aebcfad5613ff48064ce465823854ff7bff2f44c
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160  * initialise the security for the init task
161  */
162 static void cred_init_security(void)
163 {
164         struct cred *cred = (struct cred *) current->real_cred;
165         struct task_security_struct *tsec;
166
167         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168         if (!tsec)
169                 panic("SELinux:  Failed to initialize initial task.\n");
170
171         tsec->osid = tsec->sid = SECINITSID_KERNEL;
172         cred->security = tsec;
173 }
174
175 /*
176  * get the security ID of a set of credentials
177  */
178 static inline u32 cred_sid(const struct cred *cred)
179 {
180         const struct task_security_struct *tsec;
181
182         tsec = cred->security;
183         return tsec->sid;
184 }
185
186 /*
187  * get the objective security ID of a task
188  */
189 static inline u32 task_sid(const struct task_struct *task)
190 {
191         u32 sid;
192
193         rcu_read_lock();
194         sid = cred_sid(__task_cred(task));
195         rcu_read_unlock();
196         return sid;
197 }
198
199 /*
200  * get the subjective security ID of the current task
201  */
202 static inline u32 current_sid(void)
203 {
204         const struct task_security_struct *tsec = current_cred()->security;
205
206         return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
211 static int inode_alloc_security(struct inode *inode)
212 {
213         struct inode_security_struct *isec;
214         u32 sid = current_sid();
215
216         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217         if (!isec)
218                 return -ENOMEM;
219
220         mutex_init(&isec->lock);
221         INIT_LIST_HEAD(&isec->list);
222         isec->inode = inode;
223         isec->sid = SECINITSID_UNLABELED;
224         isec->sclass = SECCLASS_FILE;
225         isec->task_sid = sid;
226         inode->i_security = isec;
227
228         return 0;
229 }
230
231 static void inode_free_security(struct inode *inode)
232 {
233         struct inode_security_struct *isec = inode->i_security;
234         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236         spin_lock(&sbsec->isec_lock);
237         if (!list_empty(&isec->list))
238                 list_del_init(&isec->list);
239         spin_unlock(&sbsec->isec_lock);
240
241         inode->i_security = NULL;
242         kmem_cache_free(sel_inode_cache, isec);
243 }
244
245 static int file_alloc_security(struct file *file)
246 {
247         struct file_security_struct *fsec;
248         u32 sid = current_sid();
249
250         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251         if (!fsec)
252                 return -ENOMEM;
253
254         fsec->sid = sid;
255         fsec->fown_sid = sid;
256         file->f_security = fsec;
257
258         return 0;
259 }
260
261 static void file_free_security(struct file *file)
262 {
263         struct file_security_struct *fsec = file->f_security;
264         file->f_security = NULL;
265         kfree(fsec);
266 }
267
268 static int superblock_alloc_security(struct super_block *sb)
269 {
270         struct superblock_security_struct *sbsec;
271
272         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273         if (!sbsec)
274                 return -ENOMEM;
275
276         mutex_init(&sbsec->lock);
277         INIT_LIST_HEAD(&sbsec->list);
278         INIT_LIST_HEAD(&sbsec->isec_head);
279         spin_lock_init(&sbsec->isec_lock);
280         sbsec->sb = sb;
281         sbsec->sid = SECINITSID_UNLABELED;
282         sbsec->def_sid = SECINITSID_FILE;
283         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284         sb->s_security = sbsec;
285
286         return 0;
287 }
288
289 static void superblock_free_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec = sb->s_security;
292
293         spin_lock(&sb_security_lock);
294         if (!list_empty(&sbsec->list))
295                 list_del_init(&sbsec->list);
296         spin_unlock(&sb_security_lock);
297
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304         struct sk_security_struct *ssec;
305
306         ssec = kzalloc(sizeof(*ssec), priority);
307         if (!ssec)
308                 return -ENOMEM;
309
310         ssec->peer_sid = SECINITSID_UNLABELED;
311         ssec->sid = SECINITSID_UNLABELED;
312         sk->sk_security = ssec;
313
314         selinux_netlbl_sk_security_reset(ssec, family);
315
316         return 0;
317 }
318
319 static void sk_free_security(struct sock *sk)
320 {
321         struct sk_security_struct *ssec = sk->sk_security;
322
323         sk->sk_security = NULL;
324         selinux_netlbl_sk_security_free(ssec);
325         kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329    any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335         "uses xattr",
336         "uses transition SIDs",
337         "uses task SIDs",
338         "uses genfs_contexts",
339         "not configured for labeling",
340         "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
345 static inline int inode_doinit(struct inode *inode)
346 {
347         return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351         Opt_error = -1,
352         Opt_context = 1,
353         Opt_fscontext = 2,
354         Opt_defcontext = 3,
355         Opt_rootcontext = 4,
356         Opt_labelsupport = 5,
357 };
358
359 static const match_table_t tokens = {
360         {Opt_context, CONTEXT_STR "%s"},
361         {Opt_fscontext, FSCONTEXT_STR "%s"},
362         {Opt_defcontext, DEFCONTEXT_STR "%s"},
363         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
364         {Opt_labelsupport, LABELSUPP_STR},
365         {Opt_error, NULL},
366 };
367
368 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
369
370 static int may_context_mount_sb_relabel(u32 sid,
371                         struct superblock_security_struct *sbsec,
372                         const struct cred *cred)
373 {
374         const struct task_security_struct *tsec = cred->security;
375         int rc;
376
377         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
378                           FILESYSTEM__RELABELFROM, NULL);
379         if (rc)
380                 return rc;
381
382         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
383                           FILESYSTEM__RELABELTO, NULL);
384         return rc;
385 }
386
387 static int may_context_mount_inode_relabel(u32 sid,
388                         struct superblock_security_struct *sbsec,
389                         const struct cred *cred)
390 {
391         const struct task_security_struct *tsec = cred->security;
392         int rc;
393         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
394                           FILESYSTEM__RELABELFROM, NULL);
395         if (rc)
396                 return rc;
397
398         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
399                           FILESYSTEM__ASSOCIATE, NULL);
400         return rc;
401 }
402
403 static int sb_finish_set_opts(struct super_block *sb)
404 {
405         struct superblock_security_struct *sbsec = sb->s_security;
406         struct dentry *root = sb->s_root;
407         struct inode *root_inode = root->d_inode;
408         int rc = 0;
409
410         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
411                 /* Make sure that the xattr handler exists and that no
412                    error other than -ENODATA is returned by getxattr on
413                    the root directory.  -ENODATA is ok, as this may be
414                    the first boot of the SELinux kernel before we have
415                    assigned xattr values to the filesystem. */
416                 if (!root_inode->i_op->getxattr) {
417                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
418                                "xattr support\n", sb->s_id, sb->s_type->name);
419                         rc = -EOPNOTSUPP;
420                         goto out;
421                 }
422                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
423                 if (rc < 0 && rc != -ENODATA) {
424                         if (rc == -EOPNOTSUPP)
425                                 printk(KERN_WARNING "SELinux: (dev %s, type "
426                                        "%s) has no security xattr handler\n",
427                                        sb->s_id, sb->s_type->name);
428                         else
429                                 printk(KERN_WARNING "SELinux: (dev %s, type "
430                                        "%s) getxattr errno %d\n", sb->s_id,
431                                        sb->s_type->name, -rc);
432                         goto out;
433                 }
434         }
435
436         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
437
438         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
439                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
440                        sb->s_id, sb->s_type->name);
441         else
442                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
443                        sb->s_id, sb->s_type->name,
444                        labeling_behaviors[sbsec->behavior-1]);
445
446         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
447             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
448             sbsec->behavior == SECURITY_FS_USE_NONE ||
449             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
450                 sbsec->flags &= ~SE_SBLABELSUPP;
451
452         /* Initialize the root inode. */
453         rc = inode_doinit_with_dentry(root_inode, root);
454
455         /* Initialize any other inodes associated with the superblock, e.g.
456            inodes created prior to initial policy load or inodes created
457            during get_sb by a pseudo filesystem that directly
458            populates itself. */
459         spin_lock(&sbsec->isec_lock);
460 next_inode:
461         if (!list_empty(&sbsec->isec_head)) {
462                 struct inode_security_struct *isec =
463                                 list_entry(sbsec->isec_head.next,
464                                            struct inode_security_struct, list);
465                 struct inode *inode = isec->inode;
466                 spin_unlock(&sbsec->isec_lock);
467                 inode = igrab(inode);
468                 if (inode) {
469                         if (!IS_PRIVATE(inode))
470                                 inode_doinit(inode);
471                         iput(inode);
472                 }
473                 spin_lock(&sbsec->isec_lock);
474                 list_del_init(&isec->list);
475                 goto next_inode;
476         }
477         spin_unlock(&sbsec->isec_lock);
478 out:
479         return rc;
480 }
481
482 /*
483  * This function should allow an FS to ask what it's mount security
484  * options were so it can use those later for submounts, displaying
485  * mount options, or whatever.
486  */
487 static int selinux_get_mnt_opts(const struct super_block *sb,
488                                 struct security_mnt_opts *opts)
489 {
490         int rc = 0, i;
491         struct superblock_security_struct *sbsec = sb->s_security;
492         char *context = NULL;
493         u32 len;
494         char tmp;
495
496         security_init_mnt_opts(opts);
497
498         if (!(sbsec->flags & SE_SBINITIALIZED))
499                 return -EINVAL;
500
501         if (!ss_initialized)
502                 return -EINVAL;
503
504         tmp = sbsec->flags & SE_MNTMASK;
505         /* count the number of mount options for this sb */
506         for (i = 0; i < 8; i++) {
507                 if (tmp & 0x01)
508                         opts->num_mnt_opts++;
509                 tmp >>= 1;
510         }
511         /* Check if the Label support flag is set */
512         if (sbsec->flags & SE_SBLABELSUPP)
513                 opts->num_mnt_opts++;
514
515         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
516         if (!opts->mnt_opts) {
517                 rc = -ENOMEM;
518                 goto out_free;
519         }
520
521         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
522         if (!opts->mnt_opts_flags) {
523                 rc = -ENOMEM;
524                 goto out_free;
525         }
526
527         i = 0;
528         if (sbsec->flags & FSCONTEXT_MNT) {
529                 rc = security_sid_to_context(sbsec->sid, &context, &len);
530                 if (rc)
531                         goto out_free;
532                 opts->mnt_opts[i] = context;
533                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
534         }
535         if (sbsec->flags & CONTEXT_MNT) {
536                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
537                 if (rc)
538                         goto out_free;
539                 opts->mnt_opts[i] = context;
540                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
541         }
542         if (sbsec->flags & DEFCONTEXT_MNT) {
543                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
544                 if (rc)
545                         goto out_free;
546                 opts->mnt_opts[i] = context;
547                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
548         }
549         if (sbsec->flags & ROOTCONTEXT_MNT) {
550                 struct inode *root = sbsec->sb->s_root->d_inode;
551                 struct inode_security_struct *isec = root->i_security;
552
553                 rc = security_sid_to_context(isec->sid, &context, &len);
554                 if (rc)
555                         goto out_free;
556                 opts->mnt_opts[i] = context;
557                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
558         }
559         if (sbsec->flags & SE_SBLABELSUPP) {
560                 opts->mnt_opts[i] = NULL;
561                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
562         }
563
564         BUG_ON(i != opts->num_mnt_opts);
565
566         return 0;
567
568 out_free:
569         security_free_mnt_opts(opts);
570         return rc;
571 }
572
573 static int bad_option(struct superblock_security_struct *sbsec, char flag,
574                       u32 old_sid, u32 new_sid)
575 {
576         char mnt_flags = sbsec->flags & SE_MNTMASK;
577
578         /* check if the old mount command had the same options */
579         if (sbsec->flags & SE_SBINITIALIZED)
580                 if (!(sbsec->flags & flag) ||
581                     (old_sid != new_sid))
582                         return 1;
583
584         /* check if we were passed the same options twice,
585          * aka someone passed context=a,context=b
586          */
587         if (!(sbsec->flags & SE_SBINITIALIZED))
588                 if (mnt_flags & flag)
589                         return 1;
590         return 0;
591 }
592
593 /*
594  * Allow filesystems with binary mount data to explicitly set mount point
595  * labeling information.
596  */
597 static int selinux_set_mnt_opts(struct super_block *sb,
598                                 struct security_mnt_opts *opts)
599 {
600         const struct cred *cred = current_cred();
601         int rc = 0, i;
602         struct superblock_security_struct *sbsec = sb->s_security;
603         const char *name = sb->s_type->name;
604         struct inode *inode = sbsec->sb->s_root->d_inode;
605         struct inode_security_struct *root_isec = inode->i_security;
606         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607         u32 defcontext_sid = 0;
608         char **mount_options = opts->mnt_opts;
609         int *flags = opts->mnt_opts_flags;
610         int num_opts = opts->num_mnt_opts;
611
612         mutex_lock(&sbsec->lock);
613
614         if (!ss_initialized) {
615                 if (!num_opts) {
616                         /* Defer initialization until selinux_complete_init,
617                            after the initial policy is loaded and the security
618                            server is ready to handle calls. */
619                         spin_lock(&sb_security_lock);
620                         if (list_empty(&sbsec->list))
621                                 list_add(&sbsec->list, &superblock_security_head);
622                         spin_unlock(&sb_security_lock);
623                         goto out;
624                 }
625                 rc = -EINVAL;
626                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
627                         "before the security server is initialized\n");
628                 goto out;
629         }
630
631         /*
632          * Binary mount data FS will come through this function twice.  Once
633          * from an explicit call and once from the generic calls from the vfs.
634          * Since the generic VFS calls will not contain any security mount data
635          * we need to skip the double mount verification.
636          *
637          * This does open a hole in which we will not notice if the first
638          * mount using this sb set explict options and a second mount using
639          * this sb does not set any security options.  (The first options
640          * will be used for both mounts)
641          */
642         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643             && (num_opts == 0))
644                 goto out;
645
646         /*
647          * parse the mount options, check if they are valid sids.
648          * also check if someone is trying to mount the same sb more
649          * than once with different security options.
650          */
651         for (i = 0; i < num_opts; i++) {
652                 u32 sid;
653
654                 if (flags[i] == SE_SBLABELSUPP)
655                         continue;
656                 rc = security_context_to_sid(mount_options[i],
657                                              strlen(mount_options[i]), &sid);
658                 if (rc) {
659                         printk(KERN_WARNING "SELinux: security_context_to_sid"
660                                "(%s) failed for (dev %s, type %s) errno=%d\n",
661                                mount_options[i], sb->s_id, name, rc);
662                         goto out;
663                 }
664                 switch (flags[i]) {
665                 case FSCONTEXT_MNT:
666                         fscontext_sid = sid;
667
668                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
669                                         fscontext_sid))
670                                 goto out_double_mount;
671
672                         sbsec->flags |= FSCONTEXT_MNT;
673                         break;
674                 case CONTEXT_MNT:
675                         context_sid = sid;
676
677                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
678                                         context_sid))
679                                 goto out_double_mount;
680
681                         sbsec->flags |= CONTEXT_MNT;
682                         break;
683                 case ROOTCONTEXT_MNT:
684                         rootcontext_sid = sid;
685
686                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
687                                         rootcontext_sid))
688                                 goto out_double_mount;
689
690                         sbsec->flags |= ROOTCONTEXT_MNT;
691
692                         break;
693                 case DEFCONTEXT_MNT:
694                         defcontext_sid = sid;
695
696                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
697                                         defcontext_sid))
698                                 goto out_double_mount;
699
700                         sbsec->flags |= DEFCONTEXT_MNT;
701
702                         break;
703                 default:
704                         rc = -EINVAL;
705                         goto out;
706                 }
707         }
708
709         if (sbsec->flags & SE_SBINITIALIZED) {
710                 /* previously mounted with options, but not on this attempt? */
711                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
712                         goto out_double_mount;
713                 rc = 0;
714                 goto out;
715         }
716
717         if (strcmp(sb->s_type->name, "proc") == 0)
718                 sbsec->flags |= SE_SBPROC;
719
720         /* Determine the labeling behavior to use for this filesystem type. */
721         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
722         if (rc) {
723                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
724                        __func__, sb->s_type->name, rc);
725                 goto out;
726         }
727
728         /* sets the context of the superblock for the fs being mounted. */
729         if (fscontext_sid) {
730                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
731                 if (rc)
732                         goto out;
733
734                 sbsec->sid = fscontext_sid;
735         }
736
737         /*
738          * Switch to using mount point labeling behavior.
739          * sets the label used on all file below the mountpoint, and will set
740          * the superblock context if not already set.
741          */
742         if (context_sid) {
743                 if (!fscontext_sid) {
744                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
745                                                           cred);
746                         if (rc)
747                                 goto out;
748                         sbsec->sid = context_sid;
749                 } else {
750                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
751                                                              cred);
752                         if (rc)
753                                 goto out;
754                 }
755                 if (!rootcontext_sid)
756                         rootcontext_sid = context_sid;
757
758                 sbsec->mntpoint_sid = context_sid;
759                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
760         }
761
762         if (rootcontext_sid) {
763                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
764                                                      cred);
765                 if (rc)
766                         goto out;
767
768                 root_isec->sid = rootcontext_sid;
769                 root_isec->initialized = 1;
770         }
771
772         if (defcontext_sid) {
773                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
774                         rc = -EINVAL;
775                         printk(KERN_WARNING "SELinux: defcontext option is "
776                                "invalid for this filesystem type\n");
777                         goto out;
778                 }
779
780                 if (defcontext_sid != sbsec->def_sid) {
781                         rc = may_context_mount_inode_relabel(defcontext_sid,
782                                                              sbsec, cred);
783                         if (rc)
784                                 goto out;
785                 }
786
787                 sbsec->def_sid = defcontext_sid;
788         }
789
790         rc = sb_finish_set_opts(sb);
791 out:
792         mutex_unlock(&sbsec->lock);
793         return rc;
794 out_double_mount:
795         rc = -EINVAL;
796         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
797                "security settings for (dev %s, type %s)\n", sb->s_id, name);
798         goto out;
799 }
800
801 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
802                                         struct super_block *newsb)
803 {
804         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
805         struct superblock_security_struct *newsbsec = newsb->s_security;
806
807         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
808         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
809         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
810
811         /*
812          * if the parent was able to be mounted it clearly had no special lsm
813          * mount options.  thus we can safely put this sb on the list and deal
814          * with it later
815          */
816         if (!ss_initialized) {
817                 spin_lock(&sb_security_lock);
818                 if (list_empty(&newsbsec->list))
819                         list_add(&newsbsec->list, &superblock_security_head);
820                 spin_unlock(&sb_security_lock);
821                 return;
822         }
823
824         /* how can we clone if the old one wasn't set up?? */
825         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826
827         /* if fs is reusing a sb, just let its options stand... */
828         if (newsbsec->flags & SE_SBINITIALIZED)
829                 return;
830
831         mutex_lock(&newsbsec->lock);
832
833         newsbsec->flags = oldsbsec->flags;
834
835         newsbsec->sid = oldsbsec->sid;
836         newsbsec->def_sid = oldsbsec->def_sid;
837         newsbsec->behavior = oldsbsec->behavior;
838
839         if (set_context) {
840                 u32 sid = oldsbsec->mntpoint_sid;
841
842                 if (!set_fscontext)
843                         newsbsec->sid = sid;
844                 if (!set_rootcontext) {
845                         struct inode *newinode = newsb->s_root->d_inode;
846                         struct inode_security_struct *newisec = newinode->i_security;
847                         newisec->sid = sid;
848                 }
849                 newsbsec->mntpoint_sid = sid;
850         }
851         if (set_rootcontext) {
852                 const struct inode *oldinode = oldsb->s_root->d_inode;
853                 const struct inode_security_struct *oldisec = oldinode->i_security;
854                 struct inode *newinode = newsb->s_root->d_inode;
855                 struct inode_security_struct *newisec = newinode->i_security;
856
857                 newisec->sid = oldisec->sid;
858         }
859
860         sb_finish_set_opts(newsb);
861         mutex_unlock(&newsbsec->lock);
862 }
863
864 static int selinux_parse_opts_str(char *options,
865                                   struct security_mnt_opts *opts)
866 {
867         char *p;
868         char *context = NULL, *defcontext = NULL;
869         char *fscontext = NULL, *rootcontext = NULL;
870         int rc, num_mnt_opts = 0;
871
872         opts->num_mnt_opts = 0;
873
874         /* Standard string-based options. */
875         while ((p = strsep(&options, "|")) != NULL) {
876                 int token;
877                 substring_t args[MAX_OPT_ARGS];
878
879                 if (!*p)
880                         continue;
881
882                 token = match_token(p, tokens, args);
883
884                 switch (token) {
885                 case Opt_context:
886                         if (context || defcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         context = match_strdup(&args[0]);
892                         if (!context) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_fscontext:
899                         if (fscontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         fscontext = match_strdup(&args[0]);
905                         if (!fscontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910
911                 case Opt_rootcontext:
912                         if (rootcontext) {
913                                 rc = -EINVAL;
914                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
915                                 goto out_err;
916                         }
917                         rootcontext = match_strdup(&args[0]);
918                         if (!rootcontext) {
919                                 rc = -ENOMEM;
920                                 goto out_err;
921                         }
922                         break;
923
924                 case Opt_defcontext:
925                         if (context || defcontext) {
926                                 rc = -EINVAL;
927                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
928                                 goto out_err;
929                         }
930                         defcontext = match_strdup(&args[0]);
931                         if (!defcontext) {
932                                 rc = -ENOMEM;
933                                 goto out_err;
934                         }
935                         break;
936                 case Opt_labelsupport:
937                         break;
938                 default:
939                         rc = -EINVAL;
940                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
941                         goto out_err;
942
943                 }
944         }
945
946         rc = -ENOMEM;
947         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
948         if (!opts->mnt_opts)
949                 goto out_err;
950
951         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
952         if (!opts->mnt_opts_flags) {
953                 kfree(opts->mnt_opts);
954                 goto out_err;
955         }
956
957         if (fscontext) {
958                 opts->mnt_opts[num_mnt_opts] = fscontext;
959                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
960         }
961         if (context) {
962                 opts->mnt_opts[num_mnt_opts] = context;
963                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
964         }
965         if (rootcontext) {
966                 opts->mnt_opts[num_mnt_opts] = rootcontext;
967                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
968         }
969         if (defcontext) {
970                 opts->mnt_opts[num_mnt_opts] = defcontext;
971                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
972         }
973
974         opts->num_mnt_opts = num_mnt_opts;
975         return 0;
976
977 out_err:
978         kfree(context);
979         kfree(defcontext);
980         kfree(fscontext);
981         kfree(rootcontext);
982         return rc;
983 }
984 /*
985  * string mount options parsing and call set the sbsec
986  */
987 static int superblock_doinit(struct super_block *sb, void *data)
988 {
989         int rc = 0;
990         char *options = data;
991         struct security_mnt_opts opts;
992
993         security_init_mnt_opts(&opts);
994
995         if (!data)
996                 goto out;
997
998         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
999
1000         rc = selinux_parse_opts_str(options, &opts);
1001         if (rc)
1002                 goto out_err;
1003
1004 out:
1005         rc = selinux_set_mnt_opts(sb, &opts);
1006
1007 out_err:
1008         security_free_mnt_opts(&opts);
1009         return rc;
1010 }
1011
1012 static void selinux_write_opts(struct seq_file *m,
1013                                struct security_mnt_opts *opts)
1014 {
1015         int i;
1016         char *prefix;
1017
1018         for (i = 0; i < opts->num_mnt_opts; i++) {
1019                 char *has_comma;
1020
1021                 if (opts->mnt_opts[i])
1022                         has_comma = strchr(opts->mnt_opts[i], ',');
1023                 else
1024                         has_comma = NULL;
1025
1026                 switch (opts->mnt_opts_flags[i]) {
1027                 case CONTEXT_MNT:
1028                         prefix = CONTEXT_STR;
1029                         break;
1030                 case FSCONTEXT_MNT:
1031                         prefix = FSCONTEXT_STR;
1032                         break;
1033                 case ROOTCONTEXT_MNT:
1034                         prefix = ROOTCONTEXT_STR;
1035                         break;
1036                 case DEFCONTEXT_MNT:
1037                         prefix = DEFCONTEXT_STR;
1038                         break;
1039                 case SE_SBLABELSUPP:
1040                         seq_putc(m, ',');
1041                         seq_puts(m, LABELSUPP_STR);
1042                         continue;
1043                 default:
1044                         BUG();
1045                 };
1046                 /* we need a comma before each option */
1047                 seq_putc(m, ',');
1048                 seq_puts(m, prefix);
1049                 if (has_comma)
1050                         seq_putc(m, '\"');
1051                 seq_puts(m, opts->mnt_opts[i]);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054         }
1055 }
1056
1057 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1058 {
1059         struct security_mnt_opts opts;
1060         int rc;
1061
1062         rc = selinux_get_mnt_opts(sb, &opts);
1063         if (rc) {
1064                 /* before policy load we may get EINVAL, don't show anything */
1065                 if (rc == -EINVAL)
1066                         rc = 0;
1067                 return rc;
1068         }
1069
1070         selinux_write_opts(m, &opts);
1071
1072         security_free_mnt_opts(&opts);
1073
1074         return rc;
1075 }
1076
1077 static inline u16 inode_mode_to_security_class(umode_t mode)
1078 {
1079         switch (mode & S_IFMT) {
1080         case S_IFSOCK:
1081                 return SECCLASS_SOCK_FILE;
1082         case S_IFLNK:
1083                 return SECCLASS_LNK_FILE;
1084         case S_IFREG:
1085                 return SECCLASS_FILE;
1086         case S_IFBLK:
1087                 return SECCLASS_BLK_FILE;
1088         case S_IFDIR:
1089                 return SECCLASS_DIR;
1090         case S_IFCHR:
1091                 return SECCLASS_CHR_FILE;
1092         case S_IFIFO:
1093                 return SECCLASS_FIFO_FILE;
1094
1095         }
1096
1097         return SECCLASS_FILE;
1098 }
1099
1100 static inline int default_protocol_stream(int protocol)
1101 {
1102         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1103 }
1104
1105 static inline int default_protocol_dgram(int protocol)
1106 {
1107         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1108 }
1109
1110 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1111 {
1112         switch (family) {
1113         case PF_UNIX:
1114                 switch (type) {
1115                 case SOCK_STREAM:
1116                 case SOCK_SEQPACKET:
1117                         return SECCLASS_UNIX_STREAM_SOCKET;
1118                 case SOCK_DGRAM:
1119                         return SECCLASS_UNIX_DGRAM_SOCKET;
1120                 }
1121                 break;
1122         case PF_INET:
1123         case PF_INET6:
1124                 switch (type) {
1125                 case SOCK_STREAM:
1126                         if (default_protocol_stream(protocol))
1127                                 return SECCLASS_TCP_SOCKET;
1128                         else
1129                                 return SECCLASS_RAWIP_SOCKET;
1130                 case SOCK_DGRAM:
1131                         if (default_protocol_dgram(protocol))
1132                                 return SECCLASS_UDP_SOCKET;
1133                         else
1134                                 return SECCLASS_RAWIP_SOCKET;
1135                 case SOCK_DCCP:
1136                         return SECCLASS_DCCP_SOCKET;
1137                 default:
1138                         return SECCLASS_RAWIP_SOCKET;
1139                 }
1140                 break;
1141         case PF_NETLINK:
1142                 switch (protocol) {
1143                 case NETLINK_ROUTE:
1144                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1145                 case NETLINK_FIREWALL:
1146                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1147                 case NETLINK_INET_DIAG:
1148                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1149                 case NETLINK_NFLOG:
1150                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1151                 case NETLINK_XFRM:
1152                         return SECCLASS_NETLINK_XFRM_SOCKET;
1153                 case NETLINK_SELINUX:
1154                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1155                 case NETLINK_AUDIT:
1156                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1157                 case NETLINK_IP6_FW:
1158                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1159                 case NETLINK_DNRTMSG:
1160                         return SECCLASS_NETLINK_DNRT_SOCKET;
1161                 case NETLINK_KOBJECT_UEVENT:
1162                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1163                 default:
1164                         return SECCLASS_NETLINK_SOCKET;
1165                 }
1166         case PF_PACKET:
1167                 return SECCLASS_PACKET_SOCKET;
1168         case PF_KEY:
1169                 return SECCLASS_KEY_SOCKET;
1170         case PF_APPLETALK:
1171                 return SECCLASS_APPLETALK_SOCKET;
1172         }
1173
1174         return SECCLASS_SOCKET;
1175 }
1176
1177 #ifdef CONFIG_PROC_FS
1178 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1179                                 u16 tclass,
1180                                 u32 *sid)
1181 {
1182         int buflen, rc;
1183         char *buffer, *path, *end;
1184
1185         buffer = (char *)__get_free_page(GFP_KERNEL);
1186         if (!buffer)
1187                 return -ENOMEM;
1188
1189         buflen = PAGE_SIZE;
1190         end = buffer+buflen;
1191         *--end = '\0';
1192         buflen--;
1193         path = end-1;
1194         *path = '/';
1195         while (de && de != de->parent) {
1196                 buflen -= de->namelen + 1;
1197                 if (buflen < 0)
1198                         break;
1199                 end -= de->namelen;
1200                 memcpy(end, de->name, de->namelen);
1201                 *--end = '/';
1202                 path = end;
1203                 de = de->parent;
1204         }
1205         rc = security_genfs_sid("proc", path, tclass, sid);
1206         free_page((unsigned long)buffer);
1207         return rc;
1208 }
1209 #else
1210 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1211                                 u16 tclass,
1212                                 u32 *sid)
1213 {
1214         return -EINVAL;
1215 }
1216 #endif
1217
1218 /* The inode's security attributes must be initialized before first use. */
1219 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1220 {
1221         struct superblock_security_struct *sbsec = NULL;
1222         struct inode_security_struct *isec = inode->i_security;
1223         u32 sid;
1224         struct dentry *dentry;
1225 #define INITCONTEXTLEN 255
1226         char *context = NULL;
1227         unsigned len = 0;
1228         int rc = 0;
1229
1230         if (isec->initialized)
1231                 goto out;
1232
1233         mutex_lock(&isec->lock);
1234         if (isec->initialized)
1235                 goto out_unlock;
1236
1237         sbsec = inode->i_sb->s_security;
1238         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1239                 /* Defer initialization until selinux_complete_init,
1240                    after the initial policy is loaded and the security
1241                    server is ready to handle calls. */
1242                 spin_lock(&sbsec->isec_lock);
1243                 if (list_empty(&isec->list))
1244                         list_add(&isec->list, &sbsec->isec_head);
1245                 spin_unlock(&sbsec->isec_lock);
1246                 goto out_unlock;
1247         }
1248
1249         switch (sbsec->behavior) {
1250         case SECURITY_FS_USE_XATTR:
1251                 if (!inode->i_op->getxattr) {
1252                         isec->sid = sbsec->def_sid;
1253                         break;
1254                 }
1255
1256                 /* Need a dentry, since the xattr API requires one.
1257                    Life would be simpler if we could just pass the inode. */
1258                 if (opt_dentry) {
1259                         /* Called from d_instantiate or d_splice_alias. */
1260                         dentry = dget(opt_dentry);
1261                 } else {
1262                         /* Called from selinux_complete_init, try to find a dentry. */
1263                         dentry = d_find_alias(inode);
1264                 }
1265                 if (!dentry) {
1266                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1267                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1268                                inode->i_ino);
1269                         goto out_unlock;
1270                 }
1271
1272                 len = INITCONTEXTLEN;
1273                 context = kmalloc(len, GFP_NOFS);
1274                 if (!context) {
1275                         rc = -ENOMEM;
1276                         dput(dentry);
1277                         goto out_unlock;
1278                 }
1279                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1280                                            context, len);
1281                 if (rc == -ERANGE) {
1282                         /* Need a larger buffer.  Query for the right size. */
1283                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1284                                                    NULL, 0);
1285                         if (rc < 0) {
1286                                 dput(dentry);
1287                                 goto out_unlock;
1288                         }
1289                         kfree(context);
1290                         len = rc;
1291                         context = kmalloc(len, GFP_NOFS);
1292                         if (!context) {
1293                                 rc = -ENOMEM;
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         rc = inode->i_op->getxattr(dentry,
1298                                                    XATTR_NAME_SELINUX,
1299                                                    context, len);
1300                 }
1301                 dput(dentry);
1302                 if (rc < 0) {
1303                         if (rc != -ENODATA) {
1304                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1305                                        "%d for dev=%s ino=%ld\n", __func__,
1306                                        -rc, inode->i_sb->s_id, inode->i_ino);
1307                                 kfree(context);
1308                                 goto out_unlock;
1309                         }
1310                         /* Map ENODATA to the default file SID */
1311                         sid = sbsec->def_sid;
1312                         rc = 0;
1313                 } else {
1314                         rc = security_context_to_sid_default(context, rc, &sid,
1315                                                              sbsec->def_sid,
1316                                                              GFP_NOFS);
1317                         if (rc) {
1318                                 char *dev = inode->i_sb->s_id;
1319                                 unsigned long ino = inode->i_ino;
1320
1321                                 if (rc == -EINVAL) {
1322                                         if (printk_ratelimit())
1323                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1324                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1325                                                         "filesystem in question.\n", ino, dev, context);
1326                                 } else {
1327                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1328                                                "returned %d for dev=%s ino=%ld\n",
1329                                                __func__, context, -rc, dev, ino);
1330                                 }
1331                                 kfree(context);
1332                                 /* Leave with the unlabeled SID */
1333                                 rc = 0;
1334                                 break;
1335                         }
1336                 }
1337                 kfree(context);
1338                 isec->sid = sid;
1339                 break;
1340         case SECURITY_FS_USE_TASK:
1341                 isec->sid = isec->task_sid;
1342                 break;
1343         case SECURITY_FS_USE_TRANS:
1344                 /* Default to the fs SID. */
1345                 isec->sid = sbsec->sid;
1346
1347                 /* Try to obtain a transition SID. */
1348                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1349                 rc = security_transition_sid(isec->task_sid,
1350                                              sbsec->sid,
1351                                              isec->sclass,
1352                                              &sid);
1353                 if (rc)
1354                         goto out_unlock;
1355                 isec->sid = sid;
1356                 break;
1357         case SECURITY_FS_USE_MNTPOINT:
1358                 isec->sid = sbsec->mntpoint_sid;
1359                 break;
1360         default:
1361                 /* Default to the fs superblock SID. */
1362                 isec->sid = sbsec->sid;
1363
1364                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1365                         struct proc_inode *proci = PROC_I(inode);
1366                         if (proci->pde) {
1367                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1368                                 rc = selinux_proc_get_sid(proci->pde,
1369                                                           isec->sclass,
1370                                                           &sid);
1371                                 if (rc)
1372                                         goto out_unlock;
1373                                 isec->sid = sid;
1374                         }
1375                 }
1376                 break;
1377         }
1378
1379         isec->initialized = 1;
1380
1381 out_unlock:
1382         mutex_unlock(&isec->lock);
1383 out:
1384         if (isec->sclass == SECCLASS_FILE)
1385                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1386         return rc;
1387 }
1388
1389 /* Convert a Linux signal to an access vector. */
1390 static inline u32 signal_to_av(int sig)
1391 {
1392         u32 perm = 0;
1393
1394         switch (sig) {
1395         case SIGCHLD:
1396                 /* Commonly granted from child to parent. */
1397                 perm = PROCESS__SIGCHLD;
1398                 break;
1399         case SIGKILL:
1400                 /* Cannot be caught or ignored */
1401                 perm = PROCESS__SIGKILL;
1402                 break;
1403         case SIGSTOP:
1404                 /* Cannot be caught or ignored */
1405                 perm = PROCESS__SIGSTOP;
1406                 break;
1407         default:
1408                 /* All other signals. */
1409                 perm = PROCESS__SIGNAL;
1410                 break;
1411         }
1412
1413         return perm;
1414 }
1415
1416 /*
1417  * Check permission between a pair of credentials
1418  * fork check, ptrace check, etc.
1419  */
1420 static int cred_has_perm(const struct cred *actor,
1421                          const struct cred *target,
1422                          u32 perms)
1423 {
1424         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1425
1426         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1427 }
1428
1429 /*
1430  * Check permission between a pair of tasks, e.g. signal checks,
1431  * fork check, ptrace check, etc.
1432  * tsk1 is the actor and tsk2 is the target
1433  * - this uses the default subjective creds of tsk1
1434  */
1435 static int task_has_perm(const struct task_struct *tsk1,
1436                          const struct task_struct *tsk2,
1437                          u32 perms)
1438 {
1439         const struct task_security_struct *__tsec1, *__tsec2;
1440         u32 sid1, sid2;
1441
1442         rcu_read_lock();
1443         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1444         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1445         rcu_read_unlock();
1446         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1447 }
1448
1449 /*
1450  * Check permission between current and another task, e.g. signal checks,
1451  * fork check, ptrace check, etc.
1452  * current is the actor and tsk2 is the target
1453  * - this uses current's subjective creds
1454  */
1455 static int current_has_perm(const struct task_struct *tsk,
1456                             u32 perms)
1457 {
1458         u32 sid, tsid;
1459
1460         sid = current_sid();
1461         tsid = task_sid(tsk);
1462         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1463 }
1464
1465 #if CAP_LAST_CAP > 63
1466 #error Fix SELinux to handle capabilities > 63.
1467 #endif
1468
1469 /* Check whether a task is allowed to use a capability. */
1470 static int task_has_capability(struct task_struct *tsk,
1471                                const struct cred *cred,
1472                                int cap, int audit)
1473 {
1474         struct avc_audit_data ad;
1475         struct av_decision avd;
1476         u16 sclass;
1477         u32 sid = cred_sid(cred);
1478         u32 av = CAP_TO_MASK(cap);
1479         int rc;
1480
1481         AVC_AUDIT_DATA_INIT(&ad, CAP);
1482         ad.tsk = tsk;
1483         ad.u.cap = cap;
1484
1485         switch (CAP_TO_INDEX(cap)) {
1486         case 0:
1487                 sclass = SECCLASS_CAPABILITY;
1488                 break;
1489         case 1:
1490                 sclass = SECCLASS_CAPABILITY2;
1491                 break;
1492         default:
1493                 printk(KERN_ERR
1494                        "SELinux:  out of range capability %d\n", cap);
1495                 BUG();
1496         }
1497
1498         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1499         if (audit == SECURITY_CAP_AUDIT)
1500                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1501         return rc;
1502 }
1503
1504 /* Check whether a task is allowed to use a system operation. */
1505 static int task_has_system(struct task_struct *tsk,
1506                            u32 perms)
1507 {
1508         u32 sid = task_sid(tsk);
1509
1510         return avc_has_perm(sid, SECINITSID_KERNEL,
1511                             SECCLASS_SYSTEM, perms, NULL);
1512 }
1513
1514 /* Check whether a task has a particular permission to an inode.
1515    The 'adp' parameter is optional and allows other audit
1516    data to be passed (e.g. the dentry). */
1517 static int inode_has_perm(const struct cred *cred,
1518                           struct inode *inode,
1519                           u32 perms,
1520                           struct avc_audit_data *adp)
1521 {
1522         struct inode_security_struct *isec;
1523         struct avc_audit_data ad;
1524         u32 sid;
1525
1526         if (unlikely(IS_PRIVATE(inode)))
1527                 return 0;
1528
1529         sid = cred_sid(cred);
1530         isec = inode->i_security;
1531
1532         if (!adp) {
1533                 adp = &ad;
1534                 AVC_AUDIT_DATA_INIT(&ad, FS);
1535                 ad.u.fs.inode = inode;
1536         }
1537
1538         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1539 }
1540
1541 /* Same as inode_has_perm, but pass explicit audit data containing
1542    the dentry to help the auditing code to more easily generate the
1543    pathname if needed. */
1544 static inline int dentry_has_perm(const struct cred *cred,
1545                                   struct vfsmount *mnt,
1546                                   struct dentry *dentry,
1547                                   u32 av)
1548 {
1549         struct inode *inode = dentry->d_inode;
1550         struct avc_audit_data ad;
1551
1552         AVC_AUDIT_DATA_INIT(&ad, FS);
1553         ad.u.fs.path.mnt = mnt;
1554         ad.u.fs.path.dentry = dentry;
1555         return inode_has_perm(cred, inode, av, &ad);
1556 }
1557
1558 /* Check whether a task can use an open file descriptor to
1559    access an inode in a given way.  Check access to the
1560    descriptor itself, and then use dentry_has_perm to
1561    check a particular permission to the file.
1562    Access to the descriptor is implicitly granted if it
1563    has the same SID as the process.  If av is zero, then
1564    access to the file is not checked, e.g. for cases
1565    where only the descriptor is affected like seek. */
1566 static int file_has_perm(const struct cred *cred,
1567                          struct file *file,
1568                          u32 av)
1569 {
1570         struct file_security_struct *fsec = file->f_security;
1571         struct inode *inode = file->f_path.dentry->d_inode;
1572         struct avc_audit_data ad;
1573         u32 sid = cred_sid(cred);
1574         int rc;
1575
1576         AVC_AUDIT_DATA_INIT(&ad, FS);
1577         ad.u.fs.path = file->f_path;
1578
1579         if (sid != fsec->sid) {
1580                 rc = avc_has_perm(sid, fsec->sid,
1581                                   SECCLASS_FD,
1582                                   FD__USE,
1583                                   &ad);
1584                 if (rc)
1585                         goto out;
1586         }
1587
1588         /* av is zero if only checking access to the descriptor. */
1589         rc = 0;
1590         if (av)
1591                 rc = inode_has_perm(cred, inode, av, &ad);
1592
1593 out:
1594         return rc;
1595 }
1596
1597 /* Check whether a task can create a file. */
1598 static int may_create(struct inode *dir,
1599                       struct dentry *dentry,
1600                       u16 tclass)
1601 {
1602         const struct cred *cred = current_cred();
1603         const struct task_security_struct *tsec = cred->security;
1604         struct inode_security_struct *dsec;
1605         struct superblock_security_struct *sbsec;
1606         u32 sid, newsid;
1607         struct avc_audit_data ad;
1608         int rc;
1609
1610         dsec = dir->i_security;
1611         sbsec = dir->i_sb->s_security;
1612
1613         sid = tsec->sid;
1614         newsid = tsec->create_sid;
1615
1616         AVC_AUDIT_DATA_INIT(&ad, FS);
1617         ad.u.fs.path.dentry = dentry;
1618
1619         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1620                           DIR__ADD_NAME | DIR__SEARCH,
1621                           &ad);
1622         if (rc)
1623                 return rc;
1624
1625         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1626                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1627                 if (rc)
1628                         return rc;
1629         }
1630
1631         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1632         if (rc)
1633                 return rc;
1634
1635         return avc_has_perm(newsid, sbsec->sid,
1636                             SECCLASS_FILESYSTEM,
1637                             FILESYSTEM__ASSOCIATE, &ad);
1638 }
1639
1640 /* Check whether a task can create a key. */
1641 static int may_create_key(u32 ksid,
1642                           struct task_struct *ctx)
1643 {
1644         u32 sid = task_sid(ctx);
1645
1646         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1647 }
1648
1649 #define MAY_LINK        0
1650 #define MAY_UNLINK      1
1651 #define MAY_RMDIR       2
1652
1653 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1654 static int may_link(struct inode *dir,
1655                     struct dentry *dentry,
1656                     int kind)
1657
1658 {
1659         struct inode_security_struct *dsec, *isec;
1660         struct avc_audit_data ad;
1661         u32 sid = current_sid();
1662         u32 av;
1663         int rc;
1664
1665         dsec = dir->i_security;
1666         isec = dentry->d_inode->i_security;
1667
1668         AVC_AUDIT_DATA_INIT(&ad, FS);
1669         ad.u.fs.path.dentry = dentry;
1670
1671         av = DIR__SEARCH;
1672         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1673         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1674         if (rc)
1675                 return rc;
1676
1677         switch (kind) {
1678         case MAY_LINK:
1679                 av = FILE__LINK;
1680                 break;
1681         case MAY_UNLINK:
1682                 av = FILE__UNLINK;
1683                 break;
1684         case MAY_RMDIR:
1685                 av = DIR__RMDIR;
1686                 break;
1687         default:
1688                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1689                         __func__, kind);
1690                 return 0;
1691         }
1692
1693         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1694         return rc;
1695 }
1696
1697 static inline int may_rename(struct inode *old_dir,
1698                              struct dentry *old_dentry,
1699                              struct inode *new_dir,
1700                              struct dentry *new_dentry)
1701 {
1702         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1703         struct avc_audit_data ad;
1704         u32 sid = current_sid();
1705         u32 av;
1706         int old_is_dir, new_is_dir;
1707         int rc;
1708
1709         old_dsec = old_dir->i_security;
1710         old_isec = old_dentry->d_inode->i_security;
1711         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1712         new_dsec = new_dir->i_security;
1713
1714         AVC_AUDIT_DATA_INIT(&ad, FS);
1715
1716         ad.u.fs.path.dentry = old_dentry;
1717         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1718                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1719         if (rc)
1720                 return rc;
1721         rc = avc_has_perm(sid, old_isec->sid,
1722                           old_isec->sclass, FILE__RENAME, &ad);
1723         if (rc)
1724                 return rc;
1725         if (old_is_dir && new_dir != old_dir) {
1726                 rc = avc_has_perm(sid, old_isec->sid,
1727                                   old_isec->sclass, DIR__REPARENT, &ad);
1728                 if (rc)
1729                         return rc;
1730         }
1731
1732         ad.u.fs.path.dentry = new_dentry;
1733         av = DIR__ADD_NAME | DIR__SEARCH;
1734         if (new_dentry->d_inode)
1735                 av |= DIR__REMOVE_NAME;
1736         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1737         if (rc)
1738                 return rc;
1739         if (new_dentry->d_inode) {
1740                 new_isec = new_dentry->d_inode->i_security;
1741                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1742                 rc = avc_has_perm(sid, new_isec->sid,
1743                                   new_isec->sclass,
1744                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1745                 if (rc)
1746                         return rc;
1747         }
1748
1749         return 0;
1750 }
1751
1752 /* Check whether a task can perform a filesystem operation. */
1753 static int superblock_has_perm(const struct cred *cred,
1754                                struct super_block *sb,
1755                                u32 perms,
1756                                struct avc_audit_data *ad)
1757 {
1758         struct superblock_security_struct *sbsec;
1759         u32 sid = cred_sid(cred);
1760
1761         sbsec = sb->s_security;
1762         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1763 }
1764
1765 /* Convert a Linux mode and permission mask to an access vector. */
1766 static inline u32 file_mask_to_av(int mode, int mask)
1767 {
1768         u32 av = 0;
1769
1770         if ((mode & S_IFMT) != S_IFDIR) {
1771                 if (mask & MAY_EXEC)
1772                         av |= FILE__EXECUTE;
1773                 if (mask & MAY_READ)
1774                         av |= FILE__READ;
1775
1776                 if (mask & MAY_APPEND)
1777                         av |= FILE__APPEND;
1778                 else if (mask & MAY_WRITE)
1779                         av |= FILE__WRITE;
1780
1781         } else {
1782                 if (mask & MAY_EXEC)
1783                         av |= DIR__SEARCH;
1784                 if (mask & MAY_WRITE)
1785                         av |= DIR__WRITE;
1786                 if (mask & MAY_READ)
1787                         av |= DIR__READ;
1788         }
1789
1790         return av;
1791 }
1792
1793 /* Convert a Linux file to an access vector. */
1794 static inline u32 file_to_av(struct file *file)
1795 {
1796         u32 av = 0;
1797
1798         if (file->f_mode & FMODE_READ)
1799                 av |= FILE__READ;
1800         if (file->f_mode & FMODE_WRITE) {
1801                 if (file->f_flags & O_APPEND)
1802                         av |= FILE__APPEND;
1803                 else
1804                         av |= FILE__WRITE;
1805         }
1806         if (!av) {
1807                 /*
1808                  * Special file opened with flags 3 for ioctl-only use.
1809                  */
1810                 av = FILE__IOCTL;
1811         }
1812
1813         return av;
1814 }
1815
1816 /*
1817  * Convert a file to an access vector and include the correct open
1818  * open permission.
1819  */
1820 static inline u32 open_file_to_av(struct file *file)
1821 {
1822         u32 av = file_to_av(file);
1823
1824         if (selinux_policycap_openperm) {
1825                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1826                 /*
1827                  * lnk files and socks do not really have an 'open'
1828                  */
1829                 if (S_ISREG(mode))
1830                         av |= FILE__OPEN;
1831                 else if (S_ISCHR(mode))
1832                         av |= CHR_FILE__OPEN;
1833                 else if (S_ISBLK(mode))
1834                         av |= BLK_FILE__OPEN;
1835                 else if (S_ISFIFO(mode))
1836                         av |= FIFO_FILE__OPEN;
1837                 else if (S_ISDIR(mode))
1838                         av |= DIR__OPEN;
1839                 else
1840                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1841                                 "unknown mode:%o\n", __func__, mode);
1842         }
1843         return av;
1844 }
1845
1846 /* Hook functions begin here. */
1847
1848 static int selinux_ptrace_may_access(struct task_struct *child,
1849                                      unsigned int mode)
1850 {
1851         int rc;
1852
1853         rc = cap_ptrace_may_access(child, mode);
1854         if (rc)
1855                 return rc;
1856
1857         if (mode == PTRACE_MODE_READ) {
1858                 u32 sid = current_sid();
1859                 u32 csid = task_sid(child);
1860                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1861         }
1862
1863         return current_has_perm(child, PROCESS__PTRACE);
1864 }
1865
1866 static int selinux_ptrace_traceme(struct task_struct *parent)
1867 {
1868         int rc;
1869
1870         rc = cap_ptrace_traceme(parent);
1871         if (rc)
1872                 return rc;
1873
1874         return task_has_perm(parent, current, PROCESS__PTRACE);
1875 }
1876
1877 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1878                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1879 {
1880         int error;
1881
1882         error = current_has_perm(target, PROCESS__GETCAP);
1883         if (error)
1884                 return error;
1885
1886         return cap_capget(target, effective, inheritable, permitted);
1887 }
1888
1889 static int selinux_capset(struct cred *new, const struct cred *old,
1890                           const kernel_cap_t *effective,
1891                           const kernel_cap_t *inheritable,
1892                           const kernel_cap_t *permitted)
1893 {
1894         int error;
1895
1896         error = cap_capset(new, old,
1897                                       effective, inheritable, permitted);
1898         if (error)
1899                 return error;
1900
1901         return cred_has_perm(old, new, PROCESS__SETCAP);
1902 }
1903
1904 /*
1905  * (This comment used to live with the selinux_task_setuid hook,
1906  * which was removed).
1907  *
1908  * Since setuid only affects the current process, and since the SELinux
1909  * controls are not based on the Linux identity attributes, SELinux does not
1910  * need to control this operation.  However, SELinux does control the use of
1911  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1912  */
1913
1914 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1915                            int cap, int audit)
1916 {
1917         int rc;
1918
1919         rc = cap_capable(tsk, cred, cap, audit);
1920         if (rc)
1921                 return rc;
1922
1923         return task_has_capability(tsk, cred, cap, audit);
1924 }
1925
1926 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1927 {
1928         int buflen, rc;
1929         char *buffer, *path, *end;
1930
1931         rc = -ENOMEM;
1932         buffer = (char *)__get_free_page(GFP_KERNEL);
1933         if (!buffer)
1934                 goto out;
1935
1936         buflen = PAGE_SIZE;
1937         end = buffer+buflen;
1938         *--end = '\0';
1939         buflen--;
1940         path = end-1;
1941         *path = '/';
1942         while (table) {
1943                 const char *name = table->procname;
1944                 size_t namelen = strlen(name);
1945                 buflen -= namelen + 1;
1946                 if (buflen < 0)
1947                         goto out_free;
1948                 end -= namelen;
1949                 memcpy(end, name, namelen);
1950                 *--end = '/';
1951                 path = end;
1952                 table = table->parent;
1953         }
1954         buflen -= 4;
1955         if (buflen < 0)
1956                 goto out_free;
1957         end -= 4;
1958         memcpy(end, "/sys", 4);
1959         path = end;
1960         rc = security_genfs_sid("proc", path, tclass, sid);
1961 out_free:
1962         free_page((unsigned long)buffer);
1963 out:
1964         return rc;
1965 }
1966
1967 static int selinux_sysctl(ctl_table *table, int op)
1968 {
1969         int error = 0;
1970         u32 av;
1971         u32 tsid, sid;
1972         int rc;
1973
1974         rc = secondary_ops->sysctl(table, op);
1975         if (rc)
1976                 return rc;
1977
1978         sid = current_sid();
1979
1980         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1981                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1982         if (rc) {
1983                 /* Default to the well-defined sysctl SID. */
1984                 tsid = SECINITSID_SYSCTL;
1985         }
1986
1987         /* The op values are "defined" in sysctl.c, thereby creating
1988          * a bad coupling between this module and sysctl.c */
1989         if (op == 001) {
1990                 error = avc_has_perm(sid, tsid,
1991                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1992         } else {
1993                 av = 0;
1994                 if (op & 004)
1995                         av |= FILE__READ;
1996                 if (op & 002)
1997                         av |= FILE__WRITE;
1998                 if (av)
1999                         error = avc_has_perm(sid, tsid,
2000                                              SECCLASS_FILE, av, NULL);
2001         }
2002
2003         return error;
2004 }
2005
2006 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2007 {
2008         const struct cred *cred = current_cred();
2009         int rc = 0;
2010
2011         if (!sb)
2012                 return 0;
2013
2014         switch (cmds) {
2015         case Q_SYNC:
2016         case Q_QUOTAON:
2017         case Q_QUOTAOFF:
2018         case Q_SETINFO:
2019         case Q_SETQUOTA:
2020                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2021                 break;
2022         case Q_GETFMT:
2023         case Q_GETINFO:
2024         case Q_GETQUOTA:
2025                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2026                 break;
2027         default:
2028                 rc = 0;  /* let the kernel handle invalid cmds */
2029                 break;
2030         }
2031         return rc;
2032 }
2033
2034 static int selinux_quota_on(struct dentry *dentry)
2035 {
2036         const struct cred *cred = current_cred();
2037
2038         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2039 }
2040
2041 static int selinux_syslog(int type)
2042 {
2043         int rc;
2044
2045         rc = cap_syslog(type);
2046         if (rc)
2047                 return rc;
2048
2049         switch (type) {
2050         case 3:         /* Read last kernel messages */
2051         case 10:        /* Return size of the log buffer */
2052                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2053                 break;
2054         case 6:         /* Disable logging to console */
2055         case 7:         /* Enable logging to console */
2056         case 8:         /* Set level of messages printed to console */
2057                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2058                 break;
2059         case 0:         /* Close log */
2060         case 1:         /* Open log */
2061         case 2:         /* Read from log */
2062         case 4:         /* Read/clear last kernel messages */
2063         case 5:         /* Clear ring buffer */
2064         default:
2065                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2066                 break;
2067         }
2068         return rc;
2069 }
2070
2071 /*
2072  * Check that a process has enough memory to allocate a new virtual
2073  * mapping. 0 means there is enough memory for the allocation to
2074  * succeed and -ENOMEM implies there is not.
2075  *
2076  * Do not audit the selinux permission check, as this is applied to all
2077  * processes that allocate mappings.
2078  */
2079 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2080 {
2081         int rc, cap_sys_admin = 0;
2082
2083         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2084                              SECURITY_CAP_NOAUDIT);
2085         if (rc == 0)
2086                 cap_sys_admin = 1;
2087
2088         return __vm_enough_memory(mm, pages, cap_sys_admin);
2089 }
2090
2091 /* binprm security operations */
2092
2093 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2094 {
2095         const struct task_security_struct *old_tsec;
2096         struct task_security_struct *new_tsec;
2097         struct inode_security_struct *isec;
2098         struct avc_audit_data ad;
2099         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2100         int rc;
2101
2102         rc = cap_bprm_set_creds(bprm);
2103         if (rc)
2104                 return rc;
2105
2106         /* SELinux context only depends on initial program or script and not
2107          * the script interpreter */
2108         if (bprm->cred_prepared)
2109                 return 0;
2110
2111         old_tsec = current_security();
2112         new_tsec = bprm->cred->security;
2113         isec = inode->i_security;
2114
2115         /* Default to the current task SID. */
2116         new_tsec->sid = old_tsec->sid;
2117         new_tsec->osid = old_tsec->sid;
2118
2119         /* Reset fs, key, and sock SIDs on execve. */
2120         new_tsec->create_sid = 0;
2121         new_tsec->keycreate_sid = 0;
2122         new_tsec->sockcreate_sid = 0;
2123
2124         if (old_tsec->exec_sid) {
2125                 new_tsec->sid = old_tsec->exec_sid;
2126                 /* Reset exec SID on execve. */
2127                 new_tsec->exec_sid = 0;
2128         } else {
2129                 /* Check for a default transition on this program. */
2130                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2131                                              SECCLASS_PROCESS, &new_tsec->sid);
2132                 if (rc)
2133                         return rc;
2134         }
2135
2136         AVC_AUDIT_DATA_INIT(&ad, FS);
2137         ad.u.fs.path = bprm->file->f_path;
2138
2139         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2140                 new_tsec->sid = old_tsec->sid;
2141
2142         if (new_tsec->sid == old_tsec->sid) {
2143                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2144                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2145                 if (rc)
2146                         return rc;
2147         } else {
2148                 /* Check permissions for the transition. */
2149                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2150                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2151                 if (rc)
2152                         return rc;
2153
2154                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2155                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2156                 if (rc)
2157                         return rc;
2158
2159                 /* Check for shared state */
2160                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2161                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2162                                           SECCLASS_PROCESS, PROCESS__SHARE,
2163                                           NULL);
2164                         if (rc)
2165                                 return -EPERM;
2166                 }
2167
2168                 /* Make sure that anyone attempting to ptrace over a task that
2169                  * changes its SID has the appropriate permit */
2170                 if (bprm->unsafe &
2171                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2172                         struct task_struct *tracer;
2173                         struct task_security_struct *sec;
2174                         u32 ptsid = 0;
2175
2176                         rcu_read_lock();
2177                         tracer = tracehook_tracer_task(current);
2178                         if (likely(tracer != NULL)) {
2179                                 sec = __task_cred(tracer)->security;
2180                                 ptsid = sec->sid;
2181                         }
2182                         rcu_read_unlock();
2183
2184                         if (ptsid != 0) {
2185                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2186                                                   SECCLASS_PROCESS,
2187                                                   PROCESS__PTRACE, NULL);
2188                                 if (rc)
2189                                         return -EPERM;
2190                         }
2191                 }
2192
2193                 /* Clear any possibly unsafe personality bits on exec: */
2194                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2195         }
2196
2197         return 0;
2198 }
2199
2200 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2201 {
2202         const struct cred *cred = current_cred();
2203         const struct task_security_struct *tsec = cred->security;
2204         u32 sid, osid;
2205         int atsecure = 0;
2206
2207         sid = tsec->sid;
2208         osid = tsec->osid;
2209
2210         if (osid != sid) {
2211                 /* Enable secure mode for SIDs transitions unless
2212                    the noatsecure permission is granted between
2213                    the two SIDs, i.e. ahp returns 0. */
2214                 atsecure = avc_has_perm(osid, sid,
2215                                         SECCLASS_PROCESS,
2216                                         PROCESS__NOATSECURE, NULL);
2217         }
2218
2219         return (atsecure || cap_bprm_secureexec(bprm));
2220 }
2221
2222 extern struct vfsmount *selinuxfs_mount;
2223 extern struct dentry *selinux_null;
2224
2225 /* Derived from fs/exec.c:flush_old_files. */
2226 static inline void flush_unauthorized_files(const struct cred *cred,
2227                                             struct files_struct *files)
2228 {
2229         struct avc_audit_data ad;
2230         struct file *file, *devnull = NULL;
2231         struct tty_struct *tty;
2232         struct fdtable *fdt;
2233         long j = -1;
2234         int drop_tty = 0;
2235
2236         tty = get_current_tty();
2237         if (tty) {
2238                 file_list_lock();
2239                 if (!list_empty(&tty->tty_files)) {
2240                         struct inode *inode;
2241
2242                         /* Revalidate access to controlling tty.
2243                            Use inode_has_perm on the tty inode directly rather
2244                            than using file_has_perm, as this particular open
2245                            file may belong to another process and we are only
2246                            interested in the inode-based check here. */
2247                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2248                         inode = file->f_path.dentry->d_inode;
2249                         if (inode_has_perm(cred, inode,
2250                                            FILE__READ | FILE__WRITE, NULL)) {
2251                                 drop_tty = 1;
2252                         }
2253                 }
2254                 file_list_unlock();
2255                 tty_kref_put(tty);
2256         }
2257         /* Reset controlling tty. */
2258         if (drop_tty)
2259                 no_tty();
2260
2261         /* Revalidate access to inherited open files. */
2262
2263         AVC_AUDIT_DATA_INIT(&ad, FS);
2264
2265         spin_lock(&files->file_lock);
2266         for (;;) {
2267                 unsigned long set, i;
2268                 int fd;
2269
2270                 j++;
2271                 i = j * __NFDBITS;
2272                 fdt = files_fdtable(files);
2273                 if (i >= fdt->max_fds)
2274                         break;
2275                 set = fdt->open_fds->fds_bits[j];
2276                 if (!set)
2277                         continue;
2278                 spin_unlock(&files->file_lock);
2279                 for ( ; set ; i++, set >>= 1) {
2280                         if (set & 1) {
2281                                 file = fget(i);
2282                                 if (!file)
2283                                         continue;
2284                                 if (file_has_perm(cred,
2285                                                   file,
2286                                                   file_to_av(file))) {
2287                                         sys_close(i);
2288                                         fd = get_unused_fd();
2289                                         if (fd != i) {
2290                                                 if (fd >= 0)
2291                                                         put_unused_fd(fd);
2292                                                 fput(file);
2293                                                 continue;
2294                                         }
2295                                         if (devnull) {
2296                                                 get_file(devnull);
2297                                         } else {
2298                                                 devnull = dentry_open(
2299                                                         dget(selinux_null),
2300                                                         mntget(selinuxfs_mount),
2301                                                         O_RDWR, cred);
2302                                                 if (IS_ERR(devnull)) {
2303                                                         devnull = NULL;
2304                                                         put_unused_fd(fd);
2305                                                         fput(file);
2306                                                         continue;
2307                                                 }
2308                                         }
2309                                         fd_install(fd, devnull);
2310                                 }
2311                                 fput(file);
2312                         }
2313                 }
2314                 spin_lock(&files->file_lock);
2315
2316         }
2317         spin_unlock(&files->file_lock);
2318 }
2319
2320 /*
2321  * Prepare a process for imminent new credential changes due to exec
2322  */
2323 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2324 {
2325         struct task_security_struct *new_tsec;
2326         struct rlimit *rlim, *initrlim;
2327         int rc, i;
2328
2329         new_tsec = bprm->cred->security;
2330         if (new_tsec->sid == new_tsec->osid)
2331                 return;
2332
2333         /* Close files for which the new task SID is not authorized. */
2334         flush_unauthorized_files(bprm->cred, current->files);
2335
2336         /* Always clear parent death signal on SID transitions. */
2337         current->pdeath_signal = 0;
2338
2339         /* Check whether the new SID can inherit resource limits from the old
2340          * SID.  If not, reset all soft limits to the lower of the current
2341          * task's hard limit and the init task's soft limit.
2342          *
2343          * Note that the setting of hard limits (even to lower them) can be
2344          * controlled by the setrlimit check.  The inclusion of the init task's
2345          * soft limit into the computation is to avoid resetting soft limits
2346          * higher than the default soft limit for cases where the default is
2347          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2348          */
2349         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2350                           PROCESS__RLIMITINH, NULL);
2351         if (rc) {
2352                 for (i = 0; i < RLIM_NLIMITS; i++) {
2353                         rlim = current->signal->rlim + i;
2354                         initrlim = init_task.signal->rlim + i;
2355                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2356                 }
2357                 update_rlimit_cpu(rlim->rlim_cur);
2358         }
2359 }
2360
2361 /*
2362  * Clean up the process immediately after the installation of new credentials
2363  * due to exec
2364  */
2365 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2366 {
2367         const struct task_security_struct *tsec = current_security();
2368         struct itimerval itimer;
2369         struct sighand_struct *psig;
2370         u32 osid, sid;
2371         int rc, i;
2372         unsigned long flags;
2373
2374         osid = tsec->osid;
2375         sid = tsec->sid;
2376
2377         if (sid == osid)
2378                 return;
2379
2380         /* Check whether the new SID can inherit signal state from the old SID.
2381          * If not, clear itimers to avoid subsequent signal generation and
2382          * flush and unblock signals.
2383          *
2384          * This must occur _after_ the task SID has been updated so that any
2385          * kill done after the flush will be checked against the new SID.
2386          */
2387         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2388         if (rc) {
2389                 memset(&itimer, 0, sizeof itimer);
2390                 for (i = 0; i < 3; i++)
2391                         do_setitimer(i, &itimer, NULL);
2392                 flush_signals(current);
2393                 spin_lock_irq(&current->sighand->siglock);
2394                 flush_signal_handlers(current, 1);
2395                 sigemptyset(&current->blocked);
2396                 recalc_sigpending();
2397                 spin_unlock_irq(&current->sighand->siglock);
2398         }
2399
2400         /* Wake up the parent if it is waiting so that it can recheck
2401          * wait permission to the new task SID. */
2402         read_lock_irq(&tasklist_lock);
2403         psig = current->parent->sighand;
2404         spin_lock_irqsave(&psig->siglock, flags);
2405         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2406         spin_unlock_irqrestore(&psig->siglock, flags);
2407         read_unlock_irq(&tasklist_lock);
2408 }
2409
2410 /* superblock security operations */
2411
2412 static int selinux_sb_alloc_security(struct super_block *sb)
2413 {
2414         return superblock_alloc_security(sb);
2415 }
2416
2417 static void selinux_sb_free_security(struct super_block *sb)
2418 {
2419         superblock_free_security(sb);
2420 }
2421
2422 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2423 {
2424         if (plen > olen)
2425                 return 0;
2426
2427         return !memcmp(prefix, option, plen);
2428 }
2429
2430 static inline int selinux_option(char *option, int len)
2431 {
2432         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2433                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2434                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2435                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2436                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2437 }
2438
2439 static inline void take_option(char **to, char *from, int *first, int len)
2440 {
2441         if (!*first) {
2442                 **to = ',';
2443                 *to += 1;
2444         } else
2445                 *first = 0;
2446         memcpy(*to, from, len);
2447         *to += len;
2448 }
2449
2450 static inline void take_selinux_option(char **to, char *from, int *first,
2451                                        int len)
2452 {
2453         int current_size = 0;
2454
2455         if (!*first) {
2456                 **to = '|';
2457                 *to += 1;
2458         } else
2459                 *first = 0;
2460
2461         while (current_size < len) {
2462                 if (*from != '"') {
2463                         **to = *from;
2464                         *to += 1;
2465                 }
2466                 from += 1;
2467                 current_size += 1;
2468         }
2469 }
2470
2471 static int selinux_sb_copy_data(char *orig, char *copy)
2472 {
2473         int fnosec, fsec, rc = 0;
2474         char *in_save, *in_curr, *in_end;
2475         char *sec_curr, *nosec_save, *nosec;
2476         int open_quote = 0;
2477
2478         in_curr = orig;
2479         sec_curr = copy;
2480
2481         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2482         if (!nosec) {
2483                 rc = -ENOMEM;
2484                 goto out;
2485         }
2486
2487         nosec_save = nosec;
2488         fnosec = fsec = 1;
2489         in_save = in_end = orig;
2490
2491         do {
2492                 if (*in_end == '"')
2493                         open_quote = !open_quote;
2494                 if ((*in_end == ',' && open_quote == 0) ||
2495                                 *in_end == '\0') {
2496                         int len = in_end - in_curr;
2497
2498                         if (selinux_option(in_curr, len))
2499                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2500                         else
2501                                 take_option(&nosec, in_curr, &fnosec, len);
2502
2503                         in_curr = in_end + 1;
2504                 }
2505         } while (*in_end++);
2506
2507         strcpy(in_save, nosec_save);
2508         free_page((unsigned long)nosec_save);
2509 out:
2510         return rc;
2511 }
2512
2513 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2514 {
2515         const struct cred *cred = current_cred();
2516         struct avc_audit_data ad;
2517         int rc;
2518
2519         rc = superblock_doinit(sb, data);
2520         if (rc)
2521                 return rc;
2522
2523         /* Allow all mounts performed by the kernel */
2524         if (flags & MS_KERNMOUNT)
2525                 return 0;
2526
2527         AVC_AUDIT_DATA_INIT(&ad, FS);
2528         ad.u.fs.path.dentry = sb->s_root;
2529         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2530 }
2531
2532 static int selinux_sb_statfs(struct dentry *dentry)
2533 {
2534         const struct cred *cred = current_cred();
2535         struct avc_audit_data ad;
2536
2537         AVC_AUDIT_DATA_INIT(&ad, FS);
2538         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2539         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2540 }
2541
2542 static int selinux_mount(char *dev_name,
2543                          struct path *path,
2544                          char *type,
2545                          unsigned long flags,
2546                          void *data)
2547 {
2548         const struct cred *cred = current_cred();
2549
2550         if (flags & MS_REMOUNT)
2551                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2552                                            FILESYSTEM__REMOUNT, NULL);
2553         else
2554                 return dentry_has_perm(cred, path->mnt, path->dentry,
2555                                        FILE__MOUNTON);
2556 }
2557
2558 static int selinux_umount(struct vfsmount *mnt, int flags)
2559 {
2560         const struct cred *cred = current_cred();
2561
2562         return superblock_has_perm(cred, mnt->mnt_sb,
2563                                    FILESYSTEM__UNMOUNT, NULL);
2564 }
2565
2566 /* inode security operations */
2567
2568 static int selinux_inode_alloc_security(struct inode *inode)
2569 {
2570         return inode_alloc_security(inode);
2571 }
2572
2573 static void selinux_inode_free_security(struct inode *inode)
2574 {
2575         inode_free_security(inode);
2576 }
2577
2578 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2579                                        char **name, void **value,
2580                                        size_t *len)
2581 {
2582         const struct cred *cred = current_cred();
2583         const struct task_security_struct *tsec = cred->security;
2584         struct inode_security_struct *dsec;
2585         struct superblock_security_struct *sbsec;
2586         u32 sid, newsid, clen;
2587         int rc;
2588         char *namep = NULL, *context;
2589
2590         dsec = dir->i_security;
2591         sbsec = dir->i_sb->s_security;
2592
2593         sid = tsec->sid;
2594         newsid = tsec->create_sid;
2595
2596         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2597                 rc = security_transition_sid(sid, dsec->sid,
2598                                              inode_mode_to_security_class(inode->i_mode),
2599                                              &newsid);
2600                 if (rc) {
2601                         printk(KERN_WARNING "%s:  "
2602                                "security_transition_sid failed, rc=%d (dev=%s "
2603                                "ino=%ld)\n",
2604                                __func__,
2605                                -rc, inode->i_sb->s_id, inode->i_ino);
2606                         return rc;
2607                 }
2608         }
2609
2610         /* Possibly defer initialization to selinux_complete_init. */
2611         if (sbsec->flags & SE_SBINITIALIZED) {
2612                 struct inode_security_struct *isec = inode->i_security;
2613                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2614                 isec->sid = newsid;
2615                 isec->initialized = 1;
2616         }
2617
2618         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2619                 return -EOPNOTSUPP;
2620
2621         if (name) {
2622                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2623                 if (!namep)
2624                         return -ENOMEM;
2625                 *name = namep;
2626         }
2627
2628         if (value && len) {
2629                 rc = security_sid_to_context_force(newsid, &context, &clen);
2630                 if (rc) {
2631                         kfree(namep);
2632                         return rc;
2633                 }
2634                 *value = context;
2635                 *len = clen;
2636         }
2637
2638         return 0;
2639 }
2640
2641 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2642 {
2643         return may_create(dir, dentry, SECCLASS_FILE);
2644 }
2645
2646 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2647 {
2648         return may_link(dir, old_dentry, MAY_LINK);
2649 }
2650
2651 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2652 {
2653         return may_link(dir, dentry, MAY_UNLINK);
2654 }
2655
2656 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2657 {
2658         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2659 }
2660
2661 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2662 {
2663         return may_create(dir, dentry, SECCLASS_DIR);
2664 }
2665
2666 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2667 {
2668         return may_link(dir, dentry, MAY_RMDIR);
2669 }
2670
2671 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2672 {
2673         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2674 }
2675
2676 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2677                                 struct inode *new_inode, struct dentry *new_dentry)
2678 {
2679         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2680 }
2681
2682 static int selinux_inode_readlink(struct dentry *dentry)
2683 {
2684         const struct cred *cred = current_cred();
2685
2686         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2687 }
2688
2689 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2690 {
2691         const struct cred *cred = current_cred();
2692
2693         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2694 }
2695
2696 static int selinux_inode_permission(struct inode *inode, int mask)
2697 {
2698         const struct cred *cred = current_cred();
2699
2700         if (!mask) {
2701                 /* No permission to check.  Existence test. */
2702                 return 0;
2703         }
2704
2705         return inode_has_perm(cred, inode,
2706                               file_mask_to_av(inode->i_mode, mask), NULL);
2707 }
2708
2709 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2710 {
2711         const struct cred *cred = current_cred();
2712
2713         if (iattr->ia_valid & ATTR_FORCE)
2714                 return 0;
2715
2716         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2718                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2719
2720         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2721 }
2722
2723 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2724 {
2725         const struct cred *cred = current_cred();
2726
2727         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2728 }
2729
2730 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2731 {
2732         const struct cred *cred = current_cred();
2733
2734         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2735                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2736                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2737                         if (!capable(CAP_SETFCAP))
2738                                 return -EPERM;
2739                 } else if (!capable(CAP_SYS_ADMIN)) {
2740                         /* A different attribute in the security namespace.
2741                            Restrict to administrator. */
2742                         return -EPERM;
2743                 }
2744         }
2745
2746         /* Not an attribute we recognize, so just check the
2747            ordinary setattr permission. */
2748         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2749 }
2750
2751 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2752                                   const void *value, size_t size, int flags)
2753 {
2754         struct inode *inode = dentry->d_inode;
2755         struct inode_security_struct *isec = inode->i_security;
2756         struct superblock_security_struct *sbsec;
2757         struct avc_audit_data ad;
2758         u32 newsid, sid = current_sid();
2759         int rc = 0;
2760
2761         if (strcmp(name, XATTR_NAME_SELINUX))
2762                 return selinux_inode_setotherxattr(dentry, name);
2763
2764         sbsec = inode->i_sb->s_security;
2765         if (!(sbsec->flags & SE_SBLABELSUPP))
2766                 return -EOPNOTSUPP;
2767
2768         if (!is_owner_or_cap(inode))
2769                 return -EPERM;
2770
2771         AVC_AUDIT_DATA_INIT(&ad, FS);
2772         ad.u.fs.path.dentry = dentry;
2773
2774         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2775                           FILE__RELABELFROM, &ad);
2776         if (rc)
2777                 return rc;
2778
2779         rc = security_context_to_sid(value, size, &newsid);
2780         if (rc == -EINVAL) {
2781                 if (!capable(CAP_MAC_ADMIN))
2782                         return rc;
2783                 rc = security_context_to_sid_force(value, size, &newsid);
2784         }
2785         if (rc)
2786                 return rc;
2787
2788         rc = avc_has_perm(sid, newsid, isec->sclass,
2789                           FILE__RELABELTO, &ad);
2790         if (rc)
2791                 return rc;
2792
2793         rc = security_validate_transition(isec->sid, newsid, sid,
2794                                           isec->sclass);
2795         if (rc)
2796                 return rc;
2797
2798         return avc_has_perm(newsid,
2799                             sbsec->sid,
2800                             SECCLASS_FILESYSTEM,
2801                             FILESYSTEM__ASSOCIATE,
2802                             &ad);
2803 }
2804
2805 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2806                                         const void *value, size_t size,
2807                                         int flags)
2808 {
2809         struct inode *inode = dentry->d_inode;
2810         struct inode_security_struct *isec = inode->i_security;
2811         u32 newsid;
2812         int rc;
2813
2814         if (strcmp(name, XATTR_NAME_SELINUX)) {
2815                 /* Not an attribute we recognize, so nothing to do. */
2816                 return;
2817         }
2818
2819         rc = security_context_to_sid_force(value, size, &newsid);
2820         if (rc) {
2821                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2822                        "for (%s, %lu), rc=%d\n",
2823                        inode->i_sb->s_id, inode->i_ino, -rc);
2824                 return;
2825         }
2826
2827         isec->sid = newsid;
2828         return;
2829 }
2830
2831 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2832 {
2833         const struct cred *cred = current_cred();
2834
2835         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2836 }
2837
2838 static int selinux_inode_listxattr(struct dentry *dentry)
2839 {
2840         const struct cred *cred = current_cred();
2841
2842         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2843 }
2844
2845 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2846 {
2847         if (strcmp(name, XATTR_NAME_SELINUX))
2848                 return selinux_inode_setotherxattr(dentry, name);
2849
2850         /* No one is allowed to remove a SELinux security label.
2851            You can change the label, but all data must be labeled. */
2852         return -EACCES;
2853 }
2854
2855 /*
2856  * Copy the inode security context value to the user.
2857  *
2858  * Permission check is handled by selinux_inode_getxattr hook.
2859  */
2860 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2861 {
2862         u32 size;
2863         int error;
2864         char *context = NULL;
2865         struct inode_security_struct *isec = inode->i_security;
2866
2867         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2868                 return -EOPNOTSUPP;
2869
2870         /*
2871          * If the caller has CAP_MAC_ADMIN, then get the raw context
2872          * value even if it is not defined by current policy; otherwise,
2873          * use the in-core value under current policy.
2874          * Use the non-auditing forms of the permission checks since
2875          * getxattr may be called by unprivileged processes commonly
2876          * and lack of permission just means that we fall back to the
2877          * in-core context value, not a denial.
2878          */
2879         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2880                                 SECURITY_CAP_NOAUDIT);
2881         if (!error)
2882                 error = security_sid_to_context_force(isec->sid, &context,
2883                                                       &size);
2884         else
2885                 error = security_sid_to_context(isec->sid, &context, &size);
2886         if (error)
2887                 return error;
2888         error = size;
2889         if (alloc) {
2890                 *buffer = context;
2891                 goto out_nofree;
2892         }
2893         kfree(context);
2894 out_nofree:
2895         return error;
2896 }
2897
2898 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2899                                      const void *value, size_t size, int flags)
2900 {
2901         struct inode_security_struct *isec = inode->i_security;
2902         u32 newsid;
2903         int rc;
2904
2905         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2906                 return -EOPNOTSUPP;
2907
2908         if (!value || !size)
2909                 return -EACCES;
2910
2911         rc = security_context_to_sid((void *)value, size, &newsid);
2912         if (rc)
2913                 return rc;
2914
2915         isec->sid = newsid;
2916         return 0;
2917 }
2918
2919 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2920 {
2921         const int len = sizeof(XATTR_NAME_SELINUX);
2922         if (buffer && len <= buffer_size)
2923                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2924         return len;
2925 }
2926
2927 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2928 {
2929         struct inode_security_struct *isec = inode->i_security;
2930         *secid = isec->sid;
2931 }
2932
2933 /* file security operations */
2934
2935 static int selinux_revalidate_file_permission(struct file *file, int mask)
2936 {
2937         const struct cred *cred = current_cred();
2938         int rc;
2939         struct inode *inode = file->f_path.dentry->d_inode;
2940
2941         if (!mask) {
2942                 /* No permission to check.  Existence test. */
2943                 return 0;
2944         }
2945
2946         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2947         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2948                 mask |= MAY_APPEND;
2949
2950         rc = file_has_perm(cred, file,
2951                            file_mask_to_av(inode->i_mode, mask));
2952         if (rc)
2953                 return rc;
2954
2955         return selinux_netlbl_inode_permission(inode, mask);
2956 }
2957
2958 static int selinux_file_permission(struct file *file, int mask)
2959 {
2960         struct inode *inode = file->f_path.dentry->d_inode;
2961         struct file_security_struct *fsec = file->f_security;
2962         struct inode_security_struct *isec = inode->i_security;
2963         u32 sid = current_sid();
2964
2965         if (!mask) {
2966                 /* No permission to check.  Existence test. */
2967                 return 0;
2968         }
2969
2970         if (sid == fsec->sid && fsec->isid == isec->sid
2971             && fsec->pseqno == avc_policy_seqno())
2972                 return selinux_netlbl_inode_permission(inode, mask);
2973
2974         return selinux_revalidate_file_permission(file, mask);
2975 }
2976
2977 static int selinux_file_alloc_security(struct file *file)
2978 {
2979         return file_alloc_security(file);
2980 }
2981
2982 static void selinux_file_free_security(struct file *file)
2983 {
2984         file_free_security(file);
2985 }
2986
2987 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2988                               unsigned long arg)
2989 {
2990         const struct cred *cred = current_cred();
2991         u32 av = 0;
2992
2993         if (_IOC_DIR(cmd) & _IOC_WRITE)
2994                 av |= FILE__WRITE;
2995         if (_IOC_DIR(cmd) & _IOC_READ)
2996                 av |= FILE__READ;
2997         if (!av)
2998                 av = FILE__IOCTL;
2999
3000         return file_has_perm(cred, file, av);
3001 }
3002
3003 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3004 {
3005         const struct cred *cred = current_cred();
3006         int rc = 0;
3007
3008 #ifndef CONFIG_PPC32
3009         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3010                 /*
3011                  * We are making executable an anonymous mapping or a
3012                  * private file mapping that will also be writable.
3013                  * This has an additional check.
3014                  */
3015                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3016                 if (rc)
3017                         goto error;
3018         }
3019 #endif
3020
3021         if (file) {
3022                 /* read access is always possible with a mapping */
3023                 u32 av = FILE__READ;
3024
3025                 /* write access only matters if the mapping is shared */
3026                 if (shared && (prot & PROT_WRITE))
3027                         av |= FILE__WRITE;
3028
3029                 if (prot & PROT_EXEC)
3030                         av |= FILE__EXECUTE;
3031
3032                 return file_has_perm(cred, file, av);
3033         }
3034
3035 error:
3036         return rc;
3037 }
3038
3039 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3040                              unsigned long prot, unsigned long flags,
3041                              unsigned long addr, unsigned long addr_only)
3042 {
3043         int rc = 0;
3044         u32 sid = current_sid();
3045
3046         if (addr < mmap_min_addr)
3047                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3048                                   MEMPROTECT__MMAP_ZERO, NULL);
3049         if (rc || addr_only)
3050                 return rc;
3051
3052         if (selinux_checkreqprot)
3053                 prot = reqprot;
3054
3055         return file_map_prot_check(file, prot,
3056                                    (flags & MAP_TYPE) == MAP_SHARED);
3057 }
3058
3059 static int selinux_file_mprotect(struct vm_area_struct *vma,
3060                                  unsigned long reqprot,
3061                                  unsigned long prot)
3062 {
3063         const struct cred *cred = current_cred();
3064
3065         if (selinux_checkreqprot)
3066                 prot = reqprot;
3067
3068 #ifndef CONFIG_PPC32
3069         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3070                 int rc = 0;
3071                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3072                     vma->vm_end <= vma->vm_mm->brk) {
3073                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3074                 } else if (!vma->vm_file &&
3075                            vma->vm_start <= vma->vm_mm->start_stack &&
3076                            vma->vm_end >= vma->vm_mm->start_stack) {
3077                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3078                 } else if (vma->vm_file && vma->anon_vma) {
3079                         /*
3080                          * We are making executable a file mapping that has
3081                          * had some COW done. Since pages might have been
3082                          * written, check ability to execute the possibly
3083                          * modified content.  This typically should only
3084                          * occur for text relocations.
3085                          */
3086                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3087                 }
3088                 if (rc)
3089                         return rc;
3090         }
3091 #endif
3092
3093         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3094 }
3095
3096 static int selinux_file_lock(struct file *file, unsigned int cmd)
3097 {
3098         const struct cred *cred = current_cred();
3099
3100         return file_has_perm(cred, file, FILE__LOCK);
3101 }
3102
3103 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3104                               unsigned long arg)
3105 {
3106         const struct cred *cred = current_cred();
3107         int err = 0;
3108
3109         switch (cmd) {
3110         case F_SETFL:
3111                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3112                         err = -EINVAL;
3113                         break;
3114                 }
3115
3116                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3117                         err = file_has_perm(cred, file, FILE__WRITE);
3118                         break;
3119                 }
3120                 /* fall through */
3121         case F_SETOWN:
3122         case F_SETSIG:
3123         case F_GETFL:
3124         case F_GETOWN:
3125         case F_GETSIG:
3126                 /* Just check FD__USE permission */
3127                 err = file_has_perm(cred, file, 0);
3128                 break;
3129         case F_GETLK:
3130         case F_SETLK:
3131         case F_SETLKW:
3132 #if BITS_PER_LONG == 32
3133         case F_GETLK64:
3134         case F_SETLK64:
3135         case F_SETLKW64:
3136 #endif
3137                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3138                         err = -EINVAL;
3139                         break;
3140                 }
3141                 err = file_has_perm(cred, file, FILE__LOCK);
3142                 break;
3143         }
3144
3145         return err;
3146 }
3147
3148 static int selinux_file_set_fowner(struct file *file)
3149 {
3150         struct file_security_struct *fsec;
3151
3152         fsec = file->f_security;
3153         fsec->fown_sid = current_sid();
3154
3155         return 0;
3156 }
3157
3158 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3159                                        struct fown_struct *fown, int signum)
3160 {
3161         struct file *file;
3162         u32 sid = current_sid();
3163         u32 perm;
3164         struct file_security_struct *fsec;
3165
3166         /* struct fown_struct is never outside the context of a struct file */
3167         file = container_of(fown, struct file, f_owner);
3168
3169         fsec = file->f_security;
3170
3171         if (!signum)
3172                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3173         else
3174                 perm = signal_to_av(signum);
3175
3176         return avc_has_perm(fsec->fown_sid, sid,
3177                             SECCLASS_PROCESS, perm, NULL);
3178 }
3179
3180 static int selinux_file_receive(struct file *file)
3181 {
3182         const struct cred *cred = current_cred();
3183
3184         return file_has_perm(cred, file, file_to_av(file));
3185 }
3186
3187 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3188 {
3189         struct file_security_struct *fsec;
3190         struct inode *inode;
3191         struct inode_security_struct *isec;
3192
3193         inode = file->f_path.dentry->d_inode;
3194         fsec = file->f_security;
3195         isec = inode->i_security;
3196         /*
3197          * Save inode label and policy sequence number
3198          * at open-time so that selinux_file_permission
3199          * can determine whether revalidation is necessary.
3200          * Task label is already saved in the file security
3201          * struct as its SID.
3202          */
3203         fsec->isid = isec->sid;
3204         fsec->pseqno = avc_policy_seqno();
3205         /*
3206          * Since the inode label or policy seqno may have changed
3207          * between the selinux_inode_permission check and the saving
3208          * of state above, recheck that access is still permitted.
3209          * Otherwise, access might never be revalidated against the
3210          * new inode label or new policy.
3211          * This check is not redundant - do not remove.
3212          */
3213         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3214 }
3215
3216 /* task security operations */
3217
3218 static int selinux_task_create(unsigned long clone_flags)
3219 {
3220         return current_has_perm(current, PROCESS__FORK);
3221 }
3222
3223 /*
3224  * detach and free the LSM part of a set of credentials
3225  */
3226 static void selinux_cred_free(struct cred *cred)
3227 {
3228         struct task_security_struct *tsec = cred->security;
3229         cred->security = NULL;
3230         kfree(tsec);
3231 }
3232
3233 /*
3234  * prepare a new set of credentials for modification
3235  */
3236 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3237                                 gfp_t gfp)
3238 {
3239         const struct task_security_struct *old_tsec;
3240         struct task_security_struct *tsec;
3241
3242         old_tsec = old->security;
3243
3244         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3245         if (!tsec)
3246                 return -ENOMEM;
3247
3248         new->security = tsec;
3249         return 0;
3250 }
3251
3252 /*
3253  * set the security data for a kernel service
3254  * - all the creation contexts are set to unlabelled
3255  */
3256 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3257 {
3258         struct task_security_struct *tsec = new->security;
3259         u32 sid = current_sid();
3260         int ret;
3261
3262         ret = avc_has_perm(sid, secid,
3263                            SECCLASS_KERNEL_SERVICE,
3264                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3265                            NULL);
3266         if (ret == 0) {
3267                 tsec->sid = secid;
3268                 tsec->create_sid = 0;
3269                 tsec->keycreate_sid = 0;
3270                 tsec->sockcreate_sid = 0;
3271         }
3272         return ret;
3273 }
3274
3275 /*
3276  * set the file creation context in a security record to the same as the
3277  * objective context of the specified inode
3278  */
3279 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3280 {
3281         struct inode_security_struct *isec = inode->i_security;
3282         struct task_security_struct *tsec = new->security;
3283         u32 sid = current_sid();
3284         int ret;
3285
3286         ret = avc_has_perm(sid, isec->sid,
3287                            SECCLASS_KERNEL_SERVICE,
3288                            KERNEL_SERVICE__CREATE_FILES_AS,
3289                            NULL);
3290
3291         if (ret == 0)
3292                 tsec->create_sid = isec->sid;
3293         return 0;
3294 }
3295
3296 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3297 {
3298         return current_has_perm(p, PROCESS__SETPGID);
3299 }
3300
3301 static int selinux_task_getpgid(struct task_struct *p)
3302 {
3303         return current_has_perm(p, PROCESS__GETPGID);
3304 }
3305
3306 static int selinux_task_getsid(struct task_struct *p)
3307 {
3308         return current_has_perm(p, PROCESS__GETSESSION);
3309 }
3310
3311 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3312 {
3313         *secid = task_sid(p);
3314 }
3315
3316 static int selinux_task_setnice(struct task_struct *p, int nice)
3317 {
3318         int rc;
3319
3320         rc = cap_task_setnice(p, nice);
3321         if (rc)
3322                 return rc;
3323
3324         return current_has_perm(p, PROCESS__SETSCHED);
3325 }
3326
3327 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3328 {
3329         int rc;
3330
3331         rc = cap_task_setioprio(p, ioprio);
3332         if (rc)
3333                 return rc;
3334
3335         return current_has_perm(p, PROCESS__SETSCHED);
3336 }
3337
3338 static int selinux_task_getioprio(struct task_struct *p)
3339 {
3340         return current_has_perm(p, PROCESS__GETSCHED);
3341 }
3342
3343 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3344 {
3345         struct rlimit *old_rlim = current->signal->rlim + resource;
3346
3347         /* Control the ability to change the hard limit (whether
3348            lowering or raising it), so that the hard limit can
3349            later be used as a safe reset point for the soft limit
3350            upon context transitions.  See selinux_bprm_committing_creds. */
3351         if (old_rlim->rlim_max != new_rlim->rlim_max)
3352                 return current_has_perm(current, PROCESS__SETRLIMIT);
3353
3354         return 0;
3355 }
3356
3357 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3358 {
3359         int rc;
3360
3361         rc = cap_task_setscheduler(p, policy, lp);
3362         if (rc)
3363                 return rc;
3364
3365         return current_has_perm(p, PROCESS__SETSCHED);
3366 }
3367
3368 static int selinux_task_getscheduler(struct task_struct *p)
3369 {
3370         return current_has_perm(p, PROCESS__GETSCHED);
3371 }
3372
3373 static int selinux_task_movememory(struct task_struct *p)
3374 {
3375         return current_has_perm(p, PROCESS__SETSCHED);
3376 }
3377
3378 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3379                                 int sig, u32 secid)
3380 {
3381         u32 perm;
3382         int rc;
3383
3384         if (!sig)
3385                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3386         else
3387                 perm = signal_to_av(sig);
3388         if (secid)
3389                 rc = avc_has_perm(secid, task_sid(p),
3390                                   SECCLASS_PROCESS, perm, NULL);
3391         else
3392                 rc = current_has_perm(p, perm);
3393         return rc;
3394 }
3395
3396 static int selinux_task_wait(struct task_struct *p)
3397 {
3398         return task_has_perm(p, current, PROCESS__SIGCHLD);
3399 }
3400
3401 static void selinux_task_to_inode(struct task_struct *p,
3402                                   struct inode *inode)
3403 {
3404         struct inode_security_struct *isec = inode->i_security;
3405         u32 sid = task_sid(p);
3406
3407         isec->sid = sid;
3408         isec->initialized = 1;
3409 }
3410
3411 /* Returns error only if unable to parse addresses */
3412 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3413                         struct avc_audit_data *ad, u8 *proto)
3414 {
3415         int offset, ihlen, ret = -EINVAL;
3416         struct iphdr _iph, *ih;
3417
3418         offset = skb_network_offset(skb);
3419         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3420         if (ih == NULL)
3421                 goto out;
3422
3423         ihlen = ih->ihl * 4;
3424         if (ihlen < sizeof(_iph))
3425                 goto out;
3426
3427         ad->u.net.v4info.saddr = ih->saddr;
3428         ad->u.net.v4info.daddr = ih->daddr;
3429         ret = 0;
3430
3431         if (proto)
3432                 *proto = ih->protocol;
3433
3434         switch (ih->protocol) {
3435         case IPPROTO_TCP: {
3436                 struct tcphdr _tcph, *th;
3437
3438                 if (ntohs(ih->frag_off) & IP_OFFSET)
3439                         break;
3440
3441                 offset += ihlen;
3442                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3443                 if (th == NULL)
3444                         break;
3445
3446                 ad->u.net.sport = th->source;
3447                 ad->u.net.dport = th->dest;
3448                 break;
3449         }
3450
3451         case IPPROTO_UDP: {
3452                 struct udphdr _udph, *uh;
3453
3454                 if (ntohs(ih->frag_off) & IP_OFFSET)
3455                         break;
3456
3457                 offset += ihlen;
3458                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3459                 if (uh == NULL)
3460                         break;
3461
3462                 ad->u.net.sport = uh->source;
3463                 ad->u.net.dport = uh->dest;
3464                 break;
3465         }
3466
3467         case IPPROTO_DCCP: {
3468                 struct dccp_hdr _dccph, *dh;
3469
3470                 if (ntohs(ih->frag_off) & IP_OFFSET)
3471                         break;
3472
3473                 offset += ihlen;
3474                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3475                 if (dh == NULL)
3476                         break;
3477
3478                 ad->u.net.sport = dh->dccph_sport;
3479                 ad->u.net.dport = dh->dccph_dport;
3480                 break;
3481         }
3482
3483         default:
3484                 break;
3485         }
3486 out:
3487         return ret;
3488 }
3489
3490 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3491
3492 /* Returns error only if unable to parse addresses */
3493 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3494                         struct avc_audit_data *ad, u8 *proto)
3495 {
3496         u8 nexthdr;
3497         int ret = -EINVAL, offset;
3498         struct ipv6hdr _ipv6h, *ip6;
3499
3500         offset = skb_network_offset(skb);
3501         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3502         if (ip6 == NULL)
3503                 goto out;
3504
3505         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3506         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3507         ret = 0;
3508
3509         nexthdr = ip6->nexthdr;
3510         offset += sizeof(_ipv6h);
3511         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3512         if (offset < 0)
3513                 goto out;
3514
3515         if (proto)
3516                 *proto = nexthdr;
3517
3518         switch (nexthdr) {
3519         case IPPROTO_TCP: {
3520                 struct tcphdr _tcph, *th;
3521
3522                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3523                 if (th == NULL)
3524                         break;
3525
3526                 ad->u.net.sport = th->source;
3527                 ad->u.net.dport = th->dest;
3528                 break;
3529         }
3530
3531         case IPPROTO_UDP: {
3532                 struct udphdr _udph, *uh;
3533
3534                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3535                 if (uh == NULL)
3536                         break;
3537
3538                 ad->u.net.sport = uh->source;
3539                 ad->u.net.dport = uh->dest;
3540                 break;
3541         }
3542
3543         case IPPROTO_DCCP: {
3544                 struct dccp_hdr _dccph, *dh;
3545
3546                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3547                 if (dh == NULL)
3548                         break;
3549
3550                 ad->u.net.sport = dh->dccph_sport;
3551                 ad->u.net.dport = dh->dccph_dport;
3552                 break;
3553         }
3554
3555         /* includes fragments */
3556         default:
3557                 break;
3558         }
3559 out:
3560         return ret;
3561 }
3562
3563 #endif /* IPV6 */
3564
3565 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3566                              char **_addrp, int src, u8 *proto)
3567 {
3568         char *addrp;
3569         int ret;
3570
3571         switch (ad->u.net.family) {
3572         case PF_INET:
3573                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3574                 if (ret)
3575                         goto parse_error;
3576                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3577                                        &ad->u.net.v4info.daddr);
3578                 goto okay;
3579
3580 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3581         case PF_INET6:
3582                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3583                 if (ret)
3584                         goto parse_error;
3585                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3586                                        &ad->u.net.v6info.daddr);
3587                 goto okay;
3588 #endif  /* IPV6 */
3589         default:
3590                 addrp = NULL;
3591                 goto okay;
3592         }
3593
3594 parse_error:
3595         printk(KERN_WARNING
3596                "SELinux: failure in selinux_parse_skb(),"
3597                " unable to parse packet\n");
3598         return ret;
3599
3600 okay:
3601         if (_addrp)
3602                 *_addrp = addrp;
3603         return 0;
3604 }
3605
3606 /**
3607  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3608  * @skb: the packet
3609  * @family: protocol family
3610  * @sid: the packet's peer label SID
3611  *
3612  * Description:
3613  * Check the various different forms of network peer labeling and determine
3614  * the peer label/SID for the packet; most of the magic actually occurs in
3615  * the security server function security_net_peersid_cmp().  The function
3616  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3617  * or -EACCES if @sid is invalid due to inconsistencies with the different
3618  * peer labels.
3619  *
3620  */
3621 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3622 {
3623         int err;
3624         u32 xfrm_sid;
3625         u32 nlbl_sid;
3626         u32 nlbl_type;
3627
3628         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3629         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3630
3631         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3632         if (unlikely(err)) {
3633                 printk(KERN_WARNING
3634                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3635                        " unable to determine packet's peer label\n");
3636                 return -EACCES;
3637         }
3638
3639         return 0;
3640 }
3641
3642 /* socket security operations */
3643 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3644                            u32 perms)
3645 {
3646         struct inode_security_struct *isec;
3647         struct avc_audit_data ad;
3648         u32 sid;
3649         int err = 0;
3650
3651         isec = SOCK_INODE(sock)->i_security;
3652
3653         if (isec->sid == SECINITSID_KERNEL)
3654                 goto out;
3655         sid = task_sid(task);
3656
3657         AVC_AUDIT_DATA_INIT(&ad, NET);
3658         ad.u.net.sk = sock->sk;
3659         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3660
3661 out:
3662         return err;
3663 }
3664
3665 static int selinux_socket_create(int family, int type,
3666                                  int protocol, int kern)
3667 {
3668         const struct cred *cred = current_cred();
3669         const struct task_security_struct *tsec = cred->security;
3670         u32 sid, newsid;
3671         u16 secclass;
3672         int err = 0;
3673
3674         if (kern)
3675                 goto out;
3676
3677         sid = tsec->sid;
3678         newsid = tsec->sockcreate_sid ?: sid;
3679
3680         secclass = socket_type_to_security_class(family, type, protocol);
3681         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3682
3683 out:
3684         return err;
3685 }
3686
3687 static int selinux_socket_post_create(struct socket *sock, int family,
3688                                       int type, int protocol, int kern)
3689 {
3690         const struct cred *cred = current_cred();
3691         const struct task_security_struct *tsec = cred->security;
3692         struct inode_security_struct *isec;
3693         struct sk_security_struct *sksec;
3694         u32 sid, newsid;
3695         int err = 0;
3696
3697         sid = tsec->sid;
3698         newsid = tsec->sockcreate_sid;
3699
3700         isec = SOCK_INODE(sock)->i_security;
3701
3702         if (kern)
3703                 isec->sid = SECINITSID_KERNEL;
3704         else if (newsid)
3705                 isec->sid = newsid;
3706         else
3707                 isec->sid = sid;
3708
3709         isec->sclass = socket_type_to_security_class(family, type, protocol);
3710         isec->initialized = 1;
3711
3712         if (sock->sk) {
3713                 sksec = sock->sk->sk_security;
3714                 sksec->sid = isec->sid;
3715                 sksec->sclass = isec->sclass;
3716                 err = selinux_netlbl_socket_post_create(sock);
3717         }
3718
3719         return err;
3720 }
3721
3722 /* Range of port numbers used to automatically bind.
3723    Need to determine whether we should perform a name_bind
3724    permission check between the socket and the port number. */
3725
3726 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3727 {
3728         u16 family;
3729         int err;
3730
3731         err = socket_has_perm(current, sock, SOCKET__BIND);
3732         if (err)
3733                 goto out;
3734
3735         /*
3736          * If PF_INET or PF_INET6, check name_bind permission for the port.
3737          * Multiple address binding for SCTP is not supported yet: we just
3738          * check the first address now.
3739          */
3740         family = sock->sk->sk_family;
3741         if (family == PF_INET || family == PF_INET6) {
3742                 char *addrp;
3743                 struct inode_security_struct *isec;
3744                 struct avc_audit_data ad;
3745                 struct sockaddr_in *addr4 = NULL;
3746                 struct sockaddr_in6 *addr6 = NULL;
3747                 unsigned short snum;
3748                 struct sock *sk = sock->sk;
3749                 u32 sid, node_perm;
3750
3751                 isec = SOCK_INODE(sock)->i_security;
3752
3753                 if (family == PF_INET) {
3754                         addr4 = (struct sockaddr_in *)address;
3755                         snum = ntohs(addr4->sin_port);
3756                         addrp = (char *)&addr4->sin_addr.s_addr;
3757                 } else {
3758                         addr6 = (struct sockaddr_in6 *)address;
3759                         snum = ntohs(addr6->sin6_port);
3760                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3761                 }
3762
3763                 if (snum) {
3764                         int low, high;
3765
3766                         inet_get_local_port_range(&low, &high);
3767
3768                         if (snum < max(PROT_SOCK, low) || snum > high) {
3769                                 err = sel_netport_sid(sk->sk_protocol,
3770                                                       snum, &sid);
3771                                 if (err)
3772                                         goto out;
3773                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3774                                 ad.u.net.sport = htons(snum);
3775                                 ad.u.net.family = family;
3776                                 err = avc_has_perm(isec->sid, sid,
3777                                                    isec->sclass,
3778                                                    SOCKET__NAME_BIND, &ad);
3779                                 if (err)
3780                                         goto out;
3781                         }
3782                 }
3783
3784                 switch (isec->sclass) {
3785                 case SECCLASS_TCP_SOCKET:
3786                         node_perm = TCP_SOCKET__NODE_BIND;
3787                         break;
3788
3789                 case SECCLASS_UDP_SOCKET:
3790                         node_perm = UDP_SOCKET__NODE_BIND;
3791                         break;
3792
3793                 case SECCLASS_DCCP_SOCKET:
3794                         node_perm = DCCP_SOCKET__NODE_BIND;
3795                         break;
3796
3797                 default:
3798                         node_perm = RAWIP_SOCKET__NODE_BIND;
3799                         break;
3800                 }
3801
3802                 err = sel_netnode_sid(addrp, family, &sid);
3803                 if (err)
3804                         goto out;
3805
3806                 AVC_AUDIT_DATA_INIT(&ad, NET);
3807                 ad.u.net.sport = htons(snum);
3808                 ad.u.net.family = family;
3809
3810                 if (family == PF_INET)
3811                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3812                 else
3813                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3814
3815                 err = avc_has_perm(isec->sid, sid,
3816                                    isec->sclass, node_perm, &ad);
3817                 if (err)
3818                         goto out;
3819         }
3820 out:
3821         return err;
3822 }
3823
3824 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3825 {
3826         struct sock *sk = sock->sk;
3827         struct inode_security_struct *isec;
3828         int err;
3829
3830         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3831         if (err)
3832                 return err;
3833
3834         /*
3835          * If a TCP or DCCP socket, check name_connect permission for the port.
3836          */
3837         isec = SOCK_INODE(sock)->i_security;
3838         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3839             isec->sclass == SECCLASS_DCCP_SOCKET) {
3840                 struct avc_audit_data ad;
3841                 struct sockaddr_in *addr4 = NULL;
3842                 struct sockaddr_in6 *addr6 = NULL;
3843                 unsigned short snum;
3844                 u32 sid, perm;
3845
3846                 if (sk->sk_family == PF_INET) {
3847                         addr4 = (struct sockaddr_in *)address;
3848                         if (addrlen < sizeof(struct sockaddr_in))
3849                                 return -EINVAL;
3850                         snum = ntohs(addr4->sin_port);
3851                 } else {
3852                         addr6 = (struct sockaddr_in6 *)address;
3853                         if (addrlen < SIN6_LEN_RFC2133)
3854                                 return -EINVAL;
3855                         snum = ntohs(addr6->sin6_port);
3856                 }
3857
3858                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3859                 if (err)
3860                         goto out;
3861
3862                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3863                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3864
3865                 AVC_AUDIT_DATA_INIT(&ad, NET);
3866                 ad.u.net.dport = htons(snum);
3867                 ad.u.net.family = sk->sk_family;
3868                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3869                 if (err)
3870                         goto out;
3871         }
3872
3873         err = selinux_netlbl_socket_connect(sk, address);
3874
3875 out:
3876         return err;
3877 }
3878
3879 static int selinux_socket_listen(struct socket *sock, int backlog)
3880 {
3881         return socket_has_perm(current, sock, SOCKET__LISTEN);
3882 }
3883
3884 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3885 {
3886         int err;
3887         struct inode_security_struct *isec;
3888         struct inode_security_struct *newisec;
3889
3890         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3891         if (err)
3892                 return err;
3893
3894         newisec = SOCK_INODE(newsock)->i_security;
3895
3896         isec = SOCK_INODE(sock)->i_security;
3897         newisec->sclass = isec->sclass;
3898         newisec->sid = isec->sid;
3899         newisec->initialized = 1;
3900
3901         return 0;
3902 }
3903
3904 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3905                                   int size)
3906 {
3907         int rc;
3908
3909         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3910         if (rc)
3911                 return rc;
3912
3913         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3914 }
3915
3916 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3917                                   int size, int flags)
3918 {
3919         return socket_has_perm(current, sock, SOCKET__READ);
3920 }
3921
3922 static int selinux_socket_getsockname(struct socket *sock)
3923 {
3924         return socket_has_perm(current, sock, SOCKET__GETATTR);
3925 }
3926
3927 static int selinux_socket_getpeername(struct socket *sock)
3928 {
3929         return socket_has_perm(current, sock, SOCKET__GETATTR);
3930 }
3931
3932 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3933 {
3934         int err;
3935
3936         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3937         if (err)
3938                 return err;
3939
3940         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3941 }
3942
3943 static int selinux_socket_getsockopt(struct socket *sock, int level,
3944                                      int optname)
3945 {
3946         return socket_has_perm(current, sock, SOCKET__GETOPT);
3947 }
3948
3949 static int selinux_socket_shutdown(struct socket *sock, int how)
3950 {
3951         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3952 }
3953
3954 static int selinux_socket_unix_stream_connect(struct socket *sock,
3955                                               struct socket *other,
3956                                               struct sock *newsk)
3957 {
3958         struct sk_security_struct *ssec;
3959         struct inode_security_struct *isec;
3960         struct inode_security_struct *other_isec;
3961         struct avc_audit_data ad;
3962         int err;
3963
3964         isec = SOCK_INODE(sock)->i_security;
3965         other_isec = SOCK_INODE(other)->i_security;
3966
3967         AVC_AUDIT_DATA_INIT(&ad, NET);
3968         ad.u.net.sk = other->sk;
3969
3970         err = avc_has_perm(isec->sid, other_isec->sid,
3971                            isec->sclass,
3972                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3973         if (err)
3974                 return err;
3975
3976         /* connecting socket */
3977         ssec = sock->sk->sk_security;
3978         ssec->peer_sid = other_isec->sid;
3979
3980         /* server child socket */
3981         ssec = newsk->sk_security;
3982         ssec->peer_sid = isec->sid;
3983         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3984
3985         return err;
3986 }
3987
3988 static int selinux_socket_unix_may_send(struct socket *sock,
3989                                         struct socket *other)
3990 {
3991         struct inode_security_struct *isec;
3992         struct inode_security_struct *other_isec;
3993         struct avc_audit_data ad;
3994         int err;
3995
3996         isec = SOCK_INODE(sock)->i_security;
3997         other_isec = SOCK_INODE(other)->i_security;
3998
3999         AVC_AUDIT_DATA_INIT(&ad, NET);
4000         ad.u.net.sk = other->sk;
4001
4002         err = avc_has_perm(isec->sid, other_isec->sid,
4003                            isec->sclass, SOCKET__SENDTO, &ad);
4004         if (err)
4005                 return err;
4006
4007         return 0;
4008 }
4009
4010 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4011                                     u32 peer_sid,
4012                                     struct avc_audit_data *ad)
4013 {
4014         int err;
4015         u32 if_sid;
4016         u32 node_sid;
4017
4018         err = sel_netif_sid(ifindex, &if_sid);
4019         if (err)
4020                 return err;
4021         err = avc_has_perm(peer_sid, if_sid,
4022                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4023         if (err)
4024                 return err;
4025
4026         err = sel_netnode_sid(addrp, family, &node_sid);
4027         if (err)
4028                 return err;
4029         return avc_has_perm(peer_sid, node_sid,
4030                             SECCLASS_NODE, NODE__RECVFROM, ad);
4031 }
4032
4033 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4034                                                 struct sk_buff *skb,
4035                                                 struct avc_audit_data *ad,
4036                                                 u16 family,
4037                                                 char *addrp)
4038 {
4039         int err;
4040         struct sk_security_struct *sksec = sk->sk_security;
4041         u16 sk_class;
4042         u32 netif_perm, node_perm, recv_perm;
4043         u32 port_sid, node_sid, if_sid, sk_sid;
4044
4045         sk_sid = sksec->sid;
4046         sk_class = sksec->sclass;
4047
4048         switch (sk_class) {
4049         case SECCLASS_UDP_SOCKET:
4050                 netif_perm = NETIF__UDP_RECV;
4051                 node_perm = NODE__UDP_RECV;
4052                 recv_perm = UDP_SOCKET__RECV_MSG;
4053                 break;
4054         case SECCLASS_TCP_SOCKET:
4055                 netif_perm = NETIF__TCP_RECV;
4056                 node_perm = NODE__TCP_RECV;
4057                 recv_perm = TCP_SOCKET__RECV_MSG;
4058                 break;
4059         case SECCLASS_DCCP_SOCKET:
4060                 netif_perm = NETIF__DCCP_RECV;
4061                 node_perm = NODE__DCCP_RECV;
4062                 recv_perm = DCCP_SOCKET__RECV_MSG;
4063                 break;
4064         default:
4065                 netif_perm = NETIF__RAWIP_RECV;
4066                 node_perm = NODE__RAWIP_RECV;
4067                 recv_perm = 0;
4068                 break;
4069         }
4070
4071         err = sel_netif_sid(skb->iif, &if_sid);
4072         if (err)
4073                 return err;
4074         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4075         if (err)
4076                 return err;
4077
4078         err = sel_netnode_sid(addrp, family, &node_sid);
4079         if (err)
4080                 return err;
4081         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4082         if (err)
4083                 return err;
4084
4085         if (!recv_perm)
4086                 return 0;
4087         err = sel_netport_sid(sk->sk_protocol,
4088                               ntohs(ad->u.net.sport), &port_sid);
4089         if (unlikely(err)) {
4090                 printk(KERN_WARNING
4091                        "SELinux: failure in"
4092                        " selinux_sock_rcv_skb_iptables_compat(),"
4093                        " network port label not found\n");
4094                 return err;
4095         }
4096         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4097 }
4098
4099 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4100                                        u16 family)
4101 {
4102         int err = 0;
4103         struct sk_security_struct *sksec = sk->sk_security;
4104         u32 peer_sid;
4105         u32 sk_sid = sksec->sid;
4106         struct avc_audit_data ad;
4107         char *addrp;
4108
4109         AVC_AUDIT_DATA_INIT(&ad, NET);
4110         ad.u.net.netif = skb->iif;
4111         ad.u.net.family = family;
4112         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4113         if (err)
4114                 return err;
4115
4116         if (selinux_compat_net)
4117                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4118                                                            family, addrp);
4119         else if (selinux_secmark_enabled())
4120                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4121                                    PACKET__RECV, &ad);
4122         if (err)
4123                 return err;
4124
4125         if (selinux_policycap_netpeer) {
4126                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4127                 if (err)
4128                         return err;
4129                 err = avc_has_perm(sk_sid, peer_sid,
4130                                    SECCLASS_PEER, PEER__RECV, &ad);
4131                 if (err)
4132                         selinux_netlbl_err(skb, err, 0);
4133         } else {
4134                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4135                 if (err)
4136                         return err;
4137                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4138         }
4139
4140         return err;
4141 }
4142
4143 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4144 {
4145         int err;
4146         struct sk_security_struct *sksec = sk->sk_security;
4147         u16 family = sk->sk_family;
4148         u32 sk_sid = sksec->sid;
4149         struct avc_audit_data ad;
4150         char *addrp;
4151         u8 secmark_active;
4152         u8 peerlbl_active;
4153
4154         if (family != PF_INET && family != PF_INET6)
4155                 return 0;
4156
4157         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4158         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4159                 family = PF_INET;
4160
4161         /* If any sort of compatibility mode is enabled then handoff processing
4162          * to the selinux_sock_rcv_skb_compat() function to deal with the
4163          * special handling.  We do this in an attempt to keep this function
4164          * as fast and as clean as possible. */
4165         if (selinux_compat_net || !selinux_policycap_netpeer)
4166                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4167
4168         secmark_active = selinux_secmark_enabled();
4169         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4170         if (!secmark_active && !peerlbl_active)
4171                 return 0;
4172
4173         AVC_AUDIT_DATA_INIT(&ad, NET);
4174         ad.u.net.netif = skb->iif;
4175         ad.u.net.family = family;
4176         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4177         if (err)
4178                 return err;
4179
4180         if (peerlbl_active) {
4181                 u32 peer_sid;
4182
4183                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4184                 if (err)
4185                         return err;
4186                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4187                                                peer_sid, &ad);
4188                 if (err) {
4189                         selinux_netlbl_err(skb, err, 0);
4190                         return err;
4191                 }
4192                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4193                                    PEER__RECV, &ad);
4194                 if (err)
4195                         selinux_netlbl_err(skb, err, 0);
4196         }
4197
4198         if (secmark_active) {
4199                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4200                                    PACKET__RECV, &ad);
4201                 if (err)
4202                         return err;
4203         }
4204
4205         return err;
4206 }
4207
4208 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4209                                             int __user *optlen, unsigned len)
4210 {
4211         int err = 0;
4212         char *scontext;
4213         u32 scontext_len;
4214         struct sk_security_struct *ssec;
4215         struct inode_security_struct *isec;
4216         u32 peer_sid = SECSID_NULL;
4217
4218         isec = SOCK_INODE(sock)->i_security;
4219
4220         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4221             isec->sclass == SECCLASS_TCP_SOCKET) {
4222                 ssec = sock->sk->sk_security;
4223                 peer_sid = ssec->peer_sid;
4224         }
4225         if (peer_sid == SECSID_NULL) {
4226                 err = -ENOPROTOOPT;
4227                 goto out;
4228         }
4229
4230         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4231
4232         if (err)
4233                 goto out;
4234
4235         if (scontext_len > len) {
4236                 err = -ERANGE;
4237                 goto out_len;
4238         }
4239
4240         if (copy_to_user(optval, scontext, scontext_len))
4241                 err = -EFAULT;
4242
4243 out_len:
4244         if (put_user(scontext_len, optlen))
4245                 err = -EFAULT;
4246
4247         kfree(scontext);
4248 out:
4249         return err;
4250 }
4251
4252 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4253 {
4254         u32 peer_secid = SECSID_NULL;
4255         u16 family;
4256
4257         if (skb && skb->protocol == htons(ETH_P_IP))
4258                 family = PF_INET;
4259         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4260                 family = PF_INET6;
4261         else if (sock)
4262                 family = sock->sk->sk_family;
4263         else
4264                 goto out;
4265
4266         if (sock && family == PF_UNIX)
4267                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4268         else if (skb)
4269                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4270
4271 out:
4272         *secid = peer_secid;
4273         if (peer_secid == SECSID_NULL)
4274                 return -EINVAL;
4275         return 0;
4276 }
4277
4278 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4279 {
4280         return sk_alloc_security(sk, family, priority);
4281 }
4282
4283 static void selinux_sk_free_security(struct sock *sk)
4284 {
4285         sk_free_security(sk);
4286 }
4287
4288 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4289 {
4290         struct sk_security_struct *ssec = sk->sk_security;
4291         struct sk_security_struct *newssec = newsk->sk_security;
4292
4293         newssec->sid = ssec->sid;
4294         newssec->peer_sid = ssec->peer_sid;
4295         newssec->sclass = ssec->sclass;
4296
4297         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4298 }
4299
4300 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4301 {
4302         if (!sk)
4303                 *secid = SECINITSID_ANY_SOCKET;
4304         else {
4305                 struct sk_security_struct *sksec = sk->sk_security;
4306
4307                 *secid = sksec->sid;
4308         }
4309 }
4310
4311 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4312 {
4313         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4314         struct sk_security_struct *sksec = sk->sk_security;
4315
4316         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4317             sk->sk_family == PF_UNIX)
4318                 isec->sid = sksec->sid;
4319         sksec->sclass = isec->sclass;
4320 }
4321
4322 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4323                                      struct request_sock *req)
4324 {
4325         struct sk_security_struct *sksec = sk->sk_security;
4326         int err;
4327         u16 family = sk->sk_family;
4328         u32 newsid;
4329         u32 peersid;
4330
4331         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4332         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4333                 family = PF_INET;
4334
4335         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4336         if (err)
4337                 return err;
4338         if (peersid == SECSID_NULL) {
4339                 req->secid = sksec->sid;
4340                 req->peer_secid = SECSID_NULL;
4341                 return 0;
4342         }
4343
4344         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4345         if (err)
4346                 return err;
4347
4348         req->secid = newsid;
4349         req->peer_secid = peersid;
4350         return 0;
4351 }
4352
4353 static void selinux_inet_csk_clone(struct sock *newsk,
4354                                    const struct request_sock *req)
4355 {
4356         struct sk_security_struct *newsksec = newsk->sk_security;
4357
4358         newsksec->sid = req->secid;
4359         newsksec->peer_sid = req->peer_secid;
4360         /* NOTE: Ideally, we should also get the isec->sid for the
4361            new socket in sync, but we don't have the isec available yet.
4362            So we will wait until sock_graft to do it, by which
4363            time it will have been created and available. */
4364
4365         /* We don't need to take any sort of lock here as we are the only
4366          * thread with access to newsksec */
4367         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4368 }
4369
4370 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4371 {
4372         u16 family = sk->sk_family;
4373         struct sk_security_struct *sksec = sk->sk_security;
4374
4375         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4376         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4377                 family = PF_INET;
4378
4379         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4380
4381         selinux_netlbl_inet_conn_established(sk, family);
4382 }
4383
4384 static void selinux_req_classify_flow(const struct request_sock *req,
4385                                       struct flowi *fl)
4386 {
4387         fl->secid = req->secid;
4388 }
4389
4390 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4391 {
4392         int err = 0;
4393         u32 perm;
4394         struct nlmsghdr *nlh;
4395         struct socket *sock = sk->sk_socket;
4396         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4397
4398         if (skb->len < NLMSG_SPACE(0)) {
4399                 err = -EINVAL;
4400                 goto out;
4401         }
4402         nlh = nlmsg_hdr(skb);
4403
4404         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4405         if (err) {
4406                 if (err == -EINVAL) {
4407                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4408                                   "SELinux:  unrecognized netlink message"
4409                                   " type=%hu for sclass=%hu\n",
4410                                   nlh->nlmsg_type, isec->sclass);
4411                         if (!selinux_enforcing || security_get_allow_unknown())
4412                                 err = 0;
4413                 }
4414
4415                 /* Ignore */
4416                 if (err == -ENOENT)
4417                         err = 0;
4418                 goto out;
4419         }
4420
4421         err = socket_has_perm(current, sock, perm);
4422 out:
4423         return err;
4424 }
4425
4426 #ifdef CONFIG_NETFILTER
4427
4428 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4429                                        u16 family)
4430 {
4431         int err;
4432         char *addrp;
4433         u32 peer_sid;
4434         struct avc_audit_data ad;
4435         u8 secmark_active;
4436         u8 netlbl_active;
4437         u8 peerlbl_active;
4438
4439         if (!selinux_policycap_netpeer)
4440                 return NF_ACCEPT;
4441
4442         secmark_active = selinux_secmark_enabled();
4443         netlbl_active = netlbl_enabled();
4444         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4445         if (!secmark_active && !peerlbl_active)
4446                 return NF_ACCEPT;
4447
4448         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4449                 return NF_DROP;
4450
4451         AVC_AUDIT_DATA_INIT(&ad, NET);
4452         ad.u.net.netif = ifindex;
4453         ad.u.net.family = family;
4454         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4455                 return NF_DROP;
4456
4457         if (peerlbl_active) {
4458                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4459                                                peer_sid, &ad);
4460                 if (err) {
4461                         selinux_netlbl_err(skb, err, 1);
4462                         return NF_DROP;
4463                 }
4464         }
4465
4466         if (secmark_active)
4467                 if (avc_has_perm(peer_sid, skb->secmark,
4468                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4469                         return NF_DROP;
4470
4471         if (netlbl_active)
4472                 /* we do this in the FORWARD path and not the POST_ROUTING
4473                  * path because we want to make sure we apply the necessary
4474                  * labeling before IPsec is applied so we can leverage AH
4475                  * protection */
4476                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4477                         return NF_DROP;
4478
4479         return NF_ACCEPT;
4480 }
4481
4482 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4483                                          struct sk_buff *skb,
4484                                          const struct net_device *in,
4485                                          const struct net_device *out,
4486                                          int (*okfn)(struct sk_buff *))
4487 {
4488         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4489 }
4490
4491 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4492 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4493                                          struct sk_buff *skb,
4494                                          const struct net_device *in,
4495                                          const struct net_device *out,
4496                                          int (*okfn)(struct sk_buff *))
4497 {
4498         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4499 }
4500 #endif  /* IPV6 */
4501
4502 static unsigned int selinux_ip_output(struct sk_buff *skb,
4503                                       u16 family)
4504 {
4505         u32 sid;
4506
4507         if (!netlbl_enabled())
4508                 return NF_ACCEPT;
4509
4510         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4511          * because we want to make sure we apply the necessary labeling
4512          * before IPsec is applied so we can leverage AH protection */
4513         if (skb->sk) {
4514                 struct sk_security_struct *sksec = skb->sk->sk_security;
4515                 sid = sksec->sid;
4516         } else
4517                 sid = SECINITSID_KERNEL;
4518         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4519                 return NF_DROP;
4520
4521         return NF_ACCEPT;
4522 }
4523
4524 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4525                                         struct sk_buff *skb,
4526                                         const struct net_device *in,
4527                                         const struct net_device *out,
4528                                         int (*okfn)(struct sk_buff *))
4529 {
4530         return selinux_ip_output(skb, PF_INET);
4531 }
4532
4533 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4534                                                 int ifindex,
4535                                                 struct avc_audit_data *ad,
4536                                                 u16 family, char *addrp)
4537 {
4538         int err;
4539         struct sk_security_struct *sksec = sk->sk_security;
4540         u16 sk_class;
4541         u32 netif_perm, node_perm, send_perm;
4542         u32 port_sid, node_sid, if_sid, sk_sid;
4543
4544         sk_sid = sksec->sid;
4545         sk_class = sksec->sclass;
4546
4547         switch (sk_class) {
4548         case SECCLASS_UDP_SOCKET:
4549                 netif_perm = NETIF__UDP_SEND;
4550                 node_perm = NODE__UDP_SEND;
4551                 send_perm = UDP_SOCKET__SEND_MSG;
4552                 break;
4553         case SECCLASS_TCP_SOCKET:
4554                 netif_perm = NETIF__TCP_SEND;
4555                 node_perm = NODE__TCP_SEND;
4556                 send_perm = TCP_SOCKET__SEND_MSG;
4557                 break;
4558         case SECCLASS_DCCP_SOCKET:
4559                 netif_perm = NETIF__DCCP_SEND;
4560                 node_perm = NODE__DCCP_SEND;
4561                 send_perm = DCCP_SOCKET__SEND_MSG;
4562                 break;
4563         default:
4564                 netif_perm = NETIF__RAWIP_SEND;
4565                 node_perm = NODE__RAWIP_SEND;
4566                 send_perm = 0;
4567                 break;
4568         }
4569
4570         err = sel_netif_sid(ifindex, &if_sid);
4571         if (err)
4572                 return err;
4573         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4574                 return err;
4575
4576         err = sel_netnode_sid(addrp, family, &node_sid);
4577         if (err)
4578                 return err;
4579         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4580         if (err)
4581                 return err;
4582
4583         if (send_perm != 0)
4584                 return 0;
4585
4586         err = sel_netport_sid(sk->sk_protocol,
4587                               ntohs(ad->u.net.dport), &port_sid);
4588         if (unlikely(err)) {
4589                 printk(KERN_WARNING
4590                        "SELinux: failure in"
4591                        " selinux_ip_postroute_iptables_compat(),"
4592                        " network port label not found\n");
4593                 return err;
4594         }
4595         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4596 }
4597
4598 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4599                                                 int ifindex,
4600                                                 u16 family)
4601 {
4602         struct sock *sk = skb->sk;
4603         struct sk_security_struct *sksec;
4604         struct avc_audit_data ad;
4605         char *addrp;
4606         u8 proto;
4607
4608         if (sk == NULL)
4609                 return NF_ACCEPT;
4610         sksec = sk->sk_security;
4611
4612         AVC_AUDIT_DATA_INIT(&ad, NET);
4613         ad.u.net.netif = ifindex;
4614         ad.u.net.family = family;
4615         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4616                 return NF_DROP;
4617
4618         if (selinux_compat_net) {
4619                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4620                                                          &ad, family, addrp))
4621                         return NF_DROP;
4622         } else if (selinux_secmark_enabled()) {
4623                 if (avc_has_perm(sksec->sid, skb->secmark,
4624                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4625                         return NF_DROP;
4626         }
4627
4628         if (selinux_policycap_netpeer)
4629                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4630                         return NF_DROP;
4631
4632         return NF_ACCEPT;
4633 }
4634
4635 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4636                                          u16 family)
4637 {
4638         u32 secmark_perm;
4639         u32 peer_sid;
4640         struct sock *sk;
4641         struct avc_audit_data ad;
4642         char *addrp;
4643         u8 secmark_active;
4644         u8 peerlbl_active;
4645
4646         /* If any sort of compatibility mode is enabled then handoff processing
4647          * to the selinux_ip_postroute_compat() function to deal with the
4648          * special handling.  We do this in an attempt to keep this function
4649          * as fast and as clean as possible. */
4650         if (selinux_compat_net || !selinux_policycap_netpeer)
4651                 return selinux_ip_postroute_compat(skb, ifindex, family);
4652 #ifdef CONFIG_XFRM
4653         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4654          * packet transformation so allow the packet to pass without any checks
4655          * since we'll have another chance to perform access control checks
4656          * when the packet is on it's final way out.
4657          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4658          *       is NULL, in this case go ahead and apply access control. */
4659         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4660                 return NF_ACCEPT;
4661 #endif
4662         secmark_active = selinux_secmark_enabled();
4663         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4664         if (!secmark_active && !peerlbl_active)
4665                 return NF_ACCEPT;
4666
4667         /* if the packet is being forwarded then get the peer label from the
4668          * packet itself; otherwise check to see if it is from a local
4669          * application or the kernel, if from an application get the peer label
4670          * from the sending socket, otherwise use the kernel's sid */
4671         sk = skb->sk;
4672         if (sk == NULL) {
4673                 switch (family) {
4674                 case PF_INET:
4675                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4676                                 secmark_perm = PACKET__FORWARD_OUT;
4677                         else
4678                                 secmark_perm = PACKET__SEND;
4679                         break;
4680                 case PF_INET6:
4681                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4682                                 secmark_perm = PACKET__FORWARD_OUT;
4683                         else
4684                                 secmark_perm = PACKET__SEND;
4685                         break;
4686                 default:
4687                         return NF_DROP;
4688                 }
4689                 if (secmark_perm == PACKET__FORWARD_OUT) {
4690                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4691                                 return NF_DROP;
4692                 } else
4693                         peer_sid = SECINITSID_KERNEL;
4694         } else {
4695                 struct sk_security_struct *sksec = sk->sk_security;
4696                 peer_sid = sksec->sid;
4697                 secmark_perm = PACKET__SEND;
4698         }
4699
4700         AVC_AUDIT_DATA_INIT(&ad, NET);
4701         ad.u.net.netif = ifindex;
4702         ad.u.net.family = family;
4703         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4704                 return NF_DROP;
4705
4706         if (secmark_active)
4707                 if (avc_has_perm(peer_sid, skb->secmark,
4708                                  SECCLASS_PACKET, secmark_perm, &ad))
4709                         return NF_DROP;
4710
4711         if (peerlbl_active) {
4712                 u32 if_sid;
4713                 u32 node_sid;
4714
4715                 if (sel_netif_sid(ifindex, &if_sid))
4716                         return NF_DROP;
4717                 if (avc_has_perm(peer_sid, if_sid,
4718                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4719                         return NF_DROP;
4720
4721                 if (sel_netnode_sid(addrp, family, &node_sid))
4722                         return NF_DROP;
4723                 if (avc_has_perm(peer_sid, node_sid,
4724                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4725                         return NF_DROP;
4726         }
4727
4728         return NF_ACCEPT;
4729 }
4730
4731 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4732                                            struct sk_buff *skb,
4733                                            const struct net_device *in,
4734                                            const struct net_device *out,
4735                                            int (*okfn)(struct sk_buff *))
4736 {
4737         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4738 }
4739
4740 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4741 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4742                                            struct sk_buff *skb,
4743                                            const struct net_device *in,
4744                                            const struct net_device *out,
4745                                            int (*okfn)(struct sk_buff *))
4746 {
4747         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4748 }
4749 #endif  /* IPV6 */
4750
4751 #endif  /* CONFIG_NETFILTER */
4752
4753 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4754 {
4755         int err;
4756
4757         err = cap_netlink_send(sk, skb);
4758         if (err)
4759                 return err;
4760
4761         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4762                 err = selinux_nlmsg_perm(sk, skb);
4763
4764         return err;
4765 }
4766
4767 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4768 {
4769         int err;
4770         struct avc_audit_data ad;
4771
4772         err = cap_netlink_recv(skb, capability);
4773         if (err)
4774                 return err;
4775
4776         AVC_AUDIT_DATA_INIT(&ad, CAP);
4777         ad.u.cap = capability;
4778
4779         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4780                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4781 }
4782
4783 static int ipc_alloc_security(struct task_struct *task,
4784                               struct kern_ipc_perm *perm,
4785                               u16 sclass)
4786 {
4787         struct ipc_security_struct *isec;
4788         u32 sid;
4789
4790         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4791         if (!isec)
4792                 return -ENOMEM;
4793
4794         sid = task_sid(task);
4795         isec->sclass = sclass;
4796         isec->sid = sid;
4797         perm->security = isec;
4798
4799         return 0;
4800 }
4801
4802 static void ipc_free_security(struct kern_ipc_perm *perm)
4803 {
4804         struct ipc_security_struct *isec = perm->security;
4805         perm->security = NULL;
4806         kfree(isec);
4807 }
4808
4809 static int msg_msg_alloc_security(struct msg_msg *msg)
4810 {
4811         struct msg_security_struct *msec;
4812
4813         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4814         if (!msec)
4815                 return -ENOMEM;
4816
4817         msec->sid = SECINITSID_UNLABELED;
4818         msg->security = msec;
4819
4820         return 0;
4821 }
4822
4823 static void msg_msg_free_security(struct msg_msg *msg)
4824 {
4825         struct msg_security_struct *msec = msg->security;
4826
4827         msg->security = NULL;
4828         kfree(msec);
4829 }
4830
4831 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4832                         u32 perms)
4833 {
4834         struct ipc_security_struct *isec;
4835         struct avc_audit_data ad;
4836         u32 sid = current_sid();
4837
4838         isec = ipc_perms->security;
4839
4840         AVC_AUDIT_DATA_INIT(&ad, IPC);
4841         ad.u.ipc_id = ipc_perms->key;
4842
4843         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4844 }
4845
4846 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4847 {
4848         return msg_msg_alloc_security(msg);
4849 }
4850
4851 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4852 {
4853         msg_msg_free_security(msg);
4854 }
4855
4856 /* message queue security operations */
4857 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4858 {
4859         struct ipc_security_struct *isec;
4860         struct avc_audit_data ad;
4861         u32 sid = current_sid();
4862         int rc;
4863
4864         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4865         if (rc)
4866                 return rc;
4867
4868         isec = msq->q_perm.security;
4869
4870         AVC_AUDIT_DATA_INIT(&ad, IPC);
4871         ad.u.ipc_id = msq->q_perm.key;
4872
4873         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4874                           MSGQ__CREATE, &ad);
4875         if (rc) {
4876                 ipc_free_security(&msq->q_perm);
4877                 return rc;
4878         }
4879         return 0;
4880 }
4881
4882 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4883 {
4884         ipc_free_security(&msq->q_perm);
4885 }
4886
4887 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4888 {
4889         struct ipc_security_struct *isec;
4890         struct avc_audit_data ad;
4891         u32 sid = current_sid();
4892
4893         isec = msq->q_perm.security;
4894
4895         AVC_AUDIT_DATA_INIT(&ad, IPC);
4896         ad.u.ipc_id = msq->q_perm.key;
4897
4898         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4899                             MSGQ__ASSOCIATE, &ad);
4900 }
4901
4902 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4903 {
4904         int err;
4905         int perms;
4906
4907         switch (cmd) {
4908         case IPC_INFO:
4909         case MSG_INFO:
4910                 /* No specific object, just general system-wide information. */
4911                 return task_has_system(current, SYSTEM__IPC_INFO);
4912         case IPC_STAT:
4913         case MSG_STAT:
4914                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4915                 break;
4916         case IPC_SET:
4917                 perms = MSGQ__SETATTR;
4918                 break;
4919         case IPC_RMID:
4920                 perms = MSGQ__DESTROY;
4921                 break;
4922         default:
4923                 return 0;
4924         }
4925
4926         err = ipc_has_perm(&msq->q_perm, perms);
4927         return err;
4928 }
4929
4930 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4931 {
4932         struct ipc_security_struct *isec;
4933         struct msg_security_struct *msec;
4934         struct avc_audit_data ad;
4935         u32 sid = current_sid();
4936         int rc;
4937
4938         isec = msq->q_perm.security;
4939         msec = msg->security;
4940
4941         /*
4942          * First time through, need to assign label to the message
4943          */
4944         if (msec->sid == SECINITSID_UNLABELED) {
4945                 /*
4946                  * Compute new sid based on current process and
4947                  * message queue this message will be stored in
4948                  */
4949                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4950                                              &msec->sid);
4951                 if (rc)
4952                         return rc;
4953         }
4954
4955         AVC_AUDIT_DATA_INIT(&ad, IPC);
4956         ad.u.ipc_id = msq->q_perm.key;
4957
4958         /* Can this process write to the queue? */
4959         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4960                           MSGQ__WRITE, &ad);
4961         if (!rc)
4962                 /* Can this process send the message */
4963                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4964                                   MSG__SEND, &ad);
4965         if (!rc)
4966                 /* Can the message be put in the queue? */
4967                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4968                                   MSGQ__ENQUEUE, &ad);
4969
4970         return rc;
4971 }
4972
4973 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4974                                     struct task_struct *target,
4975                                     long type, int mode)
4976 {
4977         struct ipc_security_struct *isec;
4978         struct msg_security_struct *msec;
4979         struct avc_audit_data ad;
4980         u32 sid = task_sid(target);
4981         int rc;
4982
4983         isec = msq->q_perm.security;
4984         msec = msg->security;
4985
4986         AVC_AUDIT_DATA_INIT(&ad, IPC);
4987         ad.u.ipc_id = msq->q_perm.key;
4988
4989         rc = avc_has_perm(sid, isec->sid,
4990                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4991         if (!rc)
4992                 rc = avc_has_perm(sid, msec->sid,
4993                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4994         return rc;
4995 }
4996
4997 /* Shared Memory security operations */
4998 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4999 {
5000         struct ipc_security_struct *isec;
5001         struct avc_audit_data ad;
5002         u32 sid = current_sid();
5003         int rc;
5004
5005         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5006         if (rc)
5007                 return rc;
5008
5009         isec = shp->shm_perm.security;
5010
5011         AVC_AUDIT_DATA_INIT(&ad, IPC);
5012         ad.u.ipc_id = shp->shm_perm.key;
5013
5014         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5015                           SHM__CREATE, &ad);
5016         if (rc) {
5017                 ipc_free_security(&shp->shm_perm);
5018                 return rc;
5019         }
5020         return 0;
5021 }
5022
5023 static void selinux_shm_free_security(struct shmid_kernel *shp)
5024 {
5025         ipc_free_security(&shp->shm_perm);
5026 }
5027
5028 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5029 {
5030         struct ipc_security_struct *isec;
5031         struct avc_audit_data ad;
5032         u32 sid = current_sid();
5033
5034         isec = shp->shm_perm.security;
5035
5036         AVC_AUDIT_DATA_INIT(&ad, IPC);
5037         ad.u.ipc_id = shp->shm_perm.key;
5038
5039         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5040                             SHM__ASSOCIATE, &ad);
5041 }
5042
5043 /* Note, at this point, shp is locked down */
5044 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5045 {
5046         int perms;
5047         int err;
5048
5049         switch (cmd) {
5050         case IPC_INFO:
5051         case SHM_INFO:
5052                 /* No specific object, just general system-wide information. */
5053                 return task_has_system(current, SYSTEM__IPC_INFO);
5054         case IPC_STAT:
5055         case SHM_STAT:
5056                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5057                 break;
5058         case IPC_SET:
5059                 perms = SHM__SETATTR;
5060                 break;
5061         case SHM_LOCK:
5062         case SHM_UNLOCK:
5063                 perms = SHM__LOCK;
5064                 break;
5065         case IPC_RMID:
5066                 perms = SHM__DESTROY;
5067                 break;
5068         default:
5069                 return 0;
5070         }
5071
5072         err = ipc_has_perm(&shp->shm_perm, perms);
5073         return err;
5074 }
5075
5076 static int selinux_shm_shmat(struct shmid_kernel *shp,
5077                              char __user *shmaddr, int shmflg)
5078 {
5079         u32 perms;
5080
5081         if (shmflg & SHM_RDONLY)
5082                 perms = SHM__READ;
5083         else
5084                 perms = SHM__READ | SHM__WRITE;
5085
5086         return ipc_has_perm(&shp->shm_perm, perms);
5087 }
5088
5089 /* Semaphore security operations */
5090 static int selinux_sem_alloc_security(struct sem_array *sma)
5091 {
5092         struct ipc_security_struct *isec;
5093         struct avc_audit_data ad;
5094         u32 sid = current_sid();
5095         int rc;
5096
5097         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5098         if (rc)
5099                 return rc;
5100
5101         isec = sma->sem_perm.security;
5102
5103         AVC_AUDIT_DATA_INIT(&ad, IPC);
5104         ad.u.ipc_id = sma->sem_perm.key;
5105
5106         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5107                           SEM__CREATE, &ad);
5108         if (rc) {
5109                 ipc_free_security(&sma->sem_perm);
5110                 return rc;
5111         }
5112         return 0;
5113 }
5114
5115 static void selinux_sem_free_security(struct sem_array *sma)
5116 {
5117         ipc_free_security(&sma->sem_perm);
5118 }
5119
5120 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5121 {
5122         struct ipc_security_struct *isec;
5123         struct avc_audit_data ad;
5124         u32 sid = current_sid();
5125
5126         isec = sma->sem_perm.security;
5127
5128         AVC_AUDIT_DATA_INIT(&ad, IPC);
5129         ad.u.ipc_id = sma->sem_perm.key;
5130
5131         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5132                             SEM__ASSOCIATE, &ad);
5133 }
5134
5135 /* Note, at this point, sma is locked down */
5136 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5137 {
5138         int err;
5139         u32 perms;
5140
5141         switch (cmd) {
5142         case IPC_INFO:
5143         case SEM_INFO:
5144                 /* No specific object, just general system-wide information. */
5145                 return task_has_system(current, SYSTEM__IPC_INFO);
5146         case GETPID:
5147         case GETNCNT:
5148         case GETZCNT:
5149                 perms = SEM__GETATTR;
5150                 break;
5151         case GETVAL:
5152         case GETALL:
5153                 perms = SEM__READ;
5154                 break;
5155         case SETVAL:
5156         case SETALL:
5157                 perms = SEM__WRITE;
5158                 break;
5159         case IPC_RMID:
5160                 perms = SEM__DESTROY;
5161                 break;
5162         case IPC_SET:
5163                 perms = SEM__SETATTR;
5164                 break;
5165         case IPC_STAT:
5166         case SEM_STAT:
5167                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5168                 break;
5169         default:
5170                 return 0;
5171         }
5172
5173         err = ipc_has_perm(&sma->sem_perm, perms);
5174         return err;
5175 }
5176
5177 static int selinux_sem_semop(struct sem_array *sma,
5178                              struct sembuf *sops, unsigned nsops, int alter)
5179 {
5180         u32 perms;
5181
5182         if (alter)
5183                 perms = SEM__READ | SEM__WRITE;
5184         else
5185                 perms = SEM__READ;
5186
5187         return ipc_has_perm(&sma->sem_perm, perms);
5188 }
5189
5190 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5191 {
5192         u32 av = 0;
5193
5194         av = 0;
5195         if (flag & S_IRUGO)
5196                 av |= IPC__UNIX_READ;
5197         if (flag & S_IWUGO)
5198                 av |= IPC__UNIX_WRITE;
5199
5200         if (av == 0)
5201                 return 0;
5202
5203         return ipc_has_perm(ipcp, av);
5204 }
5205
5206 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5207 {
5208         struct ipc_security_struct *isec = ipcp->security;
5209         *secid = isec->sid;
5210 }
5211
5212 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5213 {
5214         if (inode)
5215                 inode_doinit_with_dentry(inode, dentry);
5216 }
5217
5218 static int selinux_getprocattr(struct task_struct *p,
5219                                char *name, char **value)
5220 {
5221         const struct task_security_struct *__tsec;
5222         u32 sid;
5223         int error;
5224         unsigned len;
5225
5226         if (current != p) {
5227                 error = current_has_perm(p, PROCESS__GETATTR);
5228                 if (error)
5229                         return error;
5230         }
5231
5232         rcu_read_lock();
5233         __tsec = __task_cred(p)->security;
5234
5235         if (!strcmp(name, "current"))
5236                 sid = __tsec->sid;
5237         else if (!strcmp(name, "prev"))
5238                 sid = __tsec->osid;
5239         else if (!strcmp(name, "exec"))
5240                 sid = __tsec->exec_sid;
5241         else if (!strcmp(name, "fscreate"))
5242                 sid = __tsec->create_sid;
5243         else if (!strcmp(name, "keycreate"))
5244                 sid = __tsec->keycreate_sid;
5245         else if (!strcmp(name, "sockcreate"))
5246                 sid = __tsec->sockcreate_sid;
5247         else
5248                 goto invalid;
5249         rcu_read_unlock();
5250
5251         if (!sid)
5252                 return 0;
5253
5254         error = security_sid_to_context(sid, value, &len);
5255         if (error)
5256                 return error;
5257         return len;
5258
5259 invalid:
5260         rcu_read_unlock();
5261         return -EINVAL;
5262 }
5263
5264 static int selinux_setprocattr(struct task_struct *p,
5265                                char *name, void *value, size_t size)
5266 {
5267         struct task_security_struct *tsec;
5268         struct task_struct *tracer;
5269         struct cred *new;
5270         u32 sid = 0, ptsid;
5271         int error;
5272         char *str = value;
5273
5274         if (current != p) {
5275                 /* SELinux only allows a process to change its own
5276                    security attributes. */
5277                 return -EACCES;
5278         }
5279
5280         /*
5281          * Basic control over ability to set these attributes at all.
5282          * current == p, but we'll pass them separately in case the
5283          * above restriction is ever removed.
5284          */
5285         if (!strcmp(name, "exec"))
5286                 error = current_has_perm(p, PROCESS__SETEXEC);
5287         else if (!strcmp(name, "fscreate"))
5288                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5289         else if (!strcmp(name, "keycreate"))
5290                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5291         else if (!strcmp(name, "sockcreate"))
5292                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5293         else if (!strcmp(name, "current"))
5294                 error = current_has_perm(p, PROCESS__SETCURRENT);
5295         else
5296                 error = -EINVAL;
5297         if (error)
5298                 return error;
5299
5300         /* Obtain a SID for the context, if one was specified. */
5301         if (size && str[1] && str[1] != '\n') {
5302                 if (str[size-1] == '\n') {
5303                         str[size-1] = 0;
5304                         size--;
5305                 }
5306                 error = security_context_to_sid(value, size, &sid);
5307                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5308                         if (!capable(CAP_MAC_ADMIN))
5309                                 return error;
5310                         error = security_context_to_sid_force(value, size,
5311                                                               &sid);
5312                 }
5313                 if (error)
5314                         return error;
5315         }
5316
5317         new = prepare_creds();
5318         if (!new)
5319                 return -ENOMEM;
5320
5321         /* Permission checking based on the specified context is
5322            performed during the actual operation (execve,
5323            open/mkdir/...), when we know the full context of the
5324            operation.  See selinux_bprm_set_creds for the execve
5325            checks and may_create for the file creation checks. The
5326            operation will then fail if the context is not permitted. */
5327         tsec = new->security;
5328         if (!strcmp(name, "exec")) {
5329                 tsec->exec_sid = sid;
5330         } else if (!strcmp(name, "fscreate")) {
5331                 tsec->create_sid = sid;
5332         } else if (!strcmp(name, "keycreate")) {
5333                 error = may_create_key(sid, p);
5334                 if (error)
5335                         goto abort_change;
5336                 tsec->keycreate_sid = sid;
5337         } else if (!strcmp(name, "sockcreate")) {
5338                 tsec->sockcreate_sid = sid;
5339         } else if (!strcmp(name, "current")) {
5340                 error = -EINVAL;
5341                 if (sid == 0)
5342                         goto abort_change;
5343
5344                 /* Only allow single threaded processes to change context */
5345                 error = -EPERM;
5346                 if (!is_single_threaded(p)) {
5347                         error = security_bounded_transition(tsec->sid, sid);
5348                         if (error)
5349                                 goto abort_change;
5350                 }
5351
5352                 /* Check permissions for the transition. */
5353                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5354                                      PROCESS__DYNTRANSITION, NULL);
5355                 if (error)
5356                         goto abort_change;
5357
5358                 /* Check for ptracing, and update the task SID if ok.
5359                    Otherwise, leave SID unchanged and fail. */
5360                 ptsid = 0;
5361                 task_lock(p);
5362                 tracer = tracehook_tracer_task(p);
5363                 if (tracer)
5364                         ptsid = task_sid(tracer);
5365                 task_unlock(p);
5366
5367                 if (tracer) {
5368                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5369                                              PROCESS__PTRACE, NULL);
5370                         if (error)
5371                                 goto abort_change;
5372                 }
5373
5374                 tsec->sid = sid;
5375         } else {
5376                 error = -EINVAL;
5377                 goto abort_change;
5378         }
5379
5380         commit_creds(new);
5381         return size;
5382
5383 abort_change:
5384         abort_creds(new);
5385         return error;
5386 }
5387
5388 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5389 {
5390         return security_sid_to_context(secid, secdata, seclen);
5391 }
5392
5393 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5394 {
5395         return security_context_to_sid(secdata, seclen, secid);
5396 }
5397
5398 static void selinux_release_secctx(char *secdata, u32 seclen)
5399 {
5400         kfree(secdata);
5401 }
5402
5403 #ifdef CONFIG_KEYS
5404
5405 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5406                              unsigned long flags)
5407 {
5408         const struct task_security_struct *tsec;
5409         struct key_security_struct *ksec;
5410
5411         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5412         if (!ksec)
5413                 return -ENOMEM;
5414
5415         tsec = cred->security;
5416         if (tsec->keycreate_sid)
5417                 ksec->sid = tsec->keycreate_sid;
5418         else
5419                 ksec->sid = tsec->sid;
5420
5421         k->security = ksec;
5422         return 0;
5423 }
5424
5425 static void selinux_key_free(struct key *k)
5426 {
5427         struct key_security_struct *ksec = k->security;
5428
5429         k->security = NULL;
5430         kfree(ksec);
5431 }
5432
5433 static int selinux_key_permission(key_ref_t key_ref,
5434                                   const struct cred *cred,
5435                                   key_perm_t perm)
5436 {
5437         struct key *key;
5438         struct key_security_struct *ksec;
5439         u32 sid;
5440
5441         /* if no specific permissions are requested, we skip the
5442            permission check. No serious, additional covert channels
5443            appear to be created. */
5444         if (perm == 0)
5445                 return 0;
5446
5447         sid = cred_sid(cred);
5448
5449         key = key_ref_to_ptr(key_ref);
5450         ksec = key->security;
5451
5452         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5453 }
5454
5455 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5456 {
5457         struct key_security_struct *ksec = key->security;
5458         char *context = NULL;
5459         unsigned len;
5460         int rc;
5461
5462         rc = security_sid_to_context(ksec->sid, &context, &len);
5463         if (!rc)
5464                 rc = len;
5465         *_buffer = context;
5466         return rc;
5467 }
5468
5469 #endif
5470
5471 static struct security_operations selinux_ops = {
5472         .name =                         "selinux",
5473
5474         .ptrace_may_access =            selinux_ptrace_may_access,
5475         .ptrace_traceme =               selinux_ptrace_traceme,
5476         .capget =                       selinux_capget,
5477         .capset =                       selinux_capset,
5478         .sysctl =                       selinux_sysctl,
5479         .capable =                      selinux_capable,
5480         .quotactl =                     selinux_quotactl,
5481         .quota_on =                     selinux_quota_on,
5482         .syslog =                       selinux_syslog,
5483         .vm_enough_memory =             selinux_vm_enough_memory,
5484
5485         .netlink_send =                 selinux_netlink_send,
5486         .netlink_recv =                 selinux_netlink_recv,
5487
5488         .bprm_set_creds =               selinux_bprm_set_creds,
5489         .bprm_committing_creds =        selinux_bprm_committing_creds,
5490         .bprm_committed_creds =         selinux_bprm_committed_creds,
5491         .bprm_secureexec =              selinux_bprm_secureexec,
5492
5493         .sb_alloc_security =            selinux_sb_alloc_security,
5494         .sb_free_security =             selinux_sb_free_security,
5495         .sb_copy_data =                 selinux_sb_copy_data,
5496         .sb_kern_mount =                selinux_sb_kern_mount,
5497         .sb_show_options =              selinux_sb_show_options,
5498         .sb_statfs =                    selinux_sb_statfs,
5499         .sb_mount =                     selinux_mount,
5500         .sb_umount =                    selinux_umount,
5501         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5502         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5503         .sb_parse_opts_str =            selinux_parse_opts_str,
5504
5505
5506         .inode_alloc_security =         selinux_inode_alloc_security,
5507         .inode_free_security =          selinux_inode_free_security,
5508         .inode_init_security =          selinux_inode_init_security,
5509         .inode_create =                 selinux_inode_create,
5510         .inode_link =                   selinux_inode_link,
5511         .inode_unlink =                 selinux_inode_unlink,
5512         .inode_symlink =                selinux_inode_symlink,
5513         .inode_mkdir =                  selinux_inode_mkdir,
5514         .inode_rmdir =                  selinux_inode_rmdir,
5515         .inode_mknod =                  selinux_inode_mknod,
5516         .inode_rename =                 selinux_inode_rename,
5517         .inode_readlink =               selinux_inode_readlink,
5518         .inode_follow_link =            selinux_inode_follow_link,
5519         .inode_permission =             selinux_inode_permission,
5520         .inode_setattr =                selinux_inode_setattr,
5521         .inode_getattr =                selinux_inode_getattr,
5522         .inode_setxattr =               selinux_inode_setxattr,
5523         .inode_post_setxattr =          selinux_inode_post_setxattr,
5524         .inode_getxattr =               selinux_inode_getxattr,
5525         .inode_listxattr =              selinux_inode_listxattr,
5526         .inode_removexattr =            selinux_inode_removexattr,
5527         .inode_getsecurity =            selinux_inode_getsecurity,
5528         .inode_setsecurity =            selinux_inode_setsecurity,
5529         .inode_listsecurity =           selinux_inode_listsecurity,
5530         .inode_getsecid =               selinux_inode_getsecid,
5531
5532         .file_permission =              selinux_file_permission,
5533         .file_alloc_security =          selinux_file_alloc_security,
5534         .file_free_security =           selinux_file_free_security,
5535         .file_ioctl =                   selinux_file_ioctl,
5536         .file_mmap =                    selinux_file_mmap,
5537         .file_mprotect =                selinux_file_mprotect,
5538         .file_lock =                    selinux_file_lock,
5539         .file_fcntl =                   selinux_file_fcntl,
5540         .file_set_fowner =              selinux_file_set_fowner,
5541         .file_send_sigiotask =          selinux_file_send_sigiotask,
5542         .file_receive =                 selinux_file_receive,
5543
5544         .dentry_open =                  selinux_dentry_open,
5545
5546         .task_create =                  selinux_task_create,
5547         .cred_free =                    selinux_cred_free,
5548         .cred_prepare =                 selinux_cred_prepare,
5549         .kernel_act_as =                selinux_kernel_act_as,
5550         .kernel_create_files_as =       selinux_kernel_create_files_as,
5551         .task_setpgid =                 selinux_task_setpgid,
5552         .task_getpgid =                 selinux_task_getpgid,
5553         .task_getsid =                  selinux_task_getsid,
5554         .task_getsecid =                selinux_task_getsecid,
5555         .task_setnice =                 selinux_task_setnice,
5556         .task_setioprio =               selinux_task_setioprio,
5557         .task_getioprio =               selinux_task_getioprio,
5558         .task_setrlimit =               selinux_task_setrlimit,
5559         .task_setscheduler =            selinux_task_setscheduler,
5560         .task_getscheduler =            selinux_task_getscheduler,
5561         .task_movememory =              selinux_task_movememory,
5562         .task_kill =                    selinux_task_kill,
5563         .task_wait =                    selinux_task_wait,
5564         .task_to_inode =                selinux_task_to_inode,
5565
5566         .ipc_permission =               selinux_ipc_permission,
5567         .ipc_getsecid =                 selinux_ipc_getsecid,
5568
5569         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5570         .msg_msg_free_security =        selinux_msg_msg_free_security,
5571
5572         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5573         .msg_queue_free_security =      selinux_msg_queue_free_security,
5574         .msg_queue_associate =          selinux_msg_queue_associate,
5575         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5576         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5577         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5578
5579         .shm_alloc_security =           selinux_shm_alloc_security,
5580         .shm_free_security =            selinux_shm_free_security,
5581         .shm_associate =                selinux_shm_associate,
5582         .shm_shmctl =                   selinux_shm_shmctl,
5583         .shm_shmat =                    selinux_shm_shmat,
5584
5585         .sem_alloc_security =           selinux_sem_alloc_security,
5586         .sem_free_security =            selinux_sem_free_security,
5587         .sem_associate =                selinux_sem_associate,
5588         .sem_semctl =                   selinux_sem_semctl,
5589         .sem_semop =                    selinux_sem_semop,
5590
5591         .d_instantiate =                selinux_d_instantiate,
5592
5593         .getprocattr =                  selinux_getprocattr,
5594         .setprocattr =                  selinux_setprocattr,
5595
5596         .secid_to_secctx =              selinux_secid_to_secctx,
5597         .secctx_to_secid =              selinux_secctx_to_secid,
5598         .release_secctx =               selinux_release_secctx,
5599
5600         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5601         .unix_may_send =                selinux_socket_unix_may_send,
5602
5603         .socket_create =                selinux_socket_create,
5604         .socket_post_create =           selinux_socket_post_create,
5605         .socket_bind =                  selinux_socket_bind,
5606         .socket_connect =               selinux_socket_connect,
5607         .socket_listen =                selinux_socket_listen,
5608         .socket_accept =                selinux_socket_accept,
5609         .socket_sendmsg =               selinux_socket_sendmsg,
5610         .socket_recvmsg =               selinux_socket_recvmsg,
5611         .socket_getsockname =           selinux_socket_getsockname,
5612         .socket_getpeername =           selinux_socket_getpeername,
5613         .socket_getsockopt =            selinux_socket_getsockopt,
5614         .socket_setsockopt =            selinux_socket_setsockopt,
5615         .socket_shutdown =              selinux_socket_shutdown,
5616         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5617         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5618         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5619         .sk_alloc_security =            selinux_sk_alloc_security,
5620         .sk_free_security =             selinux_sk_free_security,
5621         .sk_clone_security =            selinux_sk_clone_security,
5622         .sk_getsecid =                  selinux_sk_getsecid,
5623         .sock_graft =                   selinux_sock_graft,
5624         .inet_conn_request =            selinux_inet_conn_request,
5625         .inet_csk_clone =               selinux_inet_csk_clone,
5626         .inet_conn_established =        selinux_inet_conn_established,
5627         .req_classify_flow =            selinux_req_classify_flow,
5628
5629 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5630         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5631         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5632         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5633         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5634         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5635         .xfrm_state_free_security =     selinux_xfrm_state_free,
5636         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5637         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5638         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5639         .xfrm_decode_session =          selinux_xfrm_decode_session,
5640 #endif
5641
5642 #ifdef CONFIG_KEYS
5643         .key_alloc =                    selinux_key_alloc,
5644         .key_free =                     selinux_key_free,
5645         .key_permission =               selinux_key_permission,
5646         .key_getsecurity =              selinux_key_getsecurity,
5647 #endif
5648
5649 #ifdef CONFIG_AUDIT
5650         .audit_rule_init =              selinux_audit_rule_init,
5651         .audit_rule_known =             selinux_audit_rule_known,
5652         .audit_rule_match =             selinux_audit_rule_match,
5653         .audit_rule_free =              selinux_audit_rule_free,
5654 #endif
5655 };
5656
5657 static __init int selinux_init(void)
5658 {
5659         if (!security_module_enable(&selinux_ops)) {
5660                 selinux_enabled = 0;
5661                 return 0;
5662         }
5663
5664         if (!selinux_enabled) {
5665                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5666                 return 0;
5667         }
5668
5669         printk(KERN_INFO "SELinux:  Initializing.\n");
5670
5671         /* Set the security state for the initial task. */
5672         cred_init_security();
5673
5674         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5675                                             sizeof(struct inode_security_struct),
5676                                             0, SLAB_PANIC, NULL);
5677         avc_init();
5678
5679         secondary_ops = security_ops;
5680         if (!secondary_ops)
5681                 panic("SELinux: No initial security operations\n");
5682         if (register_security(&selinux_ops))
5683                 panic("SELinux: Unable to register with kernel.\n");
5684
5685         if (selinux_enforcing)
5686                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5687         else
5688                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5689
5690         return 0;
5691 }
5692
5693 void selinux_complete_init(void)
5694 {
5695         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5696
5697         /* Set up any superblocks initialized prior to the policy load. */
5698         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5699         spin_lock(&sb_lock);
5700         spin_lock(&sb_security_lock);
5701 next_sb:
5702         if (!list_empty(&superblock_security_head)) {
5703                 struct superblock_security_struct *sbsec =
5704                                 list_entry(superblock_security_head.next,
5705                                            struct superblock_security_struct,
5706                                            list);
5707                 struct super_block *sb = sbsec->sb;
5708                 sb->s_count++;
5709                 spin_unlock(&sb_security_lock);
5710                 spin_unlock(&sb_lock);
5711                 down_read(&sb->s_umount);
5712                 if (sb->s_root)
5713                         superblock_doinit(sb, NULL);
5714                 drop_super(sb);
5715                 spin_lock(&sb_lock);
5716                 spin_lock(&sb_security_lock);
5717                 list_del_init(&sbsec->list);
5718                 goto next_sb;
5719         }
5720         spin_unlock(&sb_security_lock);
5721         spin_unlock(&sb_lock);
5722 }
5723
5724 /* SELinux requires early initialization in order to label
5725    all processes and objects when they are created. */
5726 security_initcall(selinux_init);
5727
5728 #if defined(CONFIG_NETFILTER)
5729
5730 static struct nf_hook_ops selinux_ipv4_ops[] = {
5731         {
5732                 .hook =         selinux_ipv4_postroute,
5733                 .owner =        THIS_MODULE,
5734                 .pf =           PF_INET,
5735                 .hooknum =      NF_INET_POST_ROUTING,
5736                 .priority =     NF_IP_PRI_SELINUX_LAST,
5737         },
5738         {
5739                 .hook =         selinux_ipv4_forward,
5740                 .owner =        THIS_MODULE,
5741                 .pf =           PF_INET,
5742                 .hooknum =      NF_INET_FORWARD,
5743                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5744         },
5745         {
5746                 .hook =         selinux_ipv4_output,
5747                 .owner =        THIS_MODULE,
5748                 .pf =           PF_INET,
5749                 .hooknum =      NF_INET_LOCAL_OUT,
5750                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5751         }
5752 };
5753
5754 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5755
5756 static struct nf_hook_ops selinux_ipv6_ops[] = {
5757         {
5758                 .hook =         selinux_ipv6_postroute,
5759                 .owner =        THIS_MODULE,
5760                 .pf =           PF_INET6,
5761                 .hooknum =      NF_INET_POST_ROUTING,
5762                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5763         },
5764         {
5765                 .hook =         selinux_ipv6_forward,
5766                 .owner =        THIS_MODULE,
5767                 .pf =           PF_INET6,
5768                 .hooknum =      NF_INET_FORWARD,
5769                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5770         }
5771 };
5772
5773 #endif  /* IPV6 */
5774
5775 static int __init selinux_nf_ip_init(void)
5776 {
5777         int err = 0;
5778
5779         if (!selinux_enabled)
5780                 goto out;
5781
5782         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5783
5784         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5785         if (err)
5786                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5787
5788 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5789         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5790         if (err)
5791                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5792 #endif  /* IPV6 */
5793
5794 out:
5795         return err;
5796 }
5797
5798 __initcall(selinux_nf_ip_init);
5799
5800 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5801 static void selinux_nf_ip_exit(void)
5802 {
5803         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5804
5805         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5806 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5807         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5808 #endif  /* IPV6 */
5809 }
5810 #endif
5811
5812 #else /* CONFIG_NETFILTER */
5813
5814 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5815 #define selinux_nf_ip_exit()
5816 #endif
5817
5818 #endif /* CONFIG_NETFILTER */
5819
5820 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5821 static int selinux_disabled;
5822
5823 int selinux_disable(void)
5824 {
5825         extern void exit_sel_fs(void);
5826
5827         if (ss_initialized) {
5828                 /* Not permitted after initial policy load. */
5829                 return -EINVAL;
5830         }
5831
5832         if (selinux_disabled) {
5833                 /* Only do this once. */
5834                 return -EINVAL;
5835         }
5836
5837         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5838
5839         selinux_disabled = 1;
5840         selinux_enabled = 0;
5841
5842         /* Reset security_ops to the secondary module, dummy or capability. */
5843         security_ops = secondary_ops;
5844
5845         /* Unregister netfilter hooks. */
5846         selinux_nf_ip_exit();
5847
5848         /* Unregister selinuxfs. */
5849         exit_sel_fs();
5850
5851         return 0;
5852 }
5853 #endif