83a535b7bc605340d4c00cfffd6b4f42e5daa046
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
19  *
20  *      This program is free software; you can redistribute it and/or modify
21  *      it under the terms of the GNU General Public License version 2,
22  *      as published by the Free Software Foundation.
23  */
24
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/security.h>
31 #include <linux/xattr.h>
32 #include <linux/capability.h>
33 #include <linux/unistd.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/slab.h>
37 #include <linux/pagemap.h>
38 #include <linux/swap.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88 extern struct security_operations *security_ops;
89
90 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
91 int selinux_enforcing = 0;
92
93 static int __init enforcing_setup(char *str)
94 {
95         selinux_enforcing = simple_strtol(str,NULL,0);
96         return 1;
97 }
98 __setup("enforcing=", enforcing_setup);
99 #endif
100
101 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
102 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
103
104 static int __init selinux_enabled_setup(char *str)
105 {
106         selinux_enabled = simple_strtol(str, NULL, 0);
107         return 1;
108 }
109 __setup("selinux=", selinux_enabled_setup);
110 #else
111 int selinux_enabled = 1;
112 #endif
113
114 /* Original (dummy) security module. */
115 static struct security_operations *original_ops = NULL;
116
117 /* Minimal support for a secondary security module,
118    just to allow the use of the dummy or capability modules.
119    The owlsm module can alternatively be used as a secondary
120    module as long as CONFIG_OWLSM_FD is not enabled. */
121 static struct security_operations *secondary_ops = NULL;
122
123 /* Lists of inode and superblock security structures initialized
124    before the policy was loaded. */
125 static LIST_HEAD(superblock_security_head);
126 static DEFINE_SPINLOCK(sb_security_lock);
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /* Return security context for a given sid or just the context 
131    length if the buffer is null or length is 0 */
132 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
133 {
134         char *context;
135         unsigned len;
136         int rc;
137
138         rc = security_sid_to_context(sid, &context, &len);
139         if (rc)
140                 return rc;
141
142         if (!buffer || !size)
143                 goto getsecurity_exit;
144
145         if (size < len) {
146                 len = -ERANGE;
147                 goto getsecurity_exit;
148         }
149         memcpy(buffer, context, len);
150
151 getsecurity_exit:
152         kfree(context);
153         return len;
154 }
155
156 /* Allocate and free functions for each kind of security blob. */
157
158 static int task_alloc_security(struct task_struct *task)
159 {
160         struct task_security_struct *tsec;
161
162         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
163         if (!tsec)
164                 return -ENOMEM;
165
166         tsec->task = task;
167         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
168         task->security = tsec;
169
170         return 0;
171 }
172
173 static void task_free_security(struct task_struct *task)
174 {
175         struct task_security_struct *tsec = task->security;
176         task->security = NULL;
177         kfree(tsec);
178 }
179
180 static int inode_alloc_security(struct inode *inode)
181 {
182         struct task_security_struct *tsec = current->security;
183         struct inode_security_struct *isec;
184
185         isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
186         if (!isec)
187                 return -ENOMEM;
188
189         mutex_init(&isec->lock);
190         INIT_LIST_HEAD(&isec->list);
191         isec->inode = inode;
192         isec->sid = SECINITSID_UNLABELED;
193         isec->sclass = SECCLASS_FILE;
194         isec->task_sid = tsec->sid;
195         inode->i_security = isec;
196
197         return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec = inode->i_security;
203         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205         spin_lock(&sbsec->isec_lock);
206         if (!list_empty(&isec->list))
207                 list_del_init(&isec->list);
208         spin_unlock(&sbsec->isec_lock);
209
210         inode->i_security = NULL;
211         kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216         struct task_security_struct *tsec = current->security;
217         struct file_security_struct *fsec;
218
219         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220         if (!fsec)
221                 return -ENOMEM;
222
223         fsec->file = file;
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->sk = sk;
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_init(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_error = -1,
322         Opt_context = 1,
323         Opt_fscontext = 2,
324         Opt_defcontext = 4,
325         Opt_rootcontext = 8,
326 };
327
328 static match_table_t tokens = {
329         {Opt_context, "context=%s"},
330         {Opt_fscontext, "fscontext=%s"},
331         {Opt_defcontext, "defcontext=%s"},
332         {Opt_rootcontext, "rootcontext=%s"},
333         {Opt_error, NULL},
334 };
335
336 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
337
338 static int may_context_mount_sb_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         struct task_security_struct *tsec)
341 {
342         int rc;
343
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__RELABELTO, NULL);
351         return rc;
352 }
353
354 static int may_context_mount_inode_relabel(u32 sid,
355                         struct superblock_security_struct *sbsec,
356                         struct task_security_struct *tsec)
357 {
358         int rc;
359         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
360                           FILESYSTEM__RELABELFROM, NULL);
361         if (rc)
362                 return rc;
363
364         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
365                           FILESYSTEM__ASSOCIATE, NULL);
366         return rc;
367 }
368
369 static int try_context_mount(struct super_block *sb, void *data)
370 {
371         char *context = NULL, *defcontext = NULL;
372         char *fscontext = NULL, *rootcontext = NULL;
373         const char *name;
374         u32 sid;
375         int alloc = 0, rc = 0, seen = 0;
376         struct task_security_struct *tsec = current->security;
377         struct superblock_security_struct *sbsec = sb->s_security;
378
379         if (!data)
380                 goto out;
381
382         name = sb->s_type->name;
383
384         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
385
386                 /* NFS we understand. */
387                 if (!strcmp(name, "nfs")) {
388                         struct nfs_mount_data *d = data;
389
390                         if (d->version <  NFS_MOUNT_VERSION)
391                                 goto out;
392
393                         if (d->context[0]) {
394                                 context = d->context;
395                                 seen |= Opt_context;
396                         }
397                 } else
398                         goto out;
399
400         } else {
401                 /* Standard string-based options. */
402                 char *p, *options = data;
403
404                 while ((p = strsep(&options, "|")) != NULL) {
405                         int token;
406                         substring_t args[MAX_OPT_ARGS];
407
408                         if (!*p)
409                                 continue;
410
411                         token = match_token(p, tokens, args);
412
413                         switch (token) {
414                         case Opt_context:
415                                 if (seen & (Opt_context|Opt_defcontext)) {
416                                         rc = -EINVAL;
417                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
418                                         goto out_free;
419                                 }
420                                 context = match_strdup(&args[0]);
421                                 if (!context) {
422                                         rc = -ENOMEM;
423                                         goto out_free;
424                                 }
425                                 if (!alloc)
426                                         alloc = 1;
427                                 seen |= Opt_context;
428                                 break;
429
430                         case Opt_fscontext:
431                                 if (seen & Opt_fscontext) {
432                                         rc = -EINVAL;
433                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
434                                         goto out_free;
435                                 }
436                                 fscontext = match_strdup(&args[0]);
437                                 if (!fscontext) {
438                                         rc = -ENOMEM;
439                                         goto out_free;
440                                 }
441                                 if (!alloc)
442                                         alloc = 1;
443                                 seen |= Opt_fscontext;
444                                 break;
445
446                         case Opt_rootcontext:
447                                 if (seen & Opt_rootcontext) {
448                                         rc = -EINVAL;
449                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
450                                         goto out_free;
451                                 }
452                                 rootcontext = match_strdup(&args[0]);
453                                 if (!rootcontext) {
454                                         rc = -ENOMEM;
455                                         goto out_free;
456                                 }
457                                 if (!alloc)
458                                         alloc = 1;
459                                 seen |= Opt_rootcontext;
460                                 break;
461
462                         case Opt_defcontext:
463                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
464                                         rc = -EINVAL;
465                                         printk(KERN_WARNING "SELinux:  "
466                                                "defcontext option is invalid "
467                                                "for this filesystem type\n");
468                                         goto out_free;
469                                 }
470                                 if (seen & (Opt_context|Opt_defcontext)) {
471                                         rc = -EINVAL;
472                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
473                                         goto out_free;
474                                 }
475                                 defcontext = match_strdup(&args[0]);
476                                 if (!defcontext) {
477                                         rc = -ENOMEM;
478                                         goto out_free;
479                                 }
480                                 if (!alloc)
481                                         alloc = 1;
482                                 seen |= Opt_defcontext;
483                                 break;
484
485                         default:
486                                 rc = -EINVAL;
487                                 printk(KERN_WARNING "SELinux:  unknown mount "
488                                        "option\n");
489                                 goto out_free;
490
491                         }
492                 }
493         }
494
495         if (!seen)
496                 goto out;
497
498         /* sets the context of the superblock for the fs being mounted. */
499         if (fscontext) {
500                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
501                 if (rc) {
502                         printk(KERN_WARNING "SELinux: security_context_to_sid"
503                                "(%s) failed for (dev %s, type %s) errno=%d\n",
504                                fscontext, sb->s_id, name, rc);
505                         goto out_free;
506                 }
507
508                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
509                 if (rc)
510                         goto out_free;
511
512                 sbsec->sid = sid;
513         }
514
515         /*
516          * Switch to using mount point labeling behavior.
517          * sets the label used on all file below the mountpoint, and will set
518          * the superblock context if not already set.
519          */
520         if (context) {
521                 rc = security_context_to_sid(context, strlen(context), &sid);
522                 if (rc) {
523                         printk(KERN_WARNING "SELinux: security_context_to_sid"
524                                "(%s) failed for (dev %s, type %s) errno=%d\n",
525                                context, sb->s_id, name, rc);
526                         goto out_free;
527                 }
528
529                 if (!fscontext) {
530                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
531                         if (rc)
532                                 goto out_free;
533                         sbsec->sid = sid;
534                 } else {
535                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
536                         if (rc)
537                                 goto out_free;
538                 }
539                 sbsec->mntpoint_sid = sid;
540
541                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
542         }
543
544         if (rootcontext) {
545                 struct inode *inode = sb->s_root->d_inode;
546                 struct inode_security_struct *isec = inode->i_security;
547                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
548                 if (rc) {
549                         printk(KERN_WARNING "SELinux: security_context_to_sid"
550                                "(%s) failed for (dev %s, type %s) errno=%d\n",
551                                rootcontext, sb->s_id, name, rc);
552                         goto out_free;
553                 }
554
555                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
556                 if (rc)
557                         goto out_free;
558
559                 isec->sid = sid;
560                 isec->initialized = 1;
561         }
562
563         if (defcontext) {
564                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
565                 if (rc) {
566                         printk(KERN_WARNING "SELinux: security_context_to_sid"
567                                "(%s) failed for (dev %s, type %s) errno=%d\n",
568                                defcontext, sb->s_id, name, rc);
569                         goto out_free;
570                 }
571
572                 if (sid == sbsec->def_sid)
573                         goto out_free;
574
575                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
576                 if (rc)
577                         goto out_free;
578
579                 sbsec->def_sid = sid;
580         }
581
582 out_free:
583         if (alloc) {
584                 kfree(context);
585                 kfree(defcontext);
586                 kfree(fscontext);
587                 kfree(rootcontext);
588         }
589 out:
590         return rc;
591 }
592
593 static int superblock_doinit(struct super_block *sb, void *data)
594 {
595         struct superblock_security_struct *sbsec = sb->s_security;
596         struct dentry *root = sb->s_root;
597         struct inode *inode = root->d_inode;
598         int rc = 0;
599
600         mutex_lock(&sbsec->lock);
601         if (sbsec->initialized)
602                 goto out;
603
604         if (!ss_initialized) {
605                 /* Defer initialization until selinux_complete_init,
606                    after the initial policy is loaded and the security
607                    server is ready to handle calls. */
608                 spin_lock(&sb_security_lock);
609                 if (list_empty(&sbsec->list))
610                         list_add(&sbsec->list, &superblock_security_head);
611                 spin_unlock(&sb_security_lock);
612                 goto out;
613         }
614
615         /* Determine the labeling behavior to use for this filesystem type. */
616         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
617         if (rc) {
618                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
619                        __FUNCTION__, sb->s_type->name, rc);
620                 goto out;
621         }
622
623         rc = try_context_mount(sb, data);
624         if (rc)
625                 goto out;
626
627         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
628                 /* Make sure that the xattr handler exists and that no
629                    error other than -ENODATA is returned by getxattr on
630                    the root directory.  -ENODATA is ok, as this may be
631                    the first boot of the SELinux kernel before we have
632                    assigned xattr values to the filesystem. */
633                 if (!inode->i_op->getxattr) {
634                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
635                                "xattr support\n", sb->s_id, sb->s_type->name);
636                         rc = -EOPNOTSUPP;
637                         goto out;
638                 }
639                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
640                 if (rc < 0 && rc != -ENODATA) {
641                         if (rc == -EOPNOTSUPP)
642                                 printk(KERN_WARNING "SELinux: (dev %s, type "
643                                        "%s) has no security xattr handler\n",
644                                        sb->s_id, sb->s_type->name);
645                         else
646                                 printk(KERN_WARNING "SELinux: (dev %s, type "
647                                        "%s) getxattr errno %d\n", sb->s_id,
648                                        sb->s_type->name, -rc);
649                         goto out;
650                 }
651         }
652
653         if (strcmp(sb->s_type->name, "proc") == 0)
654                 sbsec->proc = 1;
655
656         sbsec->initialized = 1;
657
658         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
659                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
660                        sb->s_id, sb->s_type->name);
661         }
662         else {
663                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
664                        sb->s_id, sb->s_type->name,
665                        labeling_behaviors[sbsec->behavior-1]);
666         }
667
668         /* Initialize the root inode. */
669         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
670
671         /* Initialize any other inodes associated with the superblock, e.g.
672            inodes created prior to initial policy load or inodes created
673            during get_sb by a pseudo filesystem that directly
674            populates itself. */
675         spin_lock(&sbsec->isec_lock);
676 next_inode:
677         if (!list_empty(&sbsec->isec_head)) {
678                 struct inode_security_struct *isec =
679                                 list_entry(sbsec->isec_head.next,
680                                            struct inode_security_struct, list);
681                 struct inode *inode = isec->inode;
682                 spin_unlock(&sbsec->isec_lock);
683                 inode = igrab(inode);
684                 if (inode) {
685                         if (!IS_PRIVATE (inode))
686                                 inode_doinit(inode);
687                         iput(inode);
688                 }
689                 spin_lock(&sbsec->isec_lock);
690                 list_del_init(&isec->list);
691                 goto next_inode;
692         }
693         spin_unlock(&sbsec->isec_lock);
694 out:
695         mutex_unlock(&sbsec->lock);
696         return rc;
697 }
698
699 static inline u16 inode_mode_to_security_class(umode_t mode)
700 {
701         switch (mode & S_IFMT) {
702         case S_IFSOCK:
703                 return SECCLASS_SOCK_FILE;
704         case S_IFLNK:
705                 return SECCLASS_LNK_FILE;
706         case S_IFREG:
707                 return SECCLASS_FILE;
708         case S_IFBLK:
709                 return SECCLASS_BLK_FILE;
710         case S_IFDIR:
711                 return SECCLASS_DIR;
712         case S_IFCHR:
713                 return SECCLASS_CHR_FILE;
714         case S_IFIFO:
715                 return SECCLASS_FIFO_FILE;
716
717         }
718
719         return SECCLASS_FILE;
720 }
721
722 static inline int default_protocol_stream(int protocol)
723 {
724         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
725 }
726
727 static inline int default_protocol_dgram(int protocol)
728 {
729         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
730 }
731
732 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
733 {
734         switch (family) {
735         case PF_UNIX:
736                 switch (type) {
737                 case SOCK_STREAM:
738                 case SOCK_SEQPACKET:
739                         return SECCLASS_UNIX_STREAM_SOCKET;
740                 case SOCK_DGRAM:
741                         return SECCLASS_UNIX_DGRAM_SOCKET;
742                 }
743                 break;
744         case PF_INET:
745         case PF_INET6:
746                 switch (type) {
747                 case SOCK_STREAM:
748                         if (default_protocol_stream(protocol))
749                                 return SECCLASS_TCP_SOCKET;
750                         else
751                                 return SECCLASS_RAWIP_SOCKET;
752                 case SOCK_DGRAM:
753                         if (default_protocol_dgram(protocol))
754                                 return SECCLASS_UDP_SOCKET;
755                         else
756                                 return SECCLASS_RAWIP_SOCKET;
757                 case SOCK_DCCP:
758                         return SECCLASS_DCCP_SOCKET;
759                 default:
760                         return SECCLASS_RAWIP_SOCKET;
761                 }
762                 break;
763         case PF_NETLINK:
764                 switch (protocol) {
765                 case NETLINK_ROUTE:
766                         return SECCLASS_NETLINK_ROUTE_SOCKET;
767                 case NETLINK_FIREWALL:
768                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
769                 case NETLINK_INET_DIAG:
770                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
771                 case NETLINK_NFLOG:
772                         return SECCLASS_NETLINK_NFLOG_SOCKET;
773                 case NETLINK_XFRM:
774                         return SECCLASS_NETLINK_XFRM_SOCKET;
775                 case NETLINK_SELINUX:
776                         return SECCLASS_NETLINK_SELINUX_SOCKET;
777                 case NETLINK_AUDIT:
778                         return SECCLASS_NETLINK_AUDIT_SOCKET;
779                 case NETLINK_IP6_FW:
780                         return SECCLASS_NETLINK_IP6FW_SOCKET;
781                 case NETLINK_DNRTMSG:
782                         return SECCLASS_NETLINK_DNRT_SOCKET;
783                 case NETLINK_KOBJECT_UEVENT:
784                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
785                 default:
786                         return SECCLASS_NETLINK_SOCKET;
787                 }
788         case PF_PACKET:
789                 return SECCLASS_PACKET_SOCKET;
790         case PF_KEY:
791                 return SECCLASS_KEY_SOCKET;
792         case PF_APPLETALK:
793                 return SECCLASS_APPLETALK_SOCKET;
794         }
795
796         return SECCLASS_SOCKET;
797 }
798
799 #ifdef CONFIG_PROC_FS
800 static int selinux_proc_get_sid(struct proc_dir_entry *de,
801                                 u16 tclass,
802                                 u32 *sid)
803 {
804         int buflen, rc;
805         char *buffer, *path, *end;
806
807         buffer = (char*)__get_free_page(GFP_KERNEL);
808         if (!buffer)
809                 return -ENOMEM;
810
811         buflen = PAGE_SIZE;
812         end = buffer+buflen;
813         *--end = '\0';
814         buflen--;
815         path = end-1;
816         *path = '/';
817         while (de && de != de->parent) {
818                 buflen -= de->namelen + 1;
819                 if (buflen < 0)
820                         break;
821                 end -= de->namelen;
822                 memcpy(end, de->name, de->namelen);
823                 *--end = '/';
824                 path = end;
825                 de = de->parent;
826         }
827         rc = security_genfs_sid("proc", path, tclass, sid);
828         free_page((unsigned long)buffer);
829         return rc;
830 }
831 #else
832 static int selinux_proc_get_sid(struct proc_dir_entry *de,
833                                 u16 tclass,
834                                 u32 *sid)
835 {
836         return -EINVAL;
837 }
838 #endif
839
840 /* The inode's security attributes must be initialized before first use. */
841 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
842 {
843         struct superblock_security_struct *sbsec = NULL;
844         struct inode_security_struct *isec = inode->i_security;
845         u32 sid;
846         struct dentry *dentry;
847 #define INITCONTEXTLEN 255
848         char *context = NULL;
849         unsigned len = 0;
850         int rc = 0;
851
852         if (isec->initialized)
853                 goto out;
854
855         mutex_lock(&isec->lock);
856         if (isec->initialized)
857                 goto out_unlock;
858
859         sbsec = inode->i_sb->s_security;
860         if (!sbsec->initialized) {
861                 /* Defer initialization until selinux_complete_init,
862                    after the initial policy is loaded and the security
863                    server is ready to handle calls. */
864                 spin_lock(&sbsec->isec_lock);
865                 if (list_empty(&isec->list))
866                         list_add(&isec->list, &sbsec->isec_head);
867                 spin_unlock(&sbsec->isec_lock);
868                 goto out_unlock;
869         }
870
871         switch (sbsec->behavior) {
872         case SECURITY_FS_USE_XATTR:
873                 if (!inode->i_op->getxattr) {
874                         isec->sid = sbsec->def_sid;
875                         break;
876                 }
877
878                 /* Need a dentry, since the xattr API requires one.
879                    Life would be simpler if we could just pass the inode. */
880                 if (opt_dentry) {
881                         /* Called from d_instantiate or d_splice_alias. */
882                         dentry = dget(opt_dentry);
883                 } else {
884                         /* Called from selinux_complete_init, try to find a dentry. */
885                         dentry = d_find_alias(inode);
886                 }
887                 if (!dentry) {
888                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
889                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
890                                inode->i_ino);
891                         goto out_unlock;
892                 }
893
894                 len = INITCONTEXTLEN;
895                 context = kmalloc(len, GFP_KERNEL);
896                 if (!context) {
897                         rc = -ENOMEM;
898                         dput(dentry);
899                         goto out_unlock;
900                 }
901                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
902                                            context, len);
903                 if (rc == -ERANGE) {
904                         /* Need a larger buffer.  Query for the right size. */
905                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
906                                                    NULL, 0);
907                         if (rc < 0) {
908                                 dput(dentry);
909                                 goto out_unlock;
910                         }
911                         kfree(context);
912                         len = rc;
913                         context = kmalloc(len, GFP_KERNEL);
914                         if (!context) {
915                                 rc = -ENOMEM;
916                                 dput(dentry);
917                                 goto out_unlock;
918                         }
919                         rc = inode->i_op->getxattr(dentry,
920                                                    XATTR_NAME_SELINUX,
921                                                    context, len);
922                 }
923                 dput(dentry);
924                 if (rc < 0) {
925                         if (rc != -ENODATA) {
926                                 printk(KERN_WARNING "%s:  getxattr returned "
927                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
928                                        -rc, inode->i_sb->s_id, inode->i_ino);
929                                 kfree(context);
930                                 goto out_unlock;
931                         }
932                         /* Map ENODATA to the default file SID */
933                         sid = sbsec->def_sid;
934                         rc = 0;
935                 } else {
936                         rc = security_context_to_sid_default(context, rc, &sid,
937                                                              sbsec->def_sid);
938                         if (rc) {
939                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
940                                        "returned %d for dev=%s ino=%ld\n",
941                                        __FUNCTION__, context, -rc,
942                                        inode->i_sb->s_id, inode->i_ino);
943                                 kfree(context);
944                                 /* Leave with the unlabeled SID */
945                                 rc = 0;
946                                 break;
947                         }
948                 }
949                 kfree(context);
950                 isec->sid = sid;
951                 break;
952         case SECURITY_FS_USE_TASK:
953                 isec->sid = isec->task_sid;
954                 break;
955         case SECURITY_FS_USE_TRANS:
956                 /* Default to the fs SID. */
957                 isec->sid = sbsec->sid;
958
959                 /* Try to obtain a transition SID. */
960                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
961                 rc = security_transition_sid(isec->task_sid,
962                                              sbsec->sid,
963                                              isec->sclass,
964                                              &sid);
965                 if (rc)
966                         goto out_unlock;
967                 isec->sid = sid;
968                 break;
969         case SECURITY_FS_USE_MNTPOINT:
970                 isec->sid = sbsec->mntpoint_sid;
971                 break;
972         default:
973                 /* Default to the fs superblock SID. */
974                 isec->sid = sbsec->sid;
975
976                 if (sbsec->proc) {
977                         struct proc_inode *proci = PROC_I(inode);
978                         if (proci->pde) {
979                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
980                                 rc = selinux_proc_get_sid(proci->pde,
981                                                           isec->sclass,
982                                                           &sid);
983                                 if (rc)
984                                         goto out_unlock;
985                                 isec->sid = sid;
986                         }
987                 }
988                 break;
989         }
990
991         isec->initialized = 1;
992
993 out_unlock:
994         mutex_unlock(&isec->lock);
995 out:
996         if (isec->sclass == SECCLASS_FILE)
997                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
998         return rc;
999 }
1000
1001 /* Convert a Linux signal to an access vector. */
1002 static inline u32 signal_to_av(int sig)
1003 {
1004         u32 perm = 0;
1005
1006         switch (sig) {
1007         case SIGCHLD:
1008                 /* Commonly granted from child to parent. */
1009                 perm = PROCESS__SIGCHLD;
1010                 break;
1011         case SIGKILL:
1012                 /* Cannot be caught or ignored */
1013                 perm = PROCESS__SIGKILL;
1014                 break;
1015         case SIGSTOP:
1016                 /* Cannot be caught or ignored */
1017                 perm = PROCESS__SIGSTOP;
1018                 break;
1019         default:
1020                 /* All other signals. */
1021                 perm = PROCESS__SIGNAL;
1022                 break;
1023         }
1024
1025         return perm;
1026 }
1027
1028 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1029    fork check, ptrace check, etc. */
1030 static int task_has_perm(struct task_struct *tsk1,
1031                          struct task_struct *tsk2,
1032                          u32 perms)
1033 {
1034         struct task_security_struct *tsec1, *tsec2;
1035
1036         tsec1 = tsk1->security;
1037         tsec2 = tsk2->security;
1038         return avc_has_perm(tsec1->sid, tsec2->sid,
1039                             SECCLASS_PROCESS, perms, NULL);
1040 }
1041
1042 /* Check whether a task is allowed to use a capability. */
1043 static int task_has_capability(struct task_struct *tsk,
1044                                int cap)
1045 {
1046         struct task_security_struct *tsec;
1047         struct avc_audit_data ad;
1048
1049         tsec = tsk->security;
1050
1051         AVC_AUDIT_DATA_INIT(&ad,CAP);
1052         ad.tsk = tsk;
1053         ad.u.cap = cap;
1054
1055         return avc_has_perm(tsec->sid, tsec->sid,
1056                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1057 }
1058
1059 /* Check whether a task is allowed to use a system operation. */
1060 static int task_has_system(struct task_struct *tsk,
1061                            u32 perms)
1062 {
1063         struct task_security_struct *tsec;
1064
1065         tsec = tsk->security;
1066
1067         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1068                             SECCLASS_SYSTEM, perms, NULL);
1069 }
1070
1071 /* Check whether a task has a particular permission to an inode.
1072    The 'adp' parameter is optional and allows other audit
1073    data to be passed (e.g. the dentry). */
1074 static int inode_has_perm(struct task_struct *tsk,
1075                           struct inode *inode,
1076                           u32 perms,
1077                           struct avc_audit_data *adp)
1078 {
1079         struct task_security_struct *tsec;
1080         struct inode_security_struct *isec;
1081         struct avc_audit_data ad;
1082
1083         if (unlikely (IS_PRIVATE (inode)))
1084                 return 0;
1085
1086         tsec = tsk->security;
1087         isec = inode->i_security;
1088
1089         if (!adp) {
1090                 adp = &ad;
1091                 AVC_AUDIT_DATA_INIT(&ad, FS);
1092                 ad.u.fs.inode = inode;
1093         }
1094
1095         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1096 }
1097
1098 /* Same as inode_has_perm, but pass explicit audit data containing
1099    the dentry to help the auditing code to more easily generate the
1100    pathname if needed. */
1101 static inline int dentry_has_perm(struct task_struct *tsk,
1102                                   struct vfsmount *mnt,
1103                                   struct dentry *dentry,
1104                                   u32 av)
1105 {
1106         struct inode *inode = dentry->d_inode;
1107         struct avc_audit_data ad;
1108         AVC_AUDIT_DATA_INIT(&ad,FS);
1109         ad.u.fs.mnt = mnt;
1110         ad.u.fs.dentry = dentry;
1111         return inode_has_perm(tsk, inode, av, &ad);
1112 }
1113
1114 /* Check whether a task can use an open file descriptor to
1115    access an inode in a given way.  Check access to the
1116    descriptor itself, and then use dentry_has_perm to
1117    check a particular permission to the file.
1118    Access to the descriptor is implicitly granted if it
1119    has the same SID as the process.  If av is zero, then
1120    access to the file is not checked, e.g. for cases
1121    where only the descriptor is affected like seek. */
1122 static int file_has_perm(struct task_struct *tsk,
1123                                 struct file *file,
1124                                 u32 av)
1125 {
1126         struct task_security_struct *tsec = tsk->security;
1127         struct file_security_struct *fsec = file->f_security;
1128         struct vfsmount *mnt = file->f_path.mnt;
1129         struct dentry *dentry = file->f_path.dentry;
1130         struct inode *inode = dentry->d_inode;
1131         struct avc_audit_data ad;
1132         int rc;
1133
1134         AVC_AUDIT_DATA_INIT(&ad, FS);
1135         ad.u.fs.mnt = mnt;
1136         ad.u.fs.dentry = dentry;
1137
1138         if (tsec->sid != fsec->sid) {
1139                 rc = avc_has_perm(tsec->sid, fsec->sid,
1140                                   SECCLASS_FD,
1141                                   FD__USE,
1142                                   &ad);
1143                 if (rc)
1144                         return rc;
1145         }
1146
1147         /* av is zero if only checking access to the descriptor. */
1148         if (av)
1149                 return inode_has_perm(tsk, inode, av, &ad);
1150
1151         return 0;
1152 }
1153
1154 /* Check whether a task can create a file. */
1155 static int may_create(struct inode *dir,
1156                       struct dentry *dentry,
1157                       u16 tclass)
1158 {
1159         struct task_security_struct *tsec;
1160         struct inode_security_struct *dsec;
1161         struct superblock_security_struct *sbsec;
1162         u32 newsid;
1163         struct avc_audit_data ad;
1164         int rc;
1165
1166         tsec = current->security;
1167         dsec = dir->i_security;
1168         sbsec = dir->i_sb->s_security;
1169
1170         AVC_AUDIT_DATA_INIT(&ad, FS);
1171         ad.u.fs.dentry = dentry;
1172
1173         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1174                           DIR__ADD_NAME | DIR__SEARCH,
1175                           &ad);
1176         if (rc)
1177                 return rc;
1178
1179         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1180                 newsid = tsec->create_sid;
1181         } else {
1182                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1183                                              &newsid);
1184                 if (rc)
1185                         return rc;
1186         }
1187
1188         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1189         if (rc)
1190                 return rc;
1191
1192         return avc_has_perm(newsid, sbsec->sid,
1193                             SECCLASS_FILESYSTEM,
1194                             FILESYSTEM__ASSOCIATE, &ad);
1195 }
1196
1197 /* Check whether a task can create a key. */
1198 static int may_create_key(u32 ksid,
1199                           struct task_struct *ctx)
1200 {
1201         struct task_security_struct *tsec;
1202
1203         tsec = ctx->security;
1204
1205         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1206 }
1207
1208 #define MAY_LINK   0
1209 #define MAY_UNLINK 1
1210 #define MAY_RMDIR  2
1211
1212 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1213 static int may_link(struct inode *dir,
1214                     struct dentry *dentry,
1215                     int kind)
1216
1217 {
1218         struct task_security_struct *tsec;
1219         struct inode_security_struct *dsec, *isec;
1220         struct avc_audit_data ad;
1221         u32 av;
1222         int rc;
1223
1224         tsec = current->security;
1225         dsec = dir->i_security;
1226         isec = dentry->d_inode->i_security;
1227
1228         AVC_AUDIT_DATA_INIT(&ad, FS);
1229         ad.u.fs.dentry = dentry;
1230
1231         av = DIR__SEARCH;
1232         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1233         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1234         if (rc)
1235                 return rc;
1236
1237         switch (kind) {
1238         case MAY_LINK:
1239                 av = FILE__LINK;
1240                 break;
1241         case MAY_UNLINK:
1242                 av = FILE__UNLINK;
1243                 break;
1244         case MAY_RMDIR:
1245                 av = DIR__RMDIR;
1246                 break;
1247         default:
1248                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1249                 return 0;
1250         }
1251
1252         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1253         return rc;
1254 }
1255
1256 static inline int may_rename(struct inode *old_dir,
1257                              struct dentry *old_dentry,
1258                              struct inode *new_dir,
1259                              struct dentry *new_dentry)
1260 {
1261         struct task_security_struct *tsec;
1262         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1263         struct avc_audit_data ad;
1264         u32 av;
1265         int old_is_dir, new_is_dir;
1266         int rc;
1267
1268         tsec = current->security;
1269         old_dsec = old_dir->i_security;
1270         old_isec = old_dentry->d_inode->i_security;
1271         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1272         new_dsec = new_dir->i_security;
1273
1274         AVC_AUDIT_DATA_INIT(&ad, FS);
1275
1276         ad.u.fs.dentry = old_dentry;
1277         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1278                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1279         if (rc)
1280                 return rc;
1281         rc = avc_has_perm(tsec->sid, old_isec->sid,
1282                           old_isec->sclass, FILE__RENAME, &ad);
1283         if (rc)
1284                 return rc;
1285         if (old_is_dir && new_dir != old_dir) {
1286                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1287                                   old_isec->sclass, DIR__REPARENT, &ad);
1288                 if (rc)
1289                         return rc;
1290         }
1291
1292         ad.u.fs.dentry = new_dentry;
1293         av = DIR__ADD_NAME | DIR__SEARCH;
1294         if (new_dentry->d_inode)
1295                 av |= DIR__REMOVE_NAME;
1296         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1297         if (rc)
1298                 return rc;
1299         if (new_dentry->d_inode) {
1300                 new_isec = new_dentry->d_inode->i_security;
1301                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1302                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1303                                   new_isec->sclass,
1304                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1305                 if (rc)
1306                         return rc;
1307         }
1308
1309         return 0;
1310 }
1311
1312 /* Check whether a task can perform a filesystem operation. */
1313 static int superblock_has_perm(struct task_struct *tsk,
1314                                struct super_block *sb,
1315                                u32 perms,
1316                                struct avc_audit_data *ad)
1317 {
1318         struct task_security_struct *tsec;
1319         struct superblock_security_struct *sbsec;
1320
1321         tsec = tsk->security;
1322         sbsec = sb->s_security;
1323         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1324                             perms, ad);
1325 }
1326
1327 /* Convert a Linux mode and permission mask to an access vector. */
1328 static inline u32 file_mask_to_av(int mode, int mask)
1329 {
1330         u32 av = 0;
1331
1332         if ((mode & S_IFMT) != S_IFDIR) {
1333                 if (mask & MAY_EXEC)
1334                         av |= FILE__EXECUTE;
1335                 if (mask & MAY_READ)
1336                         av |= FILE__READ;
1337
1338                 if (mask & MAY_APPEND)
1339                         av |= FILE__APPEND;
1340                 else if (mask & MAY_WRITE)
1341                         av |= FILE__WRITE;
1342
1343         } else {
1344                 if (mask & MAY_EXEC)
1345                         av |= DIR__SEARCH;
1346                 if (mask & MAY_WRITE)
1347                         av |= DIR__WRITE;
1348                 if (mask & MAY_READ)
1349                         av |= DIR__READ;
1350         }
1351
1352         return av;
1353 }
1354
1355 /* Convert a Linux file to an access vector. */
1356 static inline u32 file_to_av(struct file *file)
1357 {
1358         u32 av = 0;
1359
1360         if (file->f_mode & FMODE_READ)
1361                 av |= FILE__READ;
1362         if (file->f_mode & FMODE_WRITE) {
1363                 if (file->f_flags & O_APPEND)
1364                         av |= FILE__APPEND;
1365                 else
1366                         av |= FILE__WRITE;
1367         }
1368
1369         return av;
1370 }
1371
1372 /* Hook functions begin here. */
1373
1374 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1375 {
1376         struct task_security_struct *psec = parent->security;
1377         struct task_security_struct *csec = child->security;
1378         int rc;
1379
1380         rc = secondary_ops->ptrace(parent,child);
1381         if (rc)
1382                 return rc;
1383
1384         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1385         /* Save the SID of the tracing process for later use in apply_creds. */
1386         if (!(child->ptrace & PT_PTRACED) && !rc)
1387                 csec->ptrace_sid = psec->sid;
1388         return rc;
1389 }
1390
1391 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1392                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1393 {
1394         int error;
1395
1396         error = task_has_perm(current, target, PROCESS__GETCAP);
1397         if (error)
1398                 return error;
1399
1400         return secondary_ops->capget(target, effective, inheritable, permitted);
1401 }
1402
1403 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1404                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1405 {
1406         int error;
1407
1408         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1409         if (error)
1410                 return error;
1411
1412         return task_has_perm(current, target, PROCESS__SETCAP);
1413 }
1414
1415 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1416                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1417 {
1418         secondary_ops->capset_set(target, effective, inheritable, permitted);
1419 }
1420
1421 static int selinux_capable(struct task_struct *tsk, int cap)
1422 {
1423         int rc;
1424
1425         rc = secondary_ops->capable(tsk, cap);
1426         if (rc)
1427                 return rc;
1428
1429         return task_has_capability(tsk,cap);
1430 }
1431
1432 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1433 {
1434         int buflen, rc;
1435         char *buffer, *path, *end;
1436
1437         rc = -ENOMEM;
1438         buffer = (char*)__get_free_page(GFP_KERNEL);
1439         if (!buffer)
1440                 goto out;
1441
1442         buflen = PAGE_SIZE;
1443         end = buffer+buflen;
1444         *--end = '\0';
1445         buflen--;
1446         path = end-1;
1447         *path = '/';
1448         while (table) {
1449                 const char *name = table->procname;
1450                 size_t namelen = strlen(name);
1451                 buflen -= namelen + 1;
1452                 if (buflen < 0)
1453                         goto out_free;
1454                 end -= namelen;
1455                 memcpy(end, name, namelen);
1456                 *--end = '/';
1457                 path = end;
1458                 table = table->parent;
1459         }
1460         buflen -= 4;
1461         if (buflen < 0)
1462                 goto out_free;
1463         end -= 4;
1464         memcpy(end, "/sys", 4);
1465         path = end;
1466         rc = security_genfs_sid("proc", path, tclass, sid);
1467 out_free:
1468         free_page((unsigned long)buffer);
1469 out:
1470         return rc;
1471 }
1472
1473 static int selinux_sysctl(ctl_table *table, int op)
1474 {
1475         int error = 0;
1476         u32 av;
1477         struct task_security_struct *tsec;
1478         u32 tsid;
1479         int rc;
1480
1481         rc = secondary_ops->sysctl(table, op);
1482         if (rc)
1483                 return rc;
1484
1485         tsec = current->security;
1486
1487         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1488                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1489         if (rc) {
1490                 /* Default to the well-defined sysctl SID. */
1491                 tsid = SECINITSID_SYSCTL;
1492         }
1493
1494         /* The op values are "defined" in sysctl.c, thereby creating
1495          * a bad coupling between this module and sysctl.c */
1496         if(op == 001) {
1497                 error = avc_has_perm(tsec->sid, tsid,
1498                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1499         } else {
1500                 av = 0;
1501                 if (op & 004)
1502                         av |= FILE__READ;
1503                 if (op & 002)
1504                         av |= FILE__WRITE;
1505                 if (av)
1506                         error = avc_has_perm(tsec->sid, tsid,
1507                                              SECCLASS_FILE, av, NULL);
1508         }
1509
1510         return error;
1511 }
1512
1513 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1514 {
1515         int rc = 0;
1516
1517         if (!sb)
1518                 return 0;
1519
1520         switch (cmds) {
1521                 case Q_SYNC:
1522                 case Q_QUOTAON:
1523                 case Q_QUOTAOFF:
1524                 case Q_SETINFO:
1525                 case Q_SETQUOTA:
1526                         rc = superblock_has_perm(current,
1527                                                  sb,
1528                                                  FILESYSTEM__QUOTAMOD, NULL);
1529                         break;
1530                 case Q_GETFMT:
1531                 case Q_GETINFO:
1532                 case Q_GETQUOTA:
1533                         rc = superblock_has_perm(current,
1534                                                  sb,
1535                                                  FILESYSTEM__QUOTAGET, NULL);
1536                         break;
1537                 default:
1538                         rc = 0;  /* let the kernel handle invalid cmds */
1539                         break;
1540         }
1541         return rc;
1542 }
1543
1544 static int selinux_quota_on(struct dentry *dentry)
1545 {
1546         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1547 }
1548
1549 static int selinux_syslog(int type)
1550 {
1551         int rc;
1552
1553         rc = secondary_ops->syslog(type);
1554         if (rc)
1555                 return rc;
1556
1557         switch (type) {
1558                 case 3:         /* Read last kernel messages */
1559                 case 10:        /* Return size of the log buffer */
1560                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1561                         break;
1562                 case 6:         /* Disable logging to console */
1563                 case 7:         /* Enable logging to console */
1564                 case 8:         /* Set level of messages printed to console */
1565                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1566                         break;
1567                 case 0:         /* Close log */
1568                 case 1:         /* Open log */
1569                 case 2:         /* Read from log */
1570                 case 4:         /* Read/clear last kernel messages */
1571                 case 5:         /* Clear ring buffer */
1572                 default:
1573                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1574                         break;
1575         }
1576         return rc;
1577 }
1578
1579 /*
1580  * Check that a process has enough memory to allocate a new virtual
1581  * mapping. 0 means there is enough memory for the allocation to
1582  * succeed and -ENOMEM implies there is not.
1583  *
1584  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1585  * if the capability is granted, but __vm_enough_memory requires 1 if
1586  * the capability is granted.
1587  *
1588  * Do not audit the selinux permission check, as this is applied to all
1589  * processes that allocate mappings.
1590  */
1591 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1592 {
1593         int rc, cap_sys_admin = 0;
1594         struct task_security_struct *tsec = current->security;
1595
1596         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1597         if (rc == 0)
1598                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1599                                           SECCLASS_CAPABILITY,
1600                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1601                                           0,
1602                                           NULL);
1603
1604         if (rc == 0)
1605                 cap_sys_admin = 1;
1606
1607         return __vm_enough_memory(mm, pages, cap_sys_admin);
1608 }
1609
1610 /* binprm security operations */
1611
1612 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1613 {
1614         struct bprm_security_struct *bsec;
1615
1616         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1617         if (!bsec)
1618                 return -ENOMEM;
1619
1620         bsec->bprm = bprm;
1621         bsec->sid = SECINITSID_UNLABELED;
1622         bsec->set = 0;
1623
1624         bprm->security = bsec;
1625         return 0;
1626 }
1627
1628 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1629 {
1630         struct task_security_struct *tsec;
1631         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1632         struct inode_security_struct *isec;
1633         struct bprm_security_struct *bsec;
1634         u32 newsid;
1635         struct avc_audit_data ad;
1636         int rc;
1637
1638         rc = secondary_ops->bprm_set_security(bprm);
1639         if (rc)
1640                 return rc;
1641
1642         bsec = bprm->security;
1643
1644         if (bsec->set)
1645                 return 0;
1646
1647         tsec = current->security;
1648         isec = inode->i_security;
1649
1650         /* Default to the current task SID. */
1651         bsec->sid = tsec->sid;
1652
1653         /* Reset fs, key, and sock SIDs on execve. */
1654         tsec->create_sid = 0;
1655         tsec->keycreate_sid = 0;
1656         tsec->sockcreate_sid = 0;
1657
1658         if (tsec->exec_sid) {
1659                 newsid = tsec->exec_sid;
1660                 /* Reset exec SID on execve. */
1661                 tsec->exec_sid = 0;
1662         } else {
1663                 /* Check for a default transition on this program. */
1664                 rc = security_transition_sid(tsec->sid, isec->sid,
1665                                              SECCLASS_PROCESS, &newsid);
1666                 if (rc)
1667                         return rc;
1668         }
1669
1670         AVC_AUDIT_DATA_INIT(&ad, FS);
1671         ad.u.fs.mnt = bprm->file->f_path.mnt;
1672         ad.u.fs.dentry = bprm->file->f_path.dentry;
1673
1674         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1675                 newsid = tsec->sid;
1676
1677         if (tsec->sid == newsid) {
1678                 rc = avc_has_perm(tsec->sid, isec->sid,
1679                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1680                 if (rc)
1681                         return rc;
1682         } else {
1683                 /* Check permissions for the transition. */
1684                 rc = avc_has_perm(tsec->sid, newsid,
1685                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1686                 if (rc)
1687                         return rc;
1688
1689                 rc = avc_has_perm(newsid, isec->sid,
1690                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1691                 if (rc)
1692                         return rc;
1693
1694                 /* Clear any possibly unsafe personality bits on exec: */
1695                 current->personality &= ~PER_CLEAR_ON_SETID;
1696
1697                 /* Set the security field to the new SID. */
1698                 bsec->sid = newsid;
1699         }
1700
1701         bsec->set = 1;
1702         return 0;
1703 }
1704
1705 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1706 {
1707         return secondary_ops->bprm_check_security(bprm);
1708 }
1709
1710
1711 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1712 {
1713         struct task_security_struct *tsec = current->security;
1714         int atsecure = 0;
1715
1716         if (tsec->osid != tsec->sid) {
1717                 /* Enable secure mode for SIDs transitions unless
1718                    the noatsecure permission is granted between
1719                    the two SIDs, i.e. ahp returns 0. */
1720                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1721                                          SECCLASS_PROCESS,
1722                                          PROCESS__NOATSECURE, NULL);
1723         }
1724
1725         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1726 }
1727
1728 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1729 {
1730         kfree(bprm->security);
1731         bprm->security = NULL;
1732 }
1733
1734 extern struct vfsmount *selinuxfs_mount;
1735 extern struct dentry *selinux_null;
1736
1737 /* Derived from fs/exec.c:flush_old_files. */
1738 static inline void flush_unauthorized_files(struct files_struct * files)
1739 {
1740         struct avc_audit_data ad;
1741         struct file *file, *devnull = NULL;
1742         struct tty_struct *tty;
1743         struct fdtable *fdt;
1744         long j = -1;
1745         int drop_tty = 0;
1746
1747         mutex_lock(&tty_mutex);
1748         tty = get_current_tty();
1749         if (tty) {
1750                 file_list_lock();
1751                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1752                 if (file) {
1753                         /* Revalidate access to controlling tty.
1754                            Use inode_has_perm on the tty inode directly rather
1755                            than using file_has_perm, as this particular open
1756                            file may belong to another process and we are only
1757                            interested in the inode-based check here. */
1758                         struct inode *inode = file->f_path.dentry->d_inode;
1759                         if (inode_has_perm(current, inode,
1760                                            FILE__READ | FILE__WRITE, NULL)) {
1761                                 drop_tty = 1;
1762                         }
1763                 }
1764                 file_list_unlock();
1765         }
1766         mutex_unlock(&tty_mutex);
1767         /* Reset controlling tty. */
1768         if (drop_tty)
1769                 no_tty();
1770
1771         /* Revalidate access to inherited open files. */
1772
1773         AVC_AUDIT_DATA_INIT(&ad,FS);
1774
1775         spin_lock(&files->file_lock);
1776         for (;;) {
1777                 unsigned long set, i;
1778                 int fd;
1779
1780                 j++;
1781                 i = j * __NFDBITS;
1782                 fdt = files_fdtable(files);
1783                 if (i >= fdt->max_fds)
1784                         break;
1785                 set = fdt->open_fds->fds_bits[j];
1786                 if (!set)
1787                         continue;
1788                 spin_unlock(&files->file_lock);
1789                 for ( ; set ; i++,set >>= 1) {
1790                         if (set & 1) {
1791                                 file = fget(i);
1792                                 if (!file)
1793                                         continue;
1794                                 if (file_has_perm(current,
1795                                                   file,
1796                                                   file_to_av(file))) {
1797                                         sys_close(i);
1798                                         fd = get_unused_fd();
1799                                         if (fd != i) {
1800                                                 if (fd >= 0)
1801                                                         put_unused_fd(fd);
1802                                                 fput(file);
1803                                                 continue;
1804                                         }
1805                                         if (devnull) {
1806                                                 get_file(devnull);
1807                                         } else {
1808                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1809                                                 if (IS_ERR(devnull)) {
1810                                                         devnull = NULL;
1811                                                         put_unused_fd(fd);
1812                                                         fput(file);
1813                                                         continue;
1814                                                 }
1815                                         }
1816                                         fd_install(fd, devnull);
1817                                 }
1818                                 fput(file);
1819                         }
1820                 }
1821                 spin_lock(&files->file_lock);
1822
1823         }
1824         spin_unlock(&files->file_lock);
1825 }
1826
1827 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1828 {
1829         struct task_security_struct *tsec;
1830         struct bprm_security_struct *bsec;
1831         u32 sid;
1832         int rc;
1833
1834         secondary_ops->bprm_apply_creds(bprm, unsafe);
1835
1836         tsec = current->security;
1837
1838         bsec = bprm->security;
1839         sid = bsec->sid;
1840
1841         tsec->osid = tsec->sid;
1842         bsec->unsafe = 0;
1843         if (tsec->sid != sid) {
1844                 /* Check for shared state.  If not ok, leave SID
1845                    unchanged and kill. */
1846                 if (unsafe & LSM_UNSAFE_SHARE) {
1847                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1848                                         PROCESS__SHARE, NULL);
1849                         if (rc) {
1850                                 bsec->unsafe = 1;
1851                                 return;
1852                         }
1853                 }
1854
1855                 /* Check for ptracing, and update the task SID if ok.
1856                    Otherwise, leave SID unchanged and kill. */
1857                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1858                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1859                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1860                                           NULL);
1861                         if (rc) {
1862                                 bsec->unsafe = 1;
1863                                 return;
1864                         }
1865                 }
1866                 tsec->sid = sid;
1867         }
1868 }
1869
1870 /*
1871  * called after apply_creds without the task lock held
1872  */
1873 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1874 {
1875         struct task_security_struct *tsec;
1876         struct rlimit *rlim, *initrlim;
1877         struct itimerval itimer;
1878         struct bprm_security_struct *bsec;
1879         int rc, i;
1880
1881         tsec = current->security;
1882         bsec = bprm->security;
1883
1884         if (bsec->unsafe) {
1885                 force_sig_specific(SIGKILL, current);
1886                 return;
1887         }
1888         if (tsec->osid == tsec->sid)
1889                 return;
1890
1891         /* Close files for which the new task SID is not authorized. */
1892         flush_unauthorized_files(current->files);
1893
1894         /* Check whether the new SID can inherit signal state
1895            from the old SID.  If not, clear itimers to avoid
1896            subsequent signal generation and flush and unblock
1897            signals. This must occur _after_ the task SID has
1898           been updated so that any kill done after the flush
1899           will be checked against the new SID. */
1900         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1901                           PROCESS__SIGINH, NULL);
1902         if (rc) {
1903                 memset(&itimer, 0, sizeof itimer);
1904                 for (i = 0; i < 3; i++)
1905                         do_setitimer(i, &itimer, NULL);
1906                 flush_signals(current);
1907                 spin_lock_irq(&current->sighand->siglock);
1908                 flush_signal_handlers(current, 1);
1909                 sigemptyset(&current->blocked);
1910                 recalc_sigpending();
1911                 spin_unlock_irq(&current->sighand->siglock);
1912         }
1913
1914         /* Always clear parent death signal on SID transitions. */
1915         current->pdeath_signal = 0;
1916
1917         /* Check whether the new SID can inherit resource limits
1918            from the old SID.  If not, reset all soft limits to
1919            the lower of the current task's hard limit and the init
1920            task's soft limit.  Note that the setting of hard limits
1921            (even to lower them) can be controlled by the setrlimit
1922            check. The inclusion of the init task's soft limit into
1923            the computation is to avoid resetting soft limits higher
1924            than the default soft limit for cases where the default
1925            is lower than the hard limit, e.g. RLIMIT_CORE or
1926            RLIMIT_STACK.*/
1927         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1928                           PROCESS__RLIMITINH, NULL);
1929         if (rc) {
1930                 for (i = 0; i < RLIM_NLIMITS; i++) {
1931                         rlim = current->signal->rlim + i;
1932                         initrlim = init_task.signal->rlim+i;
1933                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1934                 }
1935                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1936                         /*
1937                          * This will cause RLIMIT_CPU calculations
1938                          * to be refigured.
1939                          */
1940                         current->it_prof_expires = jiffies_to_cputime(1);
1941                 }
1942         }
1943
1944         /* Wake up the parent if it is waiting so that it can
1945            recheck wait permission to the new task SID. */
1946         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1947 }
1948
1949 /* superblock security operations */
1950
1951 static int selinux_sb_alloc_security(struct super_block *sb)
1952 {
1953         return superblock_alloc_security(sb);
1954 }
1955
1956 static void selinux_sb_free_security(struct super_block *sb)
1957 {
1958         superblock_free_security(sb);
1959 }
1960
1961 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1962 {
1963         if (plen > olen)
1964                 return 0;
1965
1966         return !memcmp(prefix, option, plen);
1967 }
1968
1969 static inline int selinux_option(char *option, int len)
1970 {
1971         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1972                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1973                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1974                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1975 }
1976
1977 static inline void take_option(char **to, char *from, int *first, int len)
1978 {
1979         if (!*first) {
1980                 **to = ',';
1981                 *to += 1;
1982         } else
1983                 *first = 0;
1984         memcpy(*to, from, len);
1985         *to += len;
1986 }
1987
1988 static inline void take_selinux_option(char **to, char *from, int *first, 
1989                                        int len)
1990 {
1991         int current_size = 0;
1992
1993         if (!*first) {
1994                 **to = '|';
1995                 *to += 1;
1996         }
1997         else
1998                 *first = 0;
1999
2000         while (current_size < len) {
2001                 if (*from != '"') {
2002                         **to = *from;
2003                         *to += 1;
2004                 }
2005                 from += 1;
2006                 current_size += 1;
2007         }
2008 }
2009
2010 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2011 {
2012         int fnosec, fsec, rc = 0;
2013         char *in_save, *in_curr, *in_end;
2014         char *sec_curr, *nosec_save, *nosec;
2015         int open_quote = 0;
2016
2017         in_curr = orig;
2018         sec_curr = copy;
2019
2020         /* Binary mount data: just copy */
2021         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2022                 copy_page(sec_curr, in_curr);
2023                 goto out;
2024         }
2025
2026         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2027         if (!nosec) {
2028                 rc = -ENOMEM;
2029                 goto out;
2030         }
2031
2032         nosec_save = nosec;
2033         fnosec = fsec = 1;
2034         in_save = in_end = orig;
2035
2036         do {
2037                 if (*in_end == '"')
2038                         open_quote = !open_quote;
2039                 if ((*in_end == ',' && open_quote == 0) ||
2040                                 *in_end == '\0') {
2041                         int len = in_end - in_curr;
2042
2043                         if (selinux_option(in_curr, len))
2044                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2045                         else
2046                                 take_option(&nosec, in_curr, &fnosec, len);
2047
2048                         in_curr = in_end + 1;
2049                 }
2050         } while (*in_end++);
2051
2052         strcpy(in_save, nosec_save);
2053         free_page((unsigned long)nosec_save);
2054 out:
2055         return rc;
2056 }
2057
2058 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2059 {
2060         struct avc_audit_data ad;
2061         int rc;
2062
2063         rc = superblock_doinit(sb, data);
2064         if (rc)
2065                 return rc;
2066
2067         AVC_AUDIT_DATA_INIT(&ad,FS);
2068         ad.u.fs.dentry = sb->s_root;
2069         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2070 }
2071
2072 static int selinux_sb_statfs(struct dentry *dentry)
2073 {
2074         struct avc_audit_data ad;
2075
2076         AVC_AUDIT_DATA_INIT(&ad,FS);
2077         ad.u.fs.dentry = dentry->d_sb->s_root;
2078         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2079 }
2080
2081 static int selinux_mount(char * dev_name,
2082                          struct nameidata *nd,
2083                          char * type,
2084                          unsigned long flags,
2085                          void * data)
2086 {
2087         int rc;
2088
2089         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2090         if (rc)
2091                 return rc;
2092
2093         if (flags & MS_REMOUNT)
2094                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2095                                            FILESYSTEM__REMOUNT, NULL);
2096         else
2097                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2098                                        FILE__MOUNTON);
2099 }
2100
2101 static int selinux_umount(struct vfsmount *mnt, int flags)
2102 {
2103         int rc;
2104
2105         rc = secondary_ops->sb_umount(mnt, flags);
2106         if (rc)
2107                 return rc;
2108
2109         return superblock_has_perm(current,mnt->mnt_sb,
2110                                    FILESYSTEM__UNMOUNT,NULL);
2111 }
2112
2113 /* inode security operations */
2114
2115 static int selinux_inode_alloc_security(struct inode *inode)
2116 {
2117         return inode_alloc_security(inode);
2118 }
2119
2120 static void selinux_inode_free_security(struct inode *inode)
2121 {
2122         inode_free_security(inode);
2123 }
2124
2125 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2126                                        char **name, void **value,
2127                                        size_t *len)
2128 {
2129         struct task_security_struct *tsec;
2130         struct inode_security_struct *dsec;
2131         struct superblock_security_struct *sbsec;
2132         u32 newsid, clen;
2133         int rc;
2134         char *namep = NULL, *context;
2135
2136         tsec = current->security;
2137         dsec = dir->i_security;
2138         sbsec = dir->i_sb->s_security;
2139
2140         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2141                 newsid = tsec->create_sid;
2142         } else {
2143                 rc = security_transition_sid(tsec->sid, dsec->sid,
2144                                              inode_mode_to_security_class(inode->i_mode),
2145                                              &newsid);
2146                 if (rc) {
2147                         printk(KERN_WARNING "%s:  "
2148                                "security_transition_sid failed, rc=%d (dev=%s "
2149                                "ino=%ld)\n",
2150                                __FUNCTION__,
2151                                -rc, inode->i_sb->s_id, inode->i_ino);
2152                         return rc;
2153                 }
2154         }
2155
2156         /* Possibly defer initialization to selinux_complete_init. */
2157         if (sbsec->initialized) {
2158                 struct inode_security_struct *isec = inode->i_security;
2159                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2160                 isec->sid = newsid;
2161                 isec->initialized = 1;
2162         }
2163
2164         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2165                 return -EOPNOTSUPP;
2166
2167         if (name) {
2168                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2169                 if (!namep)
2170                         return -ENOMEM;
2171                 *name = namep;
2172         }
2173
2174         if (value && len) {
2175                 rc = security_sid_to_context(newsid, &context, &clen);
2176                 if (rc) {
2177                         kfree(namep);
2178                         return rc;
2179                 }
2180                 *value = context;
2181                 *len = clen;
2182         }
2183
2184         return 0;
2185 }
2186
2187 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2188 {
2189         return may_create(dir, dentry, SECCLASS_FILE);
2190 }
2191
2192 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2193 {
2194         int rc;
2195
2196         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2197         if (rc)
2198                 return rc;
2199         return may_link(dir, old_dentry, MAY_LINK);
2200 }
2201
2202 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2203 {
2204         int rc;
2205
2206         rc = secondary_ops->inode_unlink(dir, dentry);
2207         if (rc)
2208                 return rc;
2209         return may_link(dir, dentry, MAY_UNLINK);
2210 }
2211
2212 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2213 {
2214         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2215 }
2216
2217 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2218 {
2219         return may_create(dir, dentry, SECCLASS_DIR);
2220 }
2221
2222 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2223 {
2224         return may_link(dir, dentry, MAY_RMDIR);
2225 }
2226
2227 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2228 {
2229         int rc;
2230
2231         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2232         if (rc)
2233                 return rc;
2234
2235         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2236 }
2237
2238 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2239                                 struct inode *new_inode, struct dentry *new_dentry)
2240 {
2241         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2242 }
2243
2244 static int selinux_inode_readlink(struct dentry *dentry)
2245 {
2246         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2247 }
2248
2249 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2250 {
2251         int rc;
2252
2253         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2254         if (rc)
2255                 return rc;
2256         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2257 }
2258
2259 static int selinux_inode_permission(struct inode *inode, int mask,
2260                                     struct nameidata *nd)
2261 {
2262         int rc;
2263
2264         rc = secondary_ops->inode_permission(inode, mask, nd);
2265         if (rc)
2266                 return rc;
2267
2268         if (!mask) {
2269                 /* No permission to check.  Existence test. */
2270                 return 0;
2271         }
2272
2273         return inode_has_perm(current, inode,
2274                                file_mask_to_av(inode->i_mode, mask), NULL);
2275 }
2276
2277 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2278 {
2279         int rc;
2280
2281         rc = secondary_ops->inode_setattr(dentry, iattr);
2282         if (rc)
2283                 return rc;
2284
2285         if (iattr->ia_valid & ATTR_FORCE)
2286                 return 0;
2287
2288         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2289                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2290                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2291
2292         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2293 }
2294
2295 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2296 {
2297         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2298 }
2299
2300 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2301 {
2302         struct task_security_struct *tsec = current->security;
2303         struct inode *inode = dentry->d_inode;
2304         struct inode_security_struct *isec = inode->i_security;
2305         struct superblock_security_struct *sbsec;
2306         struct avc_audit_data ad;
2307         u32 newsid;
2308         int rc = 0;
2309
2310         if (strcmp(name, XATTR_NAME_SELINUX)) {
2311                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2312                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2313                     !capable(CAP_SYS_ADMIN)) {
2314                         /* A different attribute in the security namespace.
2315                            Restrict to administrator. */
2316                         return -EPERM;
2317                 }
2318
2319                 /* Not an attribute we recognize, so just check the
2320                    ordinary setattr permission. */
2321                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2322         }
2323
2324         sbsec = inode->i_sb->s_security;
2325         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2326                 return -EOPNOTSUPP;
2327
2328         if (!is_owner_or_cap(inode))
2329                 return -EPERM;
2330
2331         AVC_AUDIT_DATA_INIT(&ad,FS);
2332         ad.u.fs.dentry = dentry;
2333
2334         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2335                           FILE__RELABELFROM, &ad);
2336         if (rc)
2337                 return rc;
2338
2339         rc = security_context_to_sid(value, size, &newsid);
2340         if (rc)
2341                 return rc;
2342
2343         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2344                           FILE__RELABELTO, &ad);
2345         if (rc)
2346                 return rc;
2347
2348         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2349                                           isec->sclass);
2350         if (rc)
2351                 return rc;
2352
2353         return avc_has_perm(newsid,
2354                             sbsec->sid,
2355                             SECCLASS_FILESYSTEM,
2356                             FILESYSTEM__ASSOCIATE,
2357                             &ad);
2358 }
2359
2360 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2361                                         void *value, size_t size, int flags)
2362 {
2363         struct inode *inode = dentry->d_inode;
2364         struct inode_security_struct *isec = inode->i_security;
2365         u32 newsid;
2366         int rc;
2367
2368         if (strcmp(name, XATTR_NAME_SELINUX)) {
2369                 /* Not an attribute we recognize, so nothing to do. */
2370                 return;
2371         }
2372
2373         rc = security_context_to_sid(value, size, &newsid);
2374         if (rc) {
2375                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2376                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2377                 return;
2378         }
2379
2380         isec->sid = newsid;
2381         return;
2382 }
2383
2384 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2385 {
2386         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2387 }
2388
2389 static int selinux_inode_listxattr (struct dentry *dentry)
2390 {
2391         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2392 }
2393
2394 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2395 {
2396         if (strcmp(name, XATTR_NAME_SELINUX)) {
2397                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2398                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2399                     !capable(CAP_SYS_ADMIN)) {
2400                         /* A different attribute in the security namespace.
2401                            Restrict to administrator. */
2402                         return -EPERM;
2403                 }
2404
2405                 /* Not an attribute we recognize, so just check the
2406                    ordinary setattr permission. Might want a separate
2407                    permission for removexattr. */
2408                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2409         }
2410
2411         /* No one is allowed to remove a SELinux security label.
2412            You can change the label, but all data must be labeled. */
2413         return -EACCES;
2414 }
2415
2416 static const char *selinux_inode_xattr_getsuffix(void)
2417 {
2418       return XATTR_SELINUX_SUFFIX;
2419 }
2420
2421 /*
2422  * Copy the in-core inode security context value to the user.  If the
2423  * getxattr() prior to this succeeded, check to see if we need to
2424  * canonicalize the value to be finally returned to the user.
2425  *
2426  * Permission check is handled by selinux_inode_getxattr hook.
2427  */
2428 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2429 {
2430         struct inode_security_struct *isec = inode->i_security;
2431
2432         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2433                 return -EOPNOTSUPP;
2434
2435         return selinux_getsecurity(isec->sid, buffer, size);
2436 }
2437
2438 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2439                                      const void *value, size_t size, int flags)
2440 {
2441         struct inode_security_struct *isec = inode->i_security;
2442         u32 newsid;
2443         int rc;
2444
2445         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2446                 return -EOPNOTSUPP;
2447
2448         if (!value || !size)
2449                 return -EACCES;
2450
2451         rc = security_context_to_sid((void*)value, size, &newsid);
2452         if (rc)
2453                 return rc;
2454
2455         isec->sid = newsid;
2456         return 0;
2457 }
2458
2459 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2460 {
2461         const int len = sizeof(XATTR_NAME_SELINUX);
2462         if (buffer && len <= buffer_size)
2463                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2464         return len;
2465 }
2466
2467 /* file security operations */
2468
2469 static int selinux_revalidate_file_permission(struct file *file, int mask)
2470 {
2471         int rc;
2472         struct inode *inode = file->f_path.dentry->d_inode;
2473
2474         if (!mask) {
2475                 /* No permission to check.  Existence test. */
2476                 return 0;
2477         }
2478
2479         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2480         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2481                 mask |= MAY_APPEND;
2482
2483         rc = file_has_perm(current, file,
2484                            file_mask_to_av(inode->i_mode, mask));
2485         if (rc)
2486                 return rc;
2487
2488         return selinux_netlbl_inode_permission(inode, mask);
2489 }
2490
2491 static int selinux_file_permission(struct file *file, int mask)
2492 {
2493         struct inode *inode = file->f_path.dentry->d_inode;
2494         struct task_security_struct *tsec = current->security;
2495         struct file_security_struct *fsec = file->f_security;
2496         struct inode_security_struct *isec = inode->i_security;
2497
2498         if (!mask) {
2499                 /* No permission to check.  Existence test. */
2500                 return 0;
2501         }
2502
2503         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2504             && fsec->pseqno == avc_policy_seqno())
2505                 return selinux_netlbl_inode_permission(inode, mask);
2506
2507         return selinux_revalidate_file_permission(file, mask);
2508 }
2509
2510 static int selinux_file_alloc_security(struct file *file)
2511 {
2512         return file_alloc_security(file);
2513 }
2514
2515 static void selinux_file_free_security(struct file *file)
2516 {
2517         file_free_security(file);
2518 }
2519
2520 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2521                               unsigned long arg)
2522 {
2523         int error = 0;
2524
2525         switch (cmd) {
2526                 case FIONREAD:
2527                 /* fall through */
2528                 case FIBMAP:
2529                 /* fall through */
2530                 case FIGETBSZ:
2531                 /* fall through */
2532                 case EXT2_IOC_GETFLAGS:
2533                 /* fall through */
2534                 case EXT2_IOC_GETVERSION:
2535                         error = file_has_perm(current, file, FILE__GETATTR);
2536                         break;
2537
2538                 case EXT2_IOC_SETFLAGS:
2539                 /* fall through */
2540                 case EXT2_IOC_SETVERSION:
2541                         error = file_has_perm(current, file, FILE__SETATTR);
2542                         break;
2543
2544                 /* sys_ioctl() checks */
2545                 case FIONBIO:
2546                 /* fall through */
2547                 case FIOASYNC:
2548                         error = file_has_perm(current, file, 0);
2549                         break;
2550
2551                 case KDSKBENT:
2552                 case KDSKBSENT:
2553                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2554                         break;
2555
2556                 /* default case assumes that the command will go
2557                  * to the file's ioctl() function.
2558                  */
2559                 default:
2560                         error = file_has_perm(current, file, FILE__IOCTL);
2561
2562         }
2563         return error;
2564 }
2565
2566 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2567 {
2568 #ifndef CONFIG_PPC32
2569         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2570                 /*
2571                  * We are making executable an anonymous mapping or a
2572                  * private file mapping that will also be writable.
2573                  * This has an additional check.
2574                  */
2575                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2576                 if (rc)
2577                         return rc;
2578         }
2579 #endif
2580
2581         if (file) {
2582                 /* read access is always possible with a mapping */
2583                 u32 av = FILE__READ;
2584
2585                 /* write access only matters if the mapping is shared */
2586                 if (shared && (prot & PROT_WRITE))
2587                         av |= FILE__WRITE;
2588
2589                 if (prot & PROT_EXEC)
2590                         av |= FILE__EXECUTE;
2591
2592                 return file_has_perm(current, file, av);
2593         }
2594         return 0;
2595 }
2596
2597 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2598                              unsigned long prot, unsigned long flags,
2599                              unsigned long addr, unsigned long addr_only)
2600 {
2601         int rc = 0;
2602         u32 sid = ((struct task_security_struct*)(current->security))->sid;
2603
2604         if (addr < mmap_min_addr)
2605                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2606                                   MEMPROTECT__MMAP_ZERO, NULL);
2607         if (rc || addr_only)
2608                 return rc;
2609
2610         if (selinux_checkreqprot)
2611                 prot = reqprot;
2612
2613         return file_map_prot_check(file, prot,
2614                                    (flags & MAP_TYPE) == MAP_SHARED);
2615 }
2616
2617 static int selinux_file_mprotect(struct vm_area_struct *vma,
2618                                  unsigned long reqprot,
2619                                  unsigned long prot)
2620 {
2621         int rc;
2622
2623         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2624         if (rc)
2625                 return rc;
2626
2627         if (selinux_checkreqprot)
2628                 prot = reqprot;
2629
2630 #ifndef CONFIG_PPC32
2631         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2632                 rc = 0;
2633                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2634                     vma->vm_end <= vma->vm_mm->brk) {
2635                         rc = task_has_perm(current, current,
2636                                            PROCESS__EXECHEAP);
2637                 } else if (!vma->vm_file &&
2638                            vma->vm_start <= vma->vm_mm->start_stack &&
2639                            vma->vm_end >= vma->vm_mm->start_stack) {
2640                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2641                 } else if (vma->vm_file && vma->anon_vma) {
2642                         /*
2643                          * We are making executable a file mapping that has
2644                          * had some COW done. Since pages might have been
2645                          * written, check ability to execute the possibly
2646                          * modified content.  This typically should only
2647                          * occur for text relocations.
2648                          */
2649                         rc = file_has_perm(current, vma->vm_file,
2650                                            FILE__EXECMOD);
2651                 }
2652                 if (rc)
2653                         return rc;
2654         }
2655 #endif
2656
2657         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2658 }
2659
2660 static int selinux_file_lock(struct file *file, unsigned int cmd)
2661 {
2662         return file_has_perm(current, file, FILE__LOCK);
2663 }
2664
2665 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2666                               unsigned long arg)
2667 {
2668         int err = 0;
2669
2670         switch (cmd) {
2671                 case F_SETFL:
2672                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2673                                 err = -EINVAL;
2674                                 break;
2675                         }
2676
2677                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2678                                 err = file_has_perm(current, file,FILE__WRITE);
2679                                 break;
2680                         }
2681                         /* fall through */
2682                 case F_SETOWN:
2683                 case F_SETSIG:
2684                 case F_GETFL:
2685                 case F_GETOWN:
2686                 case F_GETSIG:
2687                         /* Just check FD__USE permission */
2688                         err = file_has_perm(current, file, 0);
2689                         break;
2690                 case F_GETLK:
2691                 case F_SETLK:
2692                 case F_SETLKW:
2693 #if BITS_PER_LONG == 32
2694                 case F_GETLK64:
2695                 case F_SETLK64:
2696                 case F_SETLKW64:
2697 #endif
2698                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2699                                 err = -EINVAL;
2700                                 break;
2701                         }
2702                         err = file_has_perm(current, file, FILE__LOCK);
2703                         break;
2704         }
2705
2706         return err;
2707 }
2708
2709 static int selinux_file_set_fowner(struct file *file)
2710 {
2711         struct task_security_struct *tsec;
2712         struct file_security_struct *fsec;
2713
2714         tsec = current->security;
2715         fsec = file->f_security;
2716         fsec->fown_sid = tsec->sid;
2717
2718         return 0;
2719 }
2720
2721 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2722                                        struct fown_struct *fown, int signum)
2723 {
2724         struct file *file;
2725         u32 perm;
2726         struct task_security_struct *tsec;
2727         struct file_security_struct *fsec;
2728
2729         /* struct fown_struct is never outside the context of a struct file */
2730         file = container_of(fown, struct file, f_owner);
2731
2732         tsec = tsk->security;
2733         fsec = file->f_security;
2734
2735         if (!signum)
2736                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2737         else
2738                 perm = signal_to_av(signum);
2739
2740         return avc_has_perm(fsec->fown_sid, tsec->sid,
2741                             SECCLASS_PROCESS, perm, NULL);
2742 }
2743
2744 static int selinux_file_receive(struct file *file)
2745 {
2746         return file_has_perm(current, file, file_to_av(file));
2747 }
2748
2749 static int selinux_dentry_open(struct file *file)
2750 {
2751         struct file_security_struct *fsec;
2752         struct inode *inode;
2753         struct inode_security_struct *isec;
2754         inode = file->f_path.dentry->d_inode;
2755         fsec = file->f_security;
2756         isec = inode->i_security;
2757         /*
2758          * Save inode label and policy sequence number
2759          * at open-time so that selinux_file_permission
2760          * can determine whether revalidation is necessary.
2761          * Task label is already saved in the file security
2762          * struct as its SID.
2763          */
2764         fsec->isid = isec->sid;
2765         fsec->pseqno = avc_policy_seqno();
2766         /*
2767          * Since the inode label or policy seqno may have changed
2768          * between the selinux_inode_permission check and the saving
2769          * of state above, recheck that access is still permitted.
2770          * Otherwise, access might never be revalidated against the
2771          * new inode label or new policy.
2772          * This check is not redundant - do not remove.
2773          */
2774         return inode_has_perm(current, inode, file_to_av(file), NULL);
2775 }
2776
2777 /* task security operations */
2778
2779 static int selinux_task_create(unsigned long clone_flags)
2780 {
2781         int rc;
2782
2783         rc = secondary_ops->task_create(clone_flags);
2784         if (rc)
2785                 return rc;
2786
2787         return task_has_perm(current, current, PROCESS__FORK);
2788 }
2789
2790 static int selinux_task_alloc_security(struct task_struct *tsk)
2791 {
2792         struct task_security_struct *tsec1, *tsec2;
2793         int rc;
2794
2795         tsec1 = current->security;
2796
2797         rc = task_alloc_security(tsk);
2798         if (rc)
2799                 return rc;
2800         tsec2 = tsk->security;
2801
2802         tsec2->osid = tsec1->osid;
2803         tsec2->sid = tsec1->sid;
2804
2805         /* Retain the exec, fs, key, and sock SIDs across fork */
2806         tsec2->exec_sid = tsec1->exec_sid;
2807         tsec2->create_sid = tsec1->create_sid;
2808         tsec2->keycreate_sid = tsec1->keycreate_sid;
2809         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2810
2811         /* Retain ptracer SID across fork, if any.
2812            This will be reset by the ptrace hook upon any
2813            subsequent ptrace_attach operations. */
2814         tsec2->ptrace_sid = tsec1->ptrace_sid;
2815
2816         return 0;
2817 }
2818
2819 static void selinux_task_free_security(struct task_struct *tsk)
2820 {
2821         task_free_security(tsk);
2822 }
2823
2824 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2825 {
2826         /* Since setuid only affects the current process, and
2827            since the SELinux controls are not based on the Linux
2828            identity attributes, SELinux does not need to control
2829            this operation.  However, SELinux does control the use
2830            of the CAP_SETUID and CAP_SETGID capabilities using the
2831            capable hook. */
2832         return 0;
2833 }
2834
2835 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2836 {
2837         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2838 }
2839
2840 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2841 {
2842         /* See the comment for setuid above. */
2843         return 0;
2844 }
2845
2846 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2847 {
2848         return task_has_perm(current, p, PROCESS__SETPGID);
2849 }
2850
2851 static int selinux_task_getpgid(struct task_struct *p)
2852 {
2853         return task_has_perm(current, p, PROCESS__GETPGID);
2854 }
2855
2856 static int selinux_task_getsid(struct task_struct *p)
2857 {
2858         return task_has_perm(current, p, PROCESS__GETSESSION);
2859 }
2860
2861 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2862 {
2863         selinux_get_task_sid(p, secid);
2864 }
2865
2866 static int selinux_task_setgroups(struct group_info *group_info)
2867 {
2868         /* See the comment for setuid above. */
2869         return 0;
2870 }
2871
2872 static int selinux_task_setnice(struct task_struct *p, int nice)
2873 {
2874         int rc;
2875
2876         rc = secondary_ops->task_setnice(p, nice);
2877         if (rc)
2878                 return rc;
2879
2880         return task_has_perm(current,p, PROCESS__SETSCHED);
2881 }
2882
2883 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2884 {
2885         return task_has_perm(current, p, PROCESS__SETSCHED);
2886 }
2887
2888 static int selinux_task_getioprio(struct task_struct *p)
2889 {
2890         return task_has_perm(current, p, PROCESS__GETSCHED);
2891 }
2892
2893 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2894 {
2895         struct rlimit *old_rlim = current->signal->rlim + resource;
2896         int rc;
2897
2898         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2899         if (rc)
2900                 return rc;
2901
2902         /* Control the ability to change the hard limit (whether
2903            lowering or raising it), so that the hard limit can
2904            later be used as a safe reset point for the soft limit
2905            upon context transitions. See selinux_bprm_apply_creds. */
2906         if (old_rlim->rlim_max != new_rlim->rlim_max)
2907                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2908
2909         return 0;
2910 }
2911
2912 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2913 {
2914         return task_has_perm(current, p, PROCESS__SETSCHED);
2915 }
2916
2917 static int selinux_task_getscheduler(struct task_struct *p)
2918 {
2919         return task_has_perm(current, p, PROCESS__GETSCHED);
2920 }
2921
2922 static int selinux_task_movememory(struct task_struct *p)
2923 {
2924         return task_has_perm(current, p, PROCESS__SETSCHED);
2925 }
2926
2927 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2928                                 int sig, u32 secid)
2929 {
2930         u32 perm;
2931         int rc;
2932         struct task_security_struct *tsec;
2933
2934         rc = secondary_ops->task_kill(p, info, sig, secid);
2935         if (rc)
2936                 return rc;
2937
2938         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2939                 return 0;
2940
2941         if (!sig)
2942                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2943         else
2944                 perm = signal_to_av(sig);
2945         tsec = p->security;
2946         if (secid)
2947                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2948         else
2949                 rc = task_has_perm(current, p, perm);
2950         return rc;
2951 }
2952
2953 static int selinux_task_prctl(int option,
2954                               unsigned long arg2,
2955                               unsigned long arg3,
2956                               unsigned long arg4,
2957                               unsigned long arg5)
2958 {
2959         /* The current prctl operations do not appear to require
2960            any SELinux controls since they merely observe or modify
2961            the state of the current process. */
2962         return 0;
2963 }
2964
2965 static int selinux_task_wait(struct task_struct *p)
2966 {
2967         u32 perm;
2968
2969         perm = signal_to_av(p->exit_signal);
2970
2971         return task_has_perm(p, current, perm);
2972 }
2973
2974 static void selinux_task_reparent_to_init(struct task_struct *p)
2975 {
2976         struct task_security_struct *tsec;
2977
2978         secondary_ops->task_reparent_to_init(p);
2979
2980         tsec = p->security;
2981         tsec->osid = tsec->sid;
2982         tsec->sid = SECINITSID_KERNEL;
2983         return;
2984 }
2985
2986 static void selinux_task_to_inode(struct task_struct *p,
2987                                   struct inode *inode)
2988 {
2989         struct task_security_struct *tsec = p->security;
2990         struct inode_security_struct *isec = inode->i_security;
2991
2992         isec->sid = tsec->sid;
2993         isec->initialized = 1;
2994         return;
2995 }
2996
2997 /* Returns error only if unable to parse addresses */
2998 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2999                         struct avc_audit_data *ad, u8 *proto)
3000 {
3001         int offset, ihlen, ret = -EINVAL;
3002         struct iphdr _iph, *ih;
3003
3004         offset = skb_network_offset(skb);
3005         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3006         if (ih == NULL)
3007                 goto out;
3008
3009         ihlen = ih->ihl * 4;
3010         if (ihlen < sizeof(_iph))
3011                 goto out;
3012
3013         ad->u.net.v4info.saddr = ih->saddr;
3014         ad->u.net.v4info.daddr = ih->daddr;
3015         ret = 0;
3016
3017         if (proto)
3018                 *proto = ih->protocol;
3019
3020         switch (ih->protocol) {
3021         case IPPROTO_TCP: {
3022                 struct tcphdr _tcph, *th;
3023
3024                 if (ntohs(ih->frag_off) & IP_OFFSET)
3025                         break;
3026
3027                 offset += ihlen;
3028                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3029                 if (th == NULL)
3030                         break;
3031
3032                 ad->u.net.sport = th->source;
3033                 ad->u.net.dport = th->dest;
3034                 break;
3035         }
3036         
3037         case IPPROTO_UDP: {
3038                 struct udphdr _udph, *uh;
3039                 
3040                 if (ntohs(ih->frag_off) & IP_OFFSET)
3041                         break;
3042                         
3043                 offset += ihlen;
3044                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3045                 if (uh == NULL)
3046                         break;  
3047
3048                 ad->u.net.sport = uh->source;
3049                 ad->u.net.dport = uh->dest;
3050                 break;
3051         }
3052
3053         case IPPROTO_DCCP: {
3054                 struct dccp_hdr _dccph, *dh;
3055
3056                 if (ntohs(ih->frag_off) & IP_OFFSET)
3057                         break;
3058
3059                 offset += ihlen;
3060                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3061                 if (dh == NULL)
3062                         break;
3063
3064                 ad->u.net.sport = dh->dccph_sport;
3065                 ad->u.net.dport = dh->dccph_dport;
3066                 break;
3067         }
3068
3069         default:
3070                 break;
3071         }
3072 out:
3073         return ret;
3074 }
3075
3076 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3077
3078 /* Returns error only if unable to parse addresses */
3079 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3080                         struct avc_audit_data *ad, u8 *proto)
3081 {
3082         u8 nexthdr;
3083         int ret = -EINVAL, offset;
3084         struct ipv6hdr _ipv6h, *ip6;
3085
3086         offset = skb_network_offset(skb);
3087         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3088         if (ip6 == NULL)
3089                 goto out;
3090
3091         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3092         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3093         ret = 0;
3094
3095         nexthdr = ip6->nexthdr;
3096         offset += sizeof(_ipv6h);
3097         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3098         if (offset < 0)
3099                 goto out;
3100
3101         if (proto)
3102                 *proto = nexthdr;
3103
3104         switch (nexthdr) {
3105         case IPPROTO_TCP: {
3106                 struct tcphdr _tcph, *th;
3107
3108                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3109                 if (th == NULL)
3110                         break;
3111
3112                 ad->u.net.sport = th->source;
3113                 ad->u.net.dport = th->dest;
3114                 break;
3115         }
3116
3117         case IPPROTO_UDP: {
3118                 struct udphdr _udph, *uh;
3119
3120                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3121                 if (uh == NULL)
3122                         break;
3123
3124                 ad->u.net.sport = uh->source;
3125                 ad->u.net.dport = uh->dest;
3126                 break;
3127         }
3128
3129         case IPPROTO_DCCP: {
3130                 struct dccp_hdr _dccph, *dh;
3131
3132                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3133                 if (dh == NULL)
3134                         break;
3135
3136                 ad->u.net.sport = dh->dccph_sport;
3137                 ad->u.net.dport = dh->dccph_dport;
3138                 break;
3139         }
3140
3141         /* includes fragments */
3142         default:
3143                 break;
3144         }
3145 out:
3146         return ret;
3147 }
3148
3149 #endif /* IPV6 */
3150
3151 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3152                              char **addrp, int *len, int src, u8 *proto)
3153 {
3154         int ret = 0;
3155
3156         switch (ad->u.net.family) {
3157         case PF_INET:
3158                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3159                 if (ret || !addrp)
3160                         break;
3161                 *len = 4;
3162                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3163                                         &ad->u.net.v4info.daddr);
3164                 break;
3165
3166 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3167         case PF_INET6:
3168                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3169                 if (ret || !addrp)
3170                         break;
3171                 *len = 16;
3172                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3173                                         &ad->u.net.v6info.daddr);
3174                 break;
3175 #endif  /* IPV6 */
3176         default:
3177                 break;
3178         }
3179
3180         return ret;
3181 }
3182
3183 /**
3184  * selinux_skb_extlbl_sid - Determine the external label of a packet
3185  * @skb: the packet
3186  * @sid: the packet's SID
3187  *
3188  * Description:
3189  * Check the various different forms of external packet labeling and determine
3190  * the external SID for the packet.  If only one form of external labeling is
3191  * present then it is used, if both labeled IPsec and NetLabel labels are
3192  * present then the SELinux type information is taken from the labeled IPsec
3193  * SA and the MLS sensitivity label information is taken from the NetLabel
3194  * security attributes.  This bit of "magic" is done in the call to
3195  * selinux_netlbl_skbuff_getsid().
3196  *
3197  */
3198 static void selinux_skb_extlbl_sid(struct sk_buff *skb, u32 *sid)
3199 {
3200         u32 xfrm_sid;
3201         u32 nlbl_sid;
3202
3203         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3204         if (selinux_netlbl_skbuff_getsid(skb,
3205                                          (xfrm_sid == SECSID_NULL ?
3206                                           SECINITSID_NETMSG : xfrm_sid),
3207                                          &nlbl_sid) != 0)
3208                 nlbl_sid = SECSID_NULL;
3209         *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid);
3210 }
3211
3212 /* socket security operations */
3213 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3214                            u32 perms)
3215 {
3216         struct inode_security_struct *isec;
3217         struct task_security_struct *tsec;
3218         struct avc_audit_data ad;
3219         int err = 0;
3220
3221         tsec = task->security;
3222         isec = SOCK_INODE(sock)->i_security;
3223
3224         if (isec->sid == SECINITSID_KERNEL)
3225                 goto out;
3226
3227         AVC_AUDIT_DATA_INIT(&ad,NET);
3228         ad.u.net.sk = sock->sk;
3229         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3230
3231 out:
3232         return err;
3233 }
3234
3235 static int selinux_socket_create(int family, int type,
3236                                  int protocol, int kern)
3237 {
3238         int err = 0;
3239         struct task_security_struct *tsec;
3240         u32 newsid;
3241
3242         if (kern)
3243                 goto out;
3244
3245         tsec = current->security;
3246         newsid = tsec->sockcreate_sid ? : tsec->sid;
3247         err = avc_has_perm(tsec->sid, newsid,
3248                            socket_type_to_security_class(family, type,
3249                            protocol), SOCKET__CREATE, NULL);
3250
3251 out:
3252         return err;
3253 }
3254
3255 static int selinux_socket_post_create(struct socket *sock, int family,
3256                                       int type, int protocol, int kern)
3257 {
3258         int err = 0;
3259         struct inode_security_struct *isec;
3260         struct task_security_struct *tsec;
3261         struct sk_security_struct *sksec;
3262         u32 newsid;
3263
3264         isec = SOCK_INODE(sock)->i_security;
3265
3266         tsec = current->security;
3267         newsid = tsec->sockcreate_sid ? : tsec->sid;
3268         isec->sclass = socket_type_to_security_class(family, type, protocol);
3269         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3270         isec->initialized = 1;
3271
3272         if (sock->sk) {
3273                 sksec = sock->sk->sk_security;
3274                 sksec->sid = isec->sid;
3275                 err = selinux_netlbl_socket_post_create(sock);
3276         }
3277
3278         return err;
3279 }
3280
3281 /* Range of port numbers used to automatically bind.
3282    Need to determine whether we should perform a name_bind
3283    permission check between the socket and the port number. */
3284
3285 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3286 {
3287         u16 family;
3288         int err;
3289
3290         err = socket_has_perm(current, sock, SOCKET__BIND);
3291         if (err)
3292                 goto out;
3293
3294         /*
3295          * If PF_INET or PF_INET6, check name_bind permission for the port.
3296          * Multiple address binding for SCTP is not supported yet: we just
3297          * check the first address now.
3298          */
3299         family = sock->sk->sk_family;
3300         if (family == PF_INET || family == PF_INET6) {
3301                 char *addrp;
3302                 struct inode_security_struct *isec;
3303                 struct task_security_struct *tsec;
3304                 struct avc_audit_data ad;
3305                 struct sockaddr_in *addr4 = NULL;
3306                 struct sockaddr_in6 *addr6 = NULL;
3307                 unsigned short snum;
3308                 struct sock *sk = sock->sk;
3309                 u32 sid, node_perm, addrlen;
3310
3311                 tsec = current->security;
3312                 isec = SOCK_INODE(sock)->i_security;
3313
3314                 if (family == PF_INET) {
3315                         addr4 = (struct sockaddr_in *)address;
3316                         snum = ntohs(addr4->sin_port);
3317                         addrlen = sizeof(addr4->sin_addr.s_addr);
3318                         addrp = (char *)&addr4->sin_addr.s_addr;
3319                 } else {
3320                         addr6 = (struct sockaddr_in6 *)address;
3321                         snum = ntohs(addr6->sin6_port);
3322                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3323                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3324                 }
3325
3326                 if (snum) {
3327                         int low, high;
3328
3329                         inet_get_local_port_range(&low, &high);
3330
3331                         if (snum < max(PROT_SOCK, low) || snum > high) {
3332                                 err = security_port_sid(sk->sk_family,
3333                                                         sk->sk_type,
3334                                                         sk->sk_protocol, snum,
3335                                                         &sid);
3336                                 if (err)
3337                                         goto out;
3338                                 AVC_AUDIT_DATA_INIT(&ad,NET);
3339                                 ad.u.net.sport = htons(snum);
3340                                 ad.u.net.family = family;
3341                                 err = avc_has_perm(isec->sid, sid,
3342                                                    isec->sclass,
3343                                                    SOCKET__NAME_BIND, &ad);
3344                                 if (err)
3345                                         goto out;
3346                         }
3347                 }
3348                 
3349                 switch(isec->sclass) {
3350                 case SECCLASS_TCP_SOCKET:
3351                         node_perm = TCP_SOCKET__NODE_BIND;
3352                         break;
3353                         
3354                 case SECCLASS_UDP_SOCKET:
3355                         node_perm = UDP_SOCKET__NODE_BIND;
3356                         break;
3357
3358                 case SECCLASS_DCCP_SOCKET:
3359                         node_perm = DCCP_SOCKET__NODE_BIND;
3360                         break;
3361
3362                 default:
3363                         node_perm = RAWIP_SOCKET__NODE_BIND;
3364                         break;
3365                 }
3366                 
3367                 err = security_node_sid(family, addrp, addrlen, &sid);
3368                 if (err)
3369                         goto out;
3370                 
3371                 AVC_AUDIT_DATA_INIT(&ad,NET);
3372                 ad.u.net.sport = htons(snum);
3373                 ad.u.net.family = family;
3374
3375                 if (family == PF_INET)
3376                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3377                 else
3378                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3379
3380                 err = avc_has_perm(isec->sid, sid,
3381                                    isec->sclass, node_perm, &ad);
3382                 if (err)
3383                         goto out;
3384         }
3385 out:
3386         return err;
3387 }
3388
3389 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3390 {
3391         struct inode_security_struct *isec;
3392         int err;
3393
3394         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3395         if (err)
3396                 return err;
3397
3398         /*
3399          * If a TCP or DCCP socket, check name_connect permission for the port.
3400          */
3401         isec = SOCK_INODE(sock)->i_security;
3402         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3403             isec->sclass == SECCLASS_DCCP_SOCKET) {
3404                 struct sock *sk = sock->sk;
3405                 struct avc_audit_data ad;
3406                 struct sockaddr_in *addr4 = NULL;
3407                 struct sockaddr_in6 *addr6 = NULL;
3408                 unsigned short snum;
3409                 u32 sid, perm;
3410
3411                 if (sk->sk_family == PF_INET) {
3412                         addr4 = (struct sockaddr_in *)address;
3413                         if (addrlen < sizeof(struct sockaddr_in))
3414                                 return -EINVAL;
3415                         snum = ntohs(addr4->sin_port);
3416                 } else {
3417                         addr6 = (struct sockaddr_in6 *)address;
3418                         if (addrlen < SIN6_LEN_RFC2133)
3419                                 return -EINVAL;
3420                         snum = ntohs(addr6->sin6_port);
3421                 }
3422
3423                 err = security_port_sid(sk->sk_family, sk->sk_type,
3424                                         sk->sk_protocol, snum, &sid);
3425                 if (err)
3426                         goto out;
3427
3428                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3429                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3430
3431                 AVC_AUDIT_DATA_INIT(&ad,NET);
3432                 ad.u.net.dport = htons(snum);
3433                 ad.u.net.family = sk->sk_family;
3434                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3435                 if (err)
3436                         goto out;
3437         }
3438
3439 out:
3440         return err;
3441 }
3442
3443 static int selinux_socket_listen(struct socket *sock, int backlog)
3444 {
3445         return socket_has_perm(current, sock, SOCKET__LISTEN);
3446 }
3447
3448 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3449 {
3450         int err;
3451         struct inode_security_struct *isec;
3452         struct inode_security_struct *newisec;
3453
3454         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3455         if (err)
3456                 return err;
3457
3458         newisec = SOCK_INODE(newsock)->i_security;
3459
3460         isec = SOCK_INODE(sock)->i_security;
3461         newisec->sclass = isec->sclass;
3462         newisec->sid = isec->sid;
3463         newisec->initialized = 1;
3464
3465         return 0;
3466 }
3467
3468 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3469                                   int size)
3470 {
3471         int rc;
3472
3473         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3474         if (rc)
3475                 return rc;
3476
3477         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3478 }
3479
3480 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3481                                   int size, int flags)
3482 {
3483         return socket_has_perm(current, sock, SOCKET__READ);
3484 }
3485
3486 static int selinux_socket_getsockname(struct socket *sock)
3487 {
3488         return socket_has_perm(current, sock, SOCKET__GETATTR);
3489 }
3490
3491 static int selinux_socket_getpeername(struct socket *sock)
3492 {
3493         return socket_has_perm(current, sock, SOCKET__GETATTR);
3494 }
3495
3496 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3497 {
3498         int err;
3499
3500         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3501         if (err)
3502                 return err;
3503
3504         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3505 }
3506
3507 static int selinux_socket_getsockopt(struct socket *sock, int level,
3508                                      int optname)
3509 {
3510         return socket_has_perm(current, sock, SOCKET__GETOPT);
3511 }
3512
3513 static int selinux_socket_shutdown(struct socket *sock, int how)
3514 {
3515         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3516 }
3517
3518 static int selinux_socket_unix_stream_connect(struct socket *sock,
3519                                               struct socket *other,
3520                                               struct sock *newsk)
3521 {
3522         struct sk_security_struct *ssec;
3523         struct inode_security_struct *isec;
3524         struct inode_security_struct *other_isec;
3525         struct avc_audit_data ad;
3526         int err;
3527
3528         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3529         if (err)
3530                 return err;
3531
3532         isec = SOCK_INODE(sock)->i_security;
3533         other_isec = SOCK_INODE(other)->i_security;
3534
3535         AVC_AUDIT_DATA_INIT(&ad,NET);
3536         ad.u.net.sk = other->sk;
3537
3538         err = avc_has_perm(isec->sid, other_isec->sid,
3539                            isec->sclass,
3540                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3541         if (err)
3542                 return err;
3543
3544         /* connecting socket */
3545         ssec = sock->sk->sk_security;
3546         ssec->peer_sid = other_isec->sid;
3547         
3548         /* server child socket */
3549         ssec = newsk->sk_security;
3550         ssec->peer_sid = isec->sid;
3551         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3552
3553         return err;
3554 }
3555
3556 static int selinux_socket_unix_may_send(struct socket *sock,
3557                                         struct socket *other)
3558 {
3559         struct inode_security_struct *isec;
3560         struct inode_security_struct *other_isec;
3561         struct avc_audit_data ad;
3562         int err;
3563
3564         isec = SOCK_INODE(sock)->i_security;
3565         other_isec = SOCK_INODE(other)->i_security;
3566
3567         AVC_AUDIT_DATA_INIT(&ad,NET);
3568         ad.u.net.sk = other->sk;
3569
3570         err = avc_has_perm(isec->sid, other_isec->sid,
3571                            isec->sclass, SOCKET__SENDTO, &ad);
3572         if (err)
3573                 return err;
3574
3575         return 0;
3576 }
3577
3578 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3579                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3580 {
3581         int err = 0;
3582         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3583         struct socket *sock;
3584         u16 sock_class = 0;
3585         u32 sock_sid = 0;
3586
3587         read_lock_bh(&sk->sk_callback_lock);
3588         sock = sk->sk_socket;
3589         if (sock) {
3590                 struct inode *inode;
3591                 inode = SOCK_INODE(sock);
3592                 if (inode) {
3593                         struct inode_security_struct *isec;
3594                         isec = inode->i_security;
3595                         sock_sid = isec->sid;
3596                         sock_class = isec->sclass;
3597                 }
3598         }
3599         read_unlock_bh(&sk->sk_callback_lock);
3600         if (!sock_sid)
3601                 goto out;
3602
3603         if (!skb->dev)
3604                 goto out;
3605
3606         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3607         if (err)
3608                 goto out;
3609
3610         switch (sock_class) {
3611         case SECCLASS_UDP_SOCKET:
3612                 netif_perm = NETIF__UDP_RECV;
3613                 node_perm = NODE__UDP_RECV;
3614                 recv_perm = UDP_SOCKET__RECV_MSG;
3615                 break;
3616         
3617         case SECCLASS_TCP_SOCKET:
3618                 netif_perm = NETIF__TCP_RECV;
3619                 node_perm = NODE__TCP_RECV;
3620                 recv_perm = TCP_SOCKET__RECV_MSG;
3621                 break;
3622
3623         case SECCLASS_DCCP_SOCKET:
3624                 netif_perm = NETIF__DCCP_RECV;
3625                 node_perm = NODE__DCCP_RECV;
3626                 recv_perm = DCCP_SOCKET__RECV_MSG;
3627                 break;
3628
3629         default:
3630                 netif_perm = NETIF__RAWIP_RECV;
3631                 node_perm = NODE__RAWIP_RECV;
3632                 break;
3633         }
3634
3635         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3636         if (err)
3637                 goto out;
3638         
3639         err = security_node_sid(family, addrp, len, &node_sid);
3640         if (err)
3641                 goto out;
3642         
3643         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3644         if (err)
3645                 goto out;
3646
3647         if (recv_perm) {
3648                 u32 port_sid;
3649
3650                 err = security_port_sid(sk->sk_family, sk->sk_type,
3651                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3652                                         &port_sid);
3653                 if (err)
3654                         goto out;
3655
3656                 err = avc_has_perm(sock_sid, port_sid,
3657                                    sock_class, recv_perm, ad);
3658         }
3659
3660 out:
3661         return err;
3662 }
3663
3664 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3665 {
3666         u16 family;
3667         char *addrp;
3668         int len, err = 0;
3669         struct avc_audit_data ad;
3670         struct sk_security_struct *sksec = sk->sk_security;
3671
3672         family = sk->sk_family;
3673         if (family != PF_INET && family != PF_INET6)
3674                 goto out;
3675
3676         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3677         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3678                 family = PF_INET;
3679
3680         AVC_AUDIT_DATA_INIT(&ad, NET);
3681         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3682         ad.u.net.family = family;
3683
3684         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3685         if (err)
3686                 goto out;
3687
3688         if (selinux_compat_net)
3689                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3690                                                   addrp, len);
3691         else
3692                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3693                                    PACKET__RECV, &ad);
3694         if (err)
3695                 goto out;
3696
3697         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3698         if (err)
3699                 goto out;
3700
3701         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3702 out:    
3703         return err;
3704 }
3705
3706 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3707                                             int __user *optlen, unsigned len)
3708 {
3709         int err = 0;
3710         char *scontext;
3711         u32 scontext_len;
3712         struct sk_security_struct *ssec;
3713         struct inode_security_struct *isec;
3714         u32 peer_sid = SECSID_NULL;
3715
3716         isec = SOCK_INODE(sock)->i_security;
3717
3718         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3719             isec->sclass == SECCLASS_TCP_SOCKET) {
3720                 ssec = sock->sk->sk_security;
3721                 peer_sid = ssec->peer_sid;
3722         }
3723         if (peer_sid == SECSID_NULL) {
3724                 err = -ENOPROTOOPT;
3725                 goto out;
3726         }
3727
3728         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3729
3730         if (err)
3731                 goto out;
3732
3733         if (scontext_len > len) {
3734                 err = -ERANGE;
3735                 goto out_len;
3736         }
3737
3738         if (copy_to_user(optval, scontext, scontext_len))
3739                 err = -EFAULT;
3740
3741 out_len:
3742         if (put_user(scontext_len, optlen))
3743                 err = -EFAULT;
3744
3745         kfree(scontext);
3746 out:    
3747         return err;
3748 }
3749
3750 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3751 {
3752         u32 peer_secid = SECSID_NULL;
3753         int err = 0;
3754
3755         if (sock && sock->sk->sk_family == PF_UNIX)
3756                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3757         else if (skb)
3758                 selinux_skb_extlbl_sid(skb, &peer_secid);
3759
3760         if (peer_secid == SECSID_NULL)
3761                 err = -EINVAL;
3762         *secid = peer_secid;
3763
3764         return err;
3765 }
3766
3767 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3768 {
3769         return sk_alloc_security(sk, family, priority);
3770 }
3771
3772 static void selinux_sk_free_security(struct sock *sk)
3773 {
3774         sk_free_security(sk);
3775 }
3776
3777 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3778 {
3779         struct sk_security_struct *ssec = sk->sk_security;
3780         struct sk_security_struct *newssec = newsk->sk_security;
3781
3782         newssec->sid = ssec->sid;
3783         newssec->peer_sid = ssec->peer_sid;
3784
3785         selinux_netlbl_sk_security_clone(ssec, newssec);
3786 }
3787
3788 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3789 {
3790         if (!sk)
3791                 *secid = SECINITSID_ANY_SOCKET;
3792         else {
3793                 struct sk_security_struct *sksec = sk->sk_security;
3794
3795                 *secid = sksec->sid;
3796         }
3797 }
3798
3799 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3800 {
3801         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3802         struct sk_security_struct *sksec = sk->sk_security;
3803
3804         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3805             sk->sk_family == PF_UNIX)
3806                 isec->sid = sksec->sid;
3807
3808         selinux_netlbl_sock_graft(sk, parent);
3809 }
3810
3811 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3812                                      struct request_sock *req)
3813 {
3814         struct sk_security_struct *sksec = sk->sk_security;
3815         int err;
3816         u32 newsid;
3817         u32 peersid;
3818
3819         selinux_skb_extlbl_sid(skb, &peersid);
3820         if (peersid == SECSID_NULL) {
3821                 req->secid = sksec->sid;
3822                 req->peer_secid = SECSID_NULL;
3823                 return 0;
3824         }
3825
3826         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3827         if (err)
3828                 return err;
3829
3830         req->secid = newsid;
3831         req->peer_secid = peersid;
3832         return 0;
3833 }
3834
3835 static void selinux_inet_csk_clone(struct sock *newsk,
3836                                    const struct request_sock *req)
3837 {
3838         struct sk_security_struct *newsksec = newsk->sk_security;
3839
3840         newsksec->sid = req->secid;
3841         newsksec->peer_sid = req->peer_secid;
3842         /* NOTE: Ideally, we should also get the isec->sid for the
3843            new socket in sync, but we don't have the isec available yet.
3844            So we will wait until sock_graft to do it, by which
3845            time it will have been created and available. */
3846
3847         /* We don't need to take any sort of lock here as we are the only
3848          * thread with access to newsksec */
3849         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3850 }
3851
3852 static void selinux_inet_conn_established(struct sock *sk,
3853                                 struct sk_buff *skb)
3854 {
3855         struct sk_security_struct *sksec = sk->sk_security;
3856
3857         selinux_skb_extlbl_sid(skb, &sksec->peer_sid);
3858 }
3859
3860 static void selinux_req_classify_flow(const struct request_sock *req,
3861                                       struct flowi *fl)
3862 {
3863         fl->secid = req->secid;
3864 }
3865
3866 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3867 {
3868         int err = 0;
3869         u32 perm;
3870         struct nlmsghdr *nlh;
3871         struct socket *sock = sk->sk_socket;
3872         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3873         
3874         if (skb->len < NLMSG_SPACE(0)) {
3875                 err = -EINVAL;
3876                 goto out;
3877         }
3878         nlh = nlmsg_hdr(skb);
3879         
3880         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3881         if (err) {
3882                 if (err == -EINVAL) {
3883                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3884                                   "SELinux:  unrecognized netlink message"
3885                                   " type=%hu for sclass=%hu\n",
3886                                   nlh->nlmsg_type, isec->sclass);
3887                         if (!selinux_enforcing)
3888                                 err = 0;
3889                 }
3890
3891                 /* Ignore */
3892                 if (err == -ENOENT)
3893                         err = 0;
3894                 goto out;
3895         }
3896
3897         err = socket_has_perm(current, sock, perm);
3898 out:
3899         return err;
3900 }
3901
3902 #ifdef CONFIG_NETFILTER
3903
3904 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3905                                             struct avc_audit_data *ad,
3906                                             u16 family, char *addrp, int len)
3907 {
3908         int err = 0;
3909         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3910         struct socket *sock;
3911         struct inode *inode;
3912         struct inode_security_struct *isec;
3913
3914         sock = sk->sk_socket;
3915         if (!sock)
3916                 goto out;
3917
3918         inode = SOCK_INODE(sock);
3919         if (!inode)
3920                 goto out;
3921
3922         isec = inode->i_security;
3923         
3924         err = sel_netif_sids(dev, &if_sid, NULL);
3925         if (err)
3926                 goto out;
3927
3928         switch (isec->sclass) {
3929         case SECCLASS_UDP_SOCKET:
3930                 netif_perm = NETIF__UDP_SEND;
3931                 node_perm = NODE__UDP_SEND;
3932                 send_perm = UDP_SOCKET__SEND_MSG;
3933                 break;
3934         
3935         case SECCLASS_TCP_SOCKET:
3936                 netif_perm = NETIF__TCP_SEND;
3937                 node_perm = NODE__TCP_SEND;
3938                 send_perm = TCP_SOCKET__SEND_MSG;
3939                 break;
3940
3941         case SECCLASS_DCCP_SOCKET:
3942                 netif_perm = NETIF__DCCP_SEND;
3943                 node_perm = NODE__DCCP_SEND;
3944                 send_perm = DCCP_SOCKET__SEND_MSG;
3945                 break;
3946
3947         default:
3948                 netif_perm = NETIF__RAWIP_SEND;
3949                 node_perm = NODE__RAWIP_SEND;
3950                 break;
3951         }
3952
3953         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3954         if (err)
3955                 goto out;
3956                 
3957         err = security_node_sid(family, addrp, len, &node_sid);
3958         if (err)
3959                 goto out;
3960         
3961         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3962         if (err)
3963                 goto out;
3964
3965         if (send_perm) {
3966                 u32 port_sid;
3967                 
3968                 err = security_port_sid(sk->sk_family,
3969                                         sk->sk_type,
3970                                         sk->sk_protocol,
3971                                         ntohs(ad->u.net.dport),
3972                                         &port_sid);
3973                 if (err)
3974                         goto out;
3975
3976                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3977                                    send_perm, ad);
3978         }
3979 out:
3980         return err;
3981 }
3982
3983 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3984                                               struct sk_buff *skb,
3985                                               const struct net_device *in,
3986                                               const struct net_device *out,
3987                                               int (*okfn)(struct sk_buff *),
3988                                               u16 family)
3989 {
3990         char *addrp;
3991         int len, err = 0;
3992         struct sock *sk;
3993         struct avc_audit_data ad;
3994         struct net_device *dev = (struct net_device *)out;
3995         struct sk_security_struct *sksec;
3996         u8 proto;
3997
3998         sk = skb->sk;
3999         if (!sk)
4000                 goto out;
4001
4002         sksec = sk->sk_security;
4003
4004         AVC_AUDIT_DATA_INIT(&ad, NET);
4005         ad.u.net.netif = dev->name;
4006         ad.u.net.family = family;
4007
4008         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
4009         if (err)
4010                 goto out;
4011
4012         if (selinux_compat_net)
4013                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
4014                                                        family, addrp, len);
4015         else
4016                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
4017                                    PACKET__SEND, &ad);
4018
4019         if (err)
4020                 goto out;
4021
4022         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
4023 out:
4024         return err ? NF_DROP : NF_ACCEPT;
4025 }
4026
4027 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
4028                                                 struct sk_buff *skb,
4029                                                 const struct net_device *in,
4030                                                 const struct net_device *out,
4031                                                 int (*okfn)(struct sk_buff *))
4032 {
4033         return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET);
4034 }
4035
4036 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4037
4038 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
4039                                                 struct sk_buff *skb,
4040                                                 const struct net_device *in,
4041                                                 const struct net_device *out,
4042                                                 int (*okfn)(struct sk_buff *))
4043 {
4044         return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET6);
4045 }
4046
4047 #endif  /* IPV6 */
4048
4049 #endif  /* CONFIG_NETFILTER */
4050
4051 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4052 {
4053         int err;
4054
4055         err = secondary_ops->netlink_send(sk, skb);
4056         if (err)
4057                 return err;
4058
4059         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4060                 err = selinux_nlmsg_perm(sk, skb);
4061
4062         return err;
4063 }
4064
4065 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4066 {
4067         int err;
4068         struct avc_audit_data ad;
4069
4070         err = secondary_ops->netlink_recv(skb, capability);
4071         if (err)
4072                 return err;
4073
4074         AVC_AUDIT_DATA_INIT(&ad, CAP);
4075         ad.u.cap = capability;
4076
4077         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4078                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4079 }
4080
4081 static int ipc_alloc_security(struct task_struct *task,
4082                               struct kern_ipc_perm *perm,
4083                               u16 sclass)
4084 {
4085         struct task_security_struct *tsec = task->security;
4086         struct ipc_security_struct *isec;
4087
4088         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4089         if (!isec)
4090                 return -ENOMEM;
4091
4092         isec->sclass = sclass;
4093         isec->ipc_perm = perm;
4094         isec->sid = tsec->sid;
4095         perm->security = isec;
4096
4097         return 0;
4098 }
4099
4100 static void ipc_free_security(struct kern_ipc_perm *perm)
4101 {
4102         struct ipc_security_struct *isec = perm->security;
4103         perm->security = NULL;
4104         kfree(isec);
4105 }
4106
4107 static int msg_msg_alloc_security(struct msg_msg *msg)
4108 {
4109         struct msg_security_struct *msec;
4110
4111         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4112         if (!msec)
4113                 return -ENOMEM;
4114
4115         msec->msg = msg;
4116         msec->sid = SECINITSID_UNLABELED;
4117         msg->security = msec;
4118
4119         return 0;
4120 }
4121
4122 static void msg_msg_free_security(struct msg_msg *msg)
4123 {
4124         struct msg_security_struct *msec = msg->security;
4125
4126         msg->security = NULL;
4127         kfree(msec);
4128 }
4129
4130 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4131                         u32 perms)
4132 {
4133         struct task_security_struct *tsec;
4134         struct ipc_security_struct *isec;
4135         struct avc_audit_data ad;
4136
4137         tsec = current->security;
4138         isec = ipc_perms->security;
4139
4140         AVC_AUDIT_DATA_INIT(&ad, IPC);
4141         ad.u.ipc_id = ipc_perms->key;
4142
4143         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4144 }
4145
4146 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4147 {
4148         return msg_msg_alloc_security(msg);
4149 }
4150
4151 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4152 {
4153         msg_msg_free_security(msg);
4154 }
4155
4156 /* message queue security operations */
4157 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4158 {
4159         struct task_security_struct *tsec;
4160         struct ipc_security_struct *isec;
4161         struct avc_audit_data ad;
4162         int rc;
4163
4164         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4165         if (rc)
4166                 return rc;
4167
4168         tsec = current->security;
4169         isec = msq->q_perm.security;
4170
4171         AVC_AUDIT_DATA_INIT(&ad, IPC);
4172         ad.u.ipc_id = msq->q_perm.key;
4173
4174         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4175                           MSGQ__CREATE, &ad);
4176         if (rc) {
4177                 ipc_free_security(&msq->q_perm);
4178                 return rc;
4179         }
4180         return 0;
4181 }
4182
4183 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4184 {
4185         ipc_free_security(&msq->q_perm);
4186 }
4187
4188 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4189 {
4190         struct task_security_struct *tsec;
4191         struct ipc_security_struct *isec;
4192         struct avc_audit_data ad;
4193
4194         tsec = current->security;
4195         isec = msq->q_perm.security;
4196
4197         AVC_AUDIT_DATA_INIT(&ad, IPC);
4198         ad.u.ipc_id = msq->q_perm.key;
4199
4200         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4201                             MSGQ__ASSOCIATE, &ad);
4202 }
4203
4204 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4205 {
4206         int err;
4207         int perms;
4208
4209         switch(cmd) {
4210         case IPC_INFO:
4211         case MSG_INFO:
4212                 /* No specific object, just general system-wide information. */
4213                 return task_has_system(current, SYSTEM__IPC_INFO);
4214         case IPC_STAT:
4215         case MSG_STAT:
4216                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4217                 break;
4218         case IPC_SET:
4219                 perms = MSGQ__SETATTR;
4220                 break;
4221         case IPC_RMID:
4222                 perms = MSGQ__DESTROY;
4223                 break;
4224         default:
4225                 return 0;
4226         }
4227
4228         err = ipc_has_perm(&msq->q_perm, perms);
4229         return err;
4230 }
4231
4232 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4233 {
4234         struct task_security_struct *tsec;
4235         struct ipc_security_struct *isec;
4236         struct msg_security_struct *msec;
4237         struct avc_audit_data ad;
4238         int rc;
4239
4240         tsec = current->security;
4241         isec = msq->q_perm.security;
4242         msec = msg->security;
4243
4244         /*
4245          * First time through, need to assign label to the message
4246          */
4247         if (msec->sid == SECINITSID_UNLABELED) {
4248                 /*
4249                  * Compute new sid based on current process and
4250                  * message queue this message will be stored in
4251                  */
4252                 rc = security_transition_sid(tsec->sid,
4253                                              isec->sid,
4254                                              SECCLASS_MSG,
4255                                              &msec->sid);
4256                 if (rc)
4257                         return rc;
4258         }
4259
4260         AVC_AUDIT_DATA_INIT(&ad, IPC);
4261         ad.u.ipc_id = msq->q_perm.key;
4262
4263         /* Can this process write to the queue? */
4264         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4265                           MSGQ__WRITE, &ad);
4266         if (!rc)
4267                 /* Can this process send the message */
4268                 rc = avc_has_perm(tsec->sid, msec->sid,
4269                                   SECCLASS_MSG, MSG__SEND, &ad);
4270         if (!rc)
4271                 /* Can the message be put in the queue? */
4272                 rc = avc_has_perm(msec->sid, isec->sid,
4273                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4274
4275         return rc;
4276 }
4277
4278 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4279                                     struct task_struct *target,
4280                                     long type, int mode)
4281 {
4282         struct task_security_struct *tsec;
4283         struct ipc_security_struct *isec;
4284         struct msg_security_struct *msec;
4285         struct avc_audit_data ad;
4286         int rc;
4287
4288         tsec = target->security;
4289         isec = msq->q_perm.security;
4290         msec = msg->security;
4291
4292         AVC_AUDIT_DATA_INIT(&ad, IPC);
4293         ad.u.ipc_id = msq->q_perm.key;
4294
4295         rc = avc_has_perm(tsec->sid, isec->sid,
4296                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4297         if (!rc)
4298                 rc = avc_has_perm(tsec->sid, msec->sid,
4299                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4300         return rc;
4301 }
4302
4303 /* Shared Memory security operations */
4304 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4305 {
4306         struct task_security_struct *tsec;
4307         struct ipc_security_struct *isec;
4308         struct avc_audit_data ad;
4309         int rc;
4310
4311         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4312         if (rc)
4313                 return rc;
4314
4315         tsec = current->security;
4316         isec = shp->shm_perm.security;
4317
4318         AVC_AUDIT_DATA_INIT(&ad, IPC);
4319         ad.u.ipc_id = shp->shm_perm.key;
4320
4321         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4322                           SHM__CREATE, &ad);
4323         if (rc) {
4324                 ipc_free_security(&shp->shm_perm);
4325                 return rc;
4326         }
4327         return 0;
4328 }
4329
4330 static void selinux_shm_free_security(struct shmid_kernel *shp)
4331 {
4332         ipc_free_security(&shp->shm_perm);
4333 }
4334
4335 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4336 {
4337         struct task_security_struct *tsec;
4338         struct ipc_security_struct *isec;
4339         struct avc_audit_data ad;
4340
4341         tsec = current->security;
4342         isec = shp->shm_perm.security;
4343
4344         AVC_AUDIT_DATA_INIT(&ad, IPC);
4345         ad.u.ipc_id = shp->shm_perm.key;
4346
4347         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4348                             SHM__ASSOCIATE, &ad);
4349 }
4350
4351 /* Note, at this point, shp is locked down */
4352 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4353 {
4354         int perms;
4355         int err;
4356
4357         switch(cmd) {
4358         case IPC_INFO:
4359         case SHM_INFO:
4360                 /* No specific object, just general system-wide information. */
4361                 return task_has_system(current, SYSTEM__IPC_INFO);
4362         case IPC_STAT:
4363         case SHM_STAT:
4364                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4365                 break;
4366         case IPC_SET:
4367                 perms = SHM__SETATTR;
4368                 break;
4369         case SHM_LOCK:
4370         case SHM_UNLOCK:
4371                 perms = SHM__LOCK;
4372                 break;
4373         case IPC_RMID:
4374                 perms = SHM__DESTROY;
4375                 break;
4376         default:
4377                 return 0;
4378         }
4379
4380         err = ipc_has_perm(&shp->shm_perm, perms);
4381         return err;
4382 }
4383
4384 static int selinux_shm_shmat(struct shmid_kernel *shp,
4385                              char __user *shmaddr, int shmflg)
4386 {
4387         u32 perms;
4388         int rc;
4389
4390         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4391         if (rc)
4392                 return rc;
4393
4394         if (shmflg & SHM_RDONLY)
4395                 perms = SHM__READ;
4396         else
4397                 perms = SHM__READ | SHM__WRITE;
4398
4399         return ipc_has_perm(&shp->shm_perm, perms);
4400 }
4401
4402 /* Semaphore security operations */
4403 static int selinux_sem_alloc_security(struct sem_array *sma)
4404 {
4405         struct task_security_struct *tsec;
4406         struct ipc_security_struct *isec;
4407         struct avc_audit_data ad;
4408         int rc;
4409
4410         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4411         if (rc)
4412                 return rc;
4413
4414         tsec = current->security;
4415         isec = sma->sem_perm.security;
4416
4417         AVC_AUDIT_DATA_INIT(&ad, IPC);
4418         ad.u.ipc_id = sma->sem_perm.key;
4419
4420         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4421                           SEM__CREATE, &ad);
4422         if (rc) {
4423                 ipc_free_security(&sma->sem_perm);
4424                 return rc;
4425         }
4426         return 0;
4427 }
4428
4429 static void selinux_sem_free_security(struct sem_array *sma)
4430 {
4431         ipc_free_security(&sma->sem_perm);
4432 }
4433
4434 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4435 {
4436         struct task_security_struct *tsec;
4437         struct ipc_security_struct *isec;
4438         struct avc_audit_data ad;
4439
4440         tsec = current->security;
4441         isec = sma->sem_perm.security;
4442
4443         AVC_AUDIT_DATA_INIT(&ad, IPC);
4444         ad.u.ipc_id = sma->sem_perm.key;
4445
4446         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4447                             SEM__ASSOCIATE, &ad);
4448 }
4449
4450 /* Note, at this point, sma is locked down */
4451 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4452 {
4453         int err;
4454         u32 perms;
4455
4456         switch(cmd) {
4457         case IPC_INFO:
4458         case SEM_INFO:
4459                 /* No specific object, just general system-wide information. */
4460                 return task_has_system(current, SYSTEM__IPC_INFO);
4461         case GETPID:
4462         case GETNCNT:
4463         case GETZCNT:
4464                 perms = SEM__GETATTR;
4465                 break;
4466         case GETVAL:
4467         case GETALL:
4468                 perms = SEM__READ;
4469                 break;
4470         case SETVAL:
4471         case SETALL:
4472                 perms = SEM__WRITE;
4473                 break;
4474         case IPC_RMID:
4475                 perms = SEM__DESTROY;
4476                 break;
4477         case IPC_SET:
4478                 perms = SEM__SETATTR;
4479                 break;
4480         case IPC_STAT:
4481         case SEM_STAT:
4482                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4483                 break;
4484         default:
4485                 return 0;
4486         }
4487
4488         err = ipc_has_perm(&sma->sem_perm, perms);
4489         return err;
4490 }
4491
4492 static int selinux_sem_semop(struct sem_array *sma,
4493                              struct sembuf *sops, unsigned nsops, int alter)
4494 {
4495         u32 perms;
4496
4497         if (alter)
4498                 perms = SEM__READ | SEM__WRITE;
4499         else
4500                 perms = SEM__READ;
4501
4502         return ipc_has_perm(&sma->sem_perm, perms);
4503 }
4504
4505 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4506 {
4507         u32 av = 0;
4508
4509         av = 0;
4510         if (flag & S_IRUGO)
4511                 av |= IPC__UNIX_READ;
4512         if (flag & S_IWUGO)
4513                 av |= IPC__UNIX_WRITE;
4514
4515         if (av == 0)
4516                 return 0;
4517
4518         return ipc_has_perm(ipcp, av);
4519 }
4520
4521 /* module stacking operations */
4522 static int selinux_register_security (const char *name, struct security_operations *ops)
4523 {
4524         if (secondary_ops != original_ops) {
4525                 printk(KERN_ERR "%s:  There is already a secondary security "
4526                        "module registered.\n", __FUNCTION__);
4527                 return -EINVAL;
4528         }
4529
4530         secondary_ops = ops;
4531
4532         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4533                __FUNCTION__,
4534                name);
4535
4536         return 0;
4537 }
4538
4539 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4540 {
4541         if (ops != secondary_ops) {
4542                 printk(KERN_ERR "%s:  trying to unregister a security module "
4543                         "that is not registered.\n", __FUNCTION__);
4544                 return -EINVAL;
4545         }
4546
4547         secondary_ops = original_ops;
4548
4549         return 0;
4550 }
4551
4552 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4553 {
4554         if (inode)
4555                 inode_doinit_with_dentry(inode, dentry);
4556 }
4557
4558 static int selinux_getprocattr(struct task_struct *p,
4559                                char *name, char **value)
4560 {
4561         struct task_security_struct *tsec;
4562         u32 sid;
4563         int error;
4564         unsigned len;
4565
4566         if (current != p) {
4567                 error = task_has_perm(current, p, PROCESS__GETATTR);
4568                 if (error)
4569                         return error;
4570         }
4571
4572         tsec = p->security;
4573
4574         if (!strcmp(name, "current"))
4575                 sid = tsec->sid;
4576         else if (!strcmp(name, "prev"))
4577                 sid = tsec->osid;
4578         else if (!strcmp(name, "exec"))
4579                 sid = tsec->exec_sid;
4580         else if (!strcmp(name, "fscreate"))
4581                 sid = tsec->create_sid;
4582         else if (!strcmp(name, "keycreate"))
4583                 sid = tsec->keycreate_sid;
4584         else if (!strcmp(name, "sockcreate"))
4585                 sid = tsec->sockcreate_sid;
4586         else
4587                 return -EINVAL;
4588
4589         if (!sid)
4590                 return 0;
4591
4592         error = security_sid_to_context(sid, value, &len);
4593         if (error)
4594                 return error;
4595         return len;
4596 }
4597
4598 static int selinux_setprocattr(struct task_struct *p,
4599                                char *name, void *value, size_t size)
4600 {
4601         struct task_security_struct *tsec;
4602         u32 sid = 0;
4603         int error;
4604         char *str = value;
4605
4606         if (current != p) {
4607                 /* SELinux only allows a process to change its own
4608                    security attributes. */
4609                 return -EACCES;
4610         }
4611
4612         /*
4613          * Basic control over ability to set these attributes at all.
4614          * current == p, but we'll pass them separately in case the
4615          * above restriction is ever removed.
4616          */
4617         if (!strcmp(name, "exec"))
4618                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4619         else if (!strcmp(name, "fscreate"))
4620                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4621         else if (!strcmp(name, "keycreate"))
4622                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4623         else if (!strcmp(name, "sockcreate"))
4624                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4625         else if (!strcmp(name, "current"))
4626                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4627         else
4628                 error = -EINVAL;
4629         if (error)
4630                 return error;
4631
4632         /* Obtain a SID for the context, if one was specified. */
4633         if (size && str[1] && str[1] != '\n') {
4634                 if (str[size-1] == '\n') {
4635                         str[size-1] = 0;
4636                         size--;
4637                 }
4638                 error = security_context_to_sid(value, size, &sid);
4639                 if (error)
4640                         return error;
4641         }
4642
4643         /* Permission checking based on the specified context is
4644            performed during the actual operation (execve,
4645            open/mkdir/...), when we know the full context of the
4646            operation.  See selinux_bprm_set_security for the execve
4647            checks and may_create for the file creation checks. The
4648            operation will then fail if the context is not permitted. */
4649         tsec = p->security;
4650         if (!strcmp(name, "exec"))
4651                 tsec->exec_sid = sid;
4652         else if (!strcmp(name, "fscreate"))
4653                 tsec->create_sid = sid;
4654         else if (!strcmp(name, "keycreate")) {
4655                 error = may_create_key(sid, p);
4656                 if (error)
4657                         return error;
4658                 tsec->keycreate_sid = sid;
4659         } else if (!strcmp(name, "sockcreate"))
4660                 tsec->sockcreate_sid = sid;
4661         else if (!strcmp(name, "current")) {
4662                 struct av_decision avd;
4663
4664                 if (sid == 0)
4665                         return -EINVAL;
4666
4667                 /* Only allow single threaded processes to change context */
4668                 if (atomic_read(&p->mm->mm_users) != 1) {
4669                         struct task_struct *g, *t;
4670                         struct mm_struct *mm = p->mm;
4671                         read_lock(&tasklist_lock);
4672                         do_each_thread(g, t)
4673                                 if (t->mm == mm && t != p) {
4674                                         read_unlock(&tasklist_lock);
4675                                         return -EPERM;
4676                                 }
4677                         while_each_thread(g, t);
4678                         read_unlock(&tasklist_lock);
4679                 }
4680
4681                 /* Check permissions for the transition. */
4682                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4683                                      PROCESS__DYNTRANSITION, NULL);
4684                 if (error)
4685                         return error;
4686
4687                 /* Check for ptracing, and update the task SID if ok.
4688                    Otherwise, leave SID unchanged and fail. */
4689                 task_lock(p);
4690                 if (p->ptrace & PT_PTRACED) {
4691                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4692                                                      SECCLASS_PROCESS,
4693                                                      PROCESS__PTRACE, 0, &avd);
4694                         if (!error)
4695                                 tsec->sid = sid;
4696                         task_unlock(p);
4697                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4698                                   PROCESS__PTRACE, &avd, error, NULL);
4699                         if (error)
4700                                 return error;
4701                 } else {
4702                         tsec->sid = sid;
4703                         task_unlock(p);
4704                 }
4705         }
4706         else
4707                 return -EINVAL;
4708
4709         return size;
4710 }
4711
4712 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4713 {
4714         return security_sid_to_context(secid, secdata, seclen);
4715 }
4716
4717 static void selinux_release_secctx(char *secdata, u32 seclen)
4718 {
4719         kfree(secdata);
4720 }
4721
4722 #ifdef CONFIG_KEYS
4723
4724 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4725                              unsigned long flags)
4726 {
4727         struct task_security_struct *tsec = tsk->security;
4728         struct key_security_struct *ksec;
4729
4730         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4731         if (!ksec)
4732                 return -ENOMEM;
4733
4734         ksec->obj = k;
4735         if (tsec->keycreate_sid)
4736                 ksec->sid = tsec->keycreate_sid;
4737         else
4738                 ksec->sid = tsec->sid;
4739         k->security = ksec;
4740
4741         return 0;
4742 }
4743
4744 static void selinux_key_free(struct key *k)
4745 {
4746         struct key_security_struct *ksec = k->security;
4747
4748         k->security = NULL;
4749         kfree(ksec);
4750 }
4751
4752 static int selinux_key_permission(key_ref_t key_ref,
4753                             struct task_struct *ctx,
4754                             key_perm_t perm)
4755 {
4756         struct key *key;
4757         struct task_security_struct *tsec;
4758         struct key_security_struct *ksec;
4759
4760         key = key_ref_to_ptr(key_ref);
4761
4762         tsec = ctx->security;
4763         ksec = key->security;
4764
4765         /* if no specific permissions are requested, we skip the
4766            permission check. No serious, additional covert channels
4767            appear to be created. */
4768         if (perm == 0)
4769                 return 0;
4770
4771         return avc_has_perm(tsec->sid, ksec->sid,
4772                             SECCLASS_KEY, perm, NULL);
4773 }
4774
4775 #endif
4776
4777 static struct security_operations selinux_ops = {
4778         .ptrace =                       selinux_ptrace,
4779         .capget =                       selinux_capget,
4780         .capset_check =                 selinux_capset_check,
4781         .capset_set =                   selinux_capset_set,
4782         .sysctl =                       selinux_sysctl,
4783         .capable =                      selinux_capable,
4784         .quotactl =                     selinux_quotactl,
4785         .quota_on =                     selinux_quota_on,
4786         .syslog =                       selinux_syslog,
4787         .vm_enough_memory =             selinux_vm_enough_memory,
4788
4789         .netlink_send =                 selinux_netlink_send,
4790         .netlink_recv =                 selinux_netlink_recv,
4791
4792         .bprm_alloc_security =          selinux_bprm_alloc_security,
4793         .bprm_free_security =           selinux_bprm_free_security,
4794         .bprm_apply_creds =             selinux_bprm_apply_creds,
4795         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4796         .bprm_set_security =            selinux_bprm_set_security,
4797         .bprm_check_security =          selinux_bprm_check_security,
4798         .bprm_secureexec =              selinux_bprm_secureexec,
4799
4800         .sb_alloc_security =            selinux_sb_alloc_security,
4801         .sb_free_security =             selinux_sb_free_security,
4802         .sb_copy_data =                 selinux_sb_copy_data,
4803         .sb_kern_mount =                selinux_sb_kern_mount,
4804         .sb_statfs =                    selinux_sb_statfs,
4805         .sb_mount =                     selinux_mount,
4806         .sb_umount =                    selinux_umount,
4807
4808         .inode_alloc_security =         selinux_inode_alloc_security,
4809         .inode_free_security =          selinux_inode_free_security,
4810         .inode_init_security =          selinux_inode_init_security,
4811         .inode_create =                 selinux_inode_create,
4812         .inode_link =                   selinux_inode_link,
4813         .inode_unlink =                 selinux_inode_unlink,
4814         .inode_symlink =                selinux_inode_symlink,
4815         .inode_mkdir =                  selinux_inode_mkdir,
4816         .inode_rmdir =                  selinux_inode_rmdir,
4817         .inode_mknod =                  selinux_inode_mknod,
4818         .inode_rename =                 selinux_inode_rename,
4819         .inode_readlink =               selinux_inode_readlink,
4820         .inode_follow_link =            selinux_inode_follow_link,
4821         .inode_permission =             selinux_inode_permission,
4822         .inode_setattr =                selinux_inode_setattr,
4823         .inode_getattr =                selinux_inode_getattr,
4824         .inode_setxattr =               selinux_inode_setxattr,
4825         .inode_post_setxattr =          selinux_inode_post_setxattr,
4826         .inode_getxattr =               selinux_inode_getxattr,
4827         .inode_listxattr =              selinux_inode_listxattr,
4828         .inode_removexattr =            selinux_inode_removexattr,
4829         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4830         .inode_getsecurity =            selinux_inode_getsecurity,
4831         .inode_setsecurity =            selinux_inode_setsecurity,
4832         .inode_listsecurity =           selinux_inode_listsecurity,
4833
4834         .file_permission =              selinux_file_permission,
4835         .file_alloc_security =          selinux_file_alloc_security,
4836         .file_free_security =           selinux_file_free_security,
4837         .file_ioctl =                   selinux_file_ioctl,
4838         .file_mmap =                    selinux_file_mmap,
4839         .file_mprotect =                selinux_file_mprotect,
4840         .file_lock =                    selinux_file_lock,
4841         .file_fcntl =                   selinux_file_fcntl,
4842         .file_set_fowner =              selinux_file_set_fowner,
4843         .file_send_sigiotask =          selinux_file_send_sigiotask,
4844         .file_receive =                 selinux_file_receive,
4845
4846         .dentry_open =                  selinux_dentry_open,
4847
4848         .task_create =                  selinux_task_create,
4849         .task_alloc_security =          selinux_task_alloc_security,
4850         .task_free_security =           selinux_task_free_security,
4851         .task_setuid =                  selinux_task_setuid,
4852         .task_post_setuid =             selinux_task_post_setuid,
4853         .task_setgid =                  selinux_task_setgid,
4854         .task_setpgid =                 selinux_task_setpgid,
4855         .task_getpgid =                 selinux_task_getpgid,
4856         .task_getsid =                  selinux_task_getsid,
4857         .task_getsecid =                selinux_task_getsecid,
4858         .task_setgroups =               selinux_task_setgroups,
4859         .task_setnice =                 selinux_task_setnice,
4860         .task_setioprio =               selinux_task_setioprio,
4861         .task_getioprio =               selinux_task_getioprio,
4862         .task_setrlimit =               selinux_task_setrlimit,
4863         .task_setscheduler =            selinux_task_setscheduler,
4864         .task_getscheduler =            selinux_task_getscheduler,
4865         .task_movememory =              selinux_task_movememory,
4866         .task_kill =                    selinux_task_kill,
4867         .task_wait =                    selinux_task_wait,
4868         .task_prctl =                   selinux_task_prctl,
4869         .task_reparent_to_init =        selinux_task_reparent_to_init,
4870         .task_to_inode =                selinux_task_to_inode,
4871
4872         .ipc_permission =               selinux_ipc_permission,
4873
4874         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4875         .msg_msg_free_security =        selinux_msg_msg_free_security,
4876
4877         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4878         .msg_queue_free_security =      selinux_msg_queue_free_security,
4879         .msg_queue_associate =          selinux_msg_queue_associate,
4880         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4881         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4882         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4883
4884         .shm_alloc_security =           selinux_shm_alloc_security,
4885         .shm_free_security =            selinux_shm_free_security,
4886         .shm_associate =                selinux_shm_associate,
4887         .shm_shmctl =                   selinux_shm_shmctl,
4888         .shm_shmat =                    selinux_shm_shmat,
4889
4890         .sem_alloc_security =           selinux_sem_alloc_security,
4891         .sem_free_security =            selinux_sem_free_security,
4892         .sem_associate =                selinux_sem_associate,
4893         .sem_semctl =                   selinux_sem_semctl,
4894         .sem_semop =                    selinux_sem_semop,
4895
4896         .register_security =            selinux_register_security,
4897         .unregister_security =          selinux_unregister_security,
4898
4899         .d_instantiate =                selinux_d_instantiate,
4900
4901         .getprocattr =                  selinux_getprocattr,
4902         .setprocattr =                  selinux_setprocattr,
4903
4904         .secid_to_secctx =              selinux_secid_to_secctx,
4905         .release_secctx =               selinux_release_secctx,
4906
4907         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4908         .unix_may_send =                selinux_socket_unix_may_send,
4909
4910         .socket_create =                selinux_socket_create,
4911         .socket_post_create =           selinux_socket_post_create,
4912         .socket_bind =                  selinux_socket_bind,
4913         .socket_connect =               selinux_socket_connect,
4914         .socket_listen =                selinux_socket_listen,
4915         .socket_accept =                selinux_socket_accept,
4916         .socket_sendmsg =               selinux_socket_sendmsg,
4917         .socket_recvmsg =               selinux_socket_recvmsg,
4918         .socket_getsockname =           selinux_socket_getsockname,
4919         .socket_getpeername =           selinux_socket_getpeername,
4920         .socket_getsockopt =            selinux_socket_getsockopt,
4921         .socket_setsockopt =            selinux_socket_setsockopt,
4922         .socket_shutdown =              selinux_socket_shutdown,
4923         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4924         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4925         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4926         .sk_alloc_security =            selinux_sk_alloc_security,
4927         .sk_free_security =             selinux_sk_free_security,
4928         .sk_clone_security =            selinux_sk_clone_security,
4929         .sk_getsecid =                  selinux_sk_getsecid,
4930         .sock_graft =                   selinux_sock_graft,
4931         .inet_conn_request =            selinux_inet_conn_request,
4932         .inet_csk_clone =               selinux_inet_csk_clone,
4933         .inet_conn_established =        selinux_inet_conn_established,
4934         .req_classify_flow =            selinux_req_classify_flow,
4935
4936 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4937         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4938         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4939         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4940         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4941         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4942         .xfrm_state_free_security =     selinux_xfrm_state_free,
4943         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4944         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4945         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4946         .xfrm_decode_session =          selinux_xfrm_decode_session,
4947 #endif
4948
4949 #ifdef CONFIG_KEYS
4950         .key_alloc =                    selinux_key_alloc,
4951         .key_free =                     selinux_key_free,
4952         .key_permission =               selinux_key_permission,
4953 #endif
4954 };
4955
4956 static __init int selinux_init(void)
4957 {
4958         struct task_security_struct *tsec;
4959
4960         if (!selinux_enabled) {
4961                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4962                 return 0;
4963         }
4964
4965         printk(KERN_INFO "SELinux:  Initializing.\n");
4966
4967         /* Set the security state for the initial task. */
4968         if (task_alloc_security(current))
4969                 panic("SELinux:  Failed to initialize initial task.\n");
4970         tsec = current->security;
4971         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4972
4973         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4974                                             sizeof(struct inode_security_struct),
4975                                             0, SLAB_PANIC, NULL);
4976         avc_init();
4977
4978         original_ops = secondary_ops = security_ops;
4979         if (!secondary_ops)
4980                 panic ("SELinux: No initial security operations\n");
4981         if (register_security (&selinux_ops))
4982                 panic("SELinux: Unable to register with kernel.\n");
4983
4984         if (selinux_enforcing) {
4985                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
4986         } else {
4987                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
4988         }
4989
4990 #ifdef CONFIG_KEYS
4991         /* Add security information to initial keyrings */
4992         selinux_key_alloc(&root_user_keyring, current,
4993                           KEY_ALLOC_NOT_IN_QUOTA);
4994         selinux_key_alloc(&root_session_keyring, current,
4995                           KEY_ALLOC_NOT_IN_QUOTA);
4996 #endif
4997
4998         return 0;
4999 }
5000
5001 void selinux_complete_init(void)
5002 {
5003         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5004
5005         /* Set up any superblocks initialized prior to the policy load. */
5006         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5007         spin_lock(&sb_lock);
5008         spin_lock(&sb_security_lock);
5009 next_sb:
5010         if (!list_empty(&superblock_security_head)) {
5011                 struct superblock_security_struct *sbsec =
5012                                 list_entry(superblock_security_head.next,
5013                                            struct superblock_security_struct,
5014                                            list);
5015                 struct super_block *sb = sbsec->sb;
5016                 sb->s_count++;
5017                 spin_unlock(&sb_security_lock);
5018                 spin_unlock(&sb_lock);
5019                 down_read(&sb->s_umount);
5020                 if (sb->s_root)
5021                         superblock_doinit(sb, NULL);
5022                 drop_super(sb);
5023                 spin_lock(&sb_lock);
5024                 spin_lock(&sb_security_lock);
5025                 list_del_init(&sbsec->list);
5026                 goto next_sb;
5027         }
5028         spin_unlock(&sb_security_lock);
5029         spin_unlock(&sb_lock);
5030 }
5031
5032 /* SELinux requires early initialization in order to label
5033    all processes and objects when they are created. */
5034 security_initcall(selinux_init);
5035
5036 #if defined(CONFIG_NETFILTER)
5037
5038 static struct nf_hook_ops selinux_ipv4_op = {
5039         .hook =         selinux_ipv4_postroute_last,
5040         .owner =        THIS_MODULE,
5041         .pf =           PF_INET,
5042         .hooknum =      NF_IP_POST_ROUTING,
5043         .priority =     NF_IP_PRI_SELINUX_LAST,
5044 };
5045
5046 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5047
5048 static struct nf_hook_ops selinux_ipv6_op = {
5049         .hook =         selinux_ipv6_postroute_last,
5050         .owner =        THIS_MODULE,
5051         .pf =           PF_INET6,
5052         .hooknum =      NF_IP6_POST_ROUTING,
5053         .priority =     NF_IP6_PRI_SELINUX_LAST,
5054 };
5055
5056 #endif  /* IPV6 */
5057
5058 static int __init selinux_nf_ip_init(void)
5059 {
5060         int err = 0;
5061
5062         if (!selinux_enabled)
5063                 goto out;
5064
5065         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5066
5067         err = nf_register_hook(&selinux_ipv4_op);
5068         if (err)
5069                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
5070
5071 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5072
5073         err = nf_register_hook(&selinux_ipv6_op);
5074         if (err)
5075                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
5076
5077 #endif  /* IPV6 */
5078
5079 out:
5080         return err;
5081 }
5082
5083 __initcall(selinux_nf_ip_init);
5084
5085 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5086 static void selinux_nf_ip_exit(void)
5087 {
5088         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5089
5090         nf_unregister_hook(&selinux_ipv4_op);
5091 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5092         nf_unregister_hook(&selinux_ipv6_op);
5093 #endif  /* IPV6 */
5094 }
5095 #endif
5096
5097 #else /* CONFIG_NETFILTER */
5098
5099 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5100 #define selinux_nf_ip_exit()
5101 #endif
5102
5103 #endif /* CONFIG_NETFILTER */
5104
5105 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5106 int selinux_disable(void)
5107 {
5108         extern void exit_sel_fs(void);
5109         static int selinux_disabled = 0;
5110
5111         if (ss_initialized) {
5112                 /* Not permitted after initial policy load. */
5113                 return -EINVAL;
5114         }
5115
5116         if (selinux_disabled) {
5117                 /* Only do this once. */
5118                 return -EINVAL;
5119         }
5120
5121         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5122
5123         selinux_disabled = 1;
5124         selinux_enabled = 0;
5125
5126         /* Reset security_ops to the secondary module, dummy or capability. */
5127         security_ops = secondary_ops;
5128
5129         /* Unregister netfilter hooks. */
5130         selinux_nf_ip_exit();
5131
5132         /* Unregister selinuxfs. */
5133         exit_sel_fs();
5134
5135         return 0;
5136 }
5137 #endif
5138
5139