return 0;
2318         }
2319
2320         POLICY_RDLOCK;
2321
2322         if (secattr->flags & NETLBL_SECATTR_CACHE) {
2323                 cache = NETLBL_CACHE(secattr->cache->data);
2324                 switch (cache->type) {
2325                 case NETLBL_CACHE_T_SID:
2326                         *sid = cache->data.sid;
2327                         rc = 0;
2328                         break;
2329                 case NETLBL_CACHE_T_MLS:
2330                         ctx = sidtab_search(&sidtab, base_sid);
2331                         if (ctx == NULL)
2332                                 goto netlbl_secattr_to_sid_return;
2333
2334                         ctx_new.user = ctx->user;
2335                         ctx_new.role = ctx->role;
2336                         ctx_new.type = ctx->type;
2337                         ctx_new.range.level[0].sens =
2338                                 cache->data.mls_label.level[0].sens;
2339                         ctx_new.range.level[0].cat.highbit =
2340                                 cache->data.mls_label.level[0].cat.highbit;
2341                         ctx_new.range.level[0].cat.node =
2342                                 cache->data.mls_label.level[0].cat.node;
2343                         ctx_new.range.level[1].sens =
2344                                 cache->data.mls_label.level[1].sens;
2345                         ctx_new.range.level[1].cat.highbit =
2346                                 cache->data.mls_label.level[1].cat.highbit;
2347                         ctx_new.range.level[1].cat.node =
2348                                 cache->data.mls_label.level[1].cat.node;
2349
2350                         rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2351                         break;
2352                 default:
2353                         goto netlbl_secattr_to_sid_return;
2354                 }
2355         } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2356                 ctx = sidtab_search(&sidtab, base_sid);
2357                 if (ctx == NULL)
2358                         goto netlbl_secattr_to_sid_return;
2359
2360                 ctx_new.user = ctx->user;
2361                 ctx_new.role = ctx->role;
2362                 ctx_new.type = ctx->type;
2363                 mls_import_netlbl_lvl(&ctx_new, secattr);
2364                 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2365                         if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2366                                                   secattr->mls_cat) != 0)
2367                                 goto netlbl_secattr_to_sid_return;
2368                         ctx_new.range.level[1].cat.highbit =
2369                                 ctx_new.range.level[0].cat.highbit;
2370                         ctx_new.range.level[1].cat.node =
2371                                 ctx_new.range.level[0].cat.node;
2372                 } else {
2373                         ebitmap_init(&ctx_new.range.level[0].cat);
2374                         ebitmap_init(&ctx_new.range.level[1].cat);
2375                 }
2376                 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2377                         goto netlbl_secattr_to_sid_return_cleanup;
2378
2379                 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2380                 if (rc != 0)
2381                         goto netlbl_secattr_to_sid_return_cleanup;
2382
2383                 security_netlbl_cache_add(secattr, &ctx_new);
2384
2385                 ebitmap_destroy(&ctx_new.range.level[0].cat);
2386         } else {
2387                 *sid = SECSID_NULL;
2388                 rc = 0;
2389         }
2390
2391 netlbl_secattr_to_sid_return:
2392         POLICY_RDUNLOCK;
2393         return rc;
2394 netlbl_secattr_to_sid_return_cleanup:
2395         ebitmap_destroy(&ctx_new.range.level[0].cat);
2396         goto netlbl_secattr_to_sid_return;
2397 }
2398
2399 /**
2400  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2401  * @sid: the SELinux SID
2402  * @secattr: the NetLabel packet security attributes
2403  *
2404  * Description:
2405  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2406  * Returns zero on success, negative values on failure.
2407  *
2408  */
2409 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2410 {
2411         int rc = -ENOENT;
2412         struct context *ctx;
2413
2414         netlbl_secattr_init(secattr);
2415
2416         if (!ss_initialized)
2417                 return 0;
2418
2419         POLICY_RDLOCK;
2420         ctx = sidtab_search(&sidtab, sid);
2421         if (ctx == NULL)
2422                 goto netlbl_sid_to_secattr_failure;
2423         secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2424                                   GFP_ATOMIC);
2425         secattr->flags |= NETLBL_SECATTR_DOMAIN;
2426         mls_export_netlbl_lvl(ctx, secattr);
2427         rc = mls_export_netlbl_cat(ctx, secattr);
2428         if (rc != 0)
2429                 goto netlbl_sid_to_secattr_failure;
2430         POLICY_RDUNLOCK;
2431
2432         return 0;
2433
2434 netlbl_sid_to_secattr_failure:
2435         POLICY_RDUNLOCK;
2436         netlbl_secattr_destroy(secattr);
2437         return rc;
2438 }
2439 #endif /* CONFIG_NETLABEL */