Merge branch 'master' into next
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /* Allocate and free functions for each kind of security blob. */
160
161 static int task_alloc_security(struct task_struct *task)
162 {
163         struct task_security_struct *tsec;
164
165         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
166         if (!tsec)
167                 return -ENOMEM;
168
169         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
170         task->security = tsec;
171
172         return 0;
173 }
174
175 static void task_free_security(struct task_struct *task)
176 {
177         struct task_security_struct *tsec = task->security;
178         task->security = NULL;
179         kfree(tsec);
180 }
181
182 static int inode_alloc_security(struct inode *inode)
183 {
184         struct task_security_struct *tsec = current->security;
185         struct inode_security_struct *isec;
186
187         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
188         if (!isec)
189                 return -ENOMEM;
190
191         mutex_init(&isec->lock);
192         INIT_LIST_HEAD(&isec->list);
193         isec->inode = inode;
194         isec->sid = SECINITSID_UNLABELED;
195         isec->sclass = SECCLASS_FILE;
196         isec->task_sid = tsec->sid;
197         inode->i_security = isec;
198
199         return 0;
200 }
201
202 static void inode_free_security(struct inode *inode)
203 {
204         struct inode_security_struct *isec = inode->i_security;
205         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
206
207         spin_lock(&sbsec->isec_lock);
208         if (!list_empty(&isec->list))
209                 list_del_init(&isec->list);
210         spin_unlock(&sbsec->isec_lock);
211
212         inode->i_security = NULL;
213         kmem_cache_free(sel_inode_cache, isec);
214 }
215
216 static int file_alloc_security(struct file *file)
217 {
218         struct task_security_struct *tsec = current->security;
219         struct file_security_struct *fsec;
220
221         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
222         if (!fsec)
223                 return -ENOMEM;
224
225         fsec->sid = tsec->sid;
226         fsec->fown_sid = tsec->sid;
227         file->f_security = fsec;
228
229         return 0;
230 }
231
232 static void file_free_security(struct file *file)
233 {
234         struct file_security_struct *fsec = file->f_security;
235         file->f_security = NULL;
236         kfree(fsec);
237 }
238
239 static int superblock_alloc_security(struct super_block *sb)
240 {
241         struct superblock_security_struct *sbsec;
242
243         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
244         if (!sbsec)
245                 return -ENOMEM;
246
247         mutex_init(&sbsec->lock);
248         INIT_LIST_HEAD(&sbsec->list);
249         INIT_LIST_HEAD(&sbsec->isec_head);
250         spin_lock_init(&sbsec->isec_lock);
251         sbsec->sb = sb;
252         sbsec->sid = SECINITSID_UNLABELED;
253         sbsec->def_sid = SECINITSID_FILE;
254         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
255         sb->s_security = sbsec;
256
257         return 0;
258 }
259
260 static void superblock_free_security(struct super_block *sb)
261 {
262         struct superblock_security_struct *sbsec = sb->s_security;
263
264         spin_lock(&sb_security_lock);
265         if (!list_empty(&sbsec->list))
266                 list_del_init(&sbsec->list);
267         spin_unlock(&sb_security_lock);
268
269         sb->s_security = NULL;
270         kfree(sbsec);
271 }
272
273 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
274 {
275         struct sk_security_struct *ssec;
276
277         ssec = kzalloc(sizeof(*ssec), priority);
278         if (!ssec)
279                 return -ENOMEM;
280
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_reset(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         selinux_netlbl_sk_security_free(ssec);
296         kfree(ssec);
297 }
298
299 /* The security server must be initialized before
300    any labeling or access decisions can be provided. */
301 extern int ss_initialized;
302
303 /* The file system's label must be initialized prior to use. */
304
305 static char *labeling_behaviors[6] = {
306         "uses xattr",
307         "uses transition SIDs",
308         "uses task SIDs",
309         "uses genfs_contexts",
310         "not configured for labeling",
311         "uses mountpoint labeling",
312 };
313
314 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
315
316 static inline int inode_doinit(struct inode *inode)
317 {
318         return inode_doinit_with_dentry(inode, NULL);
319 }
320
321 enum {
322         Opt_error = -1,
323         Opt_context = 1,
324         Opt_fscontext = 2,
325         Opt_defcontext = 3,
326         Opt_rootcontext = 4,
327 };
328
329 static const match_table_t tokens = {
330         {Opt_context, CONTEXT_STR "%s"},
331         {Opt_fscontext, FSCONTEXT_STR "%s"},
332         {Opt_defcontext, DEFCONTEXT_STR "%s"},
333         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
334         {Opt_error, NULL},
335 };
336
337 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
338
339 static int may_context_mount_sb_relabel(u32 sid,
340                         struct superblock_security_struct *sbsec,
341                         struct task_security_struct *tsec)
342 {
343         int rc;
344
345         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346                           FILESYSTEM__RELABELFROM, NULL);
347         if (rc)
348                 return rc;
349
350         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
351                           FILESYSTEM__RELABELTO, NULL);
352         return rc;
353 }
354
355 static int may_context_mount_inode_relabel(u32 sid,
356                         struct superblock_security_struct *sbsec,
357                         struct task_security_struct *tsec)
358 {
359         int rc;
360         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
361                           FILESYSTEM__RELABELFROM, NULL);
362         if (rc)
363                 return rc;
364
365         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
366                           FILESYSTEM__ASSOCIATE, NULL);
367         return rc;
368 }
369
370 static int sb_finish_set_opts(struct super_block *sb)
371 {
372         struct superblock_security_struct *sbsec = sb->s_security;
373         struct dentry *root = sb->s_root;
374         struct inode *root_inode = root->d_inode;
375         int rc = 0;
376
377         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
378                 /* Make sure that the xattr handler exists and that no
379                    error other than -ENODATA is returned by getxattr on
380                    the root directory.  -ENODATA is ok, as this may be
381                    the first boot of the SELinux kernel before we have
382                    assigned xattr values to the filesystem. */
383                 if (!root_inode->i_op->getxattr) {
384                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
385                                "xattr support\n", sb->s_id, sb->s_type->name);
386                         rc = -EOPNOTSUPP;
387                         goto out;
388                 }
389                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
390                 if (rc < 0 && rc != -ENODATA) {
391                         if (rc == -EOPNOTSUPP)
392                                 printk(KERN_WARNING "SELinux: (dev %s, type "
393                                        "%s) has no security xattr handler\n",
394                                        sb->s_id, sb->s_type->name);
395                         else
396                                 printk(KERN_WARNING "SELinux: (dev %s, type "
397                                        "%s) getxattr errno %d\n", sb->s_id,
398                                        sb->s_type->name, -rc);
399                         goto out;
400                 }
401         }
402
403         sbsec->initialized = 1;
404
405         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
406                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
407                        sb->s_id, sb->s_type->name);
408         else
409                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
410                        sb->s_id, sb->s_type->name,
411                        labeling_behaviors[sbsec->behavior-1]);
412
413         /* Initialize the root inode. */
414         rc = inode_doinit_with_dentry(root_inode, root);
415
416         /* Initialize any other inodes associated with the superblock, e.g.
417            inodes created prior to initial policy load or inodes created
418            during get_sb by a pseudo filesystem that directly
419            populates itself. */
420         spin_lock(&sbsec->isec_lock);
421 next_inode:
422         if (!list_empty(&sbsec->isec_head)) {
423                 struct inode_security_struct *isec =
424                                 list_entry(sbsec->isec_head.next,
425                                            struct inode_security_struct, list);
426                 struct inode *inode = isec->inode;
427                 spin_unlock(&sbsec->isec_lock);
428                 inode = igrab(inode);
429                 if (inode) {
430                         if (!IS_PRIVATE(inode))
431                                 inode_doinit(inode);
432                         iput(inode);
433                 }
434                 spin_lock(&sbsec->isec_lock);
435                 list_del_init(&isec->list);
436                 goto next_inode;
437         }
438         spin_unlock(&sbsec->isec_lock);
439 out:
440         return rc;
441 }
442
443 /*
444  * This function should allow an FS to ask what it's mount security
445  * options were so it can use those later for submounts, displaying
446  * mount options, or whatever.
447  */
448 static int selinux_get_mnt_opts(const struct super_block *sb,
449                                 struct security_mnt_opts *opts)
450 {
451         int rc = 0, i;
452         struct superblock_security_struct *sbsec = sb->s_security;
453         char *context = NULL;
454         u32 len;
455         char tmp;
456
457         security_init_mnt_opts(opts);
458
459         if (!sbsec->initialized)
460                 return -EINVAL;
461
462         if (!ss_initialized)
463                 return -EINVAL;
464
465         /*
466          * if we ever use sbsec flags for anything other than tracking mount
467          * settings this is going to need a mask
468          */
469         tmp = sbsec->flags;
470         /* count the number of mount options for this sb */
471         for (i = 0; i < 8; i++) {
472                 if (tmp & 0x01)
473                         opts->num_mnt_opts++;
474                 tmp >>= 1;
475         }
476
477         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
478         if (!opts->mnt_opts) {
479                 rc = -ENOMEM;
480                 goto out_free;
481         }
482
483         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
484         if (!opts->mnt_opts_flags) {
485                 rc = -ENOMEM;
486                 goto out_free;
487         }
488
489         i = 0;
490         if (sbsec->flags & FSCONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
496         }
497         if (sbsec->flags & CONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
503         }
504         if (sbsec->flags & DEFCONTEXT_MNT) {
505                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
506                 if (rc)
507                         goto out_free;
508                 opts->mnt_opts[i] = context;
509                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
510         }
511         if (sbsec->flags & ROOTCONTEXT_MNT) {
512                 struct inode *root = sbsec->sb->s_root->d_inode;
513                 struct inode_security_struct *isec = root->i_security;
514
515                 rc = security_sid_to_context(isec->sid, &context, &len);
516                 if (rc)
517                         goto out_free;
518                 opts->mnt_opts[i] = context;
519                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
520         }
521
522         BUG_ON(i != opts->num_mnt_opts);
523
524         return 0;
525
526 out_free:
527         security_free_mnt_opts(opts);
528         return rc;
529 }
530
531 static int bad_option(struct superblock_security_struct *sbsec, char flag,
532                       u32 old_sid, u32 new_sid)
533 {
534         /* check if the old mount command had the same options */
535         if (sbsec->initialized)
536                 if (!(sbsec->flags & flag) ||
537                     (old_sid != new_sid))
538                         return 1;
539
540         /* check if we were passed the same options twice,
541          * aka someone passed context=a,context=b
542          */
543         if (!sbsec->initialized)
544                 if (sbsec->flags & flag)
545                         return 1;
546         return 0;
547 }
548
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554                                 struct security_mnt_opts *opts)
555 {
556         int rc = 0, i;
557         struct task_security_struct *tsec = current->security;
558         struct superblock_security_struct *sbsec = sb->s_security;
559         const char *name = sb->s_type->name;
560         struct inode *inode = sbsec->sb->s_root->d_inode;
561         struct inode_security_struct *root_isec = inode->i_security;
562         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563         u32 defcontext_sid = 0;
564         char **mount_options = opts->mnt_opts;
565         int *flags = opts->mnt_opts_flags;
566         int num_opts = opts->num_mnt_opts;
567
568         mutex_lock(&sbsec->lock);
569
570         if (!ss_initialized) {
571                 if (!num_opts) {
572                         /* Defer initialization until selinux_complete_init,
573                            after the initial policy is loaded and the security
574                            server is ready to handle calls. */
575                         spin_lock(&sb_security_lock);
576                         if (list_empty(&sbsec->list))
577                                 list_add(&sbsec->list, &superblock_security_head);
578                         spin_unlock(&sb_security_lock);
579                         goto out;
580                 }
581                 rc = -EINVAL;
582                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
583                         "before the security server is initialized\n");
584                 goto out;
585         }
586
587         /*
588          * Binary mount data FS will come through this function twice.  Once
589          * from an explicit call and once from the generic calls from the vfs.
590          * Since the generic VFS calls will not contain any security mount data
591          * we need to skip the double mount verification.
592          *
593          * This does open a hole in which we will not notice if the first
594          * mount using this sb set explict options and a second mount using
595          * this sb does not set any security options.  (The first options
596          * will be used for both mounts)
597          */
598         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
599             && (num_opts == 0))
600                 goto out;
601
602         /*
603          * parse the mount options, check if they are valid sids.
604          * also check if someone is trying to mount the same sb more
605          * than once with different security options.
606          */
607         for (i = 0; i < num_opts; i++) {
608                 u32 sid;
609                 rc = security_context_to_sid(mount_options[i],
610                                              strlen(mount_options[i]), &sid);
611                 if (rc) {
612                         printk(KERN_WARNING "SELinux: security_context_to_sid"
613                                "(%s) failed for (dev %s, type %s) errno=%d\n",
614                                mount_options[i], sb->s_id, name, rc);
615                         goto out;
616                 }
617                 switch (flags[i]) {
618                 case FSCONTEXT_MNT:
619                         fscontext_sid = sid;
620
621                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622                                         fscontext_sid))
623                                 goto out_double_mount;
624
625                         sbsec->flags |= FSCONTEXT_MNT;
626                         break;
627                 case CONTEXT_MNT:
628                         context_sid = sid;
629
630                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631                                         context_sid))
632                                 goto out_double_mount;
633
634                         sbsec->flags |= CONTEXT_MNT;
635                         break;
636                 case ROOTCONTEXT_MNT:
637                         rootcontext_sid = sid;
638
639                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640                                         rootcontext_sid))
641                                 goto out_double_mount;
642
643                         sbsec->flags |= ROOTCONTEXT_MNT;
644
645                         break;
646                 case DEFCONTEXT_MNT:
647                         defcontext_sid = sid;
648
649                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650                                         defcontext_sid))
651                                 goto out_double_mount;
652
653                         sbsec->flags |= DEFCONTEXT_MNT;
654
655                         break;
656                 default:
657                         rc = -EINVAL;
658                         goto out;
659                 }
660         }
661
662         if (sbsec->initialized) {
663                 /* previously mounted with options, but not on this attempt? */
664                 if (sbsec->flags && !num_opts)
665                         goto out_double_mount;
666                 rc = 0;
667                 goto out;
668         }
669
670         if (strcmp(sb->s_type->name, "proc") == 0)
671                 sbsec->proc = 1;
672
673         /* Determine the labeling behavior to use for this filesystem type. */
674         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675         if (rc) {
676                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677                        __func__, sb->s_type->name, rc);
678                 goto out;
679         }
680
681         /* sets the context of the superblock for the fs being mounted. */
682         if (fscontext_sid) {
683
684                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
685                 if (rc)
686                         goto out;
687
688                 sbsec->sid = fscontext_sid;
689         }
690
691         /*
692          * Switch to using mount point labeling behavior.
693          * sets the label used on all file below the mountpoint, and will set
694          * the superblock context if not already set.
695          */
696         if (context_sid) {
697                 if (!fscontext_sid) {
698                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
699                         if (rc)
700                                 goto out;
701                         sbsec->sid = context_sid;
702                 } else {
703                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
704                         if (rc)
705                                 goto out;
706                 }
707                 if (!rootcontext_sid)
708                         rootcontext_sid = context_sid;
709
710                 sbsec->mntpoint_sid = context_sid;
711                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712         }
713
714         if (rootcontext_sid) {
715                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, tsec);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely put this sb on the list and deal
765          * with it later
766          */
767         if (!ss_initialized) {
768                 spin_lock(&sb_security_lock);
769                 if (list_empty(&newsbsec->list))
770                         list_add(&newsbsec->list, &superblock_security_head);
771                 spin_unlock(&sb_security_lock);
772                 return;
773         }
774
775         /* how can we clone if the old one wasn't set up?? */
776         BUG_ON(!oldsbsec->initialized);
777
778         /* if fs is reusing a sb, just let its options stand... */
779         if (newsbsec->initialized)
780                 return;
781
782         mutex_lock(&newsbsec->lock);
783
784         newsbsec->flags = oldsbsec->flags;
785
786         newsbsec->sid = oldsbsec->sid;
787         newsbsec->def_sid = oldsbsec->def_sid;
788         newsbsec->behavior = oldsbsec->behavior;
789
790         if (set_context) {
791                 u32 sid = oldsbsec->mntpoint_sid;
792
793                 if (!set_fscontext)
794                         newsbsec->sid = sid;
795                 if (!set_rootcontext) {
796                         struct inode *newinode = newsb->s_root->d_inode;
797                         struct inode_security_struct *newisec = newinode->i_security;
798                         newisec->sid = sid;
799                 }
800                 newsbsec->mntpoint_sid = sid;
801         }
802         if (set_rootcontext) {
803                 const struct inode *oldinode = oldsb->s_root->d_inode;
804                 const struct inode_security_struct *oldisec = oldinode->i_security;
805                 struct inode *newinode = newsb->s_root->d_inode;
806                 struct inode_security_struct *newisec = newinode->i_security;
807
808                 newisec->sid = oldisec->sid;
809         }
810
811         sb_finish_set_opts(newsb);
812         mutex_unlock(&newsbsec->lock);
813 }
814
815 static int selinux_parse_opts_str(char *options,
816                                   struct security_mnt_opts *opts)
817 {
818         char *p;
819         char *context = NULL, *defcontext = NULL;
820         char *fscontext = NULL, *rootcontext = NULL;
821         int rc, num_mnt_opts = 0;
822
823         opts->num_mnt_opts = 0;
824
825         /* Standard string-based options. */
826         while ((p = strsep(&options, "|")) != NULL) {
827                 int token;
828                 substring_t args[MAX_OPT_ARGS];
829
830                 if (!*p)
831                         continue;
832
833                 token = match_token(p, tokens, args);
834
835                 switch (token) {
836                 case Opt_context:
837                         if (context || defcontext) {
838                                 rc = -EINVAL;
839                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
840                                 goto out_err;
841                         }
842                         context = match_strdup(&args[0]);
843                         if (!context) {
844                                 rc = -ENOMEM;
845                                 goto out_err;
846                         }
847                         break;
848
849                 case Opt_fscontext:
850                         if (fscontext) {
851                                 rc = -EINVAL;
852                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
853                                 goto out_err;
854                         }
855                         fscontext = match_strdup(&args[0]);
856                         if (!fscontext) {
857                                 rc = -ENOMEM;
858                                 goto out_err;
859                         }
860                         break;
861
862                 case Opt_rootcontext:
863                         if (rootcontext) {
864                                 rc = -EINVAL;
865                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
866                                 goto out_err;
867                         }
868                         rootcontext = match_strdup(&args[0]);
869                         if (!rootcontext) {
870                                 rc = -ENOMEM;
871                                 goto out_err;
872                         }
873                         break;
874
875                 case Opt_defcontext:
876                         if (context || defcontext) {
877                                 rc = -EINVAL;
878                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
879                                 goto out_err;
880                         }
881                         defcontext = match_strdup(&args[0]);
882                         if (!defcontext) {
883                                 rc = -ENOMEM;
884                                 goto out_err;
885                         }
886                         break;
887
888                 default:
889                         rc = -EINVAL;
890                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
891                         goto out_err;
892
893                 }
894         }
895
896         rc = -ENOMEM;
897         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
898         if (!opts->mnt_opts)
899                 goto out_err;
900
901         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
902         if (!opts->mnt_opts_flags) {
903                 kfree(opts->mnt_opts);
904                 goto out_err;
905         }
906
907         if (fscontext) {
908                 opts->mnt_opts[num_mnt_opts] = fscontext;
909                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
910         }
911         if (context) {
912                 opts->mnt_opts[num_mnt_opts] = context;
913                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
914         }
915         if (rootcontext) {
916                 opts->mnt_opts[num_mnt_opts] = rootcontext;
917                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
918         }
919         if (defcontext) {
920                 opts->mnt_opts[num_mnt_opts] = defcontext;
921                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
922         }
923
924         opts->num_mnt_opts = num_mnt_opts;
925         return 0;
926
927 out_err:
928         kfree(context);
929         kfree(defcontext);
930         kfree(fscontext);
931         kfree(rootcontext);
932         return rc;
933 }
934 /*
935  * string mount options parsing and call set the sbsec
936  */
937 static int superblock_doinit(struct super_block *sb, void *data)
938 {
939         int rc = 0;
940         char *options = data;
941         struct security_mnt_opts opts;
942
943         security_init_mnt_opts(&opts);
944
945         if (!data)
946                 goto out;
947
948         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
949
950         rc = selinux_parse_opts_str(options, &opts);
951         if (rc)
952                 goto out_err;
953
954 out:
955         rc = selinux_set_mnt_opts(sb, &opts);
956
957 out_err:
958         security_free_mnt_opts(&opts);
959         return rc;
960 }
961
962 static void selinux_write_opts(struct seq_file *m,
963                                struct security_mnt_opts *opts)
964 {
965         int i;
966         char *prefix;
967
968         for (i = 0; i < opts->num_mnt_opts; i++) {
969                 char *has_comma = strchr(opts->mnt_opts[i], ',');
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 default:
985                         BUG();
986                 };
987                 /* we need a comma before each option */
988                 seq_putc(m, ',');
989                 seq_puts(m, prefix);
990                 if (has_comma)
991                         seq_putc(m, '\"');
992                 seq_puts(m, opts->mnt_opts[i]);
993                 if (has_comma)
994                         seq_putc(m, '\"');
995         }
996 }
997
998 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
999 {
1000         struct security_mnt_opts opts;
1001         int rc;
1002
1003         rc = selinux_get_mnt_opts(sb, &opts);
1004         if (rc) {
1005                 /* before policy load we may get EINVAL, don't show anything */
1006                 if (rc == -EINVAL)
1007                         rc = 0;
1008                 return rc;
1009         }
1010
1011         selinux_write_opts(m, &opts);
1012
1013         security_free_mnt_opts(&opts);
1014
1015         return rc;
1016 }
1017
1018 static inline u16 inode_mode_to_security_class(umode_t mode)
1019 {
1020         switch (mode & S_IFMT) {
1021         case S_IFSOCK:
1022                 return SECCLASS_SOCK_FILE;
1023         case S_IFLNK:
1024                 return SECCLASS_LNK_FILE;
1025         case S_IFREG:
1026                 return SECCLASS_FILE;
1027         case S_IFBLK:
1028                 return SECCLASS_BLK_FILE;
1029         case S_IFDIR:
1030                 return SECCLASS_DIR;
1031         case S_IFCHR:
1032                 return SECCLASS_CHR_FILE;
1033         case S_IFIFO:
1034                 return SECCLASS_FIFO_FILE;
1035
1036         }
1037
1038         return SECCLASS_FILE;
1039 }
1040
1041 static inline int default_protocol_stream(int protocol)
1042 {
1043         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1044 }
1045
1046 static inline int default_protocol_dgram(int protocol)
1047 {
1048         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1049 }
1050
1051 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1052 {
1053         switch (family) {
1054         case PF_UNIX:
1055                 switch (type) {
1056                 case SOCK_STREAM:
1057                 case SOCK_SEQPACKET:
1058                         return SECCLASS_UNIX_STREAM_SOCKET;
1059                 case SOCK_DGRAM:
1060                         return SECCLASS_UNIX_DGRAM_SOCKET;
1061                 }
1062                 break;
1063         case PF_INET:
1064         case PF_INET6:
1065                 switch (type) {
1066                 case SOCK_STREAM:
1067                         if (default_protocol_stream(protocol))
1068                                 return SECCLASS_TCP_SOCKET;
1069                         else
1070                                 return SECCLASS_RAWIP_SOCKET;
1071                 case SOCK_DGRAM:
1072                         if (default_protocol_dgram(protocol))
1073                                 return SECCLASS_UDP_SOCKET;
1074                         else
1075                                 return SECCLASS_RAWIP_SOCKET;
1076                 case SOCK_DCCP:
1077                         return SECCLASS_DCCP_SOCKET;
1078                 default:
1079                         return SECCLASS_RAWIP_SOCKET;
1080                 }
1081                 break;
1082         case PF_NETLINK:
1083                 switch (protocol) {
1084                 case NETLINK_ROUTE:
1085                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1086                 case NETLINK_FIREWALL:
1087                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1088                 case NETLINK_INET_DIAG:
1089                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1090                 case NETLINK_NFLOG:
1091                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1092                 case NETLINK_XFRM:
1093                         return SECCLASS_NETLINK_XFRM_SOCKET;
1094                 case NETLINK_SELINUX:
1095                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1096                 case NETLINK_AUDIT:
1097                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1098                 case NETLINK_IP6_FW:
1099                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1100                 case NETLINK_DNRTMSG:
1101                         return SECCLASS_NETLINK_DNRT_SOCKET;
1102                 case NETLINK_KOBJECT_UEVENT:
1103                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1104                 default:
1105                         return SECCLASS_NETLINK_SOCKET;
1106                 }
1107         case PF_PACKET:
1108                 return SECCLASS_PACKET_SOCKET;
1109         case PF_KEY:
1110                 return SECCLASS_KEY_SOCKET;
1111         case PF_APPLETALK:
1112                 return SECCLASS_APPLETALK_SOCKET;
1113         }
1114
1115         return SECCLASS_SOCKET;
1116 }
1117
1118 #ifdef CONFIG_PROC_FS
1119 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1120                                 u16 tclass,
1121                                 u32 *sid)
1122 {
1123         int buflen, rc;
1124         char *buffer, *path, *end;
1125
1126         buffer = (char *)__get_free_page(GFP_KERNEL);
1127         if (!buffer)
1128                 return -ENOMEM;
1129
1130         buflen = PAGE_SIZE;
1131         end = buffer+buflen;
1132         *--end = '\0';
1133         buflen--;
1134         path = end-1;
1135         *path = '/';
1136         while (de && de != de->parent) {
1137                 buflen -= de->namelen + 1;
1138                 if (buflen < 0)
1139                         break;
1140                 end -= de->namelen;
1141                 memcpy(end, de->name, de->namelen);
1142                 *--end = '/';
1143                 path = end;
1144                 de = de->parent;
1145         }
1146         rc = security_genfs_sid("proc", path, tclass, sid);
1147         free_page((unsigned long)buffer);
1148         return rc;
1149 }
1150 #else
1151 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1152                                 u16 tclass,
1153                                 u32 *sid)
1154 {
1155         return -EINVAL;
1156 }
1157 #endif
1158
1159 /* The inode's security attributes must be initialized before first use. */
1160 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1161 {
1162         struct superblock_security_struct *sbsec = NULL;
1163         struct inode_security_struct *isec = inode->i_security;
1164         u32 sid;
1165         struct dentry *dentry;
1166 #define INITCONTEXTLEN 255
1167         char *context = NULL;
1168         unsigned len = 0;
1169         int rc = 0;
1170
1171         if (isec->initialized)
1172                 goto out;
1173
1174         mutex_lock(&isec->lock);
1175         if (isec->initialized)
1176                 goto out_unlock;
1177
1178         sbsec = inode->i_sb->s_security;
1179         if (!sbsec->initialized) {
1180                 /* Defer initialization until selinux_complete_init,
1181                    after the initial policy is loaded and the security
1182                    server is ready to handle calls. */
1183                 spin_lock(&sbsec->isec_lock);
1184                 if (list_empty(&isec->list))
1185                         list_add(&isec->list, &sbsec->isec_head);
1186                 spin_unlock(&sbsec->isec_lock);
1187                 goto out_unlock;
1188         }
1189
1190         switch (sbsec->behavior) {
1191         case SECURITY_FS_USE_XATTR:
1192                 if (!inode->i_op->getxattr) {
1193                         isec->sid = sbsec->def_sid;
1194                         break;
1195                 }
1196
1197                 /* Need a dentry, since the xattr API requires one.
1198                    Life would be simpler if we could just pass the inode. */
1199                 if (opt_dentry) {
1200                         /* Called from d_instantiate or d_splice_alias. */
1201                         dentry = dget(opt_dentry);
1202                 } else {
1203                         /* Called from selinux_complete_init, try to find a dentry. */
1204                         dentry = d_find_alias(inode);
1205                 }
1206                 if (!dentry) {
1207                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1208                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1209                                inode->i_ino);
1210                         goto out_unlock;
1211                 }
1212
1213                 len = INITCONTEXTLEN;
1214                 context = kmalloc(len, GFP_NOFS);
1215                 if (!context) {
1216                         rc = -ENOMEM;
1217                         dput(dentry);
1218                         goto out_unlock;
1219                 }
1220                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1221                                            context, len);
1222                 if (rc == -ERANGE) {
1223                         /* Need a larger buffer.  Query for the right size. */
1224                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1225                                                    NULL, 0);
1226                         if (rc < 0) {
1227                                 dput(dentry);
1228                                 goto out_unlock;
1229                         }
1230                         kfree(context);
1231                         len = rc;
1232                         context = kmalloc(len, GFP_NOFS);
1233                         if (!context) {
1234                                 rc = -ENOMEM;
1235                                 dput(dentry);
1236                                 goto out_unlock;
1237                         }
1238                         rc = inode->i_op->getxattr(dentry,
1239                                                    XATTR_NAME_SELINUX,
1240                                                    context, len);
1241                 }
1242                 dput(dentry);
1243                 if (rc < 0) {
1244                         if (rc != -ENODATA) {
1245                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1246                                        "%d for dev=%s ino=%ld\n", __func__,
1247                                        -rc, inode->i_sb->s_id, inode->i_ino);
1248                                 kfree(context);
1249                                 goto out_unlock;
1250                         }
1251                         /* Map ENODATA to the default file SID */
1252                         sid = sbsec->def_sid;
1253                         rc = 0;
1254                 } else {
1255                         rc = security_context_to_sid_default(context, rc, &sid,
1256                                                              sbsec->def_sid,
1257                                                              GFP_NOFS);
1258                         if (rc) {
1259                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1260                                        "returned %d for dev=%s ino=%ld\n",
1261                                        __func__, context, -rc,
1262                                        inode->i_sb->s_id, inode->i_ino);
1263                                 kfree(context);
1264                                 /* Leave with the unlabeled SID */
1265                                 rc = 0;
1266                                 break;
1267                         }
1268                 }
1269                 kfree(context);
1270                 isec->sid = sid;
1271                 break;
1272         case SECURITY_FS_USE_TASK:
1273                 isec->sid = isec->task_sid;
1274                 break;
1275         case SECURITY_FS_USE_TRANS:
1276                 /* Default to the fs SID. */
1277                 isec->sid = sbsec->sid;
1278
1279                 /* Try to obtain a transition SID. */
1280                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1281                 rc = security_transition_sid(isec->task_sid,
1282                                              sbsec->sid,
1283                                              isec->sclass,
1284                                              &sid);
1285                 if (rc)
1286                         goto out_unlock;
1287                 isec->sid = sid;
1288                 break;
1289         case SECURITY_FS_USE_MNTPOINT:
1290                 isec->sid = sbsec->mntpoint_sid;
1291                 break;
1292         default:
1293                 /* Default to the fs superblock SID. */
1294                 isec->sid = sbsec->sid;
1295
1296                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1297                         struct proc_inode *proci = PROC_I(inode);
1298                         if (proci->pde) {
1299                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1300                                 rc = selinux_proc_get_sid(proci->pde,
1301                                                           isec->sclass,
1302                                                           &sid);
1303                                 if (rc)
1304                                         goto out_unlock;
1305                                 isec->sid = sid;
1306                         }
1307                 }
1308                 break;
1309         }
1310
1311         isec->initialized = 1;
1312
1313 out_unlock:
1314         mutex_unlock(&isec->lock);
1315 out:
1316         if (isec->sclass == SECCLASS_FILE)
1317                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1318         return rc;
1319 }
1320
1321 /* Convert a Linux signal to an access vector. */
1322 static inline u32 signal_to_av(int sig)
1323 {
1324         u32 perm = 0;
1325
1326         switch (sig) {
1327         case SIGCHLD:
1328                 /* Commonly granted from child to parent. */
1329                 perm = PROCESS__SIGCHLD;
1330                 break;
1331         case SIGKILL:
1332                 /* Cannot be caught or ignored */
1333                 perm = PROCESS__SIGKILL;
1334                 break;
1335         case SIGSTOP:
1336                 /* Cannot be caught or ignored */
1337                 perm = PROCESS__SIGSTOP;
1338                 break;
1339         default:
1340                 /* All other signals. */
1341                 perm = PROCESS__SIGNAL;
1342                 break;
1343         }
1344
1345         return perm;
1346 }
1347
1348 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1349    fork check, ptrace check, etc. */
1350 static int task_has_perm(struct task_struct *tsk1,
1351                          struct task_struct *tsk2,
1352                          u32 perms)
1353 {
1354         struct task_security_struct *tsec1, *tsec2;
1355
1356         tsec1 = tsk1->security;
1357         tsec2 = tsk2->security;
1358         return avc_has_perm(tsec1->sid, tsec2->sid,
1359                             SECCLASS_PROCESS, perms, NULL);
1360 }
1361
1362 #if CAP_LAST_CAP > 63
1363 #error Fix SELinux to handle capabilities > 63.
1364 #endif
1365
1366 /* Check whether a task is allowed to use a capability. */
1367 static int task_has_capability(struct task_struct *tsk,
1368                                int cap)
1369 {
1370         struct task_security_struct *tsec;
1371         struct avc_audit_data ad;
1372         u16 sclass;
1373         u32 av = CAP_TO_MASK(cap);
1374
1375         tsec = tsk->security;
1376
1377         AVC_AUDIT_DATA_INIT(&ad, CAP);
1378         ad.tsk = tsk;
1379         ad.u.cap = cap;
1380
1381         switch (CAP_TO_INDEX(cap)) {
1382         case 0:
1383                 sclass = SECCLASS_CAPABILITY;
1384                 break;
1385         case 1:
1386                 sclass = SECCLASS_CAPABILITY2;
1387                 break;
1388         default:
1389                 printk(KERN_ERR
1390                        "SELinux:  out of range capability %d\n", cap);
1391                 BUG();
1392         }
1393         return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1394 }
1395
1396 /* Check whether a task is allowed to use a system operation. */
1397 static int task_has_system(struct task_struct *tsk,
1398                            u32 perms)
1399 {
1400         struct task_security_struct *tsec;
1401
1402         tsec = tsk->security;
1403
1404         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1405                             SECCLASS_SYSTEM, perms, NULL);
1406 }
1407
1408 /* Check whether a task has a particular permission to an inode.
1409    The 'adp' parameter is optional and allows other audit
1410    data to be passed (e.g. the dentry). */
1411 static int inode_has_perm(struct task_struct *tsk,
1412                           struct inode *inode,
1413                           u32 perms,
1414                           struct avc_audit_data *adp)
1415 {
1416         struct task_security_struct *tsec;
1417         struct inode_security_struct *isec;
1418         struct avc_audit_data ad;
1419
1420         if (unlikely(IS_PRIVATE(inode)))
1421                 return 0;
1422
1423         tsec = tsk->security;
1424         isec = inode->i_security;
1425
1426         if (!adp) {
1427                 adp = &ad;
1428                 AVC_AUDIT_DATA_INIT(&ad, FS);
1429                 ad.u.fs.inode = inode;
1430         }
1431
1432         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1433 }
1434
1435 /* Same as inode_has_perm, but pass explicit audit data containing
1436    the dentry to help the auditing code to more easily generate the
1437    pathname if needed. */
1438 static inline int dentry_has_perm(struct task_struct *tsk,
1439                                   struct vfsmount *mnt,
1440                                   struct dentry *dentry,
1441                                   u32 av)
1442 {
1443         struct inode *inode = dentry->d_inode;
1444         struct avc_audit_data ad;
1445         AVC_AUDIT_DATA_INIT(&ad, FS);
1446         ad.u.fs.path.mnt = mnt;
1447         ad.u.fs.path.dentry = dentry;
1448         return inode_has_perm(tsk, inode, av, &ad);
1449 }
1450
1451 /* Check whether a task can use an open file descriptor to
1452    access an inode in a given way.  Check access to the
1453    descriptor itself, and then use dentry_has_perm to
1454    check a particular permission to the file.
1455    Access to the descriptor is implicitly granted if it
1456    has the same SID as the process.  If av is zero, then
1457    access to the file is not checked, e.g. for cases
1458    where only the descriptor is affected like seek. */
1459 static int file_has_perm(struct task_struct *tsk,
1460                                 struct file *file,
1461                                 u32 av)
1462 {
1463         struct task_security_struct *tsec = tsk->security;
1464         struct file_security_struct *fsec = file->f_security;
1465         struct inode *inode = file->f_path.dentry->d_inode;
1466         struct avc_audit_data ad;
1467         int rc;
1468
1469         AVC_AUDIT_DATA_INIT(&ad, FS);
1470         ad.u.fs.path = file->f_path;
1471
1472         if (tsec->sid != fsec->sid) {
1473                 rc = avc_has_perm(tsec->sid, fsec->sid,
1474                                   SECCLASS_FD,
1475                                   FD__USE,
1476                                   &ad);
1477                 if (rc)
1478                         return rc;
1479         }
1480
1481         /* av is zero if only checking access to the descriptor. */
1482         if (av)
1483                 return inode_has_perm(tsk, inode, av, &ad);
1484
1485         return 0;
1486 }
1487
1488 /* Check whether a task can create a file. */
1489 static int may_create(struct inode *dir,
1490                       struct dentry *dentry,
1491                       u16 tclass)
1492 {
1493         struct task_security_struct *tsec;
1494         struct inode_security_struct *dsec;
1495         struct superblock_security_struct *sbsec;
1496         u32 newsid;
1497         struct avc_audit_data ad;
1498         int rc;
1499
1500         tsec = current->security;
1501         dsec = dir->i_security;
1502         sbsec = dir->i_sb->s_security;
1503
1504         AVC_AUDIT_DATA_INIT(&ad, FS);
1505         ad.u.fs.path.dentry = dentry;
1506
1507         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1508                           DIR__ADD_NAME | DIR__SEARCH,
1509                           &ad);
1510         if (rc)
1511                 return rc;
1512
1513         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1514                 newsid = tsec->create_sid;
1515         } else {
1516                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1517                                              &newsid);
1518                 if (rc)
1519                         return rc;
1520         }
1521
1522         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1523         if (rc)
1524                 return rc;
1525
1526         return avc_has_perm(newsid, sbsec->sid,
1527                             SECCLASS_FILESYSTEM,
1528                             FILESYSTEM__ASSOCIATE, &ad);
1529 }
1530
1531 /* Check whether a task can create a key. */
1532 static int may_create_key(u32 ksid,
1533                           struct task_struct *ctx)
1534 {
1535         struct task_security_struct *tsec;
1536
1537         tsec = ctx->security;
1538
1539         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1540 }
1541
1542 #define MAY_LINK        0
1543 #define MAY_UNLINK      1
1544 #define MAY_RMDIR       2
1545
1546 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1547 static int may_link(struct inode *dir,
1548                     struct dentry *dentry,
1549                     int kind)
1550
1551 {
1552         struct task_security_struct *tsec;
1553         struct inode_security_struct *dsec, *isec;
1554         struct avc_audit_data ad;
1555         u32 av;
1556         int rc;
1557
1558         tsec = current->security;
1559         dsec = dir->i_security;
1560         isec = dentry->d_inode->i_security;
1561
1562         AVC_AUDIT_DATA_INIT(&ad, FS);
1563         ad.u.fs.path.dentry = dentry;
1564
1565         av = DIR__SEARCH;
1566         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1567         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1568         if (rc)
1569                 return rc;
1570
1571         switch (kind) {
1572         case MAY_LINK:
1573                 av = FILE__LINK;
1574                 break;
1575         case MAY_UNLINK:
1576                 av = FILE__UNLINK;
1577                 break;
1578         case MAY_RMDIR:
1579                 av = DIR__RMDIR;
1580                 break;
1581         default:
1582                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1583                         __func__, kind);
1584                 return 0;
1585         }
1586
1587         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1588         return rc;
1589 }
1590
1591 static inline int may_rename(struct inode *old_dir,
1592                              struct dentry *old_dentry,
1593                              struct inode *new_dir,
1594                              struct dentry *new_dentry)
1595 {
1596         struct task_security_struct *tsec;
1597         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1598         struct avc_audit_data ad;
1599         u32 av;
1600         int old_is_dir, new_is_dir;
1601         int rc;
1602
1603         tsec = current->security;
1604         old_dsec = old_dir->i_security;
1605         old_isec = old_dentry->d_inode->i_security;
1606         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1607         new_dsec = new_dir->i_security;
1608
1609         AVC_AUDIT_DATA_INIT(&ad, FS);
1610
1611         ad.u.fs.path.dentry = old_dentry;
1612         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1613                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1614         if (rc)
1615                 return rc;
1616         rc = avc_has_perm(tsec->sid, old_isec->sid,
1617                           old_isec->sclass, FILE__RENAME, &ad);
1618         if (rc)
1619                 return rc;
1620         if (old_is_dir && new_dir != old_dir) {
1621                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1622                                   old_isec->sclass, DIR__REPARENT, &ad);
1623                 if (rc)
1624                         return rc;
1625         }
1626
1627         ad.u.fs.path.dentry = new_dentry;
1628         av = DIR__ADD_NAME | DIR__SEARCH;
1629         if (new_dentry->d_inode)
1630                 av |= DIR__REMOVE_NAME;
1631         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1632         if (rc)
1633                 return rc;
1634         if (new_dentry->d_inode) {
1635                 new_isec = new_dentry->d_inode->i_security;
1636                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1637                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1638                                   new_isec->sclass,
1639                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1640                 if (rc)
1641                         return rc;
1642         }
1643
1644         return 0;
1645 }
1646
1647 /* Check whether a task can perform a filesystem operation. */
1648 static int superblock_has_perm(struct task_struct *tsk,
1649                                struct super_block *sb,
1650                                u32 perms,
1651                                struct avc_audit_data *ad)
1652 {
1653         struct task_security_struct *tsec;
1654         struct superblock_security_struct *sbsec;
1655
1656         tsec = tsk->security;
1657         sbsec = sb->s_security;
1658         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1659                             perms, ad);
1660 }
1661
1662 /* Convert a Linux mode and permission mask to an access vector. */
1663 static inline u32 file_mask_to_av(int mode, int mask)
1664 {
1665         u32 av = 0;
1666
1667         if ((mode & S_IFMT) != S_IFDIR) {
1668                 if (mask & MAY_EXEC)
1669                         av |= FILE__EXECUTE;
1670                 if (mask & MAY_READ)
1671                         av |= FILE__READ;
1672
1673                 if (mask & MAY_APPEND)
1674                         av |= FILE__APPEND;
1675                 else if (mask & MAY_WRITE)
1676                         av |= FILE__WRITE;
1677
1678         } else {
1679                 if (mask & MAY_EXEC)
1680                         av |= DIR__SEARCH;
1681                 if (mask & MAY_WRITE)
1682                         av |= DIR__WRITE;
1683                 if (mask & MAY_READ)
1684                         av |= DIR__READ;
1685         }
1686
1687         return av;
1688 }
1689
1690 /* Convert a Linux file to an access vector. */
1691 static inline u32 file_to_av(struct file *file)
1692 {
1693         u32 av = 0;
1694
1695         if (file->f_mode & FMODE_READ)
1696                 av |= FILE__READ;
1697         if (file->f_mode & FMODE_WRITE) {
1698                 if (file->f_flags & O_APPEND)
1699                         av |= FILE__APPEND;
1700                 else
1701                         av |= FILE__WRITE;
1702         }
1703         if (!av) {
1704                 /*
1705                  * Special file opened with flags 3 for ioctl-only use.
1706                  */
1707                 av = FILE__IOCTL;
1708         }
1709
1710         return av;
1711 }
1712
1713 /*
1714  * Convert a file to an access vector and include the correct open
1715  * open permission.
1716  */
1717 static inline u32 open_file_to_av(struct file *file)
1718 {
1719         u32 av = file_to_av(file);
1720
1721         if (selinux_policycap_openperm) {
1722                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1723                 /*
1724                  * lnk files and socks do not really have an 'open'
1725                  */
1726                 if (S_ISREG(mode))
1727                         av |= FILE__OPEN;
1728                 else if (S_ISCHR(mode))
1729                         av |= CHR_FILE__OPEN;
1730                 else if (S_ISBLK(mode))
1731                         av |= BLK_FILE__OPEN;
1732                 else if (S_ISFIFO(mode))
1733                         av |= FIFO_FILE__OPEN;
1734                 else if (S_ISDIR(mode))
1735                         av |= DIR__OPEN;
1736                 else
1737                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1738                                 "unknown mode:%o\n", __func__, mode);
1739         }
1740         return av;
1741 }
1742
1743 /* Hook functions begin here. */
1744
1745 static int selinux_ptrace_may_access(struct task_struct *child,
1746                                      unsigned int mode)
1747 {
1748         int rc;
1749
1750         rc = secondary_ops->ptrace_may_access(child, mode);
1751         if (rc)
1752                 return rc;
1753
1754         if (mode == PTRACE_MODE_READ) {
1755                 struct task_security_struct *tsec = current->security;
1756                 struct task_security_struct *csec = child->security;
1757                 return avc_has_perm(tsec->sid, csec->sid,
1758                                     SECCLASS_FILE, FILE__READ, NULL);
1759         }
1760
1761         return task_has_perm(current, child, PROCESS__PTRACE);
1762 }
1763
1764 static int selinux_ptrace_traceme(struct task_struct *parent)
1765 {
1766         int rc;
1767
1768         rc = secondary_ops->ptrace_traceme(parent);
1769         if (rc)
1770                 return rc;
1771
1772         return task_has_perm(parent, current, PROCESS__PTRACE);
1773 }
1774
1775 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1776                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1777 {
1778         int error;
1779
1780         error = task_has_perm(current, target, PROCESS__GETCAP);
1781         if (error)
1782                 return error;
1783
1784         return secondary_ops->capget(target, effective, inheritable, permitted);
1785 }
1786
1787 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1788                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1789 {
1790         int error;
1791
1792         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1793         if (error)
1794                 return error;
1795
1796         return task_has_perm(current, target, PROCESS__SETCAP);
1797 }
1798
1799 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1800                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1801 {
1802         secondary_ops->capset_set(target, effective, inheritable, permitted);
1803 }
1804
1805 static int selinux_capable(struct task_struct *tsk, int cap)
1806 {
1807         int rc;
1808
1809         rc = secondary_ops->capable(tsk, cap);
1810         if (rc)
1811                 return rc;
1812
1813         return task_has_capability(tsk, cap);
1814 }
1815
1816 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1817 {
1818         int buflen, rc;
1819         char *buffer, *path, *end;
1820
1821         rc = -ENOMEM;
1822         buffer = (char *)__get_free_page(GFP_KERNEL);
1823         if (!buffer)
1824                 goto out;
1825
1826         buflen = PAGE_SIZE;
1827         end = buffer+buflen;
1828         *--end = '\0';
1829         buflen--;
1830         path = end-1;
1831         *path = '/';
1832         while (table) {
1833                 const char *name = table->procname;
1834                 size_t namelen = strlen(name);
1835                 buflen -= namelen + 1;
1836                 if (buflen < 0)
1837                         goto out_free;
1838                 end -= namelen;
1839                 memcpy(end, name, namelen);
1840                 *--end = '/';
1841                 path = end;
1842                 table = table->parent;
1843         }
1844         buflen -= 4;
1845         if (buflen < 0)
1846                 goto out_free;
1847         end -= 4;
1848         memcpy(end, "/sys", 4);
1849         path = end;
1850         rc = security_genfs_sid("proc", path, tclass, sid);
1851 out_free:
1852         free_page((unsigned long)buffer);
1853 out:
1854         return rc;
1855 }
1856
1857 static int selinux_sysctl(ctl_table *table, int op)
1858 {
1859         int error = 0;
1860         u32 av;
1861         struct task_security_struct *tsec;
1862         u32 tsid;
1863         int rc;
1864
1865         rc = secondary_ops->sysctl(table, op);
1866         if (rc)
1867                 return rc;
1868
1869         tsec = current->security;
1870
1871         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1872                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1873         if (rc) {
1874                 /* Default to the well-defined sysctl SID. */
1875                 tsid = SECINITSID_SYSCTL;
1876         }
1877
1878         /* The op values are "defined" in sysctl.c, thereby creating
1879          * a bad coupling between this module and sysctl.c */
1880         if (op == 001) {
1881                 error = avc_has_perm(tsec->sid, tsid,
1882                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1883         } else {
1884                 av = 0;
1885                 if (op & 004)
1886                         av |= FILE__READ;
1887                 if (op & 002)
1888                         av |= FILE__WRITE;
1889                 if (av)
1890                         error = avc_has_perm(tsec->sid, tsid,
1891                                              SECCLASS_FILE, av, NULL);
1892         }
1893
1894         return error;
1895 }
1896
1897 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1898 {
1899         int rc = 0;
1900
1901         if (!sb)
1902                 return 0;
1903
1904         switch (cmds) {
1905         case Q_SYNC:
1906         case Q_QUOTAON:
1907         case Q_QUOTAOFF:
1908         case Q_SETINFO:
1909         case Q_SETQUOTA:
1910                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1911                                          NULL);
1912                 break;
1913         case Q_GETFMT:
1914         case Q_GETINFO:
1915         case Q_GETQUOTA:
1916                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1917                                          NULL);
1918                 break;
1919         default:
1920                 rc = 0;  /* let the kernel handle invalid cmds */
1921                 break;
1922         }
1923         return rc;
1924 }
1925
1926 static int selinux_quota_on(struct dentry *dentry)
1927 {
1928         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1929 }
1930
1931 static int selinux_syslog(int type)
1932 {
1933         int rc;
1934
1935         rc = secondary_ops->syslog(type);
1936         if (rc)
1937                 return rc;
1938
1939         switch (type) {
1940         case 3:         /* Read last kernel messages */
1941         case 10:        /* Return size of the log buffer */
1942                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1943                 break;
1944         case 6:         /* Disable logging to console */
1945         case 7:         /* Enable logging to console */
1946         case 8:         /* Set level of messages printed to console */
1947                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1948                 break;
1949         case 0:         /* Close log */
1950         case 1:         /* Open log */
1951         case 2:         /* Read from log */
1952         case 4:         /* Read/clear last kernel messages */
1953         case 5:         /* Clear ring buffer */
1954         default:
1955                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1956                 break;
1957         }
1958         return rc;
1959 }
1960
1961 /*
1962  * Check that a process has enough memory to allocate a new virtual
1963  * mapping. 0 means there is enough memory for the allocation to
1964  * succeed and -ENOMEM implies there is not.
1965  *
1966  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1967  * if the capability is granted, but __vm_enough_memory requires 1 if
1968  * the capability is granted.
1969  *
1970  * Do not audit the selinux permission check, as this is applied to all
1971  * processes that allocate mappings.
1972  */
1973 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1974 {
1975         int rc, cap_sys_admin = 0;
1976         struct task_security_struct *tsec = current->security;
1977
1978         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1979         if (rc == 0)
1980                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1981                                           SECCLASS_CAPABILITY,
1982                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1983                                           0,
1984                                           NULL);
1985
1986         if (rc == 0)
1987                 cap_sys_admin = 1;
1988
1989         return __vm_enough_memory(mm, pages, cap_sys_admin);
1990 }
1991
1992 /* binprm security operations */
1993
1994 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1995 {
1996         struct bprm_security_struct *bsec;
1997
1998         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1999         if (!bsec)
2000                 return -ENOMEM;
2001
2002         bsec->sid = SECINITSID_UNLABELED;
2003         bsec->set = 0;
2004
2005         bprm->security = bsec;
2006         return 0;
2007 }
2008
2009 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2010 {
2011         struct task_security_struct *tsec;
2012         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2013         struct inode_security_struct *isec;
2014         struct bprm_security_struct *bsec;
2015         u32 newsid;
2016         struct avc_audit_data ad;
2017         int rc;
2018
2019         rc = secondary_ops->bprm_set_security(bprm);
2020         if (rc)
2021                 return rc;
2022
2023         bsec = bprm->security;
2024
2025         if (bsec->set)
2026                 return 0;
2027
2028         tsec = current->security;
2029         isec = inode->i_security;
2030
2031         /* Default to the current task SID. */
2032         bsec->sid = tsec->sid;
2033
2034         /* Reset fs, key, and sock SIDs on execve. */
2035         tsec->create_sid = 0;
2036         tsec->keycreate_sid = 0;
2037         tsec->sockcreate_sid = 0;
2038
2039         if (tsec->exec_sid) {
2040                 newsid = tsec->exec_sid;
2041                 /* Reset exec SID on execve. */
2042                 tsec->exec_sid = 0;
2043         } else {
2044                 /* Check for a default transition on this program. */
2045                 rc = security_transition_sid(tsec->sid, isec->sid,
2046                                              SECCLASS_PROCESS, &newsid);
2047                 if (rc)
2048                         return rc;
2049         }
2050
2051         AVC_AUDIT_DATA_INIT(&ad, FS);
2052         ad.u.fs.path = bprm->file->f_path;
2053
2054         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2055                 newsid = tsec->sid;
2056
2057         if (tsec->sid == newsid) {
2058                 rc = avc_has_perm(tsec->sid, isec->sid,
2059                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2060                 if (rc)
2061                         return rc;
2062         } else {
2063                 /* Check permissions for the transition. */
2064                 rc = avc_has_perm(tsec->sid, newsid,
2065                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2066                 if (rc)
2067                         return rc;
2068
2069                 rc = avc_has_perm(newsid, isec->sid,
2070                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2071                 if (rc)
2072                         return rc;
2073
2074                 /* Clear any possibly unsafe personality bits on exec: */
2075                 current->personality &= ~PER_CLEAR_ON_SETID;
2076
2077                 /* Set the security field to the new SID. */
2078                 bsec->sid = newsid;
2079         }
2080
2081         bsec->set = 1;
2082         return 0;
2083 }
2084
2085 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2086 {
2087         return secondary_ops->bprm_check_security(bprm);
2088 }
2089
2090
2091 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2092 {
2093         struct task_security_struct *tsec = current->security;
2094         int atsecure = 0;
2095
2096         if (tsec->osid != tsec->sid) {
2097                 /* Enable secure mode for SIDs transitions unless
2098                    the noatsecure permission is granted between
2099                    the two SIDs, i.e. ahp returns 0. */
2100                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2101                                          SECCLASS_PROCESS,
2102                                          PROCESS__NOATSECURE, NULL);
2103         }
2104
2105         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2106 }
2107
2108 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2109 {
2110         kfree(bprm->security);
2111         bprm->security = NULL;
2112 }
2113
2114 extern struct vfsmount *selinuxfs_mount;
2115 extern struct dentry *selinux_null;
2116
2117 /* Derived from fs/exec.c:flush_old_files. */
2118 static inline void flush_unauthorized_files(struct files_struct *files)
2119 {
2120         struct avc_audit_data ad;
2121         struct file *file, *devnull = NULL;
2122         struct tty_struct *tty;
2123         struct fdtable *fdt;
2124         long j = -1;
2125         int drop_tty = 0;
2126
2127         tty = get_current_tty();
2128         if (tty) {
2129                 file_list_lock();
2130                 if (!list_empty(&tty->tty_files)) {
2131                         struct inode *inode;
2132
2133                         /* Revalidate access to controlling tty.
2134                            Use inode_has_perm on the tty inode directly rather
2135                            than using file_has_perm, as this particular open
2136                            file may belong to another process and we are only
2137                            interested in the inode-based check here. */
2138                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2139                         inode = file->f_path.dentry->d_inode;
2140                         if (inode_has_perm(current, inode,
2141                                            FILE__READ | FILE__WRITE, NULL)) {
2142                                 drop_tty = 1;
2143                         }
2144                 }
2145                 file_list_unlock();
2146                 tty_kref_put(tty);
2147         }
2148         /* Reset controlling tty. */
2149         if (drop_tty)
2150                 no_tty();
2151
2152         /* Revalidate access to inherited open files. */
2153
2154         AVC_AUDIT_DATA_INIT(&ad, FS);
2155
2156         spin_lock(&files->file_lock);
2157         for (;;) {
2158                 unsigned long set, i;
2159                 int fd;
2160
2161                 j++;
2162                 i = j * __NFDBITS;
2163                 fdt = files_fdtable(files);
2164                 if (i >= fdt->max_fds)
2165                         break;
2166                 set = fdt->open_fds->fds_bits[j];
2167                 if (!set)
2168                         continue;
2169                 spin_unlock(&files->file_lock);
2170                 for ( ; set ; i++, set >>= 1) {
2171                         if (set & 1) {
2172                                 file = fget(i);
2173                                 if (!file)
2174                                         continue;
2175                                 if (file_has_perm(current,
2176                                                   file,
2177                                                   file_to_av(file))) {
2178                                         sys_close(i);
2179                                         fd = get_unused_fd();
2180                                         if (fd != i) {
2181                                                 if (fd >= 0)
2182                                                         put_unused_fd(fd);
2183                                                 fput(file);
2184                                                 continue;
2185                                         }
2186                                         if (devnull) {
2187                                                 get_file(devnull);
2188                                         } else {
2189                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2190                                                 if (IS_ERR(devnull)) {
2191                                                         devnull = NULL;
2192                                                         put_unused_fd(fd);
2193                                                         fput(file);
2194                                                         continue;
2195                                                 }
2196                                         }
2197                                         fd_install(fd, devnull);
2198                                 }
2199                                 fput(file);
2200                         }
2201                 }
2202                 spin_lock(&files->file_lock);
2203
2204         }
2205         spin_unlock(&files->file_lock);
2206 }
2207
2208 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2209 {
2210         struct task_security_struct *tsec;
2211         struct bprm_security_struct *bsec;
2212         u32 sid;
2213         int rc;
2214
2215         secondary_ops->bprm_apply_creds(bprm, unsafe);
2216
2217         tsec = current->security;
2218
2219         bsec = bprm->security;
2220         sid = bsec->sid;
2221
2222         tsec->osid = tsec->sid;
2223         bsec->unsafe = 0;
2224         if (tsec->sid != sid) {
2225                 /* Check for shared state.  If not ok, leave SID
2226                    unchanged and kill. */
2227                 if (unsafe & LSM_UNSAFE_SHARE) {
2228                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2229                                         PROCESS__SHARE, NULL);
2230                         if (rc) {
2231                                 bsec->unsafe = 1;
2232                                 return;
2233                         }
2234                 }
2235
2236                 /* Check for ptracing, and update the task SID if ok.
2237                    Otherwise, leave SID unchanged and kill. */
2238                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2239                         struct task_struct *tracer;
2240                         struct task_security_struct *sec;
2241                         u32 ptsid = 0;
2242
2243                         rcu_read_lock();
2244                         tracer = tracehook_tracer_task(current);
2245                         if (likely(tracer != NULL)) {
2246                                 sec = tracer->security;
2247                                 ptsid = sec->sid;
2248                         }
2249                         rcu_read_unlock();
2250
2251                         if (ptsid != 0) {
2252                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2253                                                   PROCESS__PTRACE, NULL);
2254                                 if (rc) {
2255                                         bsec->unsafe = 1;
2256                                         return;
2257                                 }
2258                         }
2259                 }
2260                 tsec->sid = sid;
2261         }
2262 }
2263
2264 /*
2265  * called after apply_creds without the task lock held
2266  */
2267 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2268 {
2269         struct task_security_struct *tsec;
2270         struct rlimit *rlim, *initrlim;
2271         struct itimerval itimer;
2272         struct bprm_security_struct *bsec;
2273         struct sighand_struct *psig;
2274         int rc, i;
2275         unsigned long flags;
2276
2277         tsec = current->security;
2278         bsec = bprm->security;
2279
2280         if (bsec->unsafe) {
2281                 force_sig_specific(SIGKILL, current);
2282                 return;
2283         }
2284         if (tsec->osid == tsec->sid)
2285                 return;
2286
2287         /* Close files for which the new task SID is not authorized. */
2288         flush_unauthorized_files(current->files);
2289
2290         /* Check whether the new SID can inherit signal state
2291            from the old SID.  If not, clear itimers to avoid
2292            subsequent signal generation and flush and unblock
2293            signals. This must occur _after_ the task SID has
2294           been updated so that any kill done after the flush
2295           will be checked against the new SID. */
2296         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2297                           PROCESS__SIGINH, NULL);
2298         if (rc) {
2299                 memset(&itimer, 0, sizeof itimer);
2300                 for (i = 0; i < 3; i++)
2301                         do_setitimer(i, &itimer, NULL);
2302                 flush_signals(current);
2303                 spin_lock_irq(&current->sighand->siglock);
2304                 flush_signal_handlers(current, 1);
2305                 sigemptyset(&current->blocked);
2306                 recalc_sigpending();
2307                 spin_unlock_irq(&current->sighand->siglock);
2308         }
2309
2310         /* Always clear parent death signal on SID transitions. */
2311         current->pdeath_signal = 0;
2312
2313         /* Check whether the new SID can inherit resource limits
2314            from the old SID.  If not, reset all soft limits to
2315            the lower of the current task's hard limit and the init
2316            task's soft limit.  Note that the setting of hard limits
2317            (even to lower them) can be controlled by the setrlimit
2318            check. The inclusion of the init task's soft limit into
2319            the computation is to avoid resetting soft limits higher
2320            than the default soft limit for cases where the default
2321            is lower than the hard limit, e.g. RLIMIT_CORE or
2322            RLIMIT_STACK.*/
2323         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2324                           PROCESS__RLIMITINH, NULL);
2325         if (rc) {
2326                 for (i = 0; i < RLIM_NLIMITS; i++) {
2327                         rlim = current->signal->rlim + i;
2328                         initrlim = init_task.signal->rlim+i;
2329                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2330                 }
2331                 update_rlimit_cpu(rlim->rlim_cur);
2332         }
2333
2334         /* Wake up the parent if it is waiting so that it can
2335            recheck wait permission to the new task SID. */
2336         read_lock_irq(&tasklist_lock);
2337         psig = current->parent->sighand;
2338         spin_lock_irqsave(&psig->siglock, flags);
2339         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2340         spin_unlock_irqrestore(&psig->siglock, flags);
2341         read_unlock_irq(&tasklist_lock);
2342 }
2343
2344 /* superblock security operations */
2345
2346 static int selinux_sb_alloc_security(struct super_block *sb)
2347 {
2348         return superblock_alloc_security(sb);
2349 }
2350
2351 static void selinux_sb_free_security(struct super_block *sb)
2352 {
2353         superblock_free_security(sb);
2354 }
2355
2356 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2357 {
2358         if (plen > olen)
2359                 return 0;
2360
2361         return !memcmp(prefix, option, plen);
2362 }
2363
2364 static inline int selinux_option(char *option, int len)
2365 {
2366         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2367                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2368                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2369                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2370 }
2371
2372 static inline void take_option(char **to, char *from, int *first, int len)
2373 {
2374         if (!*first) {
2375                 **to = ',';
2376                 *to += 1;
2377         } else
2378                 *first = 0;
2379         memcpy(*to, from, len);
2380         *to += len;
2381 }
2382
2383 static inline void take_selinux_option(char **to, char *from, int *first,
2384                                        int len)
2385 {
2386         int current_size = 0;
2387
2388         if (!*first) {
2389                 **to = '|';
2390                 *to += 1;
2391         } else
2392                 *first = 0;
2393
2394         while (current_size < len) {
2395                 if (*from != '"') {
2396                         **to = *from;
2397                         *to += 1;
2398                 }
2399                 from += 1;
2400                 current_size += 1;
2401         }
2402 }
2403
2404 static int selinux_sb_copy_data(char *orig, char *copy)
2405 {
2406         int fnosec, fsec, rc = 0;
2407         char *in_save, *in_curr, *in_end;
2408         char *sec_curr, *nosec_save, *nosec;
2409         int open_quote = 0;
2410
2411         in_curr = orig;
2412         sec_curr = copy;
2413
2414         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2415         if (!nosec) {
2416                 rc = -ENOMEM;
2417                 goto out;
2418         }
2419
2420         nosec_save = nosec;
2421         fnosec = fsec = 1;
2422         in_save = in_end = orig;
2423
2424         do {
2425                 if (*in_end == '"')
2426                         open_quote = !open_quote;
2427                 if ((*in_end == ',' && open_quote == 0) ||
2428                                 *in_end == '\0') {
2429                         int len = in_end - in_curr;
2430
2431                         if (selinux_option(in_curr, len))
2432                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2433                         else
2434                                 take_option(&nosec, in_curr, &fnosec, len);
2435
2436                         in_curr = in_end + 1;
2437                 }
2438         } while (*in_end++);
2439
2440         strcpy(in_save, nosec_save);
2441         free_page((unsigned long)nosec_save);
2442 out:
2443         return rc;
2444 }
2445
2446 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2447 {
2448         struct avc_audit_data ad;
2449         int rc;
2450
2451         rc = superblock_doinit(sb, data);
2452         if (rc)
2453                 return rc;
2454
2455         AVC_AUDIT_DATA_INIT(&ad, FS);
2456         ad.u.fs.path.dentry = sb->s_root;
2457         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2458 }
2459
2460 static int selinux_sb_statfs(struct dentry *dentry)
2461 {
2462         struct avc_audit_data ad;
2463
2464         AVC_AUDIT_DATA_INIT(&ad, FS);
2465         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2466         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2467 }
2468
2469 static int selinux_mount(char *dev_name,
2470                          struct path *path,
2471                          char *type,
2472                          unsigned long flags,
2473                          void *data)
2474 {
2475         int rc;
2476
2477         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2478         if (rc)
2479                 return rc;
2480
2481         if (flags & MS_REMOUNT)
2482                 return superblock_has_perm(current, path->mnt->mnt_sb,
2483                                            FILESYSTEM__REMOUNT, NULL);
2484         else
2485                 return dentry_has_perm(current, path->mnt, path->dentry,
2486                                        FILE__MOUNTON);
2487 }
2488
2489 static int selinux_umount(struct vfsmount *mnt, int flags)
2490 {
2491         int rc;
2492
2493         rc = secondary_ops->sb_umount(mnt, flags);
2494         if (rc)
2495                 return rc;
2496
2497         return superblock_has_perm(current, mnt->mnt_sb,
2498                                    FILESYSTEM__UNMOUNT, NULL);
2499 }
2500
2501 /* inode security operations */
2502
2503 static int selinux_inode_alloc_security(struct inode *inode)
2504 {
2505         return inode_alloc_security(inode);
2506 }
2507
2508 static void selinux_inode_free_security(struct inode *inode)
2509 {
2510         inode_free_security(inode);
2511 }
2512
2513 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2514                                        char **name, void **value,
2515                                        size_t *len)
2516 {
2517         struct task_security_struct *tsec;
2518         struct inode_security_struct *dsec;
2519         struct superblock_security_struct *sbsec;
2520         u32 newsid, clen;
2521         int rc;
2522         char *namep = NULL, *context;
2523
2524         tsec = current->security;
2525         dsec = dir->i_security;
2526         sbsec = dir->i_sb->s_security;
2527
2528         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2529                 newsid = tsec->create_sid;
2530         } else {
2531                 rc = security_transition_sid(tsec->sid, dsec->sid,
2532                                              inode_mode_to_security_class(inode->i_mode),
2533                                              &newsid);
2534                 if (rc) {
2535                         printk(KERN_WARNING "%s:  "
2536                                "security_transition_sid failed, rc=%d (dev=%s "
2537                                "ino=%ld)\n",
2538                                __func__,
2539                                -rc, inode->i_sb->s_id, inode->i_ino);
2540                         return rc;
2541                 }
2542         }
2543
2544         /* Possibly defer initialization to selinux_complete_init. */
2545         if (sbsec->initialized) {
2546                 struct inode_security_struct *isec = inode->i_security;
2547                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2548                 isec->sid = newsid;
2549                 isec->initialized = 1;
2550         }
2551
2552         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2553                 return -EOPNOTSUPP;
2554
2555         if (name) {
2556                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2557                 if (!namep)
2558                         return -ENOMEM;
2559                 *name = namep;
2560         }
2561
2562         if (value && len) {
2563                 rc = security_sid_to_context_force(newsid, &context, &clen);
2564                 if (rc) {
2565                         kfree(namep);
2566                         return rc;
2567                 }
2568                 *value = context;
2569                 *len = clen;
2570         }
2571
2572         return 0;
2573 }
2574
2575 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2576 {
2577         return may_create(dir, dentry, SECCLASS_FILE);
2578 }
2579
2580 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2581 {
2582         int rc;
2583
2584         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2585         if (rc)
2586                 return rc;
2587         return may_link(dir, old_dentry, MAY_LINK);
2588 }
2589
2590 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2591 {
2592         int rc;
2593
2594         rc = secondary_ops->inode_unlink(dir, dentry);
2595         if (rc)
2596                 return rc;
2597         return may_link(dir, dentry, MAY_UNLINK);
2598 }
2599
2600 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2601 {
2602         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2603 }
2604
2605 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2606 {
2607         return may_create(dir, dentry, SECCLASS_DIR);
2608 }
2609
2610 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2611 {
2612         return may_link(dir, dentry, MAY_RMDIR);
2613 }
2614
2615 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2616 {
2617         int rc;
2618
2619         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2620         if (rc)
2621                 return rc;
2622
2623         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2624 }
2625
2626 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2627                                 struct inode *new_inode, struct dentry *new_dentry)
2628 {
2629         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2630 }
2631
2632 static int selinux_inode_readlink(struct dentry *dentry)
2633 {
2634         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2635 }
2636
2637 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2638 {
2639         int rc;
2640
2641         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2642         if (rc)
2643                 return rc;
2644         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2645 }
2646
2647 static int selinux_inode_permission(struct inode *inode, int mask)
2648 {
2649         int rc;
2650
2651         rc = secondary_ops->inode_permission(inode, mask);
2652         if (rc)
2653                 return rc;
2654
2655         if (!mask) {
2656                 /* No permission to check.  Existence test. */
2657                 return 0;
2658         }
2659
2660         return inode_has_perm(current, inode,
2661                               file_mask_to_av(inode->i_mode, mask), NULL);
2662 }
2663
2664 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2665 {
2666         int rc;
2667
2668         rc = secondary_ops->inode_setattr(dentry, iattr);
2669         if (rc)
2670                 return rc;
2671
2672         if (iattr->ia_valid & ATTR_FORCE)
2673                 return 0;
2674
2675         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2676                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2677                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2678
2679         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2680 }
2681
2682 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2683 {
2684         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2685 }
2686
2687 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2688 {
2689         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2690                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2691                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2692                         if (!capable(CAP_SETFCAP))
2693                                 return -EPERM;
2694                 } else if (!capable(CAP_SYS_ADMIN)) {
2695                         /* A different attribute in the security namespace.
2696                            Restrict to administrator. */
2697                         return -EPERM;
2698                 }
2699         }
2700
2701         /* Not an attribute we recognize, so just check the
2702            ordinary setattr permission. */
2703         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2704 }
2705
2706 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2707                                   const void *value, size_t size, int flags)
2708 {
2709         struct task_security_struct *tsec = current->security;
2710         struct inode *inode = dentry->d_inode;
2711         struct inode_security_struct *isec = inode->i_security;
2712         struct superblock_security_struct *sbsec;
2713         struct avc_audit_data ad;
2714         u32 newsid;
2715         int rc = 0;
2716
2717         if (strcmp(name, XATTR_NAME_SELINUX))
2718                 return selinux_inode_setotherxattr(dentry, name);
2719
2720         sbsec = inode->i_sb->s_security;
2721         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2722                 return -EOPNOTSUPP;
2723
2724         if (!is_owner_or_cap(inode))
2725                 return -EPERM;
2726
2727         AVC_AUDIT_DATA_INIT(&ad, FS);
2728         ad.u.fs.path.dentry = dentry;
2729
2730         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2731                           FILE__RELABELFROM, &ad);
2732         if (rc)
2733                 return rc;
2734
2735         rc = security_context_to_sid(value, size, &newsid);
2736         if (rc == -EINVAL) {
2737                 if (!capable(CAP_MAC_ADMIN))
2738                         return rc;
2739                 rc = security_context_to_sid_force(value, size, &newsid);
2740         }
2741         if (rc)
2742                 return rc;
2743
2744         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2745                           FILE__RELABELTO, &ad);
2746         if (rc)
2747                 return rc;
2748
2749         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2750                                           isec->sclass);
2751         if (rc)
2752                 return rc;
2753
2754         return avc_has_perm(newsid,
2755                             sbsec->sid,
2756                             SECCLASS_FILESYSTEM,
2757                             FILESYSTEM__ASSOCIATE,
2758                             &ad);
2759 }
2760
2761 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2762                                         const void *value, size_t size,
2763                                         int flags)
2764 {
2765         struct inode *inode = dentry->d_inode;
2766         struct inode_security_struct *isec = inode->i_security;
2767         u32 newsid;
2768         int rc;
2769
2770         if (strcmp(name, XATTR_NAME_SELINUX)) {
2771                 /* Not an attribute we recognize, so nothing to do. */
2772                 return;
2773         }
2774
2775         rc = security_context_to_sid_force(value, size, &newsid);
2776         if (rc) {
2777                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2778                        "for (%s, %lu), rc=%d\n",
2779                        inode->i_sb->s_id, inode->i_ino, -rc);
2780                 return;
2781         }
2782
2783         isec->sid = newsid;
2784         return;
2785 }
2786
2787 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2788 {
2789         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2790 }
2791
2792 static int selinux_inode_listxattr(struct dentry *dentry)
2793 {
2794         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2795 }
2796
2797 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2798 {
2799         if (strcmp(name, XATTR_NAME_SELINUX))
2800                 return selinux_inode_setotherxattr(dentry, name);
2801
2802         /* No one is allowed to remove a SELinux security label.
2803            You can change the label, but all data must be labeled. */
2804         return -EACCES;
2805 }
2806
2807 /*
2808  * Copy the inode security context value to the user.
2809  *
2810  * Permission check is handled by selinux_inode_getxattr hook.
2811  */
2812 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2813 {
2814         u32 size;
2815         int error;
2816         char *context = NULL;
2817         struct task_security_struct *tsec = current->security;
2818         struct inode_security_struct *isec = inode->i_security;
2819
2820         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2821                 return -EOPNOTSUPP;
2822
2823         /*
2824          * If the caller has CAP_MAC_ADMIN, then get the raw context
2825          * value even if it is not defined by current policy; otherwise,
2826          * use the in-core value under current policy.
2827          * Use the non-auditing forms of the permission checks since
2828          * getxattr may be called by unprivileged processes commonly
2829          * and lack of permission just means that we fall back to the
2830          * in-core context value, not a denial.
2831          */
2832         error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2833         if (!error)
2834                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2835                                              SECCLASS_CAPABILITY2,
2836                                              CAPABILITY2__MAC_ADMIN,
2837                                              0,
2838                                              NULL);
2839         if (!error)
2840                 error = security_sid_to_context_force(isec->sid, &context,
2841                                                       &size);
2842         else
2843                 error = security_sid_to_context(isec->sid, &context, &size);
2844         if (error)
2845                 return error;
2846         error = size;
2847         if (alloc) {
2848                 *buffer = context;
2849                 goto out_nofree;
2850         }
2851         kfree(context);
2852 out_nofree:
2853         return error;
2854 }
2855
2856 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2857                                      const void *value, size_t size, int flags)
2858 {
2859         struct inode_security_struct *isec = inode->i_security;
2860         u32 newsid;
2861         int rc;
2862
2863         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2864                 return -EOPNOTSUPP;
2865
2866         if (!value || !size)
2867                 return -EACCES;
2868
2869         rc = security_context_to_sid((void *)value, size, &newsid);
2870         if (rc)
2871                 return rc;
2872
2873         isec->sid = newsid;
2874         return 0;
2875 }
2876
2877 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2878 {
2879         const int len = sizeof(XATTR_NAME_SELINUX);
2880         if (buffer && len <= buffer_size)
2881                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2882         return len;
2883 }
2884
2885 static int selinux_inode_need_killpriv(struct dentry *dentry)
2886 {
2887         return secondary_ops->inode_need_killpriv(dentry);
2888 }
2889
2890 static int selinux_inode_killpriv(struct dentry *dentry)
2891 {
2892         return secondary_ops->inode_killpriv(dentry);
2893 }
2894
2895 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2896 {
2897         struct inode_security_struct *isec = inode->i_security;
2898         *secid = isec->sid;
2899 }
2900
2901 /* file security operations */
2902
2903 static int selinux_revalidate_file_permission(struct file *file, int mask)
2904 {
2905         int rc;
2906         struct inode *inode = file->f_path.dentry->d_inode;
2907
2908         if (!mask) {
2909                 /* No permission to check.  Existence test. */
2910                 return 0;
2911         }
2912
2913         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2914         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2915                 mask |= MAY_APPEND;
2916
2917         rc = file_has_perm(current, file,
2918                            file_mask_to_av(inode->i_mode, mask));
2919         if (rc)
2920                 return rc;
2921
2922         return selinux_netlbl_inode_permission(inode, mask);
2923 }
2924
2925 static int selinux_file_permission(struct file *file, int mask)
2926 {
2927         struct inode *inode = file->f_path.dentry->d_inode;
2928         struct task_security_struct *tsec = current->security;
2929         struct file_security_struct *fsec = file->f_security;
2930         struct inode_security_struct *isec = inode->i_security;
2931
2932         if (!mask) {
2933                 /* No permission to check.  Existence test. */
2934                 return 0;
2935         }
2936
2937         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2938             && fsec->pseqno == avc_policy_seqno())
2939                 return selinux_netlbl_inode_permission(inode, mask);
2940
2941         return selinux_revalidate_file_permission(file, mask);
2942 }
2943
2944 static int selinux_file_alloc_security(struct file *file)
2945 {
2946         return file_alloc_security(file);
2947 }
2948
2949 static void selinux_file_free_security(struct file *file)
2950 {
2951         file_free_security(file);
2952 }
2953
2954 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2955                               unsigned long arg)
2956 {
2957         u32 av = 0;
2958
2959         if (_IOC_DIR(cmd) & _IOC_WRITE)
2960                 av |= FILE__WRITE;
2961         if (_IOC_DIR(cmd) & _IOC_READ)
2962                 av |= FILE__READ;
2963         if (!av)
2964                 av = FILE__IOCTL;
2965
2966         return file_has_perm(current, file, av);
2967 }
2968
2969 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2970 {
2971 #ifndef CONFIG_PPC32
2972         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2973                 /*
2974                  * We are making executable an anonymous mapping or a
2975                  * private file mapping that will also be writable.
2976                  * This has an additional check.
2977                  */
2978                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2979                 if (rc)
2980                         return rc;
2981         }
2982 #endif
2983
2984         if (file) {
2985                 /* read access is always possible with a mapping */
2986                 u32 av = FILE__READ;
2987
2988                 /* write access only matters if the mapping is shared */
2989                 if (shared && (prot & PROT_WRITE))
2990                         av |= FILE__WRITE;
2991
2992                 if (prot & PROT_EXEC)
2993                         av |= FILE__EXECUTE;
2994
2995                 return file_has_perm(current, file, av);
2996         }
2997         return 0;
2998 }
2999
3000 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3001                              unsigned long prot, unsigned long flags,
3002                              unsigned long addr, unsigned long addr_only)
3003 {
3004         int rc = 0;
3005         u32 sid = ((struct task_security_struct *)(current->security))->sid;
3006
3007         if (addr < mmap_min_addr)
3008                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3009                                   MEMPROTECT__MMAP_ZERO, NULL);
3010         if (rc || addr_only)
3011                 return rc;
3012
3013         if (selinux_checkreqprot)
3014                 prot = reqprot;
3015
3016         return file_map_prot_check(file, prot,
3017                                    (flags & MAP_TYPE) == MAP_SHARED);
3018 }
3019
3020 static int selinux_file_mprotect(struct vm_area_struct *vma,
3021                                  unsigned long reqprot,
3022                                  unsigned long prot)
3023 {
3024         int rc;
3025
3026         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3027         if (rc)
3028                 return rc;
3029
3030         if (selinux_checkreqprot)
3031                 prot = reqprot;
3032
3033 #ifndef CONFIG_PPC32
3034         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3035                 rc = 0;
3036                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3037                     vma->vm_end <= vma->vm_mm->brk) {
3038                         rc = task_has_perm(current, current,
3039                                            PROCESS__EXECHEAP);
3040                 } else if (!vma->vm_file &&
3041                            vma->vm_start <= vma->vm_mm->start_stack &&
3042                            vma->vm_end >= vma->vm_mm->start_stack) {
3043                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3044                 } else if (vma->vm_file && vma->anon_vma) {
3045                         /*
3046                          * We are making executable a file mapping that has
3047                          * had some COW done. Since pages might have been
3048                          * written, check ability to execute the possibly
3049                          * modified content.  This typically should only
3050                          * occur for text relocations.
3051                          */
3052                         rc = file_has_perm(current, vma->vm_file,
3053                                            FILE__EXECMOD);
3054                 }
3055                 if (rc)
3056                         return rc;
3057         }
3058 #endif
3059
3060         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3061 }
3062
3063 static int selinux_file_lock(struct file *file, unsigned int cmd)
3064 {
3065         return file_has_perm(current, file, FILE__LOCK);
3066 }
3067
3068 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3069                               unsigned long arg)
3070 {
3071         int err = 0;
3072
3073         switch (cmd) {
3074         case F_SETFL:
3075                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3076                         err = -EINVAL;
3077                         break;
3078                 }
3079
3080                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3081                         err = file_has_perm(current, file, FILE__WRITE);
3082                         break;
3083                 }
3084                 /* fall through */
3085         case F_SETOWN:
3086         case F_SETSIG:
3087         case F_GETFL:
3088         case F_GETOWN:
3089         case F_GETSIG:
3090                 /* Just check FD__USE permission */
3091                 err = file_has_perm(current, file, 0);
3092                 break;
3093         case F_GETLK:
3094         case F_SETLK:
3095         case F_SETLKW:
3096 #if BITS_PER_LONG == 32
3097         case F_GETLK64:
3098         case F_SETLK64:
3099         case F_SETLKW64:
3100 #endif
3101                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3102                         err = -EINVAL;
3103                         break;
3104                 }
3105                 err = file_has_perm(current, file, FILE__LOCK);
3106                 break;
3107         }
3108
3109         return err;
3110 }
3111
3112 static int selinux_file_set_fowner(struct file *file)
3113 {
3114         struct task_security_struct *tsec;
3115         struct file_security_struct *fsec;
3116
3117         tsec = current->security;
3118         fsec = file->f_security;
3119         fsec->fown_sid = tsec->sid;
3120
3121         return 0;
3122 }
3123
3124 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3125                                        struct fown_struct *fown, int signum)
3126 {
3127         struct file *file;
3128         u32 perm;
3129         struct task_security_struct *tsec;
3130         struct file_security_struct *fsec;
3131
3132         /* struct fown_struct is never outside the context of a struct file */
3133         file = container_of(fown, struct file, f_owner);
3134
3135         tsec = tsk->security;
3136         fsec = file->f_security;
3137
3138         if (!signum)
3139                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3140         else
3141                 perm = signal_to_av(signum);
3142
3143         return avc_has_perm(fsec->fown_sid, tsec->sid,
3144                             SECCLASS_PROCESS, perm, NULL);
3145 }
3146
3147 static int selinux_file_receive(struct file *file)
3148 {
3149         return file_has_perm(current, file, file_to_av(file));
3150 }
3151
3152 static int selinux_dentry_open(struct file *file)
3153 {
3154         struct file_security_struct *fsec;
3155         struct inode *inode;
3156         struct inode_security_struct *isec;
3157         inode = file->f_path.dentry->d_inode;
3158         fsec = file->f_security;
3159         isec = inode->i_security;
3160         /*
3161          * Save inode label and policy sequence number
3162          * at open-time so that selinux_file_permission
3163          * can determine whether revalidation is necessary.
3164          * Task label is already saved in the file security
3165          * struct as its SID.
3166          */
3167         fsec->isid = isec->sid;
3168         fsec->pseqno = avc_policy_seqno();
3169         /*
3170          * Since the inode label or policy seqno may have changed
3171          * between the selinux_inode_permission check and the saving
3172          * of state above, recheck that access is still permitted.
3173          * Otherwise, access might never be revalidated against the
3174          * new inode label or new policy.
3175          * This check is not redundant - do not remove.
3176          */
3177         return inode_has_perm(current, inode, open_file_to_av(file), NULL);
3178 }
3179
3180 /* task security operations */
3181
3182 static int selinux_task_create(unsigned long clone_flags)
3183 {
3184         int rc;
3185
3186         rc = secondary_ops->task_create(clone_flags);
3187         if (rc)
3188                 return rc;
3189
3190         return task_has_perm(current, current, PROCESS__FORK);
3191 }
3192
3193 static int selinux_task_alloc_security(struct task_struct *tsk)
3194 {
3195         struct task_security_struct *tsec1, *tsec2;
3196         int rc;
3197
3198         tsec1 = current->security;
3199
3200         rc = task_alloc_security(tsk);
3201         if (rc)
3202                 return rc;
3203         tsec2 = tsk->security;
3204
3205         tsec2->osid = tsec1->osid;
3206         tsec2->sid = tsec1->sid;
3207
3208         /* Retain the exec, fs, key, and sock SIDs across fork */
3209         tsec2->exec_sid = tsec1->exec_sid;
3210         tsec2->create_sid = tsec1->create_sid;
3211         tsec2->keycreate_sid = tsec1->keycreate_sid;
3212         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3213
3214         return 0;
3215 }
3216
3217 static void selinux_task_free_security(struct task_struct *tsk)
3218 {
3219         task_free_security(tsk);
3220 }
3221
3222 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3223 {
3224         /* Since setuid only affects the current process, and
3225            since the SELinux controls are not based on the Linux
3226            identity attributes, SELinux does not need to control
3227            this operation.  However, SELinux does control the use
3228            of the CAP_SETUID and CAP_SETGID capabilities using the
3229            capable hook. */
3230         return 0;
3231 }
3232
3233 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3234 {
3235         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3236 }
3237
3238 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3239 {
3240         /* See the comment for setuid above. */
3241         return 0;
3242 }
3243
3244 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3245 {
3246         return task_has_perm(current, p, PROCESS__SETPGID);
3247 }
3248
3249 static int selinux_task_getpgid(struct task_struct *p)
3250 {
3251         return task_has_perm(current, p, PROCESS__GETPGID);
3252 }
3253
3254 static int selinux_task_getsid(struct task_struct *p)
3255 {
3256         return task_has_perm(current, p, PROCESS__GETSESSION);
3257 }
3258
3259 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3260 {
3261         struct task_security_struct *tsec = p->security;
3262         *secid = tsec->sid;
3263 }
3264
3265 static int selinux_task_setgroups(struct group_info *group_info)
3266 {
3267         /* See the comment for setuid above. */
3268         return 0;
3269 }
3270
3271 static int selinux_task_setnice(struct task_struct *p, int nice)
3272 {
3273         int rc;
3274
3275         rc = secondary_ops->task_setnice(p, nice);
3276         if (rc)
3277                 return rc;
3278
3279         return task_has_perm(current, p, PROCESS__SETSCHED);
3280 }
3281
3282 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3283 {
3284         int rc;
3285
3286         rc = secondary_ops->task_setioprio(p, ioprio);
3287         if (rc)
3288                 return rc;
3289
3290         return task_has_perm(current, p, PROCESS__SETSCHED);
3291 }
3292
3293 static int selinux_task_getioprio(struct task_struct *p)
3294 {
3295         return task_has_perm(current, p, PROCESS__GETSCHED);
3296 }
3297
3298 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3299 {
3300         struct rlimit *old_rlim = current->signal->rlim + resource;
3301         int rc;
3302
3303         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3304         if (rc)
3305                 return rc;
3306
3307         /* Control the ability to change the hard limit (whether
3308            lowering or raising it), so that the hard limit can
3309            later be used as a safe reset point for the soft limit
3310            upon context transitions. See selinux_bprm_apply_creds. */
3311         if (old_rlim->rlim_max != new_rlim->rlim_max)
3312                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3313
3314         return 0;
3315 }
3316
3317 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3318 {
3319         int rc;
3320
3321         rc = secondary_ops->task_setscheduler(p, policy, lp);
3322         if (rc)
3323                 return rc;
3324
3325         return task_has_perm(current, p, PROCESS__SETSCHED);
3326 }
3327
3328 static int selinux_task_getscheduler(struct task_struct *p)
3329 {
3330         return task_has_perm(current, p, PROCESS__GETSCHED);
3331 }
3332
3333 static int selinux_task_movememory(struct task_struct *p)
3334 {
3335         return task_has_perm(current, p, PROCESS__SETSCHED);
3336 }
3337
3338 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3339                                 int sig, u32 secid)
3340 {
3341         u32 perm;
3342         int rc;
3343         struct task_security_struct *tsec;
3344
3345         rc = secondary_ops->task_kill(p, info, sig, secid);
3346         if (rc)
3347                 return rc;
3348
3349         if (!sig)
3350                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3351         else
3352                 perm = signal_to_av(sig);
3353         tsec = p->security;
3354         if (secid)
3355                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3356         else
3357                 rc = task_has_perm(current, p, perm);
3358         return rc;
3359 }
3360
3361 static int selinux_task_prctl(int option,
3362                               unsigned long arg2,
3363                               unsigned long arg3,
3364                               unsigned long arg4,
3365                               unsigned long arg5,
3366                               long *rc_p)
3367 {
3368         /* The current prctl operations do not appear to require
3369            any SELinux controls since they merely observe or modify
3370            the state of the current process. */
3371         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3372 }
3373
3374 static int selinux_task_wait(struct task_struct *p)
3375 {
3376         return task_has_perm(p, current, PROCESS__SIGCHLD);
3377 }
3378
3379 static void selinux_task_reparent_to_init(struct task_struct *p)
3380 {
3381         struct task_security_struct *tsec;
3382
3383         secondary_ops->task_reparent_to_init(p);
3384
3385         tsec = p->security;
3386         tsec->osid = tsec->sid;
3387         tsec->sid = SECINITSID_KERNEL;
3388         return;
3389 }
3390
3391 static void selinux_task_to_inode(struct task_struct *p,
3392                                   struct inode *inode)
3393 {
3394         struct task_security_struct *tsec = p->security;
3395         struct inode_security_struct *isec = inode->i_security;
3396
3397         isec->sid = tsec->sid;
3398         isec->initialized = 1;
3399         return;
3400 }
3401
3402 /* Returns error only if unable to parse addresses */
3403 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3404                         struct avc_audit_data *ad, u8 *proto)
3405 {
3406         int offset, ihlen, ret = -EINVAL;
3407         struct iphdr _iph, *ih;
3408
3409         offset = skb_network_offset(skb);
3410         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3411         if (ih == NULL)
3412                 goto out;
3413
3414         ihlen = ih->ihl * 4;
3415         if (ihlen < sizeof(_iph))
3416                 goto out;
3417
3418         ad->u.net.v4info.saddr = ih->saddr;
3419         ad->u.net.v4info.daddr = ih->daddr;
3420         ret = 0;
3421
3422         if (proto)
3423                 *proto = ih->protocol;
3424
3425         switch (ih->protocol) {
3426         case IPPROTO_TCP: {
3427                 struct tcphdr _tcph, *th;
3428
3429                 if (ntohs(ih->frag_off) & IP_OFFSET)
3430                         break;
3431
3432                 offset += ihlen;
3433                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3434                 if (th == NULL)
3435                         break;
3436
3437                 ad->u.net.sport = th->source;
3438                 ad->u.net.dport = th->dest;
3439                 break;
3440         }
3441
3442         case IPPROTO_UDP: {
3443                 struct udphdr _udph, *uh;
3444
3445                 if (ntohs(ih->frag_off) & IP_OFFSET)
3446                         break;
3447
3448                 offset += ihlen;
3449                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3450                 if (uh == NULL)
3451                         break;
3452
3453                 ad->u.net.sport = uh->source;
3454                 ad->u.net.dport = uh->dest;
3455                 break;
3456         }
3457
3458         case IPPROTO_DCCP: {
3459                 struct dccp_hdr _dccph, *dh;
3460
3461                 if (ntohs(ih->frag_off) & IP_OFFSET)
3462                         break;
3463
3464                 offset += ihlen;
3465                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3466                 if (dh == NULL)
3467                         break;
3468
3469                 ad->u.net.sport = dh->dccph_sport;
3470                 ad->u.net.dport = dh->dccph_dport;
3471                 break;
3472         }
3473
3474         default:
3475                 break;
3476         }
3477 out:
3478         return ret;
3479 }
3480
3481 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3482
3483 /* Returns error only if unable to parse addresses */
3484 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3485                         struct avc_audit_data *ad, u8 *proto)
3486 {
3487         u8 nexthdr;
3488         int ret = -EINVAL, offset;
3489         struct ipv6hdr _ipv6h, *ip6;
3490
3491         offset = skb_network_offset(skb);
3492         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3493         if (ip6 == NULL)
3494                 goto out;
3495
3496         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3497         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3498         ret = 0;
3499
3500         nexthdr = ip6->nexthdr;
3501         offset += sizeof(_ipv6h);
3502         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3503         if (offset < 0)
3504                 goto out;
3505
3506         if (proto)
3507                 *proto = nexthdr;
3508
3509         switch (nexthdr) {
3510         case IPPROTO_TCP: {
3511                 struct tcphdr _tcph, *th;
3512
3513                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3514                 if (th == NULL)
3515                         break;
3516
3517                 ad->u.net.sport = th->source;
3518                 ad->u.net.dport = th->dest;
3519                 break;
3520         }
3521
3522         case IPPROTO_UDP: {
3523                 struct udphdr _udph, *uh;
3524
3525                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3526                 if (uh == NULL)
3527                         break;
3528
3529                 ad->u.net.sport = uh->source;
3530                 ad->u.net.dport = uh->dest;
3531                 break;
3532         }
3533
3534         case IPPROTO_DCCP: {
3535                 struct dccp_hdr _dccph, *dh;
3536
3537                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3538                 if (dh == NULL)
3539                         break;
3540
3541                 ad->u.net.sport = dh->dccph_sport;
3542                 ad->u.net.dport = dh->dccph_dport;
3543                 break;
3544         }
3545
3546         /* includes fragments */
3547         default:
3548                 break;
3549         }
3550 out:
3551         return ret;
3552 }
3553
3554 #endif /* IPV6 */
3555
3556 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3557                              char **_addrp, int src, u8 *proto)
3558 {
3559         char *addrp;
3560         int ret;
3561
3562         switch (ad->u.net.family) {
3563         case PF_INET:
3564                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3565                 if (ret)
3566                         goto parse_error;
3567                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3568                                        &ad->u.net.v4info.daddr);
3569                 goto okay;
3570
3571 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3572         case PF_INET6:
3573                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3574                 if (ret)
3575                         goto parse_error;
3576                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3577                                        &ad->u.net.v6info.daddr);
3578                 goto okay;
3579 #endif  /* IPV6 */
3580         default:
3581                 addrp = NULL;
3582                 goto okay;
3583         }
3584
3585 parse_error:
3586         printk(KERN_WARNING
3587                "SELinux: failure in selinux_parse_skb(),"
3588                " unable to parse packet\n");
3589         return ret;
3590
3591 okay:
3592         if (_addrp)
3593                 *_addrp = addrp;
3594         return 0;
3595 }
3596
3597 /**
3598  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3599  * @skb: the packet
3600  * @family: protocol family
3601  * @sid: the packet's peer label SID
3602  *
3603  * Description:
3604  * Check the various different forms of network peer labeling and determine
3605  * the peer label/SID for the packet; most of the magic actually occurs in
3606  * the security server function security_net_peersid_cmp().  The function
3607  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3608  * or -EACCES if @sid is invalid due to inconsistencies with the different
3609  * peer labels.
3610  *
3611  */
3612 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3613 {
3614         int err;
3615         u32 xfrm_sid;
3616         u32 nlbl_sid;
3617         u32 nlbl_type;
3618
3619         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3620         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3621
3622         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3623         if (unlikely(err)) {
3624                 printk(KERN_WARNING
3625                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3626                        " unable to determine packet's peer label\n");
3627                 return -EACCES;
3628         }
3629
3630         return 0;
3631 }
3632
3633 /* socket security operations */
3634 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3635                            u32 perms)
3636 {
3637         struct inode_security_struct *isec;
3638         struct task_security_struct *tsec;
3639         struct avc_audit_data ad;
3640         int err = 0;
3641
3642         tsec = task->security;
3643         isec = SOCK_INODE(sock)->i_security;
3644
3645         if (isec->sid == SECINITSID_KERNEL)
3646                 goto out;
3647
3648         AVC_AUDIT_DATA_INIT(&ad, NET);
3649         ad.u.net.sk = sock->sk;
3650         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3651
3652 out:
3653         return err;
3654 }
3655
3656 static int selinux_socket_create(int family, int type,
3657                                  int protocol, int kern)
3658 {
3659         int err = 0;
3660         struct task_security_struct *tsec;
3661         u32 newsid;
3662
3663         if (kern)
3664                 goto out;
3665
3666         tsec = current->security;
3667         newsid = tsec->sockcreate_sid ? : tsec->sid;
3668         err = avc_has_perm(tsec->sid, newsid,
3669                            socket_type_to_security_class(family, type,
3670                            protocol), SOCKET__CREATE, NULL);
3671
3672 out:
3673         return err;
3674 }
3675
3676 static int selinux_socket_post_create(struct socket *sock, int family,
3677                                       int type, int protocol, int kern)
3678 {
3679         int err = 0;
3680         struct inode_security_struct *isec;
3681         struct task_security_struct *tsec;
3682         struct sk_security_struct *sksec;
3683         u32 newsid;
3684
3685         isec = SOCK_INODE(sock)->i_security;
3686
3687         tsec = current->security;
3688         newsid = tsec->sockcreate_sid ? : tsec->sid;
3689         isec->sclass = socket_type_to_security_class(family, type, protocol);
3690         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3691         isec->initialized = 1;
3692
3693         if (sock->sk) {
3694                 sksec = sock->sk->sk_security;
3695                 sksec->sid = isec->sid;
3696                 sksec->sclass = isec->sclass;
3697                 err = selinux_netlbl_socket_post_create(sock);
3698         }
3699
3700         return err;
3701 }
3702
3703 /* Range of port numbers used to automatically bind.
3704    Need to determine whether we should perform a name_bind
3705    permission check between the socket and the port number. */
3706
3707 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3708 {
3709         u16 family;
3710         int err;
3711
3712         err = socket_has_perm(current, sock, SOCKET__BIND);
3713         if (err)
3714                 goto out;
3715
3716         /*
3717          * If PF_INET or PF_INET6, check name_bind permission for the port.
3718          * Multiple address binding for SCTP is not supported yet: we just
3719          * check the first address now.
3720          */
3721         family = sock->sk->sk_family;
3722         if (family == PF_INET || family == PF_INET6) {
3723                 char *addrp;
3724                 struct inode_security_struct *isec;
3725                 struct task_security_struct *tsec;
3726                 struct avc_audit_data ad;
3727                 struct sockaddr_in *addr4 = NULL;
3728                 struct sockaddr_in6 *addr6 = NULL;
3729                 unsigned short snum;
3730                 struct sock *sk = sock->sk;
3731                 u32 sid, node_perm;
3732
3733                 tsec = current->security;
3734                 isec = SOCK_INODE(sock)->i_security;
3735
3736                 if (family == PF_INET) {
3737                         addr4 = (struct sockaddr_in *)address;
3738                         snum = ntohs(addr4->sin_port);
3739                         addrp = (char *)&addr4->sin_addr.s_addr;
3740                 } else {
3741                         addr6 = (struct sockaddr_in6 *)address;
3742                         snum = ntohs(addr6->sin6_port);
3743                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3744                 }
3745
3746                 if (snum) {
3747                         int low, high;
3748
3749                         inet_get_local_port_range(&low, &high);
3750
3751                         if (snum < max(PROT_SOCK, low) || snum > high) {
3752                                 err = sel_netport_sid(sk->sk_protocol,
3753                                                       snum, &sid);
3754                                 if (err)
3755                                         goto out;
3756                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3757                                 ad.u.net.sport = htons(snum);
3758                                 ad.u.net.family = family;
3759                                 err = avc_has_perm(isec->sid, sid,
3760                                                    isec->sclass,
3761                                                    SOCKET__NAME_BIND, &ad);
3762                                 if (err)
3763                                         goto out;
3764                         }
3765                 }
3766
3767                 switch (isec->sclass) {
3768                 case SECCLASS_TCP_SOCKET:
3769                         node_perm = TCP_SOCKET__NODE_BIND;
3770                         break;
3771
3772                 case SECCLASS_UDP_SOCKET:
3773                         node_perm = UDP_SOCKET__NODE_BIND;
3774                         break;
3775
3776                 case SECCLASS_DCCP_SOCKET:
3777                         node_perm = DCCP_SOCKET__NODE_BIND;
3778                         break;
3779
3780                 default:
3781                         node_perm = RAWIP_SOCKET__NODE_BIND;
3782                         break;
3783                 }
3784
3785                 err = sel_netnode_sid(addrp, family, &sid);
3786                 if (err)
3787                         goto out;
3788
3789                 AVC_AUDIT_DATA_INIT(&ad, NET);
3790                 ad.u.net.sport = htons(snum);
3791                 ad.u.net.family = family;
3792
3793                 if (family == PF_INET)
3794                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3795                 else
3796                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3797
3798                 err = avc_has_perm(isec->sid, sid,
3799                                    isec->sclass, node_perm, &ad);
3800                 if (err)
3801                         goto out;
3802         }
3803 out:
3804         return err;
3805 }
3806
3807 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3808 {
3809         struct sock *sk = sock->sk;
3810         struct inode_security_struct *isec;
3811         int err;
3812
3813         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3814         if (err)
3815                 return err;
3816
3817         /*
3818          * If a TCP or DCCP socket, check name_connect permission for the port.
3819          */
3820         isec = SOCK_INODE(sock)->i_security;
3821         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3822             isec->sclass == SECCLASS_DCCP_SOCKET) {
3823                 struct avc_audit_data ad;
3824                 struct sockaddr_in *addr4 = NULL;
3825                 struct sockaddr_in6 *addr6 = NULL;
3826                 unsigned short snum;
3827                 u32 sid, perm;
3828
3829                 if (sk->sk_family == PF_INET) {
3830                         addr4 = (struct sockaddr_in *)address;
3831                         if (addrlen < sizeof(struct sockaddr_in))
3832                                 return -EINVAL;
3833                         snum = ntohs(addr4->sin_port);
3834                 } else {
3835                         addr6 = (struct sockaddr_in6 *)address;
3836                         if (addrlen < SIN6_LEN_RFC2133)
3837                                 return -EINVAL;
3838                         snum = ntohs(addr6->sin6_port);
3839                 }
3840
3841                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3842                 if (err)
3843                         goto out;
3844
3845                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3846                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3847
3848                 AVC_AUDIT_DATA_INIT(&ad, NET);
3849                 ad.u.net.dport = htons(snum);
3850                 ad.u.net.family = sk->sk_family;
3851                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3852                 if (err)
3853                         goto out;
3854         }
3855
3856         err = selinux_netlbl_socket_connect(sk, address);
3857
3858 out:
3859         return err;
3860 }
3861
3862 static int selinux_socket_listen(struct socket *sock, int backlog)
3863 {
3864         return socket_has_perm(current, sock, SOCKET__LISTEN);
3865 }
3866
3867 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3868 {
3869         int err;
3870         struct inode_security_struct *isec;
3871         struct inode_security_struct *newisec;
3872
3873         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3874         if (err)
3875                 return err;
3876
3877         newisec = SOCK_INODE(newsock)->i_security;
3878
3879         isec = SOCK_INODE(sock)->i_security;
3880         newisec->sclass = isec->sclass;
3881         newisec->sid = isec->sid;
3882         newisec->initialized = 1;
3883
3884         return 0;
3885 }
3886
3887 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3888                                   int size)
3889 {
3890         int rc;
3891
3892         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3893         if (rc)
3894                 return rc;
3895
3896         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3897 }
3898
3899 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3900                                   int size, int flags)
3901 {
3902         return socket_has_perm(current, sock, SOCKET__READ);
3903 }
3904
3905 static int selinux_socket_getsockname(struct socket *sock)
3906 {
3907         return socket_has_perm(current, sock, SOCKET__GETATTR);
3908 }
3909
3910 static int selinux_socket_getpeername(struct socket *sock)
3911 {
3912         return socket_has_perm(current, sock, SOCKET__GETATTR);
3913 }
3914
3915 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3916 {
3917         int err;
3918
3919         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3920         if (err)
3921                 return err;
3922
3923         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3924 }
3925
3926 static int selinux_socket_getsockopt(struct socket *sock, int level,
3927                                      int optname)
3928 {
3929         return socket_has_perm(current, sock, SOCKET__GETOPT);
3930 }
3931
3932 static int selinux_socket_shutdown(struct socket *sock, int how)
3933 {
3934         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3935 }
3936
3937 static int selinux_socket_unix_stream_connect(struct socket *sock,
3938                                               struct socket *other,
3939                                               struct sock *newsk)
3940 {
3941         struct sk_security_struct *ssec;
3942         struct inode_security_struct *isec;
3943         struct inode_security_struct *other_isec;
3944         struct avc_audit_data ad;
3945         int err;
3946
3947         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3948         if (err)
3949                 return err;
3950
3951         isec = SOCK_INODE(sock)->i_security;
3952         other_isec = SOCK_INODE(other)->i_security;
3953
3954         AVC_AUDIT_DATA_INIT(&ad, NET);
3955         ad.u.net.sk = other->sk;
3956
3957         err = avc_has_perm(isec->sid, other_isec->sid,
3958                            isec->sclass,
3959                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3960         if (err)
3961                 return err;
3962
3963         /* connecting socket */
3964         ssec = sock->sk->sk_security;
3965         ssec->peer_sid = other_isec->sid;
3966
3967         /* server child socket */
3968         ssec = newsk->sk_security;
3969         ssec->peer_sid = isec->sid;
3970         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3971
3972         return err;
3973 }
3974
3975 static int selinux_socket_unix_may_send(struct socket *sock,
3976                                         struct socket *other)
3977 {
3978         struct inode_security_struct *isec;
3979         struct inode_security_struct *other_isec;
3980         struct avc_audit_data ad;
3981         int err;
3982
3983         isec = SOCK_INODE(sock)->i_security;
3984         other_isec = SOCK_INODE(other)->i_security;
3985
3986         AVC_AUDIT_DATA_INIT(&ad, NET);
3987         ad.u.net.sk = other->sk;
3988
3989         err = avc_has_perm(isec->sid, other_isec->sid,
3990                            isec->sclass, SOCKET__SENDTO, &ad);
3991         if (err)
3992                 return err;
3993
3994         return 0;
3995 }
3996
3997 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3998                                     u32 peer_sid,
3999                                     struct avc_audit_data *ad)
4000 {
4001         int err;
4002         u32 if_sid;
4003         u32 node_sid;
4004
4005         err = sel_netif_sid(ifindex, &if_sid);
4006         if (err)
4007                 return err;
4008         err = avc_has_perm(peer_sid, if_sid,
4009                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4010         if (err)
4011                 return err;
4012
4013         err = sel_netnode_sid(addrp, family, &node_sid);
4014         if (err)
4015                 return err;
4016         return avc_has_perm(peer_sid, node_sid,
4017                             SECCLASS_NODE, NODE__RECVFROM, ad);
4018 }
4019
4020 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4021                                                 struct sk_buff *skb,
4022                                                 struct avc_audit_data *ad,
4023                                                 u16 family,
4024                                                 char *addrp)
4025 {
4026         int err;
4027         struct sk_security_struct *sksec = sk->sk_security;
4028         u16 sk_class;
4029         u32 netif_perm, node_perm, recv_perm;
4030         u32 port_sid, node_sid, if_sid, sk_sid;
4031
4032         sk_sid = sksec->sid;
4033         sk_class = sksec->sclass;
4034
4035         switch (sk_class) {
4036         case SECCLASS_UDP_SOCKET:
4037                 netif_perm = NETIF__UDP_RECV;
4038                 node_perm = NODE__UDP_RECV;
4039                 recv_perm = UDP_SOCKET__RECV_MSG;
4040                 break;
4041         case SECCLASS_TCP_SOCKET:
4042                 netif_perm = NETIF__TCP_RECV;
4043                 node_perm = NODE__TCP_RECV;
4044                 recv_perm = TCP_SOCKET__RECV_MSG;
4045                 break;
4046         case SECCLASS_DCCP_SOCKET:
4047                 netif_perm = NETIF__DCCP_RECV;
4048                 node_perm = NODE__DCCP_RECV;
4049                 recv_perm = DCCP_SOCKET__RECV_MSG;
4050                 break;
4051         default:
4052                 netif_perm = NETIF__RAWIP_RECV;
4053                 node_perm = NODE__RAWIP_RECV;
4054                 recv_perm = 0;
4055                 break;
4056         }
4057
4058         err = sel_netif_sid(skb->iif, &if_sid);
4059         if (err)
4060                 return err;
4061         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4062         if (err)
4063                 return err;
4064
4065         err = sel_netnode_sid(addrp, family, &node_sid);
4066         if (err)
4067                 return err;
4068         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4069         if (err)
4070                 return err;
4071
4072         if (!recv_perm)
4073                 return 0;
4074         err = sel_netport_sid(sk->sk_protocol,
4075                               ntohs(ad->u.net.sport), &port_sid);
4076         if (unlikely(err)) {
4077                 printk(KERN_WARNING
4078                        "SELinux: failure in"
4079                        " selinux_sock_rcv_skb_iptables_compat(),"
4080                        " network port label not found\n");
4081                 return err;
4082         }
4083         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4084 }
4085
4086 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4087                                        u16 family)
4088 {
4089         int err;
4090         struct sk_security_struct *sksec = sk->sk_security;
4091         u32 peer_sid;
4092         u32 sk_sid = sksec->sid;
4093         struct avc_audit_data ad;
4094         char *addrp;
4095
4096         AVC_AUDIT_DATA_INIT(&ad, NET);
4097         ad.u.net.netif = skb->iif;
4098         ad.u.net.family = family;
4099         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4100         if (err)
4101                 return err;
4102
4103         if (selinux_compat_net)
4104                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4105                                                            family, addrp);
4106         else
4107                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4108                                    PACKET__RECV, &ad);
4109         if (err)
4110                 return err;
4111
4112         if (selinux_policycap_netpeer) {
4113                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4114                 if (err)
4115                         return err;
4116                 err = avc_has_perm(sk_sid, peer_sid,
4117                                    SECCLASS_PEER, PEER__RECV, &ad);
4118                 if (err)
4119                         selinux_netlbl_err(skb, err, 0);
4120         } else {
4121                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4122                 if (err)
4123                         return err;
4124                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4125         }
4126
4127         return err;
4128 }
4129
4130 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4131 {
4132         int err;
4133         struct sk_security_struct *sksec = sk->sk_security;
4134         u16 family = sk->sk_family;
4135         u32 sk_sid = sksec->sid;
4136         struct avc_audit_data ad;
4137         char *addrp;
4138         u8 secmark_active;
4139         u8 peerlbl_active;
4140
4141         if (family != PF_INET && family != PF_INET6)
4142                 return 0;
4143
4144         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4145         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4146                 family = PF_INET;
4147
4148         /* If any sort of compatibility mode is enabled then handoff processing
4149          * to the selinux_sock_rcv_skb_compat() function to deal with the
4150          * special handling.  We do this in an attempt to keep this function
4151          * as fast and as clean as possible. */
4152         if (selinux_compat_net || !selinux_policycap_netpeer)
4153                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4154
4155         secmark_active = selinux_secmark_enabled();
4156         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4157         if (!secmark_active && !peerlbl_active)
4158                 return 0;
4159
4160         AVC_AUDIT_DATA_INIT(&ad, NET);
4161         ad.u.net.netif = skb->iif;
4162         ad.u.net.family = family;
4163         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4164         if (err)
4165                 return err;
4166
4167         if (peerlbl_active) {
4168                 u32 peer_sid;
4169
4170                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4171                 if (err)
4172                         return err;
4173                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4174                                                peer_sid, &ad);
4175                 if (err) {
4176                         selinux_netlbl_err(skb, err, 0);
4177                         return err;
4178                 }
4179                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4180                                    PEER__RECV, &ad);
4181                 if (err)
4182                         selinux_netlbl_err(skb, err, 0);
4183         }
4184
4185         if (secmark_active) {
4186                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4187                                    PACKET__RECV, &ad);
4188                 if (err)
4189                         return err;
4190         }
4191
4192         return err;
4193 }
4194
4195 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4196                                             int __user *optlen, unsigned len)
4197 {
4198         int err = 0;
4199         char *scontext;
4200         u32 scontext_len;
4201         struct sk_security_struct *ssec;
4202         struct inode_security_struct *isec;
4203         u32 peer_sid = SECSID_NULL;
4204
4205         isec = SOCK_INODE(sock)->i_security;
4206
4207         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4208             isec->sclass == SECCLASS_TCP_SOCKET) {
4209                 ssec = sock->sk->sk_security;
4210                 peer_sid = ssec->peer_sid;
4211         }
4212         if (peer_sid == SECSID_NULL) {
4213                 err = -ENOPROTOOPT;
4214                 goto out;
4215         }
4216
4217         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4218
4219         if (err)
4220                 goto out;
4221
4222         if (scontext_len > len) {
4223                 err = -ERANGE;
4224                 goto out_len;
4225         }
4226
4227         if (copy_to_user(optval, scontext, scontext_len))
4228                 err = -EFAULT;
4229
4230 out_len:
4231         if (put_user(scontext_len, optlen))
4232                 err = -EFAULT;
4233
4234         kfree(scontext);
4235 out:
4236         return err;
4237 }
4238
4239 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4240 {
4241         u32 peer_secid = SECSID_NULL;
4242         u16 family;
4243
4244         if (skb && skb->protocol == htons(ETH_P_IP))
4245                 family = PF_INET;
4246         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4247                 family = PF_INET6;
4248         else if (sock)
4249                 family = sock->sk->sk_family;
4250         else
4251                 goto out;
4252
4253         if (sock && family == PF_UNIX)
4254                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4255         else if (skb)
4256                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4257
4258 out:
4259         *secid = peer_secid;
4260         if (peer_secid == SECSID_NULL)
4261                 return -EINVAL;
4262         return 0;
4263 }
4264
4265 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4266 {
4267         return sk_alloc_security(sk, family, priority);
4268 }
4269
4270 static void selinux_sk_free_security(struct sock *sk)
4271 {
4272         sk_free_security(sk);
4273 }
4274
4275 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4276 {
4277         struct sk_security_struct *ssec = sk->sk_security;
4278         struct sk_security_struct *newssec = newsk->sk_security;
4279
4280         newssec->sid = ssec->sid;
4281         newssec->peer_sid = ssec->peer_sid;
4282         newssec->sclass = ssec->sclass;
4283
4284         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4285 }
4286
4287 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4288 {
4289         if (!sk)
4290                 *secid = SECINITSID_ANY_SOCKET;
4291         else {
4292                 struct sk_security_struct *sksec = sk->sk_security;
4293
4294                 *secid = sksec->sid;
4295         }
4296 }
4297
4298 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4299 {
4300         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4301         struct sk_security_struct *sksec = sk->sk_security;
4302
4303         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4304             sk->sk_family == PF_UNIX)
4305                 isec->sid = sksec->sid;
4306         sksec->sclass = isec->sclass;
4307 }
4308
4309 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4310                                      struct request_sock *req)
4311 {
4312         struct sk_security_struct *sksec = sk->sk_security;
4313         int err;
4314         u16 family = sk->sk_family;
4315         u32 newsid;
4316         u32 peersid;
4317
4318         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4319         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4320                 family = PF_INET;
4321
4322         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4323         if (err)
4324                 return err;
4325         if (peersid == SECSID_NULL) {
4326                 req->secid = sksec->sid;
4327                 req->peer_secid = SECSID_NULL;
4328                 return 0;
4329         }
4330
4331         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4332         if (err)
4333                 return err;
4334
4335         req->secid = newsid;
4336         req->peer_secid = peersid;
4337         return 0;
4338 }
4339
4340 static void selinux_inet_csk_clone(struct sock *newsk,
4341                                    const struct request_sock *req)
4342 {
4343         struct sk_security_struct *newsksec = newsk->sk_security;
4344
4345         newsksec->sid = req->secid;
4346         newsksec->peer_sid = req->peer_secid;
4347         /* NOTE: Ideally, we should also get the isec->sid for the
4348            new socket in sync, but we don't have the isec available yet.
4349            So we will wait until sock_graft to do it, by which
4350            time it will have been created and available. */
4351
4352         /* We don't need to take any sort of lock here as we are the only
4353          * thread with access to newsksec */
4354         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4355 }
4356
4357 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4358 {
4359         u16 family = sk->sk_family;
4360         struct sk_security_struct *sksec = sk->sk_security;
4361
4362         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4363         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4364                 family = PF_INET;
4365
4366         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4367
4368         selinux_netlbl_inet_conn_established(sk, family);
4369 }
4370
4371 static void selinux_req_classify_flow(const struct request_sock *req,
4372                                       struct flowi *fl)
4373 {
4374         fl->secid = req->secid;
4375 }
4376
4377 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4378 {
4379         int err = 0;
4380         u32 perm;
4381         struct nlmsghdr *nlh;
4382         struct socket *sock = sk->sk_socket;
4383         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4384
4385         if (skb->len < NLMSG_SPACE(0)) {
4386                 err = -EINVAL;
4387                 goto out;
4388         }
4389         nlh = nlmsg_hdr(skb);
4390
4391         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4392         if (err) {
4393                 if (err == -EINVAL) {
4394                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4395                                   "SELinux:  unrecognized netlink message"
4396                                   " type=%hu for sclass=%hu\n",
4397                                   nlh->nlmsg_type, isec->sclass);
4398                         if (!selinux_enforcing)
4399                                 err = 0;
4400                 }
4401
4402                 /* Ignore */
4403                 if (err == -ENOENT)
4404                         err = 0;
4405                 goto out;
4406         }
4407
4408         err = socket_has_perm(current, sock, perm);
4409 out:
4410         return err;
4411 }
4412
4413 #ifdef CONFIG_NETFILTER
4414
4415 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4416                                        u16 family)
4417 {
4418         int err;
4419         char *addrp;
4420         u32 peer_sid;
4421         struct avc_audit_data ad;
4422         u8 secmark_active;
4423         u8 netlbl_active;
4424         u8 peerlbl_active;
4425
4426         if (!selinux_policycap_netpeer)
4427                 return NF_ACCEPT;
4428
4429         secmark_active = selinux_secmark_enabled();
4430         netlbl_active = netlbl_enabled();
4431         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4432         if (!secmark_active && !peerlbl_active)
4433                 return NF_ACCEPT;
4434
4435         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4436                 return NF_DROP;
4437
4438         AVC_AUDIT_DATA_INIT(&ad, NET);
4439         ad.u.net.netif = ifindex;
4440         ad.u.net.family = family;
4441         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4442                 return NF_DROP;
4443
4444         if (peerlbl_active) {
4445                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4446                                                peer_sid, &ad);
4447                 if (err) {
4448                         selinux_netlbl_err(skb, err, 1);
4449                         return NF_DROP;
4450                 }
4451         }
4452
4453         if (secmark_active)
4454                 if (avc_has_perm(peer_sid, skb->secmark,
4455                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4456                         return NF_DROP;
4457
4458         if (netlbl_active)
4459                 /* we do this in the FORWARD path and not the POST_ROUTING
4460                  * path because we want to make sure we apply the necessary
4461                  * labeling before IPsec is applied so we can leverage AH
4462                  * protection */
4463                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4464                         return NF_DROP;
4465
4466         return NF_ACCEPT;
4467 }
4468
4469 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4470                                          struct sk_buff *skb,
4471                                          const struct net_device *in,
4472                                          const struct net_device *out,
4473                                          int (*okfn)(struct sk_buff *))
4474 {
4475         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4476 }
4477
4478 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4479 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4480                                          struct sk_buff *skb,
4481                                          const struct net_device *in,
4482                                          const struct net_device *out,
4483                                          int (*okfn)(struct sk_buff *))
4484 {
4485         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4486 }
4487 #endif  /* IPV6 */
4488
4489 static unsigned int selinux_ip_output(struct sk_buff *skb,
4490                                       u16 family)
4491 {
4492         u32 sid;
4493
4494         if (!netlbl_enabled())
4495                 return NF_ACCEPT;
4496
4497         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4498          * because we want to make sure we apply the necessary labeling
4499          * before IPsec is applied so we can leverage AH protection */
4500         if (skb->sk) {
4501                 struct sk_security_struct *sksec = skb->sk->sk_security;
4502                 sid = sksec->sid;
4503         } else
4504                 sid = SECINITSID_KERNEL;
4505         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4506                 return NF_DROP;
4507
4508         return NF_ACCEPT;
4509 }
4510
4511 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4512                                         struct sk_buff *skb,
4513                                         const struct net_device *in,
4514                                         const struct net_device *out,
4515                                         int (*okfn)(struct sk_buff *))
4516 {
4517         return selinux_ip_output(skb, PF_INET);
4518 }
4519
4520 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4521                                                 int ifindex,
4522                                                 struct avc_audit_data *ad,
4523                                                 u16 family, char *addrp)
4524 {
4525         int err;
4526         struct sk_security_struct *sksec = sk->sk_security;
4527         u16 sk_class;
4528         u32 netif_perm, node_perm, send_perm;
4529         u32 port_sid, node_sid, if_sid, sk_sid;
4530
4531         sk_sid = sksec->sid;
4532         sk_class = sksec->sclass;
4533
4534         switch (sk_class) {
4535         case SECCLASS_UDP_SOCKET:
4536                 netif_perm = NETIF__UDP_SEND;
4537                 node_perm = NODE__UDP_SEND;
4538                 send_perm = UDP_SOCKET__SEND_MSG;
4539                 break;
4540         case SECCLASS_TCP_SOCKET:
4541                 netif_perm = NETIF__TCP_SEND;
4542                 node_perm = NODE__TCP_SEND;
4543                 send_perm = TCP_SOCKET__SEND_MSG;
4544                 break;
4545         case SECCLASS_DCCP_SOCKET:
4546                 netif_perm = NETIF__DCCP_SEND;
4547                 node_perm = NODE__DCCP_SEND;
4548                 send_perm = DCCP_SOCKET__SEND_MSG;
4549                 break;
4550         default:
4551                 netif_perm = NETIF__RAWIP_SEND;
4552                 node_perm = NODE__RAWIP_SEND;
4553                 send_perm = 0;
4554                 break;
4555         }
4556
4557         err = sel_netif_sid(ifindex, &if_sid);
4558         if (err)
4559                 return err;
4560         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4561                 return err;
4562
4563         err = sel_netnode_sid(addrp, family, &node_sid);
4564         if (err)
4565                 return err;
4566         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4567         if (err)
4568                 return err;
4569
4570         if (send_perm != 0)
4571                 return 0;
4572
4573         err = sel_netport_sid(sk->sk_protocol,
4574                               ntohs(ad->u.net.dport), &port_sid);
4575         if (unlikely(err)) {
4576                 printk(KERN_WARNING
4577                        "SELinux: failure in"
4578                        " selinux_ip_postroute_iptables_compat(),"
4579                        " network port label not found\n");
4580                 return err;
4581         }
4582         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4583 }
4584
4585 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4586                                                 int ifindex,
4587                                                 u16 family)
4588 {
4589         struct sock *sk = skb->sk;
4590         struct sk_security_struct *sksec;
4591         struct avc_audit_data ad;
4592         char *addrp;
4593         u8 proto;
4594
4595         if (sk == NULL)
4596                 return NF_ACCEPT;
4597         sksec = sk->sk_security;
4598
4599         AVC_AUDIT_DATA_INIT(&ad, NET);
4600         ad.u.net.netif = ifindex;
4601         ad.u.net.family = family;
4602         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4603                 return NF_DROP;
4604
4605         if (selinux_compat_net) {
4606                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4607                                                          &ad, family, addrp))
4608                         return NF_DROP;
4609         } else {
4610                 if (avc_has_perm(sksec->sid, skb->secmark,
4611                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4612                         return NF_DROP;
4613         }
4614
4615         if (selinux_policycap_netpeer)
4616                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4617                         return NF_DROP;
4618
4619         return NF_ACCEPT;
4620 }
4621
4622 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4623                                          u16 family)
4624 {
4625         u32 secmark_perm;
4626         u32 peer_sid;
4627         struct sock *sk;
4628         struct avc_audit_data ad;
4629         char *addrp;
4630         u8 secmark_active;
4631         u8 peerlbl_active;
4632
4633         /* If any sort of compatibility mode is enabled then handoff processing
4634          * to the selinux_ip_postroute_compat() function to deal with the
4635          * special handling.  We do this in an attempt to keep this function
4636          * as fast and as clean as possible. */
4637         if (selinux_compat_net || !selinux_policycap_netpeer)
4638                 return selinux_ip_postroute_compat(skb, ifindex, family);
4639
4640         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4641          * packet transformation so allow the packet to pass without any checks
4642          * since we'll have another chance to perform access control checks
4643          * when the packet is on it's final way out.
4644          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4645          *       is NULL, in this case go ahead and apply access control. */
4646         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4647                 return NF_ACCEPT;
4648
4649         secmark_active = selinux_secmark_enabled();
4650         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4651         if (!secmark_active && !peerlbl_active)
4652                 return NF_ACCEPT;
4653
4654         /* if the packet is being forwarded then get the peer label from the
4655          * packet itself; otherwise check to see if it is from a local
4656          * application or the kernel, if from an application get the peer label
4657          * from the sending socket, otherwise use the kernel's sid */
4658         sk = skb->sk;
4659         if (sk == NULL) {
4660                 switch (family) {
4661                 case PF_INET:
4662                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4663                                 secmark_perm = PACKET__FORWARD_OUT;
4664                         else
4665                                 secmark_perm = PACKET__SEND;
4666                         break;
4667                 case PF_INET6:
4668                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4669                                 secmark_perm = PACKET__FORWARD_OUT;
4670                         else
4671                                 secmark_perm = PACKET__SEND;
4672                         break;
4673                 default:
4674                         return NF_DROP;
4675                 }
4676                 if (secmark_perm == PACKET__FORWARD_OUT) {
4677                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4678                                 return NF_DROP;
4679                 } else
4680                         peer_sid = SECINITSID_KERNEL;
4681         } else {
4682                 struct sk_security_struct *sksec = sk->sk_security;
4683                 peer_sid = sksec->sid;
4684                 secmark_perm = PACKET__SEND;
4685         }
4686
4687         AVC_AUDIT_DATA_INIT(&ad, NET);
4688         ad.u.net.netif = ifindex;
4689         ad.u.net.family = family;
4690         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4691                 return NF_DROP;
4692
4693         if (secmark_active)
4694                 if (avc_has_perm(peer_sid, skb->secmark,
4695                                  SECCLASS_PACKET, secmark_perm, &ad))
4696                         return NF_DROP;
4697
4698         if (peerlbl_active) {
4699                 u32 if_sid;
4700                 u32 node_sid;
4701
4702                 if (sel_netif_sid(ifindex, &if_sid))
4703                         return NF_DROP;
4704                 if (avc_has_perm(peer_sid, if_sid,
4705                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4706                         return NF_DROP;
4707
4708                 if (sel_netnode_sid(addrp, family, &node_sid))
4709                         return NF_DROP;
4710                 if (avc_has_perm(peer_sid, node_sid,
4711                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4712                         return NF_DROP;
4713         }
4714
4715         return NF_ACCEPT;
4716 }
4717
4718 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4719                                            struct sk_buff *skb,
4720                                            const struct net_device *in,
4721                                            const struct net_device *out,
4722                                            int (*okfn)(struct sk_buff *))
4723 {
4724         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4725 }
4726
4727 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4728 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4729                                            struct sk_buff *skb,
4730                                            const struct net_device *in,
4731                                            const struct net_device *out,
4732                                            int (*okfn)(struct sk_buff *))
4733 {
4734         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4735 }
4736 #endif  /* IPV6 */
4737
4738 #endif  /* CONFIG_NETFILTER */
4739
4740 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4741 {
4742         int err;
4743
4744         err = secondary_ops->netlink_send(sk, skb);
4745         if (err)
4746                 return err;
4747
4748         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4749                 err = selinux_nlmsg_perm(sk, skb);
4750
4751         return err;
4752 }
4753
4754 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4755 {
4756         int err;
4757         struct avc_audit_data ad;
4758
4759         err = secondary_ops->netlink_recv(skb, capability);
4760         if (err)
4761                 return err;
4762
4763         AVC_AUDIT_DATA_INIT(&ad, CAP);
4764         ad.u.cap = capability;
4765
4766         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4767                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4768 }
4769
4770 static int ipc_alloc_security(struct task_struct *task,
4771                               struct kern_ipc_perm *perm,
4772                               u16 sclass)
4773 {
4774         struct task_security_struct *tsec = task->security;
4775         struct ipc_security_struct *isec;
4776
4777         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4778         if (!isec)
4779                 return -ENOMEM;
4780
4781         isec->sclass = sclass;
4782         isec->sid = tsec->sid;
4783         perm->security = isec;
4784
4785         return 0;
4786 }
4787
4788 static void ipc_free_security(struct kern_ipc_perm *perm)
4789 {
4790         struct ipc_security_struct *isec = perm->security;
4791         perm->security = NULL;
4792         kfree(isec);
4793 }
4794
4795 static int msg_msg_alloc_security(struct msg_msg *msg)
4796 {
4797         struct msg_security_struct *msec;
4798
4799         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4800         if (!msec)
4801                 return -ENOMEM;
4802
4803         msec->sid = SECINITSID_UNLABELED;
4804         msg->security = msec;
4805
4806         return 0;
4807 }
4808
4809 static void msg_msg_free_security(struct msg_msg *msg)
4810 {
4811         struct msg_security_struct *msec = msg->security;
4812
4813         msg->security = NULL;
4814         kfree(msec);
4815 }
4816
4817 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4818                         u32 perms)
4819 {
4820         struct task_security_struct *tsec;
4821         struct ipc_security_struct *isec;
4822         struct avc_audit_data ad;
4823
4824         tsec = current->security;
4825         isec = ipc_perms->security;
4826
4827         AVC_AUDIT_DATA_INIT(&ad, IPC);
4828         ad.u.ipc_id = ipc_perms->key;
4829
4830         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4831 }
4832
4833 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4834 {
4835         return msg_msg_alloc_security(msg);
4836 }
4837
4838 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4839 {
4840         msg_msg_free_security(msg);
4841 }
4842
4843 /* message queue security operations */
4844 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4845 {
4846         struct task_security_struct *tsec;
4847         struct ipc_security_struct *isec;
4848         struct avc_audit_data ad;
4849         int rc;
4850
4851         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4852         if (rc)
4853                 return rc;
4854
4855         tsec = current->security;
4856         isec = msq->q_perm.security;
4857
4858         AVC_AUDIT_DATA_INIT(&ad, IPC);
4859         ad.u.ipc_id = msq->q_perm.key;
4860
4861         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4862                           MSGQ__CREATE, &ad);
4863         if (rc) {
4864                 ipc_free_security(&msq->q_perm);
4865                 return rc;
4866         }
4867         return 0;
4868 }
4869
4870 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4871 {
4872         ipc_free_security(&msq->q_perm);
4873 }
4874
4875 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4876 {
4877         struct task_security_struct *tsec;
4878         struct ipc_security_struct *isec;
4879         struct avc_audit_data ad;
4880
4881         tsec = current->security;
4882         isec = msq->q_perm.security;
4883
4884         AVC_AUDIT_DATA_INIT(&ad, IPC);
4885         ad.u.ipc_id = msq->q_perm.key;
4886
4887         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4888                             MSGQ__ASSOCIATE, &ad);
4889 }
4890
4891 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4892 {
4893         int err;
4894         int perms;
4895
4896         switch (cmd) {
4897         case IPC_INFO:
4898         case MSG_INFO:
4899                 /* No specific object, just general system-wide information. */
4900                 return task_has_system(current, SYSTEM__IPC_INFO);
4901         case IPC_STAT:
4902         case MSG_STAT:
4903                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4904                 break;
4905         case IPC_SET:
4906                 perms = MSGQ__SETATTR;
4907                 break;
4908         case IPC_RMID:
4909                 perms = MSGQ__DESTROY;
4910                 break;
4911         default:
4912                 return 0;
4913         }
4914
4915         err = ipc_has_perm(&msq->q_perm, perms);
4916         return err;
4917 }
4918
4919 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4920 {
4921         struct task_security_struct *tsec;
4922         struct ipc_security_struct *isec;
4923         struct msg_security_struct *msec;
4924         struct avc_audit_data ad;
4925         int rc;
4926
4927         tsec = current->security;
4928         isec = msq->q_perm.security;
4929         msec = msg->security;
4930
4931         /*
4932          * First time through, need to assign label to the message
4933          */
4934         if (msec->sid == SECINITSID_UNLABELED) {
4935                 /*
4936                  * Compute new sid based on current process and
4937                  * message queue this message will be stored in
4938                  */
4939                 rc = security_transition_sid(tsec->sid,
4940                                              isec->sid,
4941                                              SECCLASS_MSG,
4942                                              &msec->sid);
4943                 if (rc)
4944                         return rc;
4945         }
4946
4947         AVC_AUDIT_DATA_INIT(&ad, IPC);
4948         ad.u.ipc_id = msq->q_perm.key;
4949
4950         /* Can this process write to the queue? */
4951         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4952                           MSGQ__WRITE, &ad);
4953         if (!rc)
4954                 /* Can this process send the message */
4955                 rc = avc_has_perm(tsec->sid, msec->sid,
4956                                   SECCLASS_MSG, MSG__SEND, &ad);
4957         if (!rc)
4958                 /* Can the message be put in the queue? */
4959                 rc = avc_has_perm(msec->sid, isec->sid,
4960                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4961
4962         return rc;
4963 }
4964
4965 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4966                                     struct task_struct *target,
4967                                     long type, int mode)
4968 {
4969         struct task_security_struct *tsec;
4970         struct ipc_security_struct *isec;
4971         struct msg_security_struct *msec;
4972         struct avc_audit_data ad;
4973         int rc;
4974
4975         tsec = target->security;
4976         isec = msq->q_perm.security;
4977         msec = msg->security;
4978
4979         AVC_AUDIT_DATA_INIT(&ad, IPC);
4980         ad.u.ipc_id = msq->q_perm.key;
4981
4982         rc = avc_has_perm(tsec->sid, isec->sid,
4983                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4984         if (!rc)
4985                 rc = avc_has_perm(tsec->sid, msec->sid,
4986                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4987         return rc;
4988 }
4989
4990 /* Shared Memory security operations */
4991 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4992 {
4993         struct task_security_struct *tsec;
4994         struct ipc_security_struct *isec;
4995         struct avc_audit_data ad;
4996         int rc;
4997
4998         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4999         if (rc)
5000                 return rc;
5001
5002         tsec = current->security;
5003         isec = shp->shm_perm.security;
5004
5005         AVC_AUDIT_DATA_INIT(&ad, IPC);
5006         ad.u.ipc_id = shp->shm_perm.key;
5007
5008         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5009                           SHM__CREATE, &ad);
5010         if (rc) {
5011                 ipc_free_security(&shp->shm_perm);
5012                 return rc;
5013         }
5014         return 0;
5015 }
5016
5017 static void selinux_shm_free_security(struct shmid_kernel *shp)
5018 {
5019         ipc_free_security(&shp->shm_perm);
5020 }
5021
5022 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5023 {
5024         struct task_security_struct *tsec;
5025         struct ipc_security_struct *isec;
5026         struct avc_audit_data ad;
5027
5028         tsec = current->security;
5029         isec = shp->shm_perm.security;
5030
5031         AVC_AUDIT_DATA_INIT(&ad, IPC);
5032         ad.u.ipc_id = shp->shm_perm.key;
5033
5034         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5035                             SHM__ASSOCIATE, &ad);
5036 }
5037
5038 /* Note, at this point, shp is locked down */
5039 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5040 {
5041         int perms;
5042         int err;
5043
5044         switch (cmd) {
5045         case IPC_INFO:
5046         case SHM_INFO:
5047                 /* No specific object, just general system-wide information. */
5048                 return task_has_system(current, SYSTEM__IPC_INFO);
5049         case IPC_STAT:
5050         case SHM_STAT:
5051                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5052                 break;
5053         case IPC_SET:
5054                 perms = SHM__SETATTR;
5055                 break;
5056         case SHM_LOCK:
5057         case SHM_UNLOCK:
5058                 perms = SHM__LOCK;
5059                 break;
5060         case IPC_RMID:
5061                 perms = SHM__DESTROY;
5062                 break;
5063         default:
5064                 return 0;
5065         }
5066
5067         err = ipc_has_perm(&shp->shm_perm, perms);
5068         return err;
5069 }
5070
5071 static int selinux_shm_shmat(struct shmid_kernel *shp,
5072                              char __user *shmaddr, int shmflg)
5073 {
5074         u32 perms;
5075         int rc;
5076
5077         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5078         if (rc)
5079                 return rc;
5080
5081         if (shmflg & SHM_RDONLY)
5082                 perms = SHM__READ;
5083         else
5084                 perms = SHM__READ | SHM__WRITE;
5085
5086         return ipc_has_perm(&shp->shm_perm, perms);
5087 }
5088
5089 /* Semaphore security operations */
5090 static int selinux_sem_alloc_security(struct sem_array *sma)
5091 {
5092         struct task_security_struct *tsec;
5093         struct ipc_security_struct *isec;
5094         struct avc_audit_data ad;
5095         int rc;
5096
5097         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5098         if (rc)
5099                 return rc;
5100
5101         tsec = current->security;
5102         isec = sma->sem_perm.security;
5103
5104         AVC_AUDIT_DATA_INIT(&ad, IPC);
5105         ad.u.ipc_id = sma->sem_perm.key;
5106
5107         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5108                           SEM__CREATE, &ad);
5109         if (rc) {
5110                 ipc_free_security(&sma->sem_perm);
5111                 return rc;
5112         }
5113         return 0;
5114 }
5115
5116 static void selinux_sem_free_security(struct sem_array *sma)
5117 {
5118         ipc_free_security(&sma->sem_perm);
5119 }
5120
5121 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5122 {
5123         struct task_security_struct *tsec;
5124         struct ipc_security_struct *isec;
5125         struct avc_audit_data ad;
5126
5127         tsec = current->security;
5128         isec = sma->sem_perm.security;
5129
5130         AVC_AUDIT_DATA_INIT(&ad, IPC);
5131         ad.u.ipc_id = sma->sem_perm.key;
5132
5133         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5134                             SEM__ASSOCIATE, &ad);
5135 }
5136
5137 /* Note, at this point, sma is locked down */
5138 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139 {
5140         int err;
5141         u32 perms;
5142
5143         switch (cmd) {
5144         case IPC_INFO:
5145         case SEM_INFO:
5146                 /* No specific object, just general system-wide information. */
5147                 return task_has_system(current, SYSTEM__IPC_INFO);
5148         case GETPID:
5149         case GETNCNT:
5150         case GETZCNT:
5151                 perms = SEM__GETATTR;
5152                 break;
5153         case GETVAL:
5154         case GETALL:
5155                 perms = SEM__READ;
5156                 break;
5157         case SETVAL:
5158         case SETALL:
5159                 perms = SEM__WRITE;
5160                 break;
5161         case IPC_RMID:
5162                 perms = SEM__DESTROY;
5163                 break;
5164         case IPC_SET:
5165                 perms = SEM__SETATTR;
5166                 break;
5167         case IPC_STAT:
5168         case SEM_STAT:
5169                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5170                 break;
5171         default:
5172                 return 0;
5173         }
5174
5175         err = ipc_has_perm(&sma->sem_perm, perms);
5176         return err;
5177 }
5178
5179 static int selinux_sem_semop(struct sem_array *sma,
5180                              struct sembuf *sops, unsigned nsops, int alter)
5181 {
5182         u32 perms;
5183
5184         if (alter)
5185                 perms = SEM__READ | SEM__WRITE;
5186         else
5187                 perms = SEM__READ;
5188
5189         return ipc_has_perm(&sma->sem_perm, perms);
5190 }
5191
5192 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193 {
5194         u32 av = 0;
5195
5196         av = 0;
5197         if (flag & S_IRUGO)
5198                 av |= IPC__UNIX_READ;
5199         if (flag & S_IWUGO)
5200                 av |= IPC__UNIX_WRITE;
5201
5202         if (av == 0)
5203                 return 0;
5204
5205         return ipc_has_perm(ipcp, av);
5206 }
5207
5208 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209 {
5210         struct ipc_security_struct *isec = ipcp->security;
5211         *secid = isec->sid;
5212 }
5213
5214 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215 {
5216         if (inode)
5217                 inode_doinit_with_dentry(inode, dentry);
5218 }
5219
5220 static int selinux_getprocattr(struct task_struct *p,
5221                                char *name, char **value)
5222 {
5223         struct task_security_struct *tsec;
5224         u32 sid;
5225         int error;
5226         unsigned len;
5227
5228         if (current != p) {
5229                 error = task_has_perm(current, p, PROCESS__GETATTR);
5230                 if (error)
5231                         return error;
5232         }
5233
5234         tsec = p->security;
5235
5236         if (!strcmp(name, "current"))
5237                 sid = tsec->sid;
5238         else if (!strcmp(name, "prev"))
5239                 sid = tsec->osid;
5240         else if (!strcmp(name, "exec"))
5241                 sid = tsec->exec_sid;
5242         else if (!strcmp(name, "fscreate"))
5243                 sid = tsec->create_sid;
5244         else if (!strcmp(name, "keycreate"))
5245                 sid = tsec->keycreate_sid;
5246         else if (!strcmp(name, "sockcreate"))
5247                 sid = tsec->sockcreate_sid;
5248         else
5249                 return -EINVAL;
5250
5251         if (!sid)
5252                 return 0;
5253
5254         error = security_sid_to_context(sid, value, &len);
5255         if (error)
5256                 return error;
5257         return len;
5258 }
5259
5260 static int selinux_setprocattr(struct task_struct *p,
5261                                char *name, void *value, size_t size)
5262 {
5263         struct task_security_struct *tsec;
5264         struct task_struct *tracer;
5265         u32 sid = 0;
5266         int error;
5267         char *str = value;
5268
5269         if (current != p) {
5270                 /* SELinux only allows a process to change its own
5271                    security attributes. */
5272                 return -EACCES;
5273         }
5274
5275         /*
5276          * Basic control over ability to set these attributes at all.
5277          * current == p, but we'll pass them separately in case the
5278          * above restriction is ever removed.
5279          */
5280         if (!strcmp(name, "exec"))
5281                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5282         else if (!strcmp(name, "fscreate"))
5283                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5284         else if (!strcmp(name, "keycreate"))
5285                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5286         else if (!strcmp(name, "sockcreate"))
5287                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5288         else if (!strcmp(name, "current"))
5289                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5290         else
5291                 error = -EINVAL;
5292         if (error)
5293                 return error;
5294
5295         /* Obtain a SID for the context, if one was specified. */
5296         if (size && str[1] && str[1] != '\n') {
5297                 if (str[size-1] == '\n') {
5298                         str[size-1] = 0;
5299                         size--;
5300                 }
5301                 error = security_context_to_sid(value, size, &sid);
5302                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5303                         if (!capable(CAP_MAC_ADMIN))
5304                                 return error;
5305                         error = security_context_to_sid_force(value, size,
5306                                                               &sid);
5307                 }
5308                 if (error)
5309                         return error;
5310         }
5311
5312         /* Permission checking based on the specified context is
5313            performed during the actual operation (execve,
5314            open/mkdir/...), when we know the full context of the
5315            operation.  See selinux_bprm_set_security for the execve
5316            checks and may_create for the file creation checks. The
5317            operation will then fail if the context is not permitted. */
5318         tsec = p->security;
5319         if (!strcmp(name, "exec"))
5320                 tsec->exec_sid = sid;
5321         else if (!strcmp(name, "fscreate"))
5322                 tsec->create_sid = sid;
5323         else if (!strcmp(name, "keycreate")) {
5324                 error = may_create_key(sid, p);
5325                 if (error)
5326                         return error;
5327                 tsec->keycreate_sid = sid;
5328         } else if (!strcmp(name, "sockcreate"))
5329                 tsec->sockcreate_sid = sid;
5330         else if (!strcmp(name, "current")) {
5331                 struct av_decision avd;
5332
5333                 if (sid == 0)
5334                         return -EINVAL;
5335                 /*
5336                  * SELinux allows to change context in the following case only.
5337                  *  - Single threaded processes.
5338                  *  - Multi threaded processes intend to change its context into
5339                  *    more restricted domain (defined by TYPEBOUNDS statement).
5340                  */
5341                 if (atomic_read(&p->mm->mm_users) != 1) {
5342                         struct task_struct *g, *t;
5343                         struct mm_struct *mm = p->mm;
5344                         read_lock(&tasklist_lock);
5345                         do_each_thread(g, t) {
5346                                 if (t->mm == mm && t != p) {
5347                                         read_unlock(&tasklist_lock);
5348                                         error = security_bounded_transition(tsec->sid, sid);
5349                                         if (!error)
5350                                                 goto boundary_ok;
5351
5352                                         return error;
5353                                 }
5354                         } while_each_thread(g, t);
5355                         read_unlock(&tasklist_lock);
5356                 }
5357 boundary_ok:
5358
5359                 /* Check permissions for the transition. */
5360                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5361                                      PROCESS__DYNTRANSITION, NULL);
5362                 if (error)
5363                         return error;
5364
5365                 /* Check for ptracing, and update the task SID if ok.
5366                    Otherwise, leave SID unchanged and fail. */
5367                 task_lock(p);
5368                 rcu_read_lock();
5369                 tracer = tracehook_tracer_task(p);
5370                 if (tracer != NULL) {
5371                         struct task_security_struct *ptsec = tracer->security;
5372                         u32 ptsid = ptsec->sid;
5373                         rcu_read_unlock();
5374                         error = avc_has_perm_noaudit(ptsid, sid,
5375                                                      SECCLASS_PROCESS,
5376                                                      PROCESS__PTRACE, 0, &avd);
5377                         if (!error)
5378                                 tsec->sid = sid;
5379                         task_unlock(p);
5380                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5381                                   PROCESS__PTRACE, &avd, error, NULL);
5382                         if (error)
5383                                 return error;
5384                 } else {
5385                         rcu_read_unlock();
5386                         tsec->sid = sid;
5387                         task_unlock(p);
5388                 }
5389         } else
5390                 return -EINVAL;
5391
5392         return size;
5393 }
5394
5395 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5396 {
5397         return security_sid_to_context(secid, secdata, seclen);
5398 }
5399
5400 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5401 {
5402         return security_context_to_sid(secdata, seclen, secid);
5403 }
5404
5405 static void selinux_release_secctx(char *secdata, u32 seclen)
5406 {
5407         kfree(secdata);
5408 }
5409
5410 #ifdef CONFIG_KEYS
5411
5412 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5413                              unsigned long flags)
5414 {
5415         struct task_security_struct *tsec = tsk->security;
5416         struct key_security_struct *ksec;
5417
5418         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5419         if (!ksec)
5420                 return -ENOMEM;
5421
5422         if (tsec->keycreate_sid)
5423                 ksec->sid = tsec->keycreate_sid;
5424         else
5425                 ksec->sid = tsec->sid;
5426         k->security = ksec;
5427
5428         return 0;
5429 }
5430
5431 static void selinux_key_free(struct key *k)
5432 {
5433         struct key_security_struct *ksec = k->security;
5434
5435         k->security = NULL;
5436         kfree(ksec);
5437 }
5438
5439 static int selinux_key_permission(key_ref_t key_ref,
5440                             struct task_struct *ctx,
5441                             key_perm_t perm)
5442 {
5443         struct key *key;
5444         struct task_security_struct *tsec;
5445         struct key_security_struct *ksec;
5446
5447         key = key_ref_to_ptr(key_ref);
5448
5449         tsec = ctx->security;
5450         ksec = key->security;
5451
5452         /* if no specific permissions are requested, we skip the
5453            permission check. No serious, additional covert channels
5454            appear to be created. */
5455         if (perm == 0)
5456                 return 0;
5457
5458         return avc_has_perm(tsec->sid, ksec->sid,
5459                             SECCLASS_KEY, perm, NULL);
5460 }
5461
5462 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5463 {
5464         struct key_security_struct *ksec = key->security;
5465         char *context = NULL;
5466         unsigned len;
5467         int rc;
5468
5469         rc = security_sid_to_context(ksec->sid, &context, &len);
5470         if (!rc)
5471                 rc = len;
5472         *_buffer = context;
5473         return rc;
5474 }
5475
5476 #endif
5477
5478 static struct security_operations selinux_ops = {
5479         .name =                         "selinux",
5480
5481         .ptrace_may_access =            selinux_ptrace_may_access,
5482         .ptrace_traceme =               selinux_ptrace_traceme,
5483         .capget =                       selinux_capget,
5484         .capset_check =                 selinux_capset_check,
5485         .capset_set =                   selinux_capset_set,
5486         .sysctl =                       selinux_sysctl,
5487         .capable =                      selinux_capable,
5488         .quotactl =                     selinux_quotactl,
5489         .quota_on =                     selinux_quota_on,
5490         .syslog =                       selinux_syslog,
5491         .vm_enough_memory =             selinux_vm_enough_memory,
5492
5493         .netlink_send =                 selinux_netlink_send,
5494         .netlink_recv =                 selinux_netlink_recv,
5495
5496         .bprm_alloc_security =          selinux_bprm_alloc_security,
5497         .bprm_free_security =           selinux_bprm_free_security,
5498         .bprm_apply_creds =             selinux_bprm_apply_creds,
5499         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5500         .bprm_set_security =            selinux_bprm_set_security,
5501         .bprm_check_security =          selinux_bprm_check_security,
5502         .bprm_secureexec =              selinux_bprm_secureexec,
5503
5504         .sb_alloc_security =            selinux_sb_alloc_security,
5505         .sb_free_security =             selinux_sb_free_security,
5506         .sb_copy_data =                 selinux_sb_copy_data,
5507         .sb_kern_mount =                selinux_sb_kern_mount,
5508         .sb_show_options =              selinux_sb_show_options,
5509         .sb_statfs =                    selinux_sb_statfs,
5510         .sb_mount =                     selinux_mount,
5511         .sb_umount =                    selinux_umount,
5512         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5513         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5514         .sb_parse_opts_str =            selinux_parse_opts_str,
5515
5516
5517         .inode_alloc_security =         selinux_inode_alloc_security,
5518         .inode_free_security =          selinux_inode_free_security,
5519         .inode_init_security =          selinux_inode_init_security,
5520         .inode_create =                 selinux_inode_create,
5521         .inode_link =                   selinux_inode_link,
5522         .inode_unlink =                 selinux_inode_unlink,
5523         .inode_symlink =                selinux_inode_symlink,
5524         .inode_mkdir =                  selinux_inode_mkdir,
5525         .inode_rmdir =                  selinux_inode_rmdir,
5526         .inode_mknod =                  selinux_inode_mknod,
5527         .inode_rename =                 selinux_inode_rename,
5528         .inode_readlink =               selinux_inode_readlink,
5529         .inode_follow_link =            selinux_inode_follow_link,
5530         .inode_permission =             selinux_inode_permission,
5531         .inode_setattr =                selinux_inode_setattr,
5532         .inode_getattr =                selinux_inode_getattr,
5533         .inode_setxattr =               selinux_inode_setxattr,
5534         .inode_post_setxattr =          selinux_inode_post_setxattr,
5535         .inode_getxattr =               selinux_inode_getxattr,
5536         .inode_listxattr =              selinux_inode_listxattr,
5537         .inode_removexattr =            selinux_inode_removexattr,
5538         .inode_getsecurity =            selinux_inode_getsecurity,
5539         .inode_setsecurity =            selinux_inode_setsecurity,
5540         .inode_listsecurity =           selinux_inode_listsecurity,
5541         .inode_need_killpriv =          selinux_inode_need_killpriv,
5542         .inode_killpriv =               selinux_inode_killpriv,
5543         .inode_getsecid =               selinux_inode_getsecid,
5544
5545         .file_permission =              selinux_file_permission,
5546         .file_alloc_security =          selinux_file_alloc_security,
5547         .file_free_security =           selinux_file_free_security,
5548         .file_ioctl =                   selinux_file_ioctl,
5549         .file_mmap =                    selinux_file_mmap,
5550         .file_mprotect =                selinux_file_mprotect,
5551         .file_lock =                    selinux_file_lock,
5552         .file_fcntl =                   selinux_file_fcntl,
5553         .file_set_fowner =              selinux_file_set_fowner,
5554         .file_send_sigiotask =          selinux_file_send_sigiotask,
5555         .file_receive =                 selinux_file_receive,
5556
5557         .dentry_open =                  selinux_dentry_open,
5558
5559         .task_create =                  selinux_task_create,
5560         .task_alloc_security =          selinux_task_alloc_security,
5561         .task_free_security =           selinux_task_free_security,
5562         .task_setuid =                  selinux_task_setuid,
5563         .task_post_setuid =             selinux_task_post_setuid,
5564         .task_setgid =                  selinux_task_setgid,
5565         .task_setpgid =                 selinux_task_setpgid,
5566         .task_getpgid =                 selinux_task_getpgid,
5567         .task_getsid =                  selinux_task_getsid,
5568         .task_getsecid =                selinux_task_getsecid,
5569         .task_setgroups =               selinux_task_setgroups,
5570         .task_setnice =                 selinux_task_setnice,
5571         .task_setioprio =               selinux_task_setioprio,
5572         .task_getioprio =               selinux_task_getioprio,
5573         .task_setrlimit =               selinux_task_setrlimit,
5574         .task_setscheduler =            selinux_task_setscheduler,
5575         .task_getscheduler =            selinux_task_getscheduler,
5576         .task_movememory =              selinux_task_movememory,
5577         .task_kill =                    selinux_task_kill,
5578         .task_wait =                    selinux_task_wait,
5579         .task_prctl =                   selinux_task_prctl,
5580         .task_reparent_to_init =        selinux_task_reparent_to_init,
5581         .task_to_inode =                selinux_task_to_inode,
5582
5583         .ipc_permission =               selinux_ipc_permission,
5584         .ipc_getsecid =                 selinux_ipc_getsecid,
5585
5586         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5587         .msg_msg_free_security =        selinux_msg_msg_free_security,
5588
5589         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5590         .msg_queue_free_security =      selinux_msg_queue_free_security,
5591         .msg_queue_associate =          selinux_msg_queue_associate,
5592         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5593         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5594         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5595
5596         .shm_alloc_security =           selinux_shm_alloc_security,
5597         .shm_free_security =            selinux_shm_free_security,
5598         .shm_associate =                selinux_shm_associate,
5599         .shm_shmctl =                   selinux_shm_shmctl,
5600         .shm_shmat =                    selinux_shm_shmat,
5601
5602         .sem_alloc_security =           selinux_sem_alloc_security,
5603         .sem_free_security =            selinux_sem_free_security,
5604         .sem_associate =                selinux_sem_associate,
5605         .sem_semctl =                   selinux_sem_semctl,
5606         .sem_semop =                    selinux_sem_semop,
5607
5608         .d_instantiate =                selinux_d_instantiate,
5609
5610         .getprocattr =                  selinux_getprocattr,
5611         .setprocattr =                  selinux_setprocattr,
5612
5613         .secid_to_secctx =              selinux_secid_to_secctx,
5614         .secctx_to_secid =              selinux_secctx_to_secid,
5615         .release_secctx =               selinux_release_secctx,
5616
5617         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5618         .unix_may_send =                selinux_socket_unix_may_send,
5619
5620         .socket_create =                selinux_socket_create,
5621         .socket_post_create =           selinux_socket_post_create,
5622         .socket_bind =                  selinux_socket_bind,
5623         .socket_connect =               selinux_socket_connect,
5624         .socket_listen =                selinux_socket_listen,
5625         .socket_accept =                selinux_socket_accept,
5626         .socket_sendmsg =               selinux_socket_sendmsg,
5627         .socket_recvmsg =               selinux_socket_recvmsg,
5628         .socket_getsockname =           selinux_socket_getsockname,
5629         .socket_getpeername =           selinux_socket_getpeername,
5630         .socket_getsockopt =            selinux_socket_getsockopt,
5631         .socket_setsockopt =            selinux_socket_setsockopt,
5632         .socket_shutdown =              selinux_socket_shutdown,
5633         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5634         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5635         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5636         .sk_alloc_security =            selinux_sk_alloc_security,
5637         .sk_free_security =             selinux_sk_free_security,
5638         .sk_clone_security =            selinux_sk_clone_security,
5639         .sk_getsecid =                  selinux_sk_getsecid,
5640         .sock_graft =                   selinux_sock_graft,
5641         .inet_conn_request =            selinux_inet_conn_request,
5642         .inet_csk_clone =               selinux_inet_csk_clone,
5643         .inet_conn_established =        selinux_inet_conn_established,
5644         .req_classify_flow =            selinux_req_classify_flow,
5645
5646 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5647         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5648         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5649         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5650         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5651         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5652         .xfrm_state_free_security =     selinux_xfrm_state_free,
5653         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5654         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5655         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5656         .xfrm_decode_session =          selinux_xfrm_decode_session,
5657 #endif
5658
5659 #ifdef CONFIG_KEYS
5660         .key_alloc =                    selinux_key_alloc,
5661         .key_free =                     selinux_key_free,
5662         .key_permission =               selinux_key_permission,
5663         .key_getsecurity =              selinux_key_getsecurity,
5664 #endif
5665
5666 #ifdef CONFIG_AUDIT
5667         .audit_rule_init =              selinux_audit_rule_init,
5668         .audit_rule_known =             selinux_audit_rule_known,
5669         .audit_rule_match =             selinux_audit_rule_match,
5670         .audit_rule_free =              selinux_audit_rule_free,
5671 #endif
5672 };
5673
5674 static __init int selinux_init(void)
5675 {
5676         struct task_security_struct *tsec;
5677
5678         if (!security_module_enable(&selinux_ops)) {
5679                 selinux_enabled = 0;
5680                 return 0;
5681         }
5682
5683         if (!selinux_enabled) {
5684                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5685                 return 0;
5686         }
5687
5688         printk(KERN_INFO "SELinux:  Initializing.\n");
5689
5690         /* Set the security state for the initial task. */
5691         if (task_alloc_security(current))
5692                 panic("SELinux:  Failed to initialize initial task.\n");
5693         tsec = current->security;
5694         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5695
5696         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5697                                             sizeof(struct inode_security_struct),
5698                                             0, SLAB_PANIC, NULL);
5699         avc_init();
5700
5701         secondary_ops = security_ops;
5702         if (!secondary_ops)
5703                 panic("SELinux: No initial security operations\n");
5704         if (register_security(&selinux_ops))
5705                 panic("SELinux: Unable to register with kernel.\n");
5706
5707         if (selinux_enforcing)
5708                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5709         else
5710                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5711
5712         return 0;
5713 }
5714
5715 void selinux_complete_init(void)
5716 {
5717         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5718
5719         /* Set up any superblocks initialized prior to the policy load. */
5720         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5721         spin_lock(&sb_lock);
5722         spin_lock(&sb_security_lock);
5723 next_sb:
5724         if (!list_empty(&superblock_security_head)) {
5725                 struct superblock_security_struct *sbsec =
5726                                 list_entry(superblock_security_head.next,
5727                                            struct superblock_security_struct,
5728                                            list);
5729                 struct super_block *sb = sbsec->sb;
5730                 sb->s_count++;
5731                 spin_unlock(&sb_security_lock);
5732                 spin_unlock(&sb_lock);
5733                 down_read(&sb->s_umount);
5734                 if (sb->s_root)
5735                         superblock_doinit(sb, NULL);
5736                 drop_super(sb);
5737                 spin_lock(&sb_lock);
5738                 spin_lock(&sb_security_lock);
5739                 list_del_init(&sbsec->list);
5740                 goto next_sb;
5741         }
5742         spin_unlock(&sb_security_lock);
5743         spin_unlock(&sb_lock);
5744 }
5745
5746 /* SELinux requires early initialization in order to label
5747    all processes and objects when they are created. */
5748 security_initcall(selinux_init);
5749
5750 #if defined(CONFIG_NETFILTER)
5751
5752 static struct nf_hook_ops selinux_ipv4_ops[] = {
5753         {
5754                 .hook =         selinux_ipv4_postroute,
5755                 .owner =        THIS_MODULE,
5756                 .pf =           PF_INET,
5757                 .hooknum =      NF_INET_POST_ROUTING,
5758                 .priority =     NF_IP_PRI_SELINUX_LAST,
5759         },
5760         {
5761                 .hook =         selinux_ipv4_forward,
5762                 .owner =        THIS_MODULE,
5763                 .pf =           PF_INET,
5764                 .hooknum =      NF_INET_FORWARD,
5765                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5766         },
5767         {
5768                 .hook =         selinux_ipv4_output,
5769                 .owner =        THIS_MODULE,
5770                 .pf =           PF_INET,
5771                 .hooknum =      NF_INET_LOCAL_OUT,
5772                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5773         }
5774 };
5775
5776 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5777
5778 static struct nf_hook_ops selinux_ipv6_ops[] = {
5779         {
5780                 .hook =         selinux_ipv6_postroute,
5781                 .owner =        THIS_MODULE,
5782                 .pf =           PF_INET6,
5783                 .hooknum =      NF_INET_POST_ROUTING,
5784                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5785         },
5786         {
5787                 .hook =         selinux_ipv6_forward,
5788                 .owner =        THIS_MODULE,
5789                 .pf =           PF_INET6,
5790                 .hooknum =      NF_INET_FORWARD,
5791                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5792         }
5793 };
5794
5795 #endif  /* IPV6 */
5796
5797 static int __init selinux_nf_ip_init(void)
5798 {
5799         int err = 0;
5800
5801         if (!selinux_enabled)
5802                 goto out;
5803
5804         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5805
5806         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5807         if (err)
5808                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5809
5810 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5811         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5812         if (err)
5813                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5814 #endif  /* IPV6 */
5815
5816 out:
5817         return err;
5818 }
5819
5820 __initcall(selinux_nf_ip_init);
5821
5822 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5823 static void selinux_nf_ip_exit(void)
5824 {
5825         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5826
5827         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5828 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5829         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5830 #endif  /* IPV6 */
5831 }
5832 #endif
5833
5834 #else /* CONFIG_NETFILTER */
5835
5836 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5837 #define selinux_nf_ip_exit()
5838 #endif
5839
5840 #endif /* CONFIG_NETFILTER */
5841
5842 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5843 static int selinux_disabled;
5844
5845 int selinux_disable(void)
5846 {
5847         extern void exit_sel_fs(void);
5848
5849         if (ss_initialized) {
5850                 /* Not permitted after initial policy load. */
5851                 return -EINVAL;
5852         }
5853
5854         if (selinux_disabled) {
5855                 /* Only do this once. */
5856                 return -EINVAL;
5857         }
5858
5859         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5860
5861         selinux_disabled = 1;
5862         selinux_enabled = 0;
5863
5864         /* Reset security_ops to the secondary module, dummy or capability. */
5865         security_ops = secondary_ops;
5866
5867         /* Unregister netfilter hooks. */
5868         selinux_nf_ip_exit();
5869
5870         /* Unregister selinuxfs. */
5871         exit_sel_fs();
5872
5873         return 0;
5874 }
5875 #endif