syslog: use defined constants instead of raw numbers
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define XATTR_SELINUX_SUFFIX "selinux"
91 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
92
93 #define NUM_SEL_MNT_OPTS 5
94
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163         struct cred *cred = (struct cred *) current->real_cred;
164         struct task_security_struct *tsec;
165
166         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167         if (!tsec)
168                 panic("SELinux:  Failed to initialize initial task.\n");
169
170         tsec->osid = tsec->sid = SECINITSID_KERNEL;
171         cred->security = tsec;
172 }
173
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179         const struct task_security_struct *tsec;
180
181         tsec = cred->security;
182         return tsec->sid;
183 }
184
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190         u32 sid;
191
192         rcu_read_lock();
193         sid = cred_sid(__task_cred(task));
194         rcu_read_unlock();
195         return sid;
196 }
197
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203         const struct task_security_struct *tsec = current_cred()->security;
204
205         return tsec->sid;
206 }
207
208 /* Allocate and free functions for each kind of security blob. */
209
210 static int inode_alloc_security(struct inode *inode)
211 {
212         struct inode_security_struct *isec;
213         u32 sid = current_sid();
214
215         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216         if (!isec)
217                 return -ENOMEM;
218
219         mutex_init(&isec->lock);
220         INIT_LIST_HEAD(&isec->list);
221         isec->inode = inode;
222         isec->sid = SECINITSID_UNLABELED;
223         isec->sclass = SECCLASS_FILE;
224         isec->task_sid = sid;
225         inode->i_security = isec;
226
227         return 0;
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232         struct inode_security_struct *isec = inode->i_security;
233         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235         spin_lock(&sbsec->isec_lock);
236         if (!list_empty(&isec->list))
237                 list_del_init(&isec->list);
238         spin_unlock(&sbsec->isec_lock);
239
240         inode->i_security = NULL;
241         kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static int file_alloc_security(struct file *file)
245 {
246         struct file_security_struct *fsec;
247         u32 sid = current_sid();
248
249         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250         if (!fsec)
251                 return -ENOMEM;
252
253         fsec->sid = sid;
254         fsec->fown_sid = sid;
255         file->f_security = fsec;
256
257         return 0;
258 }
259
260 static void file_free_security(struct file *file)
261 {
262         struct file_security_struct *fsec = file->f_security;
263         file->f_security = NULL;
264         kfree(fsec);
265 }
266
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269         struct superblock_security_struct *sbsec;
270
271         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272         if (!sbsec)
273                 return -ENOMEM;
274
275         mutex_init(&sbsec->lock);
276         INIT_LIST_HEAD(&sbsec->list);
277         INIT_LIST_HEAD(&sbsec->isec_head);
278         spin_lock_init(&sbsec->isec_lock);
279         sbsec->sb = sb;
280         sbsec->sid = SECINITSID_UNLABELED;
281         sbsec->def_sid = SECINITSID_FILE;
282         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283         sb->s_security = sbsec;
284
285         return 0;
286 }
287
288 static void superblock_free_security(struct super_block *sb)
289 {
290         struct superblock_security_struct *sbsec = sb->s_security;
291
292         spin_lock(&sb_security_lock);
293         if (!list_empty(&sbsec->list))
294                 list_del_init(&sbsec->list);
295         spin_unlock(&sb_security_lock);
296
297         sb->s_security = NULL;
298         kfree(sbsec);
299 }
300
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303         struct sk_security_struct *ssec;
304
305         ssec = kzalloc(sizeof(*ssec), priority);
306         if (!ssec)
307                 return -ENOMEM;
308
309         ssec->peer_sid = SECINITSID_UNLABELED;
310         ssec->sid = SECINITSID_UNLABELED;
311         sk->sk_security = ssec;
312
313         selinux_netlbl_sk_security_reset(ssec);
314
315         return 0;
316 }
317
318 static void sk_free_security(struct sock *sk)
319 {
320         struct sk_security_struct *ssec = sk->sk_security;
321
322         sk->sk_security = NULL;
323         selinux_netlbl_sk_security_free(ssec);
324         kfree(ssec);
325 }
326
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330
331 /* The file system's label must be initialized prior to use. */
332
333 static char *labeling_behaviors[6] = {
334         "uses xattr",
335         "uses transition SIDs",
336         "uses task SIDs",
337         "uses genfs_contexts",
338         "not configured for labeling",
339         "uses mountpoint labeling",
340 };
341
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343
344 static inline int inode_doinit(struct inode *inode)
345 {
346         return inode_doinit_with_dentry(inode, NULL);
347 }
348
349 enum {
350         Opt_error = -1,
351         Opt_context = 1,
352         Opt_fscontext = 2,
353         Opt_defcontext = 3,
354         Opt_rootcontext = 4,
355         Opt_labelsupport = 5,
356 };
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_labelsupport, LABELSUPP_STR},
364         {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370                         struct superblock_security_struct *sbsec,
371                         const struct cred *cred)
372 {
373         const struct task_security_struct *tsec = cred->security;
374         int rc;
375
376         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377                           FILESYSTEM__RELABELFROM, NULL);
378         if (rc)
379                 return rc;
380
381         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELTO, NULL);
383         return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387                         struct superblock_security_struct *sbsec,
388                         const struct cred *cred)
389 {
390         const struct task_security_struct *tsec = cred->security;
391         int rc;
392         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393                           FILESYSTEM__RELABELFROM, NULL);
394         if (rc)
395                 return rc;
396
397         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398                           FILESYSTEM__ASSOCIATE, NULL);
399         return rc;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405         struct dentry *root = sb->s_root;
406         struct inode *root_inode = root->d_inode;
407         int rc = 0;
408
409         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410                 /* Make sure that the xattr handler exists and that no
411                    error other than -ENODATA is returned by getxattr on
412                    the root directory.  -ENODATA is ok, as this may be
413                    the first boot of the SELinux kernel before we have
414                    assigned xattr values to the filesystem. */
415                 if (!root_inode->i_op->getxattr) {
416                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417                                "xattr support\n", sb->s_id, sb->s_type->name);
418                         rc = -EOPNOTSUPP;
419                         goto out;
420                 }
421                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422                 if (rc < 0 && rc != -ENODATA) {
423                         if (rc == -EOPNOTSUPP)
424                                 printk(KERN_WARNING "SELinux: (dev %s, type "
425                                        "%s) has no security xattr handler\n",
426                                        sb->s_id, sb->s_type->name);
427                         else
428                                 printk(KERN_WARNING "SELinux: (dev %s, type "
429                                        "%s) getxattr errno %d\n", sb->s_id,
430                                        sb->s_type->name, -rc);
431                         goto out;
432                 }
433         }
434
435         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436
437         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439                        sb->s_id, sb->s_type->name);
440         else
441                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442                        sb->s_id, sb->s_type->name,
443                        labeling_behaviors[sbsec->behavior-1]);
444
445         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447             sbsec->behavior == SECURITY_FS_USE_NONE ||
448             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449                 sbsec->flags &= ~SE_SBLABELSUPP;
450
451         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
452         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
453                 sbsec->flags |= SE_SBLABELSUPP;
454
455         /* Initialize the root inode. */
456         rc = inode_doinit_with_dentry(root_inode, root);
457
458         /* Initialize any other inodes associated with the superblock, e.g.
459            inodes created prior to initial policy load or inodes created
460            during get_sb by a pseudo filesystem that directly
461            populates itself. */
462         spin_lock(&sbsec->isec_lock);
463 next_inode:
464         if (!list_empty(&sbsec->isec_head)) {
465                 struct inode_security_struct *isec =
466                                 list_entry(sbsec->isec_head.next,
467                                            struct inode_security_struct, list);
468                 struct inode *inode = isec->inode;
469                 spin_unlock(&sbsec->isec_lock);
470                 inode = igrab(inode);
471                 if (inode) {
472                         if (!IS_PRIVATE(inode))
473                                 inode_doinit(inode);
474                         iput(inode);
475                 }
476                 spin_lock(&sbsec->isec_lock);
477                 list_del_init(&isec->list);
478                 goto next_inode;
479         }
480         spin_unlock(&sbsec->isec_lock);
481 out:
482         return rc;
483 }
484
485 /*
486  * This function should allow an FS to ask what it's mount security
487  * options were so it can use those later for submounts, displaying
488  * mount options, or whatever.
489  */
490 static int selinux_get_mnt_opts(const struct super_block *sb,
491                                 struct security_mnt_opts *opts)
492 {
493         int rc = 0, i;
494         struct superblock_security_struct *sbsec = sb->s_security;
495         char *context = NULL;
496         u32 len;
497         char tmp;
498
499         security_init_mnt_opts(opts);
500
501         if (!(sbsec->flags & SE_SBINITIALIZED))
502                 return -EINVAL;
503
504         if (!ss_initialized)
505                 return -EINVAL;
506
507         tmp = sbsec->flags & SE_MNTMASK;
508         /* count the number of mount options for this sb */
509         for (i = 0; i < 8; i++) {
510                 if (tmp & 0x01)
511                         opts->num_mnt_opts++;
512                 tmp >>= 1;
513         }
514         /* Check if the Label support flag is set */
515         if (sbsec->flags & SE_SBLABELSUPP)
516                 opts->num_mnt_opts++;
517
518         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
519         if (!opts->mnt_opts) {
520                 rc = -ENOMEM;
521                 goto out_free;
522         }
523
524         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
525         if (!opts->mnt_opts_flags) {
526                 rc = -ENOMEM;
527                 goto out_free;
528         }
529
530         i = 0;
531         if (sbsec->flags & FSCONTEXT_MNT) {
532                 rc = security_sid_to_context(sbsec->sid, &context, &len);
533                 if (rc)
534                         goto out_free;
535                 opts->mnt_opts[i] = context;
536                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
537         }
538         if (sbsec->flags & CONTEXT_MNT) {
539                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
540                 if (rc)
541                         goto out_free;
542                 opts->mnt_opts[i] = context;
543                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
544         }
545         if (sbsec->flags & DEFCONTEXT_MNT) {
546                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
547                 if (rc)
548                         goto out_free;
549                 opts->mnt_opts[i] = context;
550                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
551         }
552         if (sbsec->flags & ROOTCONTEXT_MNT) {
553                 struct inode *root = sbsec->sb->s_root->d_inode;
554                 struct inode_security_struct *isec = root->i_security;
555
556                 rc = security_sid_to_context(isec->sid, &context, &len);
557                 if (rc)
558                         goto out_free;
559                 opts->mnt_opts[i] = context;
560                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
561         }
562         if (sbsec->flags & SE_SBLABELSUPP) {
563                 opts->mnt_opts[i] = NULL;
564                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
565         }
566
567         BUG_ON(i != opts->num_mnt_opts);
568
569         return 0;
570
571 out_free:
572         security_free_mnt_opts(opts);
573         return rc;
574 }
575
576 static int bad_option(struct superblock_security_struct *sbsec, char flag,
577                       u32 old_sid, u32 new_sid)
578 {
579         char mnt_flags = sbsec->flags & SE_MNTMASK;
580
581         /* check if the old mount command had the same options */
582         if (sbsec->flags & SE_SBINITIALIZED)
583                 if (!(sbsec->flags & flag) ||
584                     (old_sid != new_sid))
585                         return 1;
586
587         /* check if we were passed the same options twice,
588          * aka someone passed context=a,context=b
589          */
590         if (!(sbsec->flags & SE_SBINITIALIZED))
591                 if (mnt_flags & flag)
592                         return 1;
593         return 0;
594 }
595
596 /*
597  * Allow filesystems with binary mount data to explicitly set mount point
598  * labeling information.
599  */
600 static int selinux_set_mnt_opts(struct super_block *sb,
601                                 struct security_mnt_opts *opts)
602 {
603         const struct cred *cred = current_cred();
604         int rc = 0, i;
605         struct superblock_security_struct *sbsec = sb->s_security;
606         const char *name = sb->s_type->name;
607         struct inode *inode = sbsec->sb->s_root->d_inode;
608         struct inode_security_struct *root_isec = inode->i_security;
609         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
610         u32 defcontext_sid = 0;
611         char **mount_options = opts->mnt_opts;
612         int *flags = opts->mnt_opts_flags;
613         int num_opts = opts->num_mnt_opts;
614
615         mutex_lock(&sbsec->lock);
616
617         if (!ss_initialized) {
618                 if (!num_opts) {
619                         /* Defer initialization until selinux_complete_init,
620                            after the initial policy is loaded and the security
621                            server is ready to handle calls. */
622                         spin_lock(&sb_security_lock);
623                         if (list_empty(&sbsec->list))
624                                 list_add(&sbsec->list, &superblock_security_head);
625                         spin_unlock(&sb_security_lock);
626                         goto out;
627                 }
628                 rc = -EINVAL;
629                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
630                         "before the security server is initialized\n");
631                 goto out;
632         }
633
634         /*
635          * Binary mount data FS will come through this function twice.  Once
636          * from an explicit call and once from the generic calls from the vfs.
637          * Since the generic VFS calls will not contain any security mount data
638          * we need to skip the double mount verification.
639          *
640          * This does open a hole in which we will not notice if the first
641          * mount using this sb set explict options and a second mount using
642          * this sb does not set any security options.  (The first options
643          * will be used for both mounts)
644          */
645         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
646             && (num_opts == 0))
647                 goto out;
648
649         /*
650          * parse the mount options, check if they are valid sids.
651          * also check if someone is trying to mount the same sb more
652          * than once with different security options.
653          */
654         for (i = 0; i < num_opts; i++) {
655                 u32 sid;
656
657                 if (flags[i] == SE_SBLABELSUPP)
658                         continue;
659                 rc = security_context_to_sid(mount_options[i],
660                                              strlen(mount_options[i]), &sid);
661                 if (rc) {
662                         printk(KERN_WARNING "SELinux: security_context_to_sid"
663                                "(%s) failed for (dev %s, type %s) errno=%d\n",
664                                mount_options[i], sb->s_id, name, rc);
665                         goto out;
666                 }
667                 switch (flags[i]) {
668                 case FSCONTEXT_MNT:
669                         fscontext_sid = sid;
670
671                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
672                                         fscontext_sid))
673                                 goto out_double_mount;
674
675                         sbsec->flags |= FSCONTEXT_MNT;
676                         break;
677                 case CONTEXT_MNT:
678                         context_sid = sid;
679
680                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
681                                         context_sid))
682                                 goto out_double_mount;
683
684                         sbsec->flags |= CONTEXT_MNT;
685                         break;
686                 case ROOTCONTEXT_MNT:
687                         rootcontext_sid = sid;
688
689                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
690                                         rootcontext_sid))
691                                 goto out_double_mount;
692
693                         sbsec->flags |= ROOTCONTEXT_MNT;
694
695                         break;
696                 case DEFCONTEXT_MNT:
697                         defcontext_sid = sid;
698
699                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
700                                         defcontext_sid))
701                                 goto out_double_mount;
702
703                         sbsec->flags |= DEFCONTEXT_MNT;
704
705                         break;
706                 default:
707                         rc = -EINVAL;
708                         goto out;
709                 }
710         }
711
712         if (sbsec->flags & SE_SBINITIALIZED) {
713                 /* previously mounted with options, but not on this attempt? */
714                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
715                         goto out_double_mount;
716                 rc = 0;
717                 goto out;
718         }
719
720         if (strcmp(sb->s_type->name, "proc") == 0)
721                 sbsec->flags |= SE_SBPROC;
722
723         /* Determine the labeling behavior to use for this filesystem type. */
724         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
725         if (rc) {
726                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
727                        __func__, sb->s_type->name, rc);
728                 goto out;
729         }
730
731         /* sets the context of the superblock for the fs being mounted. */
732         if (fscontext_sid) {
733                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
734                 if (rc)
735                         goto out;
736
737                 sbsec->sid = fscontext_sid;
738         }
739
740         /*
741          * Switch to using mount point labeling behavior.
742          * sets the label used on all file below the mountpoint, and will set
743          * the superblock context if not already set.
744          */
745         if (context_sid) {
746                 if (!fscontext_sid) {
747                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
748                                                           cred);
749                         if (rc)
750                                 goto out;
751                         sbsec->sid = context_sid;
752                 } else {
753                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
754                                                              cred);
755                         if (rc)
756                                 goto out;
757                 }
758                 if (!rootcontext_sid)
759                         rootcontext_sid = context_sid;
760
761                 sbsec->mntpoint_sid = context_sid;
762                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
763         }
764
765         if (rootcontext_sid) {
766                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
767                                                      cred);
768                 if (rc)
769                         goto out;
770
771                 root_isec->sid = rootcontext_sid;
772                 root_isec->initialized = 1;
773         }
774
775         if (defcontext_sid) {
776                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
777                         rc = -EINVAL;
778                         printk(KERN_WARNING "SELinux: defcontext option is "
779                                "invalid for this filesystem type\n");
780                         goto out;
781                 }
782
783                 if (defcontext_sid != sbsec->def_sid) {
784                         rc = may_context_mount_inode_relabel(defcontext_sid,
785                                                              sbsec, cred);
786                         if (rc)
787                                 goto out;
788                 }
789
790                 sbsec->def_sid = defcontext_sid;
791         }
792
793         rc = sb_finish_set_opts(sb);
794 out:
795         mutex_unlock(&sbsec->lock);
796         return rc;
797 out_double_mount:
798         rc = -EINVAL;
799         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
800                "security settings for (dev %s, type %s)\n", sb->s_id, name);
801         goto out;
802 }
803
804 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
805                                         struct super_block *newsb)
806 {
807         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
808         struct superblock_security_struct *newsbsec = newsb->s_security;
809
810         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
811         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
812         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
813
814         /*
815          * if the parent was able to be mounted it clearly had no special lsm
816          * mount options.  thus we can safely put this sb on the list and deal
817          * with it later
818          */
819         if (!ss_initialized) {
820                 spin_lock(&sb_security_lock);
821                 if (list_empty(&newsbsec->list))
822                         list_add(&newsbsec->list, &superblock_security_head);
823                 spin_unlock(&sb_security_lock);
824                 return;
825         }
826
827         /* how can we clone if the old one wasn't set up?? */
828         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
829
830         /* if fs is reusing a sb, just let its options stand... */
831         if (newsbsec->flags & SE_SBINITIALIZED)
832                 return;
833
834         mutex_lock(&newsbsec->lock);
835
836         newsbsec->flags = oldsbsec->flags;
837
838         newsbsec->sid = oldsbsec->sid;
839         newsbsec->def_sid = oldsbsec->def_sid;
840         newsbsec->behavior = oldsbsec->behavior;
841
842         if (set_context) {
843                 u32 sid = oldsbsec->mntpoint_sid;
844
845                 if (!set_fscontext)
846                         newsbsec->sid = sid;
847                 if (!set_rootcontext) {
848                         struct inode *newinode = newsb->s_root->d_inode;
849                         struct inode_security_struct *newisec = newinode->i_security;
850                         newisec->sid = sid;
851                 }
852                 newsbsec->mntpoint_sid = sid;
853         }
854         if (set_rootcontext) {
855                 const struct inode *oldinode = oldsb->s_root->d_inode;
856                 const struct inode_security_struct *oldisec = oldinode->i_security;
857                 struct inode *newinode = newsb->s_root->d_inode;
858                 struct inode_security_struct *newisec = newinode->i_security;
859
860                 newisec->sid = oldisec->sid;
861         }
862
863         sb_finish_set_opts(newsb);
864         mutex_unlock(&newsbsec->lock);
865 }
866
867 static int selinux_parse_opts_str(char *options,
868                                   struct security_mnt_opts *opts)
869 {
870         char *p;
871         char *context = NULL, *defcontext = NULL;
872         char *fscontext = NULL, *rootcontext = NULL;
873         int rc, num_mnt_opts = 0;
874
875         opts->num_mnt_opts = 0;
876
877         /* Standard string-based options. */
878         while ((p = strsep(&options, "|")) != NULL) {
879                 int token;
880                 substring_t args[MAX_OPT_ARGS];
881
882                 if (!*p)
883                         continue;
884
885                 token = match_token(p, tokens, args);
886
887                 switch (token) {
888                 case Opt_context:
889                         if (context || defcontext) {
890                                 rc = -EINVAL;
891                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
892                                 goto out_err;
893                         }
894                         context = match_strdup(&args[0]);
895                         if (!context) {
896                                 rc = -ENOMEM;
897                                 goto out_err;
898                         }
899                         break;
900
901                 case Opt_fscontext:
902                         if (fscontext) {
903                                 rc = -EINVAL;
904                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
905                                 goto out_err;
906                         }
907                         fscontext = match_strdup(&args[0]);
908                         if (!fscontext) {
909                                 rc = -ENOMEM;
910                                 goto out_err;
911                         }
912                         break;
913
914                 case Opt_rootcontext:
915                         if (rootcontext) {
916                                 rc = -EINVAL;
917                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
918                                 goto out_err;
919                         }
920                         rootcontext = match_strdup(&args[0]);
921                         if (!rootcontext) {
922                                 rc = -ENOMEM;
923                                 goto out_err;
924                         }
925                         break;
926
927                 case Opt_defcontext:
928                         if (context || defcontext) {
929                                 rc = -EINVAL;
930                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
931                                 goto out_err;
932                         }
933                         defcontext = match_strdup(&args[0]);
934                         if (!defcontext) {
935                                 rc = -ENOMEM;
936                                 goto out_err;
937                         }
938                         break;
939                 case Opt_labelsupport:
940                         break;
941                 default:
942                         rc = -EINVAL;
943                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
944                         goto out_err;
945
946                 }
947         }
948
949         rc = -ENOMEM;
950         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
951         if (!opts->mnt_opts)
952                 goto out_err;
953
954         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
955         if (!opts->mnt_opts_flags) {
956                 kfree(opts->mnt_opts);
957                 goto out_err;
958         }
959
960         if (fscontext) {
961                 opts->mnt_opts[num_mnt_opts] = fscontext;
962                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
963         }
964         if (context) {
965                 opts->mnt_opts[num_mnt_opts] = context;
966                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
967         }
968         if (rootcontext) {
969                 opts->mnt_opts[num_mnt_opts] = rootcontext;
970                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
971         }
972         if (defcontext) {
973                 opts->mnt_opts[num_mnt_opts] = defcontext;
974                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
975         }
976
977         opts->num_mnt_opts = num_mnt_opts;
978         return 0;
979
980 out_err:
981         kfree(context);
982         kfree(defcontext);
983         kfree(fscontext);
984         kfree(rootcontext);
985         return rc;
986 }
987 /*
988  * string mount options parsing and call set the sbsec
989  */
990 static int superblock_doinit(struct super_block *sb, void *data)
991 {
992         int rc = 0;
993         char *options = data;
994         struct security_mnt_opts opts;
995
996         security_init_mnt_opts(&opts);
997
998         if (!data)
999                 goto out;
1000
1001         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1002
1003         rc = selinux_parse_opts_str(options, &opts);
1004         if (rc)
1005                 goto out_err;
1006
1007 out:
1008         rc = selinux_set_mnt_opts(sb, &opts);
1009
1010 out_err:
1011         security_free_mnt_opts(&opts);
1012         return rc;
1013 }
1014
1015 static void selinux_write_opts(struct seq_file *m,
1016                                struct security_mnt_opts *opts)
1017 {
1018         int i;
1019         char *prefix;
1020
1021         for (i = 0; i < opts->num_mnt_opts; i++) {
1022                 char *has_comma;
1023
1024                 if (opts->mnt_opts[i])
1025                         has_comma = strchr(opts->mnt_opts[i], ',');
1026                 else
1027                         has_comma = NULL;
1028
1029                 switch (opts->mnt_opts_flags[i]) {
1030                 case CONTEXT_MNT:
1031                         prefix = CONTEXT_STR;
1032                         break;
1033                 case FSCONTEXT_MNT:
1034                         prefix = FSCONTEXT_STR;
1035                         break;
1036                 case ROOTCONTEXT_MNT:
1037                         prefix = ROOTCONTEXT_STR;
1038                         break;
1039                 case DEFCONTEXT_MNT:
1040                         prefix = DEFCONTEXT_STR;
1041                         break;
1042                 case SE_SBLABELSUPP:
1043                         seq_putc(m, ',');
1044                         seq_puts(m, LABELSUPP_STR);
1045                         continue;
1046                 default:
1047                         BUG();
1048                 };
1049                 /* we need a comma before each option */
1050                 seq_putc(m, ',');
1051                 seq_puts(m, prefix);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054                 seq_puts(m, opts->mnt_opts[i]);
1055                 if (has_comma)
1056                         seq_putc(m, '\"');
1057         }
1058 }
1059
1060 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1061 {
1062         struct security_mnt_opts opts;
1063         int rc;
1064
1065         rc = selinux_get_mnt_opts(sb, &opts);
1066         if (rc) {
1067                 /* before policy load we may get EINVAL, don't show anything */
1068                 if (rc == -EINVAL)
1069                         rc = 0;
1070                 return rc;
1071         }
1072
1073         selinux_write_opts(m, &opts);
1074
1075         security_free_mnt_opts(&opts);
1076
1077         return rc;
1078 }
1079
1080 static inline u16 inode_mode_to_security_class(umode_t mode)
1081 {
1082         switch (mode & S_IFMT) {
1083         case S_IFSOCK:
1084                 return SECCLASS_SOCK_FILE;
1085         case S_IFLNK:
1086                 return SECCLASS_LNK_FILE;
1087         case S_IFREG:
1088                 return SECCLASS_FILE;
1089         case S_IFBLK:
1090                 return SECCLASS_BLK_FILE;
1091         case S_IFDIR:
1092                 return SECCLASS_DIR;
1093         case S_IFCHR:
1094                 return SECCLASS_CHR_FILE;
1095         case S_IFIFO:
1096                 return SECCLASS_FIFO_FILE;
1097
1098         }
1099
1100         return SECCLASS_FILE;
1101 }
1102
1103 static inline int default_protocol_stream(int protocol)
1104 {
1105         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1106 }
1107
1108 static inline int default_protocol_dgram(int protocol)
1109 {
1110         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1111 }
1112
1113 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1114 {
1115         switch (family) {
1116         case PF_UNIX:
1117                 switch (type) {
1118                 case SOCK_STREAM:
1119                 case SOCK_SEQPACKET:
1120                         return SECCLASS_UNIX_STREAM_SOCKET;
1121                 case SOCK_DGRAM:
1122                         return SECCLASS_UNIX_DGRAM_SOCKET;
1123                 }
1124                 break;
1125         case PF_INET:
1126         case PF_INET6:
1127                 switch (type) {
1128                 case SOCK_STREAM:
1129                         if (default_protocol_stream(protocol))
1130                                 return SECCLASS_TCP_SOCKET;
1131                         else
1132                                 return SECCLASS_RAWIP_SOCKET;
1133                 case SOCK_DGRAM:
1134                         if (default_protocol_dgram(protocol))
1135                                 return SECCLASS_UDP_SOCKET;
1136                         else
1137                                 return SECCLASS_RAWIP_SOCKET;
1138                 case SOCK_DCCP:
1139                         return SECCLASS_DCCP_SOCKET;
1140                 default:
1141                         return SECCLASS_RAWIP_SOCKET;
1142                 }
1143                 break;
1144         case PF_NETLINK:
1145                 switch (protocol) {
1146                 case NETLINK_ROUTE:
1147                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1148                 case NETLINK_FIREWALL:
1149                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1150                 case NETLINK_INET_DIAG:
1151                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1152                 case NETLINK_NFLOG:
1153                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1154                 case NETLINK_XFRM:
1155                         return SECCLASS_NETLINK_XFRM_SOCKET;
1156                 case NETLINK_SELINUX:
1157                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1158                 case NETLINK_AUDIT:
1159                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1160                 case NETLINK_IP6_FW:
1161                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1162                 case NETLINK_DNRTMSG:
1163                         return SECCLASS_NETLINK_DNRT_SOCKET;
1164                 case NETLINK_KOBJECT_UEVENT:
1165                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1166                 default:
1167                         return SECCLASS_NETLINK_SOCKET;
1168                 }
1169         case PF_PACKET:
1170                 return SECCLASS_PACKET_SOCKET;
1171         case PF_KEY:
1172                 return SECCLASS_KEY_SOCKET;
1173         case PF_APPLETALK:
1174                 return SECCLASS_APPLETALK_SOCKET;
1175         }
1176
1177         return SECCLASS_SOCKET;
1178 }
1179
1180 #ifdef CONFIG_PROC_FS
1181 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1182                                 u16 tclass,
1183                                 u32 *sid)
1184 {
1185         int buflen, rc;
1186         char *buffer, *path, *end;
1187
1188         buffer = (char *)__get_free_page(GFP_KERNEL);
1189         if (!buffer)
1190                 return -ENOMEM;
1191
1192         buflen = PAGE_SIZE;
1193         end = buffer+buflen;
1194         *--end = '\0';
1195         buflen--;
1196         path = end-1;
1197         *path = '/';
1198         while (de && de != de->parent) {
1199                 buflen -= de->namelen + 1;
1200                 if (buflen < 0)
1201                         break;
1202                 end -= de->namelen;
1203                 memcpy(end, de->name, de->namelen);
1204                 *--end = '/';
1205                 path = end;
1206                 de = de->parent;
1207         }
1208         rc = security_genfs_sid("proc", path, tclass, sid);
1209         free_page((unsigned long)buffer);
1210         return rc;
1211 }
1212 #else
1213 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1214                                 u16 tclass,
1215                                 u32 *sid)
1216 {
1217         return -EINVAL;
1218 }
1219 #endif
1220
1221 /* The inode's security attributes must be initialized before first use. */
1222 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1223 {
1224         struct superblock_security_struct *sbsec = NULL;
1225         struct inode_security_struct *isec = inode->i_security;
1226         u32 sid;
1227         struct dentry *dentry;
1228 #define INITCONTEXTLEN 255
1229         char *context = NULL;
1230         unsigned len = 0;
1231         int rc = 0;
1232
1233         if (isec->initialized)
1234                 goto out;
1235
1236         mutex_lock(&isec->lock);
1237         if (isec->initialized)
1238                 goto out_unlock;
1239
1240         sbsec = inode->i_sb->s_security;
1241         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1242                 /* Defer initialization until selinux_complete_init,
1243                    after the initial policy is loaded and the security
1244                    server is ready to handle calls. */
1245                 spin_lock(&sbsec->isec_lock);
1246                 if (list_empty(&isec->list))
1247                         list_add(&isec->list, &sbsec->isec_head);
1248                 spin_unlock(&sbsec->isec_lock);
1249                 goto out_unlock;
1250         }
1251
1252         switch (sbsec->behavior) {
1253         case SECURITY_FS_USE_XATTR:
1254                 if (!inode->i_op->getxattr) {
1255                         isec->sid = sbsec->def_sid;
1256                         break;
1257                 }
1258
1259                 /* Need a dentry, since the xattr API requires one.
1260                    Life would be simpler if we could just pass the inode. */
1261                 if (opt_dentry) {
1262                         /* Called from d_instantiate or d_splice_alias. */
1263                         dentry = dget(opt_dentry);
1264                 } else {
1265                         /* Called from selinux_complete_init, try to find a dentry. */
1266                         dentry = d_find_alias(inode);
1267                 }
1268                 if (!dentry) {
1269                         /*
1270                          * this is can be hit on boot when a file is accessed
1271                          * before the policy is loaded.  When we load policy we
1272                          * may find inodes that have no dentry on the
1273                          * sbsec->isec_head list.  No reason to complain as these
1274                          * will get fixed up the next time we go through
1275                          * inode_doinit with a dentry, before these inodes could
1276                          * be used again by userspace.
1277                          */
1278                         goto out_unlock;
1279                 }
1280
1281                 len = INITCONTEXTLEN;
1282                 context = kmalloc(len+1, GFP_NOFS);
1283                 if (!context) {
1284                         rc = -ENOMEM;
1285                         dput(dentry);
1286                         goto out_unlock;
1287                 }
1288                 context[len] = '\0';
1289                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1290                                            context, len);
1291                 if (rc == -ERANGE) {
1292                         kfree(context);
1293
1294                         /* Need a larger buffer.  Query for the right size. */
1295                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1296                                                    NULL, 0);
1297                         if (rc < 0) {
1298                                 dput(dentry);
1299                                 goto out_unlock;
1300                         }
1301                         len = rc;
1302                         context = kmalloc(len+1, GFP_NOFS);
1303                         if (!context) {
1304                                 rc = -ENOMEM;
1305                                 dput(dentry);
1306                                 goto out_unlock;
1307                         }
1308                         context[len] = '\0';
1309                         rc = inode->i_op->getxattr(dentry,
1310                                                    XATTR_NAME_SELINUX,
1311                                                    context, len);
1312                 }
1313                 dput(dentry);
1314                 if (rc < 0) {
1315                         if (rc != -ENODATA) {
1316                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1317                                        "%d for dev=%s ino=%ld\n", __func__,
1318                                        -rc, inode->i_sb->s_id, inode->i_ino);
1319                                 kfree(context);
1320                                 goto out_unlock;
1321                         }
1322                         /* Map ENODATA to the default file SID */
1323                         sid = sbsec->def_sid;
1324                         rc = 0;
1325                 } else {
1326                         rc = security_context_to_sid_default(context, rc, &sid,
1327                                                              sbsec->def_sid,
1328                                                              GFP_NOFS);
1329                         if (rc) {
1330                                 char *dev = inode->i_sb->s_id;
1331                                 unsigned long ino = inode->i_ino;
1332
1333                                 if (rc == -EINVAL) {
1334                                         if (printk_ratelimit())
1335                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1336                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1337                                                         "filesystem in question.\n", ino, dev, context);
1338                                 } else {
1339                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1340                                                "returned %d for dev=%s ino=%ld\n",
1341                                                __func__, context, -rc, dev, ino);
1342                                 }
1343                                 kfree(context);
1344                                 /* Leave with the unlabeled SID */
1345                                 rc = 0;
1346                                 break;
1347                         }
1348                 }
1349                 kfree(context);
1350                 isec->sid = sid;
1351                 break;
1352         case SECURITY_FS_USE_TASK:
1353                 isec->sid = isec->task_sid;
1354                 break;
1355         case SECURITY_FS_USE_TRANS:
1356                 /* Default to the fs SID. */
1357                 isec->sid = sbsec->sid;
1358
1359                 /* Try to obtain a transition SID. */
1360                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1361                 rc = security_transition_sid(isec->task_sid,
1362                                              sbsec->sid,
1363                                              isec->sclass,
1364                                              &sid);
1365                 if (rc)
1366                         goto out_unlock;
1367                 isec->sid = sid;
1368                 break;
1369         case SECURITY_FS_USE_MNTPOINT:
1370                 isec->sid = sbsec->mntpoint_sid;
1371                 break;
1372         default:
1373                 /* Default to the fs superblock SID. */
1374                 isec->sid = sbsec->sid;
1375
1376                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1377                         struct proc_inode *proci = PROC_I(inode);
1378                         if (proci->pde) {
1379                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1380                                 rc = selinux_proc_get_sid(proci->pde,
1381                                                           isec->sclass,
1382                                                           &sid);
1383                                 if (rc)
1384                                         goto out_unlock;
1385                                 isec->sid = sid;
1386                         }
1387                 }
1388                 break;
1389         }
1390
1391         isec->initialized = 1;
1392
1393 out_unlock:
1394         mutex_unlock(&isec->lock);
1395 out:
1396         if (isec->sclass == SECCLASS_FILE)
1397                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1398         return rc;
1399 }
1400
1401 /* Convert a Linux signal to an access vector. */
1402 static inline u32 signal_to_av(int sig)
1403 {
1404         u32 perm = 0;
1405
1406         switch (sig) {
1407         case SIGCHLD:
1408                 /* Commonly granted from child to parent. */
1409                 perm = PROCESS__SIGCHLD;
1410                 break;
1411         case SIGKILL:
1412                 /* Cannot be caught or ignored */
1413                 perm = PROCESS__SIGKILL;
1414                 break;
1415         case SIGSTOP:
1416                 /* Cannot be caught or ignored */
1417                 perm = PROCESS__SIGSTOP;
1418                 break;
1419         default:
1420                 /* All other signals. */
1421                 perm = PROCESS__SIGNAL;
1422                 break;
1423         }
1424
1425         return perm;
1426 }
1427
1428 /*
1429  * Check permission between a pair of credentials
1430  * fork check, ptrace check, etc.
1431  */
1432 static int cred_has_perm(const struct cred *actor,
1433                          const struct cred *target,
1434                          u32 perms)
1435 {
1436         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1437
1438         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1439 }
1440
1441 /*
1442  * Check permission between a pair of tasks, e.g. signal checks,
1443  * fork check, ptrace check, etc.
1444  * tsk1 is the actor and tsk2 is the target
1445  * - this uses the default subjective creds of tsk1
1446  */
1447 static int task_has_perm(const struct task_struct *tsk1,
1448                          const struct task_struct *tsk2,
1449                          u32 perms)
1450 {
1451         const struct task_security_struct *__tsec1, *__tsec2;
1452         u32 sid1, sid2;
1453
1454         rcu_read_lock();
1455         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1456         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1457         rcu_read_unlock();
1458         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1459 }
1460
1461 /*
1462  * Check permission between current and another task, e.g. signal checks,
1463  * fork check, ptrace check, etc.
1464  * current is the actor and tsk2 is the target
1465  * - this uses current's subjective creds
1466  */
1467 static int current_has_perm(const struct task_struct *tsk,
1468                             u32 perms)
1469 {
1470         u32 sid, tsid;
1471
1472         sid = current_sid();
1473         tsid = task_sid(tsk);
1474         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1475 }
1476
1477 #if CAP_LAST_CAP > 63
1478 #error Fix SELinux to handle capabilities > 63.
1479 #endif
1480
1481 /* Check whether a task is allowed to use a capability. */
1482 static int task_has_capability(struct task_struct *tsk,
1483                                const struct cred *cred,
1484                                int cap, int audit)
1485 {
1486         struct common_audit_data ad;
1487         struct av_decision avd;
1488         u16 sclass;
1489         u32 sid = cred_sid(cred);
1490         u32 av = CAP_TO_MASK(cap);
1491         int rc;
1492
1493         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1494         ad.tsk = tsk;
1495         ad.u.cap = cap;
1496
1497         switch (CAP_TO_INDEX(cap)) {
1498         case 0:
1499                 sclass = SECCLASS_CAPABILITY;
1500                 break;
1501         case 1:
1502                 sclass = SECCLASS_CAPABILITY2;
1503                 break;
1504         default:
1505                 printk(KERN_ERR
1506                        "SELinux:  out of range capability %d\n", cap);
1507                 BUG();
1508         }
1509
1510         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1511         if (audit == SECURITY_CAP_AUDIT)
1512                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1513         return rc;
1514 }
1515
1516 /* Check whether a task is allowed to use a system operation. */
1517 static int task_has_system(struct task_struct *tsk,
1518                            u32 perms)
1519 {
1520         u32 sid = task_sid(tsk);
1521
1522         return avc_has_perm(sid, SECINITSID_KERNEL,
1523                             SECCLASS_SYSTEM, perms, NULL);
1524 }
1525
1526 /* Check whether a task has a particular permission to an inode.
1527    The 'adp' parameter is optional and allows other audit
1528    data to be passed (e.g. the dentry). */
1529 static int inode_has_perm(const struct cred *cred,
1530                           struct inode *inode,
1531                           u32 perms,
1532                           struct common_audit_data *adp)
1533 {
1534         struct inode_security_struct *isec;
1535         struct common_audit_data ad;
1536         u32 sid;
1537
1538         validate_creds(cred);
1539
1540         if (unlikely(IS_PRIVATE(inode)))
1541                 return 0;
1542
1543         sid = cred_sid(cred);
1544         isec = inode->i_security;
1545
1546         if (!adp) {
1547                 adp = &ad;
1548                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1549                 ad.u.fs.inode = inode;
1550         }
1551
1552         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1553 }
1554
1555 /* Same as inode_has_perm, but pass explicit audit data containing
1556    the dentry to help the auditing code to more easily generate the
1557    pathname if needed. */
1558 static inline int dentry_has_perm(const struct cred *cred,
1559                                   struct vfsmount *mnt,
1560                                   struct dentry *dentry,
1561                                   u32 av)
1562 {
1563         struct inode *inode = dentry->d_inode;
1564         struct common_audit_data ad;
1565
1566         COMMON_AUDIT_DATA_INIT(&ad, FS);
1567         ad.u.fs.path.mnt = mnt;
1568         ad.u.fs.path.dentry = dentry;
1569         return inode_has_perm(cred, inode, av, &ad);
1570 }
1571
1572 /* Check whether a task can use an open file descriptor to
1573    access an inode in a given way.  Check access to the
1574    descriptor itself, and then use dentry_has_perm to
1575    check a particular permission to the file.
1576    Access to the descriptor is implicitly granted if it
1577    has the same SID as the process.  If av is zero, then
1578    access to the file is not checked, e.g. for cases
1579    where only the descriptor is affected like seek. */
1580 static int file_has_perm(const struct cred *cred,
1581                          struct file *file,
1582                          u32 av)
1583 {
1584         struct file_security_struct *fsec = file->f_security;
1585         struct inode *inode = file->f_path.dentry->d_inode;
1586         struct common_audit_data ad;
1587         u32 sid = cred_sid(cred);
1588         int rc;
1589
1590         COMMON_AUDIT_DATA_INIT(&ad, FS);
1591         ad.u.fs.path = file->f_path;
1592
1593         if (sid != fsec->sid) {
1594                 rc = avc_has_perm(sid, fsec->sid,
1595                                   SECCLASS_FD,
1596                                   FD__USE,
1597                                   &ad);
1598                 if (rc)
1599                         goto out;
1600         }
1601
1602         /* av is zero if only checking access to the descriptor. */
1603         rc = 0;
1604         if (av)
1605                 rc = inode_has_perm(cred, inode, av, &ad);
1606
1607 out:
1608         return rc;
1609 }
1610
1611 /* Check whether a task can create a file. */
1612 static int may_create(struct inode *dir,
1613                       struct dentry *dentry,
1614                       u16 tclass)
1615 {
1616         const struct cred *cred = current_cred();
1617         const struct task_security_struct *tsec = cred->security;
1618         struct inode_security_struct *dsec;
1619         struct superblock_security_struct *sbsec;
1620         u32 sid, newsid;
1621         struct common_audit_data ad;
1622         int rc;
1623
1624         dsec = dir->i_security;
1625         sbsec = dir->i_sb->s_security;
1626
1627         sid = tsec->sid;
1628         newsid = tsec->create_sid;
1629
1630         COMMON_AUDIT_DATA_INIT(&ad, FS);
1631         ad.u.fs.path.dentry = dentry;
1632
1633         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1634                           DIR__ADD_NAME | DIR__SEARCH,
1635                           &ad);
1636         if (rc)
1637                 return rc;
1638
1639         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1640                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1641                 if (rc)
1642                         return rc;
1643         }
1644
1645         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1646         if (rc)
1647                 return rc;
1648
1649         return avc_has_perm(newsid, sbsec->sid,
1650                             SECCLASS_FILESYSTEM,
1651                             FILESYSTEM__ASSOCIATE, &ad);
1652 }
1653
1654 /* Check whether a task can create a key. */
1655 static int may_create_key(u32 ksid,
1656                           struct task_struct *ctx)
1657 {
1658         u32 sid = task_sid(ctx);
1659
1660         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1661 }
1662
1663 #define MAY_LINK        0
1664 #define MAY_UNLINK      1
1665 #define MAY_RMDIR       2
1666
1667 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1668 static int may_link(struct inode *dir,
1669                     struct dentry *dentry,
1670                     int kind)
1671
1672 {
1673         struct inode_security_struct *dsec, *isec;
1674         struct common_audit_data ad;
1675         u32 sid = current_sid();
1676         u32 av;
1677         int rc;
1678
1679         dsec = dir->i_security;
1680         isec = dentry->d_inode->i_security;
1681
1682         COMMON_AUDIT_DATA_INIT(&ad, FS);
1683         ad.u.fs.path.dentry = dentry;
1684
1685         av = DIR__SEARCH;
1686         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1687         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1688         if (rc)
1689                 return rc;
1690
1691         switch (kind) {
1692         case MAY_LINK:
1693                 av = FILE__LINK;
1694                 break;
1695         case MAY_UNLINK:
1696                 av = FILE__UNLINK;
1697                 break;
1698         case MAY_RMDIR:
1699                 av = DIR__RMDIR;
1700                 break;
1701         default:
1702                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1703                         __func__, kind);
1704                 return 0;
1705         }
1706
1707         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1708         return rc;
1709 }
1710
1711 static inline int may_rename(struct inode *old_dir,
1712                              struct dentry *old_dentry,
1713                              struct inode *new_dir,
1714                              struct dentry *new_dentry)
1715 {
1716         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1717         struct common_audit_data ad;
1718         u32 sid = current_sid();
1719         u32 av;
1720         int old_is_dir, new_is_dir;
1721         int rc;
1722
1723         old_dsec = old_dir->i_security;
1724         old_isec = old_dentry->d_inode->i_security;
1725         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1726         new_dsec = new_dir->i_security;
1727
1728         COMMON_AUDIT_DATA_INIT(&ad, FS);
1729
1730         ad.u.fs.path.dentry = old_dentry;
1731         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1732                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1733         if (rc)
1734                 return rc;
1735         rc = avc_has_perm(sid, old_isec->sid,
1736                           old_isec->sclass, FILE__RENAME, &ad);
1737         if (rc)
1738                 return rc;
1739         if (old_is_dir && new_dir != old_dir) {
1740                 rc = avc_has_perm(sid, old_isec->sid,
1741                                   old_isec->sclass, DIR__REPARENT, &ad);
1742                 if (rc)
1743                         return rc;
1744         }
1745
1746         ad.u.fs.path.dentry = new_dentry;
1747         av = DIR__ADD_NAME | DIR__SEARCH;
1748         if (new_dentry->d_inode)
1749                 av |= DIR__REMOVE_NAME;
1750         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1751         if (rc)
1752                 return rc;
1753         if (new_dentry->d_inode) {
1754                 new_isec = new_dentry->d_inode->i_security;
1755                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1756                 rc = avc_has_perm(sid, new_isec->sid,
1757                                   new_isec->sclass,
1758                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1759                 if (rc)
1760                         return rc;
1761         }
1762
1763         return 0;
1764 }
1765
1766 /* Check whether a task can perform a filesystem operation. */
1767 static int superblock_has_perm(const struct cred *cred,
1768                                struct super_block *sb,
1769                                u32 perms,
1770                                struct common_audit_data *ad)
1771 {
1772         struct superblock_security_struct *sbsec;
1773         u32 sid = cred_sid(cred);
1774
1775         sbsec = sb->s_security;
1776         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1777 }
1778
1779 /* Convert a Linux mode and permission mask to an access vector. */
1780 static inline u32 file_mask_to_av(int mode, int mask)
1781 {
1782         u32 av = 0;
1783
1784         if ((mode & S_IFMT) != S_IFDIR) {
1785                 if (mask & MAY_EXEC)
1786                         av |= FILE__EXECUTE;
1787                 if (mask & MAY_READ)
1788                         av |= FILE__READ;
1789
1790                 if (mask & MAY_APPEND)
1791                         av |= FILE__APPEND;
1792                 else if (mask & MAY_WRITE)
1793                         av |= FILE__WRITE;
1794
1795         } else {
1796                 if (mask & MAY_EXEC)
1797                         av |= DIR__SEARCH;
1798                 if (mask & MAY_WRITE)
1799                         av |= DIR__WRITE;
1800                 if (mask & MAY_READ)
1801                         av |= DIR__READ;
1802         }
1803
1804         return av;
1805 }
1806
1807 /* Convert a Linux file to an access vector. */
1808 static inline u32 file_to_av(struct file *file)
1809 {
1810         u32 av = 0;
1811
1812         if (file->f_mode & FMODE_READ)
1813                 av |= FILE__READ;
1814         if (file->f_mode & FMODE_WRITE) {
1815                 if (file->f_flags & O_APPEND)
1816                         av |= FILE__APPEND;
1817                 else
1818                         av |= FILE__WRITE;
1819         }
1820         if (!av) {
1821                 /*
1822                  * Special file opened with flags 3 for ioctl-only use.
1823                  */
1824                 av = FILE__IOCTL;
1825         }
1826
1827         return av;
1828 }
1829
1830 /*
1831  * Convert a file to an access vector and include the correct open
1832  * open permission.
1833  */
1834 static inline u32 open_file_to_av(struct file *file)
1835 {
1836         u32 av = file_to_av(file);
1837
1838         if (selinux_policycap_openperm) {
1839                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1840                 /*
1841                  * lnk files and socks do not really have an 'open'
1842                  */
1843                 if (S_ISREG(mode))
1844                         av |= FILE__OPEN;
1845                 else if (S_ISCHR(mode))
1846                         av |= CHR_FILE__OPEN;
1847                 else if (S_ISBLK(mode))
1848                         av |= BLK_FILE__OPEN;
1849                 else if (S_ISFIFO(mode))
1850                         av |= FIFO_FILE__OPEN;
1851                 else if (S_ISDIR(mode))
1852                         av |= DIR__OPEN;
1853                 else if (S_ISSOCK(mode))
1854                         av |= SOCK_FILE__OPEN;
1855                 else
1856                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1857                                 "unknown mode:%o\n", __func__, mode);
1858         }
1859         return av;
1860 }
1861
1862 /* Hook functions begin here. */
1863
1864 static int selinux_ptrace_access_check(struct task_struct *child,
1865                                      unsigned int mode)
1866 {
1867         int rc;
1868
1869         rc = cap_ptrace_access_check(child, mode);
1870         if (rc)
1871                 return rc;
1872
1873         if (mode == PTRACE_MODE_READ) {
1874                 u32 sid = current_sid();
1875                 u32 csid = task_sid(child);
1876                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1877         }
1878
1879         return current_has_perm(child, PROCESS__PTRACE);
1880 }
1881
1882 static int selinux_ptrace_traceme(struct task_struct *parent)
1883 {
1884         int rc;
1885
1886         rc = cap_ptrace_traceme(parent);
1887         if (rc)
1888                 return rc;
1889
1890         return task_has_perm(parent, current, PROCESS__PTRACE);
1891 }
1892
1893 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1894                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1895 {
1896         int error;
1897
1898         error = current_has_perm(target, PROCESS__GETCAP);
1899         if (error)
1900                 return error;
1901
1902         return cap_capget(target, effective, inheritable, permitted);
1903 }
1904
1905 static int selinux_capset(struct cred *new, const struct cred *old,
1906                           const kernel_cap_t *effective,
1907                           const kernel_cap_t *inheritable,
1908                           const kernel_cap_t *permitted)
1909 {
1910         int error;
1911
1912         error = cap_capset(new, old,
1913                                       effective, inheritable, permitted);
1914         if (error)
1915                 return error;
1916
1917         return cred_has_perm(old, new, PROCESS__SETCAP);
1918 }
1919
1920 /*
1921  * (This comment used to live with the selinux_task_setuid hook,
1922  * which was removed).
1923  *
1924  * Since setuid only affects the current process, and since the SELinux
1925  * controls are not based on the Linux identity attributes, SELinux does not
1926  * need to control this operation.  However, SELinux does control the use of
1927  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1928  */
1929
1930 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1931                            int cap, int audit)
1932 {
1933         int rc;
1934
1935         rc = cap_capable(tsk, cred, cap, audit);
1936         if (rc)
1937                 return rc;
1938
1939         return task_has_capability(tsk, cred, cap, audit);
1940 }
1941
1942 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1943 {
1944         int buflen, rc;
1945         char *buffer, *path, *end;
1946
1947         rc = -ENOMEM;
1948         buffer = (char *)__get_free_page(GFP_KERNEL);
1949         if (!buffer)
1950                 goto out;
1951
1952         buflen = PAGE_SIZE;
1953         end = buffer+buflen;
1954         *--end = '\0';
1955         buflen--;
1956         path = end-1;
1957         *path = '/';
1958         while (table) {
1959                 const char *name = table->procname;
1960                 size_t namelen = strlen(name);
1961                 buflen -= namelen + 1;
1962                 if (buflen < 0)
1963                         goto out_free;
1964                 end -= namelen;
1965                 memcpy(end, name, namelen);
1966                 *--end = '/';
1967                 path = end;
1968                 table = table->parent;
1969         }
1970         buflen -= 4;
1971         if (buflen < 0)
1972                 goto out_free;
1973         end -= 4;
1974         memcpy(end, "/sys", 4);
1975         path = end;
1976         rc = security_genfs_sid("proc", path, tclass, sid);
1977 out_free:
1978         free_page((unsigned long)buffer);
1979 out:
1980         return rc;
1981 }
1982
1983 static int selinux_sysctl(ctl_table *table, int op)
1984 {
1985         int error = 0;
1986         u32 av;
1987         u32 tsid, sid;
1988         int rc;
1989
1990         sid = current_sid();
1991
1992         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1993                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1994         if (rc) {
1995                 /* Default to the well-defined sysctl SID. */
1996                 tsid = SECINITSID_SYSCTL;
1997         }
1998
1999         /* The op values are "defined" in sysctl.c, thereby creating
2000          * a bad coupling between this module and sysctl.c */
2001         if (op == 001) {
2002                 error = avc_has_perm(sid, tsid,
2003                                      SECCLASS_DIR, DIR__SEARCH, NULL);
2004         } else {
2005                 av = 0;
2006                 if (op & 004)
2007                         av |= FILE__READ;
2008                 if (op & 002)
2009                         av |= FILE__WRITE;
2010                 if (av)
2011                         error = avc_has_perm(sid, tsid,
2012                                              SECCLASS_FILE, av, NULL);
2013         }
2014
2015         return error;
2016 }
2017
2018 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2019 {
2020         const struct cred *cred = current_cred();
2021         int rc = 0;
2022
2023         if (!sb)
2024                 return 0;
2025
2026         switch (cmds) {
2027         case Q_SYNC:
2028         case Q_QUOTAON:
2029         case Q_QUOTAOFF:
2030         case Q_SETINFO:
2031         case Q_SETQUOTA:
2032                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2033                 break;
2034         case Q_GETFMT:
2035         case Q_GETINFO:
2036         case Q_GETQUOTA:
2037                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2038                 break;
2039         default:
2040                 rc = 0;  /* let the kernel handle invalid cmds */
2041                 break;
2042         }
2043         return rc;
2044 }
2045
2046 static int selinux_quota_on(struct dentry *dentry)
2047 {
2048         const struct cred *cred = current_cred();
2049
2050         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2051 }
2052
2053 static int selinux_syslog(int type, bool from_file)
2054 {
2055         int rc;
2056
2057         rc = cap_syslog(type, from_file);
2058         if (rc)
2059                 return rc;
2060
2061         switch (type) {
2062         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2063         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2064                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2065                 break;
2066         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2067         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2068         /* Set level of messages printed to console */
2069         case SYSLOG_ACTION_CONSOLE_LEVEL:
2070                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2071                 break;
2072         case SYSLOG_ACTION_CLOSE:       /* Close log */
2073         case SYSLOG_ACTION_OPEN:        /* Open log */
2074         case SYSLOG_ACTION_READ:        /* Read from log */
2075         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2076         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2077         default:
2078                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2079                 break;
2080         }
2081         return rc;
2082 }
2083
2084 /*
2085  * Check that a process has enough memory to allocate a new virtual
2086  * mapping. 0 means there is enough memory for the allocation to
2087  * succeed and -ENOMEM implies there is not.
2088  *
2089  * Do not audit the selinux permission check, as this is applied to all
2090  * processes that allocate mappings.
2091  */
2092 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2093 {
2094         int rc, cap_sys_admin = 0;
2095
2096         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2097                              SECURITY_CAP_NOAUDIT);
2098         if (rc == 0)
2099                 cap_sys_admin = 1;
2100
2101         return __vm_enough_memory(mm, pages, cap_sys_admin);
2102 }
2103
2104 /* binprm security operations */
2105
2106 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2107 {
2108         const struct task_security_struct *old_tsec;
2109         struct task_security_struct *new_tsec;
2110         struct inode_security_struct *isec;
2111         struct common_audit_data ad;
2112         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2113         int rc;
2114
2115         rc = cap_bprm_set_creds(bprm);
2116         if (rc)
2117                 return rc;
2118
2119         /* SELinux context only depends on initial program or script and not
2120          * the script interpreter */
2121         if (bprm->cred_prepared)
2122                 return 0;
2123
2124         old_tsec = current_security();
2125         new_tsec = bprm->cred->security;
2126         isec = inode->i_security;
2127
2128         /* Default to the current task SID. */
2129         new_tsec->sid = old_tsec->sid;
2130         new_tsec->osid = old_tsec->sid;
2131
2132         /* Reset fs, key, and sock SIDs on execve. */
2133         new_tsec->create_sid = 0;
2134         new_tsec->keycreate_sid = 0;
2135         new_tsec->sockcreate_sid = 0;
2136
2137         if (old_tsec->exec_sid) {
2138                 new_tsec->sid = old_tsec->exec_sid;
2139                 /* Reset exec SID on execve. */
2140                 new_tsec->exec_sid = 0;
2141         } else {
2142                 /* Check for a default transition on this program. */
2143                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2144                                              SECCLASS_PROCESS, &new_tsec->sid);
2145                 if (rc)
2146                         return rc;
2147         }
2148
2149         COMMON_AUDIT_DATA_INIT(&ad, FS);
2150         ad.u.fs.path = bprm->file->f_path;
2151
2152         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2153                 new_tsec->sid = old_tsec->sid;
2154
2155         if (new_tsec->sid == old_tsec->sid) {
2156                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2157                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2158                 if (rc)
2159                         return rc;
2160         } else {
2161                 /* Check permissions for the transition. */
2162                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2163                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2164                 if (rc)
2165                         return rc;
2166
2167                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2168                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2169                 if (rc)
2170                         return rc;
2171
2172                 /* Check for shared state */
2173                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2174                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2175                                           SECCLASS_PROCESS, PROCESS__SHARE,
2176                                           NULL);
2177                         if (rc)
2178                                 return -EPERM;
2179                 }
2180
2181                 /* Make sure that anyone attempting to ptrace over a task that
2182                  * changes its SID has the appropriate permit */
2183                 if (bprm->unsafe &
2184                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2185                         struct task_struct *tracer;
2186                         struct task_security_struct *sec;
2187                         u32 ptsid = 0;
2188
2189                         rcu_read_lock();
2190                         tracer = tracehook_tracer_task(current);
2191                         if (likely(tracer != NULL)) {
2192                                 sec = __task_cred(tracer)->security;
2193                                 ptsid = sec->sid;
2194                         }
2195                         rcu_read_unlock();
2196
2197                         if (ptsid != 0) {
2198                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2199                                                   SECCLASS_PROCESS,
2200                                                   PROCESS__PTRACE, NULL);
2201                                 if (rc)
2202                                         return -EPERM;
2203                         }
2204                 }
2205
2206                 /* Clear any possibly unsafe personality bits on exec: */
2207                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2208         }
2209
2210         return 0;
2211 }
2212
2213 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2214 {
2215         const struct cred *cred = current_cred();
2216         const struct task_security_struct *tsec = cred->security;
2217         u32 sid, osid;
2218         int atsecure = 0;
2219
2220         sid = tsec->sid;
2221         osid = tsec->osid;
2222
2223         if (osid != sid) {
2224                 /* Enable secure mode for SIDs transitions unless
2225                    the noatsecure permission is granted between
2226                    the two SIDs, i.e. ahp returns 0. */
2227                 atsecure = avc_has_perm(osid, sid,
2228                                         SECCLASS_PROCESS,
2229                                         PROCESS__NOATSECURE, NULL);
2230         }
2231
2232         return (atsecure || cap_bprm_secureexec(bprm));
2233 }
2234
2235 extern struct vfsmount *selinuxfs_mount;
2236 extern struct dentry *selinux_null;
2237
2238 /* Derived from fs/exec.c:flush_old_files. */
2239 static inline void flush_unauthorized_files(const struct cred *cred,
2240                                             struct files_struct *files)
2241 {
2242         struct common_audit_data ad;
2243         struct file *file, *devnull = NULL;
2244         struct tty_struct *tty;
2245         struct fdtable *fdt;
2246         long j = -1;
2247         int drop_tty = 0;
2248
2249         tty = get_current_tty();
2250         if (tty) {
2251                 file_list_lock();
2252                 if (!list_empty(&tty->tty_files)) {
2253                         struct inode *inode;
2254
2255                         /* Revalidate access to controlling tty.
2256                            Use inode_has_perm on the tty inode directly rather
2257                            than using file_has_perm, as this particular open
2258                            file may belong to another process and we are only
2259                            interested in the inode-based check here. */
2260                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2261                         inode = file->f_path.dentry->d_inode;
2262                         if (inode_has_perm(cred, inode,
2263                                            FILE__READ | FILE__WRITE, NULL)) {
2264                                 drop_tty = 1;
2265                         }
2266                 }
2267                 file_list_unlock();
2268                 tty_kref_put(tty);
2269         }
2270         /* Reset controlling tty. */
2271         if (drop_tty)
2272                 no_tty();
2273
2274         /* Revalidate access to inherited open files. */
2275
2276         COMMON_AUDIT_DATA_INIT(&ad, FS);
2277
2278         spin_lock(&files->file_lock);
2279         for (;;) {
2280                 unsigned long set, i;
2281                 int fd;
2282
2283                 j++;
2284                 i = j * __NFDBITS;
2285                 fdt = files_fdtable(files);
2286                 if (i >= fdt->max_fds)
2287                         break;
2288                 set = fdt->open_fds->fds_bits[j];
2289                 if (!set)
2290                         continue;
2291                 spin_unlock(&files->file_lock);
2292                 for ( ; set ; i++, set >>= 1) {
2293                         if (set & 1) {
2294                                 file = fget(i);
2295                                 if (!file)
2296                                         continue;
2297                                 if (file_has_perm(cred,
2298                                                   file,
2299                                                   file_to_av(file))) {
2300                                         sys_close(i);
2301                                         fd = get_unused_fd();
2302                                         if (fd != i) {
2303                                                 if (fd >= 0)
2304                                                         put_unused_fd(fd);
2305                                                 fput(file);
2306                                                 continue;
2307                                         }
2308                                         if (devnull) {
2309                                                 get_file(devnull);
2310                                         } else {
2311                                                 devnull = dentry_open(
2312                                                         dget(selinux_null),
2313                                                         mntget(selinuxfs_mount),
2314                                                         O_RDWR, cred);
2315                                                 if (IS_ERR(devnull)) {
2316                                                         devnull = NULL;
2317                                                         put_unused_fd(fd);
2318                                                         fput(file);
2319                                                         continue;
2320                                                 }
2321                                         }
2322                                         fd_install(fd, devnull);
2323                                 }
2324                                 fput(file);
2325                         }
2326                 }
2327                 spin_lock(&files->file_lock);
2328
2329         }
2330         spin_unlock(&files->file_lock);
2331 }
2332
2333 /*
2334  * Prepare a process for imminent new credential changes due to exec
2335  */
2336 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2337 {
2338         struct task_security_struct *new_tsec;
2339         struct rlimit *rlim, *initrlim;
2340         int rc, i;
2341
2342         new_tsec = bprm->cred->security;
2343         if (new_tsec->sid == new_tsec->osid)
2344                 return;
2345
2346         /* Close files for which the new task SID is not authorized. */
2347         flush_unauthorized_files(bprm->cred, current->files);
2348
2349         /* Always clear parent death signal on SID transitions. */
2350         current->pdeath_signal = 0;
2351
2352         /* Check whether the new SID can inherit resource limits from the old
2353          * SID.  If not, reset all soft limits to the lower of the current
2354          * task's hard limit and the init task's soft limit.
2355          *
2356          * Note that the setting of hard limits (even to lower them) can be
2357          * controlled by the setrlimit check.  The inclusion of the init task's
2358          * soft limit into the computation is to avoid resetting soft limits
2359          * higher than the default soft limit for cases where the default is
2360          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2361          */
2362         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2363                           PROCESS__RLIMITINH, NULL);
2364         if (rc) {
2365                 for (i = 0; i < RLIM_NLIMITS; i++) {
2366                         rlim = current->signal->rlim + i;
2367                         initrlim = init_task.signal->rlim + i;
2368                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2369                 }
2370                 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2371         }
2372 }
2373
2374 /*
2375  * Clean up the process immediately after the installation of new credentials
2376  * due to exec
2377  */
2378 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2379 {
2380         const struct task_security_struct *tsec = current_security();
2381         struct itimerval itimer;
2382         u32 osid, sid;
2383         int rc, i;
2384
2385         osid = tsec->osid;
2386         sid = tsec->sid;
2387
2388         if (sid == osid)
2389                 return;
2390
2391         /* Check whether the new SID can inherit signal state from the old SID.
2392          * If not, clear itimers to avoid subsequent signal generation and
2393          * flush and unblock signals.
2394          *
2395          * This must occur _after_ the task SID has been updated so that any
2396          * kill done after the flush will be checked against the new SID.
2397          */
2398         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2399         if (rc) {
2400                 memset(&itimer, 0, sizeof itimer);
2401                 for (i = 0; i < 3; i++)
2402                         do_setitimer(i, &itimer, NULL);
2403                 spin_lock_irq(&current->sighand->siglock);
2404                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2405                         __flush_signals(current);
2406                         flush_signal_handlers(current, 1);
2407                         sigemptyset(&current->blocked);
2408                 }
2409                 spin_unlock_irq(&current->sighand->siglock);
2410         }
2411
2412         /* Wake up the parent if it is waiting so that it can recheck
2413          * wait permission to the new task SID. */
2414         read_lock(&tasklist_lock);
2415         __wake_up_parent(current, current->real_parent);
2416         read_unlock(&tasklist_lock);
2417 }
2418
2419 /* superblock security operations */
2420
2421 static int selinux_sb_alloc_security(struct super_block *sb)
2422 {
2423         return superblock_alloc_security(sb);
2424 }
2425
2426 static void selinux_sb_free_security(struct super_block *sb)
2427 {
2428         superblock_free_security(sb);
2429 }
2430
2431 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2432 {
2433         if (plen > olen)
2434                 return 0;
2435
2436         return !memcmp(prefix, option, plen);
2437 }
2438
2439 static inline int selinux_option(char *option, int len)
2440 {
2441         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2442                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2443                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2444                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2445                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2446 }
2447
2448 static inline void take_option(char **to, char *from, int *first, int len)
2449 {
2450         if (!*first) {
2451                 **to = ',';
2452                 *to += 1;
2453         } else
2454                 *first = 0;
2455         memcpy(*to, from, len);
2456         *to += len;
2457 }
2458
2459 static inline void take_selinux_option(char **to, char *from, int *first,
2460                                        int len)
2461 {
2462         int current_size = 0;
2463
2464         if (!*first) {
2465                 **to = '|';
2466                 *to += 1;
2467         } else
2468                 *first = 0;
2469
2470         while (current_size < len) {
2471                 if (*from != '"') {
2472                         **to = *from;
2473                         *to += 1;
2474                 }
2475                 from += 1;
2476                 current_size += 1;
2477         }
2478 }
2479
2480 static int selinux_sb_copy_data(char *orig, char *copy)
2481 {
2482         int fnosec, fsec, rc = 0;
2483         char *in_save, *in_curr, *in_end;
2484         char *sec_curr, *nosec_save, *nosec;
2485         int open_quote = 0;
2486
2487         in_curr = orig;
2488         sec_curr = copy;
2489
2490         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2491         if (!nosec) {
2492                 rc = -ENOMEM;
2493                 goto out;
2494         }
2495
2496         nosec_save = nosec;
2497         fnosec = fsec = 1;
2498         in_save = in_end = orig;
2499
2500         do {
2501                 if (*in_end == '"')
2502                         open_quote = !open_quote;
2503                 if ((*in_end == ',' && open_quote == 0) ||
2504                                 *in_end == '\0') {
2505                         int len = in_end - in_curr;
2506
2507                         if (selinux_option(in_curr, len))
2508                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2509                         else
2510                                 take_option(&nosec, in_curr, &fnosec, len);
2511
2512                         in_curr = in_end + 1;
2513                 }
2514         } while (*in_end++);
2515
2516         strcpy(in_save, nosec_save);
2517         free_page((unsigned long)nosec_save);
2518 out:
2519         return rc;
2520 }
2521
2522 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2523 {
2524         const struct cred *cred = current_cred();
2525         struct common_audit_data ad;
2526         int rc;
2527
2528         rc = superblock_doinit(sb, data);
2529         if (rc)
2530                 return rc;
2531
2532         /* Allow all mounts performed by the kernel */
2533         if (flags & MS_KERNMOUNT)
2534                 return 0;
2535
2536         COMMON_AUDIT_DATA_INIT(&ad, FS);
2537         ad.u.fs.path.dentry = sb->s_root;
2538         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2539 }
2540
2541 static int selinux_sb_statfs(struct dentry *dentry)
2542 {
2543         const struct cred *cred = current_cred();
2544         struct common_audit_data ad;
2545
2546         COMMON_AUDIT_DATA_INIT(&ad, FS);
2547         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2548         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2549 }
2550
2551 static int selinux_mount(char *dev_name,
2552                          struct path *path,
2553                          char *type,
2554                          unsigned long flags,
2555                          void *data)
2556 {
2557         const struct cred *cred = current_cred();
2558
2559         if (flags & MS_REMOUNT)
2560                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2561                                            FILESYSTEM__REMOUNT, NULL);
2562         else
2563                 return dentry_has_perm(cred, path->mnt, path->dentry,
2564                                        FILE__MOUNTON);
2565 }
2566
2567 static int selinux_umount(struct vfsmount *mnt, int flags)
2568 {
2569         const struct cred *cred = current_cred();
2570
2571         return superblock_has_perm(cred, mnt->mnt_sb,
2572                                    FILESYSTEM__UNMOUNT, NULL);
2573 }
2574
2575 /* inode security operations */
2576
2577 static int selinux_inode_alloc_security(struct inode *inode)
2578 {
2579         return inode_alloc_security(inode);
2580 }
2581
2582 static void selinux_inode_free_security(struct inode *inode)
2583 {
2584         inode_free_security(inode);
2585 }
2586
2587 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2588                                        char **name, void **value,
2589                                        size_t *len)
2590 {
2591         const struct cred *cred = current_cred();
2592         const struct task_security_struct *tsec = cred->security;
2593         struct inode_security_struct *dsec;
2594         struct superblock_security_struct *sbsec;
2595         u32 sid, newsid, clen;
2596         int rc;
2597         char *namep = NULL, *context;
2598
2599         dsec = dir->i_security;
2600         sbsec = dir->i_sb->s_security;
2601
2602         sid = tsec->sid;
2603         newsid = tsec->create_sid;
2604
2605         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2606                 rc = security_transition_sid(sid, dsec->sid,
2607                                              inode_mode_to_security_class(inode->i_mode),
2608                                              &newsid);
2609                 if (rc) {
2610                         printk(KERN_WARNING "%s:  "
2611                                "security_transition_sid failed, rc=%d (dev=%s "
2612                                "ino=%ld)\n",
2613                                __func__,
2614                                -rc, inode->i_sb->s_id, inode->i_ino);
2615                         return rc;
2616                 }
2617         }
2618
2619         /* Possibly defer initialization to selinux_complete_init. */
2620         if (sbsec->flags & SE_SBINITIALIZED) {
2621                 struct inode_security_struct *isec = inode->i_security;
2622                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2623                 isec->sid = newsid;
2624                 isec->initialized = 1;
2625         }
2626
2627         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2628                 return -EOPNOTSUPP;
2629
2630         if (name) {
2631                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2632                 if (!namep)
2633                         return -ENOMEM;
2634                 *name = namep;
2635         }
2636
2637         if (value && len) {
2638                 rc = security_sid_to_context_force(newsid, &context, &clen);
2639                 if (rc) {
2640                         kfree(namep);
2641                         return rc;
2642                 }
2643                 *value = context;
2644                 *len = clen;
2645         }
2646
2647         return 0;
2648 }
2649
2650 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2651 {
2652         return may_create(dir, dentry, SECCLASS_FILE);
2653 }
2654
2655 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2656 {
2657         return may_link(dir, old_dentry, MAY_LINK);
2658 }
2659
2660 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2661 {
2662         return may_link(dir, dentry, MAY_UNLINK);
2663 }
2664
2665 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2666 {
2667         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2668 }
2669
2670 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2671 {
2672         return may_create(dir, dentry, SECCLASS_DIR);
2673 }
2674
2675 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2676 {
2677         return may_link(dir, dentry, MAY_RMDIR);
2678 }
2679
2680 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2681 {
2682         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2683 }
2684
2685 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2686                                 struct inode *new_inode, struct dentry *new_dentry)
2687 {
2688         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2689 }
2690
2691 static int selinux_inode_readlink(struct dentry *dentry)
2692 {
2693         const struct cred *cred = current_cred();
2694
2695         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2696 }
2697
2698 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2699 {
2700         const struct cred *cred = current_cred();
2701
2702         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2703 }
2704
2705 static int selinux_inode_permission(struct inode *inode, int mask)
2706 {
2707         const struct cred *cred = current_cred();
2708
2709         if (!mask) {
2710                 /* No permission to check.  Existence test. */
2711                 return 0;
2712         }
2713
2714         return inode_has_perm(cred, inode,
2715                               file_mask_to_av(inode->i_mode, mask), NULL);
2716 }
2717
2718 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2719 {
2720         const struct cred *cred = current_cred();
2721         unsigned int ia_valid = iattr->ia_valid;
2722
2723         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2724         if (ia_valid & ATTR_FORCE) {
2725                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2726                               ATTR_FORCE);
2727                 if (!ia_valid)
2728                         return 0;
2729         }
2730
2731         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2732                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2733                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2734
2735         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2736 }
2737
2738 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2739 {
2740         const struct cred *cred = current_cred();
2741
2742         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2743 }
2744
2745 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2746 {
2747         const struct cred *cred = current_cred();
2748
2749         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2750                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2751                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2752                         if (!capable(CAP_SETFCAP))
2753                                 return -EPERM;
2754                 } else if (!capable(CAP_SYS_ADMIN)) {
2755                         /* A different attribute in the security namespace.
2756                            Restrict to administrator. */
2757                         return -EPERM;
2758                 }
2759         }
2760
2761         /* Not an attribute we recognize, so just check the
2762            ordinary setattr permission. */
2763         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2764 }
2765
2766 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2767                                   const void *value, size_t size, int flags)
2768 {
2769         struct inode *inode = dentry->d_inode;
2770         struct inode_security_struct *isec = inode->i_security;
2771         struct superblock_security_struct *sbsec;
2772         struct common_audit_data ad;
2773         u32 newsid, sid = current_sid();
2774         int rc = 0;
2775
2776         if (strcmp(name, XATTR_NAME_SELINUX))
2777                 return selinux_inode_setotherxattr(dentry, name);
2778
2779         sbsec = inode->i_sb->s_security;
2780         if (!(sbsec->flags & SE_SBLABELSUPP))
2781                 return -EOPNOTSUPP;
2782
2783         if (!is_owner_or_cap(inode))
2784                 return -EPERM;
2785
2786         COMMON_AUDIT_DATA_INIT(&ad, FS);
2787         ad.u.fs.path.dentry = dentry;
2788
2789         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2790                           FILE__RELABELFROM, &ad);
2791         if (rc)
2792                 return rc;
2793
2794         rc = security_context_to_sid(value, size, &newsid);
2795         if (rc == -EINVAL) {
2796                 if (!capable(CAP_MAC_ADMIN))
2797                         return rc;
2798                 rc = security_context_to_sid_force(value, size, &newsid);
2799         }
2800         if (rc)
2801                 return rc;
2802
2803         rc = avc_has_perm(sid, newsid, isec->sclass,
2804                           FILE__RELABELTO, &ad);
2805         if (rc)
2806                 return rc;
2807
2808         rc = security_validate_transition(isec->sid, newsid, sid,
2809                                           isec->sclass);
2810         if (rc)
2811                 return rc;
2812
2813         return avc_has_perm(newsid,
2814                             sbsec->sid,
2815                             SECCLASS_FILESYSTEM,
2816                             FILESYSTEM__ASSOCIATE,
2817                             &ad);
2818 }
2819
2820 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2821                                         const void *value, size_t size,
2822                                         int flags)
2823 {
2824         struct inode *inode = dentry->d_inode;
2825         struct inode_security_struct *isec = inode->i_security;
2826         u32 newsid;
2827         int rc;
2828
2829         if (strcmp(name, XATTR_NAME_SELINUX)) {
2830                 /* Not an attribute we recognize, so nothing to do. */
2831                 return;
2832         }
2833
2834         rc = security_context_to_sid_force(value, size, &newsid);
2835         if (rc) {
2836                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2837                        "for (%s, %lu), rc=%d\n",
2838                        inode->i_sb->s_id, inode->i_ino, -rc);
2839                 return;
2840         }
2841
2842         isec->sid = newsid;
2843         return;
2844 }
2845
2846 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2847 {
2848         const struct cred *cred = current_cred();
2849
2850         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2851 }
2852
2853 static int selinux_inode_listxattr(struct dentry *dentry)
2854 {
2855         const struct cred *cred = current_cred();
2856
2857         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2858 }
2859
2860 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2861 {
2862         if (strcmp(name, XATTR_NAME_SELINUX))
2863                 return selinux_inode_setotherxattr(dentry, name);
2864
2865         /* No one is allowed to remove a SELinux security label.
2866            You can change the label, but all data must be labeled. */
2867         return -EACCES;
2868 }
2869
2870 /*
2871  * Copy the inode security context value to the user.
2872  *
2873  * Permission check is handled by selinux_inode_getxattr hook.
2874  */
2875 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2876 {
2877         u32 size;
2878         int error;
2879         char *context = NULL;
2880         struct inode_security_struct *isec = inode->i_security;
2881
2882         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2883                 return -EOPNOTSUPP;
2884
2885         /*
2886          * If the caller has CAP_MAC_ADMIN, then get the raw context
2887          * value even if it is not defined by current policy; otherwise,
2888          * use the in-core value under current policy.
2889          * Use the non-auditing forms of the permission checks since
2890          * getxattr may be called by unprivileged processes commonly
2891          * and lack of permission just means that we fall back to the
2892          * in-core context value, not a denial.
2893          */
2894         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2895                                 SECURITY_CAP_NOAUDIT);
2896         if (!error)
2897                 error = security_sid_to_context_force(isec->sid, &context,
2898                                                       &size);
2899         else
2900                 error = security_sid_to_context(isec->sid, &context, &size);
2901         if (error)
2902                 return error;
2903         error = size;
2904         if (alloc) {
2905                 *buffer = context;
2906                 goto out_nofree;
2907         }
2908         kfree(context);
2909 out_nofree:
2910         return error;
2911 }
2912
2913 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2914                                      const void *value, size_t size, int flags)
2915 {
2916         struct inode_security_struct *isec = inode->i_security;
2917         u32 newsid;
2918         int rc;
2919
2920         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2921                 return -EOPNOTSUPP;
2922
2923         if (!value || !size)
2924                 return -EACCES;
2925
2926         rc = security_context_to_sid((void *)value, size, &newsid);
2927         if (rc)
2928                 return rc;
2929
2930         isec->sid = newsid;
2931         isec->initialized = 1;
2932         return 0;
2933 }
2934
2935 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2936 {
2937         const int len = sizeof(XATTR_NAME_SELINUX);
2938         if (buffer && len <= buffer_size)
2939                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2940         return len;
2941 }
2942
2943 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2944 {
2945         struct inode_security_struct *isec = inode->i_security;
2946         *secid = isec->sid;
2947 }
2948
2949 /* file security operations */
2950
2951 static int selinux_revalidate_file_permission(struct file *file, int mask)
2952 {
2953         const struct cred *cred = current_cred();
2954         struct inode *inode = file->f_path.dentry->d_inode;
2955
2956         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2957         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2958                 mask |= MAY_APPEND;
2959
2960         return file_has_perm(cred, file,
2961                              file_mask_to_av(inode->i_mode, mask));
2962 }
2963
2964 static int selinux_file_permission(struct file *file, int mask)
2965 {
2966         struct inode *inode = file->f_path.dentry->d_inode;
2967         struct file_security_struct *fsec = file->f_security;
2968         struct inode_security_struct *isec = inode->i_security;
2969         u32 sid = current_sid();
2970
2971         if (!mask)
2972                 /* No permission to check.  Existence test. */
2973                 return 0;
2974
2975         if (sid == fsec->sid && fsec->isid == isec->sid &&
2976             fsec->pseqno == avc_policy_seqno())
2977                 /* No change since dentry_open check. */
2978                 return 0;
2979
2980         return selinux_revalidate_file_permission(file, mask);
2981 }
2982
2983 static int selinux_file_alloc_security(struct file *file)
2984 {
2985         return file_alloc_security(file);
2986 }
2987
2988 static void selinux_file_free_security(struct file *file)
2989 {
2990         file_free_security(file);
2991 }
2992
2993 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2994                               unsigned long arg)
2995 {
2996         const struct cred *cred = current_cred();
2997         u32 av = 0;
2998
2999         if (_IOC_DIR(cmd) & _IOC_WRITE)
3000                 av |= FILE__WRITE;
3001         if (_IOC_DIR(cmd) & _IOC_READ)
3002                 av |= FILE__READ;
3003         if (!av)
3004                 av = FILE__IOCTL;
3005
3006         return file_has_perm(cred, file, av);
3007 }
3008
3009 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3010 {
3011         const struct cred *cred = current_cred();
3012         int rc = 0;
3013
3014 #ifndef CONFIG_PPC32
3015         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3016                 /*
3017                  * We are making executable an anonymous mapping or a
3018                  * private file mapping that will also be writable.
3019                  * This has an additional check.
3020                  */
3021                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3022                 if (rc)
3023                         goto error;
3024         }
3025 #endif
3026
3027         if (file) {
3028                 /* read access is always possible with a mapping */
3029                 u32 av = FILE__READ;
3030
3031                 /* write access only matters if the mapping is shared */
3032                 if (shared && (prot & PROT_WRITE))
3033                         av |= FILE__WRITE;
3034
3035                 if (prot & PROT_EXEC)
3036                         av |= FILE__EXECUTE;
3037
3038                 return file_has_perm(cred, file, av);
3039         }
3040
3041 error:
3042         return rc;
3043 }
3044
3045 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3046                              unsigned long prot, unsigned long flags,
3047                              unsigned long addr, unsigned long addr_only)
3048 {
3049         int rc = 0;
3050         u32 sid = current_sid();
3051
3052         /*
3053          * notice that we are intentionally putting the SELinux check before
3054          * the secondary cap_file_mmap check.  This is such a likely attempt
3055          * at bad behaviour/exploit that we always want to get the AVC, even
3056          * if DAC would have also denied the operation.
3057          */
3058         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3059                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3060                                   MEMPROTECT__MMAP_ZERO, NULL);
3061                 if (rc)
3062                         return rc;
3063         }
3064
3065         /* do DAC check on address space usage */
3066         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3067         if (rc || addr_only)
3068                 return rc;
3069
3070         if (selinux_checkreqprot)
3071                 prot = reqprot;
3072
3073         return file_map_prot_check(file, prot,
3074                                    (flags & MAP_TYPE) == MAP_SHARED);
3075 }
3076
3077 static int selinux_file_mprotect(struct vm_area_struct *vma,
3078                                  unsigned long reqprot,
3079                                  unsigned long prot)
3080 {
3081         const struct cred *cred = current_cred();
3082
3083         if (selinux_checkreqprot)
3084                 prot = reqprot;
3085
3086 #ifndef CONFIG_PPC32
3087         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3088                 int rc = 0;
3089                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3090                     vma->vm_end <= vma->vm_mm->brk) {
3091                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3092                 } else if (!vma->vm_file &&
3093                            vma->vm_start <= vma->vm_mm->start_stack &&
3094                            vma->vm_end >= vma->vm_mm->start_stack) {
3095                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3096                 } else if (vma->vm_file && vma->anon_vma) {
3097                         /*
3098                          * We are making executable a file mapping that has
3099                          * had some COW done. Since pages might have been
3100                          * written, check ability to execute the possibly
3101                          * modified content.  This typically should only
3102                          * occur for text relocations.
3103                          */
3104                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3105                 }
3106                 if (rc)
3107                         return rc;
3108         }
3109 #endif
3110
3111         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3112 }
3113
3114 static int selinux_file_lock(struct file *file, unsigned int cmd)
3115 {
3116         const struct cred *cred = current_cred();
3117
3118         return file_has_perm(cred, file, FILE__LOCK);
3119 }
3120
3121 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3122                               unsigned long arg)
3123 {
3124         const struct cred *cred = current_cred();
3125         int err = 0;
3126
3127         switch (cmd) {
3128         case F_SETFL:
3129                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3130                         err = -EINVAL;
3131                         break;
3132                 }
3133
3134                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3135                         err = file_has_perm(cred, file, FILE__WRITE);
3136                         break;
3137                 }
3138                 /* fall through */
3139         case F_SETOWN:
3140         case F_SETSIG:
3141         case F_GETFL:
3142         case F_GETOWN:
3143         case F_GETSIG:
3144                 /* Just check FD__USE permission */
3145                 err = file_has_perm(cred, file, 0);
3146                 break;
3147         case F_GETLK:
3148         case F_SETLK:
3149         case F_SETLKW:
3150 #if BITS_PER_LONG == 32
3151         case F_GETLK64:
3152         case F_SETLK64:
3153         case F_SETLKW64:
3154 #endif
3155                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3156                         err = -EINVAL;
3157                         break;
3158                 }
3159                 err = file_has_perm(cred, file, FILE__LOCK);
3160                 break;
3161         }
3162
3163         return err;
3164 }
3165
3166 static int selinux_file_set_fowner(struct file *file)
3167 {
3168         struct file_security_struct *fsec;
3169
3170         fsec = file->f_security;
3171         fsec->fown_sid = current_sid();
3172
3173         return 0;
3174 }
3175
3176 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3177                                        struct fown_struct *fown, int signum)
3178 {
3179         struct file *file;
3180         u32 sid = task_sid(tsk);
3181         u32 perm;
3182         struct file_security_struct *fsec;
3183
3184         /* struct fown_struct is never outside the context of a struct file */
3185         file = container_of(fown, struct file, f_owner);
3186
3187         fsec = file->f_security;
3188
3189         if (!signum)
3190                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3191         else
3192                 perm = signal_to_av(signum);
3193
3194         return avc_has_perm(fsec->fown_sid, sid,
3195                             SECCLASS_PROCESS, perm, NULL);
3196 }
3197
3198 static int selinux_file_receive(struct file *file)
3199 {
3200         const struct cred *cred = current_cred();
3201
3202         return file_has_perm(cred, file, file_to_av(file));
3203 }
3204
3205 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3206 {
3207         struct file_security_struct *fsec;
3208         struct inode *inode;
3209         struct inode_security_struct *isec;
3210
3211         inode = file->f_path.dentry->d_inode;
3212         fsec = file->f_security;
3213         isec = inode->i_security;
3214         /*
3215          * Save inode label and policy sequence number
3216          * at open-time so that selinux_file_permission
3217          * can determine whether revalidation is necessary.
3218          * Task label is already saved in the file security
3219          * struct as its SID.
3220          */
3221         fsec->isid = isec->sid;
3222         fsec->pseqno = avc_policy_seqno();
3223         /*
3224          * Since the inode label or policy seqno may have changed
3225          * between the selinux_inode_permission check and the saving
3226          * of state above, recheck that access is still permitted.
3227          * Otherwise, access might never be revalidated against the
3228          * new inode label or new policy.
3229          * This check is not redundant - do not remove.
3230          */
3231         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3232 }
3233
3234 /* task security operations */
3235
3236 static int selinux_task_create(unsigned long clone_flags)
3237 {
3238         return current_has_perm(current, PROCESS__FORK);
3239 }
3240
3241 /*
3242  * allocate the SELinux part of blank credentials
3243  */
3244 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3245 {
3246         struct task_security_struct *tsec;
3247
3248         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3249         if (!tsec)
3250                 return -ENOMEM;
3251
3252         cred->security = tsec;
3253         return 0;
3254 }
3255
3256 /*
3257  * detach and free the LSM part of a set of credentials
3258  */
3259 static void selinux_cred_free(struct cred *cred)
3260 {
3261         struct task_security_struct *tsec = cred->security;
3262
3263         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3264         cred->security = (void *) 0x7UL;
3265         kfree(tsec);
3266 }
3267
3268 /*
3269  * prepare a new set of credentials for modification
3270  */
3271 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3272                                 gfp_t gfp)
3273 {
3274         const struct task_security_struct *old_tsec;
3275         struct task_security_struct *tsec;
3276
3277         old_tsec = old->security;
3278
3279         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3280         if (!tsec)
3281                 return -ENOMEM;
3282
3283         new->security = tsec;
3284         return 0;
3285 }
3286
3287 /*
3288  * transfer the SELinux data to a blank set of creds
3289  */
3290 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3291 {
3292         const struct task_security_struct *old_tsec = old->security;
3293         struct task_security_struct *tsec = new->security;
3294
3295         *tsec = *old_tsec;
3296 }
3297
3298 /*
3299  * set the security data for a kernel service
3300  * - all the creation contexts are set to unlabelled
3301  */
3302 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3303 {
3304         struct task_security_struct *tsec = new->security;
3305         u32 sid = current_sid();
3306         int ret;
3307
3308         ret = avc_has_perm(sid, secid,
3309                            SECCLASS_KERNEL_SERVICE,
3310                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3311                            NULL);
3312         if (ret == 0) {
3313                 tsec->sid = secid;
3314                 tsec->create_sid = 0;
3315                 tsec->keycreate_sid = 0;
3316                 tsec->sockcreate_sid = 0;
3317         }
3318         return ret;
3319 }
3320
3321 /*
3322  * set the file creation context in a security record to the same as the
3323  * objective context of the specified inode
3324  */
3325 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3326 {
3327         struct inode_security_struct *isec = inode->i_security;
3328         struct task_security_struct *tsec = new->security;
3329         u32 sid = current_sid();
3330         int ret;
3331
3332         ret = avc_has_perm(sid, isec->sid,
3333                            SECCLASS_KERNEL_SERVICE,
3334                            KERNEL_SERVICE__CREATE_FILES_AS,
3335                            NULL);
3336
3337         if (ret == 0)
3338                 tsec->create_sid = isec->sid;
3339         return 0;
3340 }
3341
3342 static int selinux_kernel_module_request(char *kmod_name)
3343 {
3344         u32 sid;
3345         struct common_audit_data ad;
3346
3347         sid = task_sid(current);
3348
3349         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3350         ad.u.kmod_name = kmod_name;
3351
3352         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3353                             SYSTEM__MODULE_REQUEST, &ad);
3354 }
3355
3356 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3357 {
3358         return current_has_perm(p, PROCESS__SETPGID);
3359 }
3360
3361 static int selinux_task_getpgid(struct task_struct *p)
3362 {
3363         return current_has_perm(p, PROCESS__GETPGID);
3364 }
3365
3366 static int selinux_task_getsid(struct task_struct *p)
3367 {
3368         return current_has_perm(p, PROCESS__GETSESSION);
3369 }
3370
3371 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3372 {
3373         *secid = task_sid(p);
3374 }
3375
3376 static int selinux_task_setnice(struct task_struct *p, int nice)
3377 {
3378         int rc;
3379
3380         rc = cap_task_setnice(p, nice);
3381         if (rc)
3382                 return rc;
3383
3384         return current_has_perm(p, PROCESS__SETSCHED);
3385 }
3386
3387 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3388 {
3389         int rc;
3390
3391         rc = cap_task_setioprio(p, ioprio);
3392         if (rc)
3393                 return rc;
3394
3395         return current_has_perm(p, PROCESS__SETSCHED);
3396 }
3397
3398 static int selinux_task_getioprio(struct task_struct *p)
3399 {
3400         return current_has_perm(p, PROCESS__GETSCHED);
3401 }
3402
3403 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3404 {
3405         struct rlimit *old_rlim = current->signal->rlim + resource;
3406
3407         /* Control the ability to change the hard limit (whether
3408            lowering or raising it), so that the hard limit can
3409            later be used as a safe reset point for the soft limit
3410            upon context transitions.  See selinux_bprm_committing_creds. */
3411         if (old_rlim->rlim_max != new_rlim->rlim_max)
3412                 return current_has_perm(current, PROCESS__SETRLIMIT);
3413
3414         return 0;
3415 }
3416
3417 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3418 {
3419         int rc;
3420
3421         rc = cap_task_setscheduler(p, policy, lp);
3422         if (rc)
3423                 return rc;
3424
3425         return current_has_perm(p, PROCESS__SETSCHED);
3426 }
3427
3428 static int selinux_task_getscheduler(struct task_struct *p)
3429 {
3430         return current_has_perm(p, PROCESS__GETSCHED);
3431 }
3432
3433 static int selinux_task_movememory(struct task_struct *p)
3434 {
3435         return current_has_perm(p, PROCESS__SETSCHED);
3436 }
3437
3438 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3439                                 int sig, u32 secid)
3440 {
3441         u32 perm;
3442         int rc;
3443
3444         if (!sig)
3445                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3446         else
3447                 perm = signal_to_av(sig);
3448         if (secid)
3449                 rc = avc_has_perm(secid, task_sid(p),
3450                                   SECCLASS_PROCESS, perm, NULL);
3451         else
3452                 rc = current_has_perm(p, perm);
3453         return rc;
3454 }
3455
3456 static int selinux_task_wait(struct task_struct *p)
3457 {
3458         return task_has_perm(p, current, PROCESS__SIGCHLD);
3459 }
3460
3461 static void selinux_task_to_inode(struct task_struct *p,
3462                                   struct inode *inode)
3463 {
3464         struct inode_security_struct *isec = inode->i_security;
3465         u32 sid = task_sid(p);
3466
3467         isec->sid = sid;
3468         isec->initialized = 1;
3469 }
3470
3471 /* Returns error only if unable to parse addresses */
3472 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3473                         struct common_audit_data *ad, u8 *proto)
3474 {
3475         int offset, ihlen, ret = -EINVAL;
3476         struct iphdr _iph, *ih;
3477
3478         offset = skb_network_offset(skb);
3479         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3480         if (ih == NULL)
3481                 goto out;
3482
3483         ihlen = ih->ihl * 4;
3484         if (ihlen < sizeof(_iph))
3485                 goto out;
3486
3487         ad->u.net.v4info.saddr = ih->saddr;
3488         ad->u.net.v4info.daddr = ih->daddr;
3489         ret = 0;
3490
3491         if (proto)
3492                 *proto = ih->protocol;
3493
3494         switch (ih->protocol) {
3495         case IPPROTO_TCP: {
3496                 struct tcphdr _tcph, *th;
3497
3498                 if (ntohs(ih->frag_off) & IP_OFFSET)
3499                         break;
3500
3501                 offset += ihlen;
3502                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3503                 if (th == NULL)
3504                         break;
3505
3506                 ad->u.net.sport = th->source;
3507                 ad->u.net.dport = th->dest;
3508                 break;
3509         }
3510
3511         case IPPROTO_UDP: {
3512                 struct udphdr _udph, *uh;
3513
3514                 if (ntohs(ih->frag_off) & IP_OFFSET)
3515                         break;
3516
3517                 offset += ihlen;
3518                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3519                 if (uh == NULL)
3520                         break;
3521
3522                 ad->u.net.sport = uh->source;
3523                 ad->u.net.dport = uh->dest;
3524                 break;
3525         }
3526
3527         case IPPROTO_DCCP: {
3528                 struct dccp_hdr _dccph, *dh;
3529
3530                 if (ntohs(ih->frag_off) & IP_OFFSET)
3531                         break;
3532
3533                 offset += ihlen;
3534                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3535                 if (dh == NULL)
3536                         break;
3537
3538                 ad->u.net.sport = dh->dccph_sport;
3539                 ad->u.net.dport = dh->dccph_dport;
3540                 break;
3541         }
3542
3543         default:
3544                 break;
3545         }
3546 out:
3547         return ret;
3548 }
3549
3550 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3551
3552 /* Returns error only if unable to parse addresses */
3553 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3554                         struct common_audit_data *ad, u8 *proto)
3555 {
3556         u8 nexthdr;
3557         int ret = -EINVAL, offset;
3558         struct ipv6hdr _ipv6h, *ip6;
3559
3560         offset = skb_network_offset(skb);
3561         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3562         if (ip6 == NULL)
3563                 goto out;
3564
3565         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3566         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3567         ret = 0;
3568
3569         nexthdr = ip6->nexthdr;
3570         offset += sizeof(_ipv6h);
3571         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3572         if (offset < 0)
3573                 goto out;
3574
3575         if (proto)
3576                 *proto = nexthdr;
3577
3578         switch (nexthdr) {
3579         case IPPROTO_TCP: {
3580                 struct tcphdr _tcph, *th;
3581
3582                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3583                 if (th == NULL)
3584                         break;
3585
3586                 ad->u.net.sport = th->source;
3587                 ad->u.net.dport = th->dest;
3588                 break;
3589         }
3590
3591         case IPPROTO_UDP: {
3592                 struct udphdr _udph, *uh;
3593
3594                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3595                 if (uh == NULL)
3596                         break;
3597
3598                 ad->u.net.sport = uh->source;
3599                 ad->u.net.dport = uh->dest;
3600                 break;
3601         }
3602
3603         case IPPROTO_DCCP: {
3604                 struct dccp_hdr _dccph, *dh;
3605
3606                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3607                 if (dh == NULL)
3608                         break;
3609
3610                 ad->u.net.sport = dh->dccph_sport;
3611                 ad->u.net.dport = dh->dccph_dport;
3612                 break;
3613         }
3614
3615         /* includes fragments */
3616         default:
3617                 break;
3618         }
3619 out:
3620         return ret;
3621 }
3622
3623 #endif /* IPV6 */
3624
3625 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3626                              char **_addrp, int src, u8 *proto)
3627 {
3628         char *addrp;
3629         int ret;
3630
3631         switch (ad->u.net.family) {
3632         case PF_INET:
3633                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3634                 if (ret)
3635                         goto parse_error;
3636                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3637                                        &ad->u.net.v4info.daddr);
3638                 goto okay;
3639
3640 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3641         case PF_INET6:
3642                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3643                 if (ret)
3644                         goto parse_error;
3645                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3646                                        &ad->u.net.v6info.daddr);
3647                 goto okay;
3648 #endif  /* IPV6 */
3649         default:
3650                 addrp = NULL;
3651                 goto okay;
3652         }
3653
3654 parse_error:
3655         printk(KERN_WARNING
3656                "SELinux: failure in selinux_parse_skb(),"
3657                " unable to parse packet\n");
3658         return ret;
3659
3660 okay:
3661         if (_addrp)
3662                 *_addrp = addrp;
3663         return 0;
3664 }
3665
3666 /**
3667  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3668  * @skb: the packet
3669  * @family: protocol family
3670  * @sid: the packet's peer label SID
3671  *
3672  * Description:
3673  * Check the various different forms of network peer labeling and determine
3674  * the peer label/SID for the packet; most of the magic actually occurs in
3675  * the security server function security_net_peersid_cmp().  The function
3676  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3677  * or -EACCES if @sid is invalid due to inconsistencies with the different
3678  * peer labels.
3679  *
3680  */
3681 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3682 {
3683         int err;
3684         u32 xfrm_sid;
3685         u32 nlbl_sid;
3686         u32 nlbl_type;
3687
3688         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3689         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3690
3691         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3692         if (unlikely(err)) {
3693                 printk(KERN_WARNING
3694                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3695                        " unable to determine packet's peer label\n");
3696                 return -EACCES;
3697         }
3698
3699         return 0;
3700 }
3701
3702 /* socket security operations */
3703 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3704                            u32 perms)
3705 {
3706         struct inode_security_struct *isec;
3707         struct common_audit_data ad;
3708         u32 sid;
3709         int err = 0;
3710
3711         isec = SOCK_INODE(sock)->i_security;
3712
3713         if (isec->sid == SECINITSID_KERNEL)
3714                 goto out;
3715         sid = task_sid(task);
3716
3717         COMMON_AUDIT_DATA_INIT(&ad, NET);
3718         ad.u.net.sk = sock->sk;
3719         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3720
3721 out:
3722         return err;
3723 }
3724
3725 static int selinux_socket_create(int family, int type,
3726                                  int protocol, int kern)
3727 {
3728         const struct cred *cred = current_cred();
3729         const struct task_security_struct *tsec = cred->security;
3730         u32 sid, newsid;
3731         u16 secclass;
3732         int err = 0;
3733
3734         if (kern)
3735                 goto out;
3736
3737         sid = tsec->sid;
3738         newsid = tsec->sockcreate_sid ?: sid;
3739
3740         secclass = socket_type_to_security_class(family, type, protocol);
3741         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3742
3743 out:
3744         return err;
3745 }
3746
3747 static int selinux_socket_post_create(struct socket *sock, int family,
3748                                       int type, int protocol, int kern)
3749 {
3750         const struct cred *cred = current_cred();
3751         const struct task_security_struct *tsec = cred->security;
3752         struct inode_security_struct *isec;
3753         struct sk_security_struct *sksec;
3754         u32 sid, newsid;
3755         int err = 0;
3756
3757         sid = tsec->sid;
3758         newsid = tsec->sockcreate_sid;
3759
3760         isec = SOCK_INODE(sock)->i_security;
3761
3762         if (kern)
3763                 isec->sid = SECINITSID_KERNEL;
3764         else if (newsid)
3765                 isec->sid = newsid;
3766         else
3767                 isec->sid = sid;
3768
3769         isec->sclass = socket_type_to_security_class(family, type, protocol);
3770         isec->initialized = 1;
3771
3772         if (sock->sk) {
3773                 sksec = sock->sk->sk_security;
3774                 sksec->sid = isec->sid;
3775                 sksec->sclass = isec->sclass;
3776                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3777         }
3778
3779         return err;
3780 }
3781
3782 /* Range of port numbers used to automatically bind.
3783    Need to determine whether we should perform a name_bind
3784    permission check between the socket and the port number. */
3785
3786 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3787 {
3788         u16 family;
3789         int err;
3790
3791         err = socket_has_perm(current, sock, SOCKET__BIND);
3792         if (err)
3793                 goto out;
3794
3795         /*
3796          * If PF_INET or PF_INET6, check name_bind permission for the port.
3797          * Multiple address binding for SCTP is not supported yet: we just
3798          * check the first address now.
3799          */
3800         family = sock->sk->sk_family;
3801         if (family == PF_INET || family == PF_INET6) {
3802                 char *addrp;
3803                 struct inode_security_struct *isec;
3804                 struct common_audit_data ad;
3805                 struct sockaddr_in *addr4 = NULL;
3806                 struct sockaddr_in6 *addr6 = NULL;
3807                 unsigned short snum;
3808                 struct sock *sk = sock->sk;
3809                 u32 sid, node_perm;
3810
3811                 isec = SOCK_INODE(sock)->i_security;
3812
3813                 if (family == PF_INET) {
3814                         addr4 = (struct sockaddr_in *)address;
3815                         snum = ntohs(addr4->sin_port);
3816                         addrp = (char *)&addr4->sin_addr.s_addr;
3817                 } else {
3818                         addr6 = (struct sockaddr_in6 *)address;
3819                         snum = ntohs(addr6->sin6_port);
3820                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3821                 }
3822
3823                 if (snum) {
3824                         int low, high;
3825
3826                         inet_get_local_port_range(&low, &high);
3827
3828                         if (snum < max(PROT_SOCK, low) || snum > high) {
3829                                 err = sel_netport_sid(sk->sk_protocol,
3830                                                       snum, &sid);
3831                                 if (err)
3832                                         goto out;
3833                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3834                                 ad.u.net.sport = htons(snum);
3835                                 ad.u.net.family = family;
3836                                 err = avc_has_perm(isec->sid, sid,
3837                                                    isec->sclass,
3838                                                    SOCKET__NAME_BIND, &ad);
3839                                 if (err)
3840                                         goto out;
3841                         }
3842                 }
3843
3844                 switch (isec->sclass) {
3845                 case SECCLASS_TCP_SOCKET:
3846                         node_perm = TCP_SOCKET__NODE_BIND;
3847                         break;
3848
3849                 case SECCLASS_UDP_SOCKET:
3850                         node_perm = UDP_SOCKET__NODE_BIND;
3851                         break;
3852
3853                 case SECCLASS_DCCP_SOCKET:
3854                         node_perm = DCCP_SOCKET__NODE_BIND;
3855                         break;
3856
3857                 default:
3858                         node_perm = RAWIP_SOCKET__NODE_BIND;
3859                         break;
3860                 }
3861
3862                 err = sel_netnode_sid(addrp, family, &sid);
3863                 if (err)
3864                         goto out;
3865
3866                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3867                 ad.u.net.sport = htons(snum);
3868                 ad.u.net.family = family;
3869
3870                 if (family == PF_INET)
3871                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3872                 else
3873                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3874
3875                 err = avc_has_perm(isec->sid, sid,
3876                                    isec->sclass, node_perm, &ad);
3877                 if (err)
3878                         goto out;
3879         }
3880 out:
3881         return err;
3882 }
3883
3884 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3885 {
3886         struct sock *sk = sock->sk;
3887         struct inode_security_struct *isec;
3888         int err;
3889
3890         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3891         if (err)
3892                 return err;
3893
3894         /*
3895          * If a TCP or DCCP socket, check name_connect permission for the port.
3896          */
3897         isec = SOCK_INODE(sock)->i_security;
3898         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3899             isec->sclass == SECCLASS_DCCP_SOCKET) {
3900                 struct common_audit_data ad;
3901                 struct sockaddr_in *addr4 = NULL;
3902                 struct sockaddr_in6 *addr6 = NULL;
3903                 unsigned short snum;
3904                 u32 sid, perm;
3905
3906                 if (sk->sk_family == PF_INET) {
3907                         addr4 = (struct sockaddr_in *)address;
3908                         if (addrlen < sizeof(struct sockaddr_in))
3909                                 return -EINVAL;
3910                         snum = ntohs(addr4->sin_port);
3911                 } else {
3912                         addr6 = (struct sockaddr_in6 *)address;
3913                         if (addrlen < SIN6_LEN_RFC2133)
3914                                 return -EINVAL;
3915                         snum = ntohs(addr6->sin6_port);
3916                 }
3917
3918                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3919                 if (err)
3920                         goto out;
3921
3922                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3923                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3924
3925                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3926                 ad.u.net.dport = htons(snum);
3927                 ad.u.net.family = sk->sk_family;
3928                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3929                 if (err)
3930                         goto out;
3931         }
3932
3933         err = selinux_netlbl_socket_connect(sk, address);
3934
3935 out:
3936         return err;
3937 }
3938
3939 static int selinux_socket_listen(struct socket *sock, int backlog)
3940 {
3941         return socket_has_perm(current, sock, SOCKET__LISTEN);
3942 }
3943
3944 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3945 {
3946         int err;
3947         struct inode_security_struct *isec;
3948         struct inode_security_struct *newisec;
3949
3950         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3951         if (err)
3952                 return err;
3953
3954         newisec = SOCK_INODE(newsock)->i_security;
3955
3956         isec = SOCK_INODE(sock)->i_security;
3957         newisec->sclass = isec->sclass;
3958         newisec->sid = isec->sid;
3959         newisec->initialized = 1;
3960
3961         return 0;
3962 }
3963
3964 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3965                                   int size)
3966 {
3967         return socket_has_perm(current, sock, SOCKET__WRITE);
3968 }
3969
3970 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3971                                   int size, int flags)
3972 {
3973         return socket_has_perm(current, sock, SOCKET__READ);
3974 }
3975
3976 static int selinux_socket_getsockname(struct socket *sock)
3977 {
3978         return socket_has_perm(current, sock, SOCKET__GETATTR);
3979 }
3980
3981 static int selinux_socket_getpeername(struct socket *sock)
3982 {
3983         return socket_has_perm(current, sock, SOCKET__GETATTR);
3984 }
3985
3986 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3987 {
3988         int err;
3989
3990         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3991         if (err)
3992                 return err;
3993
3994         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3995 }
3996
3997 static int selinux_socket_getsockopt(struct socket *sock, int level,
3998                                      int optname)
3999 {
4000         return socket_has_perm(current, sock, SOCKET__GETOPT);
4001 }
4002
4003 static int selinux_socket_shutdown(struct socket *sock, int how)
4004 {
4005         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4006 }
4007
4008 static int selinux_socket_unix_stream_connect(struct socket *sock,
4009                                               struct socket *other,
4010                                               struct sock *newsk)
4011 {
4012         struct sk_security_struct *ssec;
4013         struct inode_security_struct *isec;
4014         struct inode_security_struct *other_isec;
4015         struct common_audit_data ad;
4016         int err;
4017
4018         isec = SOCK_INODE(sock)->i_security;
4019         other_isec = SOCK_INODE(other)->i_security;
4020
4021         COMMON_AUDIT_DATA_INIT(&ad, NET);
4022         ad.u.net.sk = other->sk;
4023
4024         err = avc_has_perm(isec->sid, other_isec->sid,
4025                            isec->sclass,
4026                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4027         if (err)
4028                 return err;
4029
4030         /* connecting socket */
4031         ssec = sock->sk->sk_security;
4032         ssec->peer_sid = other_isec->sid;
4033
4034         /* server child socket */
4035         ssec = newsk->sk_security;
4036         ssec->peer_sid = isec->sid;
4037         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4038
4039         return err;
4040 }
4041
4042 static int selinux_socket_unix_may_send(struct socket *sock,
4043                                         struct socket *other)
4044 {
4045         struct inode_security_struct *isec;
4046         struct inode_security_struct *other_isec;
4047         struct common_audit_data ad;
4048         int err;
4049
4050         isec = SOCK_INODE(sock)->i_security;
4051         other_isec = SOCK_INODE(other)->i_security;
4052
4053         COMMON_AUDIT_DATA_INIT(&ad, NET);
4054         ad.u.net.sk = other->sk;
4055
4056         err = avc_has_perm(isec->sid, other_isec->sid,
4057                            isec->sclass, SOCKET__SENDTO, &ad);
4058         if (err)
4059                 return err;
4060
4061         return 0;
4062 }
4063
4064 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4065                                     u32 peer_sid,
4066                                     struct common_audit_data *ad)
4067 {
4068         int err;
4069         u32 if_sid;
4070         u32 node_sid;
4071
4072         err = sel_netif_sid(ifindex, &if_sid);
4073         if (err)
4074                 return err;
4075         err = avc_has_perm(peer_sid, if_sid,
4076                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4077         if (err)
4078                 return err;
4079
4080         err = sel_netnode_sid(addrp, family, &node_sid);
4081         if (err)
4082                 return err;
4083         return avc_has_perm(peer_sid, node_sid,
4084                             SECCLASS_NODE, NODE__RECVFROM, ad);
4085 }
4086
4087 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4088                                        u16 family)
4089 {
4090         int err = 0;
4091         struct sk_security_struct *sksec = sk->sk_security;
4092         u32 peer_sid;
4093         u32 sk_sid = sksec->sid;
4094         struct common_audit_data ad;
4095         char *addrp;
4096
4097         COMMON_AUDIT_DATA_INIT(&ad, NET);
4098         ad.u.net.netif = skb->skb_iif;
4099         ad.u.net.family = family;
4100         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4101         if (err)
4102                 return err;
4103
4104         if (selinux_secmark_enabled()) {
4105                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4106                                    PACKET__RECV, &ad);
4107                 if (err)
4108                         return err;
4109         }
4110
4111         if (selinux_policycap_netpeer) {
4112                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4113                 if (err)
4114                         return err;
4115                 err = avc_has_perm(sk_sid, peer_sid,
4116                                    SECCLASS_PEER, PEER__RECV, &ad);
4117                 if (err)
4118                         selinux_netlbl_err(skb, err, 0);
4119         } else {
4120                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4121                 if (err)
4122                         return err;
4123                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4124         }
4125
4126         return err;
4127 }
4128
4129 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4130 {
4131         int err;
4132         struct sk_security_struct *sksec = sk->sk_security;
4133         u16 family = sk->sk_family;
4134         u32 sk_sid = sksec->sid;
4135         struct common_audit_data ad;
4136         char *addrp;
4137         u8 secmark_active;
4138         u8 peerlbl_active;
4139
4140         if (family != PF_INET && family != PF_INET6)
4141                 return 0;
4142
4143         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4144         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4145                 family = PF_INET;
4146
4147         /* If any sort of compatibility mode is enabled then handoff processing
4148          * to the selinux_sock_rcv_skb_compat() function to deal with the
4149          * special handling.  We do this in an attempt to keep this function
4150          * as fast and as clean as possible. */
4151         if (!selinux_policycap_netpeer)
4152                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4153
4154         secmark_active = selinux_secmark_enabled();
4155         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4156         if (!secmark_active && !peerlbl_active)
4157                 return 0;
4158
4159         COMMON_AUDIT_DATA_INIT(&ad, NET);
4160         ad.u.net.netif = skb->skb_iif;
4161         ad.u.net.family = family;
4162         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4163         if (err)
4164                 return err;
4165
4166         if (peerlbl_active) {
4167                 u32 peer_sid;
4168
4169                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4170                 if (err)
4171                         return err;
4172                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4173                                                peer_sid, &ad);
4174                 if (err) {
4175                         selinux_netlbl_err(skb, err, 0);
4176                         return err;
4177                 }
4178                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4179                                    PEER__RECV, &ad);
4180                 if (err)
4181                         selinux_netlbl_err(skb, err, 0);
4182         }
4183
4184         if (secmark_active) {
4185                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4186                                    PACKET__RECV, &ad);
4187                 if (err)
4188                         return err;
4189         }
4190
4191         return err;
4192 }
4193
4194 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4195                                             int __user *optlen, unsigned len)
4196 {
4197         int err = 0;
4198         char *scontext;
4199         u32 scontext_len;
4200         struct sk_security_struct *ssec;
4201         struct inode_security_struct *isec;
4202         u32 peer_sid = SECSID_NULL;
4203
4204         isec = SOCK_INODE(sock)->i_security;
4205
4206         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4207             isec->sclass == SECCLASS_TCP_SOCKET) {
4208                 ssec = sock->sk->sk_security;
4209                 peer_sid = ssec->peer_sid;
4210         }
4211         if (peer_sid == SECSID_NULL) {
4212                 err = -ENOPROTOOPT;
4213                 goto out;
4214         }
4215
4216         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4217
4218         if (err)
4219                 goto out;
4220
4221         if (scontext_len > len) {
4222                 err = -ERANGE;
4223                 goto out_len;
4224         }
4225
4226         if (copy_to_user(optval, scontext, scontext_len))
4227                 err = -EFAULT;
4228
4229 out_len:
4230         if (put_user(scontext_len, optlen))
4231                 err = -EFAULT;
4232
4233         kfree(scontext);
4234 out:
4235         return err;
4236 }
4237
4238 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4239 {
4240         u32 peer_secid = SECSID_NULL;
4241         u16 family;
4242
4243         if (skb && skb->protocol == htons(ETH_P_IP))
4244                 family = PF_INET;
4245         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4246                 family = PF_INET6;
4247         else if (sock)
4248                 family = sock->sk->sk_family;
4249         else
4250                 goto out;
4251
4252         if (sock && family == PF_UNIX)
4253                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4254         else if (skb)
4255                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4256
4257 out:
4258         *secid = peer_secid;
4259         if (peer_secid == SECSID_NULL)
4260                 return -EINVAL;
4261         return 0;
4262 }
4263
4264 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4265 {
4266         return sk_alloc_security(sk, family, priority);
4267 }
4268
4269 static void selinux_sk_free_security(struct sock *sk)
4270 {
4271         sk_free_security(sk);
4272 }
4273
4274 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4275 {
4276         struct sk_security_struct *ssec = sk->sk_security;
4277         struct sk_security_struct *newssec = newsk->sk_security;
4278
4279         newssec->sid = ssec->sid;
4280         newssec->peer_sid = ssec->peer_sid;
4281         newssec->sclass = ssec->sclass;
4282
4283         selinux_netlbl_sk_security_reset(newssec);
4284 }
4285
4286 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4287 {
4288         if (!sk)
4289                 *secid = SECINITSID_ANY_SOCKET;
4290         else {
4291                 struct sk_security_struct *sksec = sk->sk_security;
4292
4293                 *secid = sksec->sid;
4294         }
4295 }
4296
4297 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4298 {
4299         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4300         struct sk_security_struct *sksec = sk->sk_security;
4301
4302         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4303             sk->sk_family == PF_UNIX)
4304                 isec->sid = sksec->sid;
4305         sksec->sclass = isec->sclass;
4306 }
4307
4308 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4309                                      struct request_sock *req)
4310 {
4311         struct sk_security_struct *sksec = sk->sk_security;
4312         int err;
4313         u16 family = sk->sk_family;
4314         u32 newsid;
4315         u32 peersid;
4316
4317         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4318         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4319                 family = PF_INET;
4320
4321         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4322         if (err)
4323                 return err;
4324         if (peersid == SECSID_NULL) {
4325                 req->secid = sksec->sid;
4326                 req->peer_secid = SECSID_NULL;
4327         } else {
4328                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4329                 if (err)
4330                         return err;
4331                 req->secid = newsid;
4332                 req->peer_secid = peersid;
4333         }
4334
4335         return selinux_netlbl_inet_conn_request(req, family);
4336 }
4337
4338 static void selinux_inet_csk_clone(struct sock *newsk,
4339                                    const struct request_sock *req)
4340 {
4341         struct sk_security_struct *newsksec = newsk->sk_security;
4342
4343         newsksec->sid = req->secid;
4344         newsksec->peer_sid = req->peer_secid;
4345         /* NOTE: Ideally, we should also get the isec->sid for the
4346            new socket in sync, but we don't have the isec available yet.
4347            So we will wait until sock_graft to do it, by which
4348            time it will have been created and available. */
4349
4350         /* We don't need to take any sort of lock here as we are the only
4351          * thread with access to newsksec */
4352         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4353 }
4354
4355 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4356 {
4357         u16 family = sk->sk_family;
4358         struct sk_security_struct *sksec = sk->sk_security;
4359
4360         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4361         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362                 family = PF_INET;
4363
4364         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4365 }
4366
4367 static void selinux_req_classify_flow(const struct request_sock *req,
4368                                       struct flowi *fl)
4369 {
4370         fl->secid = req->secid;
4371 }
4372
4373 static int selinux_tun_dev_create(void)
4374 {
4375         u32 sid = current_sid();
4376
4377         /* we aren't taking into account the "sockcreate" SID since the socket
4378          * that is being created here is not a socket in the traditional sense,
4379          * instead it is a private sock, accessible only to the kernel, and
4380          * representing a wide range of network traffic spanning multiple
4381          * connections unlike traditional sockets - check the TUN driver to
4382          * get a better understanding of why this socket is special */
4383
4384         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4385                             NULL);
4386 }
4387
4388 static void selinux_tun_dev_post_create(struct sock *sk)
4389 {
4390         struct sk_security_struct *sksec = sk->sk_security;
4391
4392         /* we don't currently perform any NetLabel based labeling here and it
4393          * isn't clear that we would want to do so anyway; while we could apply
4394          * labeling without the support of the TUN user the resulting labeled
4395          * traffic from the other end of the connection would almost certainly
4396          * cause confusion to the TUN user that had no idea network labeling
4397          * protocols were being used */
4398
4399         /* see the comments in selinux_tun_dev_create() about why we don't use
4400          * the sockcreate SID here */
4401
4402         sksec->sid = current_sid();
4403         sksec->sclass = SECCLASS_TUN_SOCKET;
4404 }
4405
4406 static int selinux_tun_dev_attach(struct sock *sk)
4407 {
4408         struct sk_security_struct *sksec = sk->sk_security;
4409         u32 sid = current_sid();
4410         int err;
4411
4412         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4413                            TUN_SOCKET__RELABELFROM, NULL);
4414         if (err)
4415                 return err;
4416         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4417                            TUN_SOCKET__RELABELTO, NULL);
4418         if (err)
4419                 return err;
4420
4421         sksec->sid = sid;
4422
4423         return 0;
4424 }
4425
4426 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4427 {
4428         int err = 0;
4429         u32 perm;
4430         struct nlmsghdr *nlh;
4431         struct socket *sock = sk->sk_socket;
4432         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4433
4434         if (skb->len < NLMSG_SPACE(0)) {
4435                 err = -EINVAL;
4436                 goto out;
4437         }
4438         nlh = nlmsg_hdr(skb);
4439
4440         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4441         if (err) {
4442                 if (err == -EINVAL) {
4443                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4444                                   "SELinux:  unrecognized netlink message"
4445                                   " type=%hu for sclass=%hu\n",
4446                                   nlh->nlmsg_type, isec->sclass);
4447                         if (!selinux_enforcing || security_get_allow_unknown())
4448                                 err = 0;
4449                 }
4450
4451                 /* Ignore */
4452                 if (err == -ENOENT)
4453                         err = 0;
4454                 goto out;
4455         }
4456
4457         err = socket_has_perm(current, sock, perm);
4458 out:
4459         return err;
4460 }
4461
4462 #ifdef CONFIG_NETFILTER
4463
4464 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4465                                        u16 family)
4466 {
4467         int err;
4468         char *addrp;
4469         u32 peer_sid;
4470         struct common_audit_data ad;
4471         u8 secmark_active;
4472         u8 netlbl_active;
4473         u8 peerlbl_active;
4474
4475         if (!selinux_policycap_netpeer)
4476                 return NF_ACCEPT;
4477
4478         secmark_active = selinux_secmark_enabled();
4479         netlbl_active = netlbl_enabled();
4480         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4481         if (!secmark_active && !peerlbl_active)
4482                 return NF_ACCEPT;
4483
4484         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4485                 return NF_DROP;
4486
4487         COMMON_AUDIT_DATA_INIT(&ad, NET);
4488         ad.u.net.netif = ifindex;
4489         ad.u.net.family = family;
4490         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4491                 return NF_DROP;
4492
4493         if (peerlbl_active) {
4494                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4495                                                peer_sid, &ad);
4496                 if (err) {
4497                         selinux_netlbl_err(skb, err, 1);
4498                         return NF_DROP;
4499                 }
4500         }
4501
4502         if (secmark_active)
4503                 if (avc_has_perm(peer_sid, skb->secmark,
4504                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4505                         return NF_DROP;
4506
4507         if (netlbl_active)
4508                 /* we do this in the FORWARD path and not the POST_ROUTING
4509                  * path because we want to make sure we apply the necessary
4510                  * labeling before IPsec is applied so we can leverage AH
4511                  * protection */
4512                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4513                         return NF_DROP;
4514
4515         return NF_ACCEPT;
4516 }
4517
4518 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4519                                          struct sk_buff *skb,
4520                                          const struct net_device *in,
4521                                          const struct net_device *out,
4522                                          int (*okfn)(struct sk_buff *))
4523 {
4524         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4525 }
4526
4527 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4528 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4529                                          struct sk_buff *skb,
4530                                          const struct net_device *in,
4531                                          const struct net_device *out,
4532                                          int (*okfn)(struct sk_buff *))
4533 {
4534         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4535 }
4536 #endif  /* IPV6 */
4537
4538 static unsigned int selinux_ip_output(struct sk_buff *skb,
4539                                       u16 family)
4540 {
4541         u32 sid;
4542
4543         if (!netlbl_enabled())
4544                 return NF_ACCEPT;
4545
4546         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4547          * because we want to make sure we apply the necessary labeling
4548          * before IPsec is applied so we can leverage AH protection */
4549         if (skb->sk) {
4550                 struct sk_security_struct *sksec = skb->sk->sk_security;
4551                 sid = sksec->sid;
4552         } else
4553                 sid = SECINITSID_KERNEL;
4554         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4555                 return NF_DROP;
4556
4557         return NF_ACCEPT;
4558 }
4559
4560 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4561                                         struct sk_buff *skb,
4562                                         const struct net_device *in,
4563                                         const struct net_device *out,
4564                                         int (*okfn)(struct sk_buff *))
4565 {
4566         return selinux_ip_output(skb, PF_INET);
4567 }
4568
4569 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4570                                                 int ifindex,
4571                                                 u16 family)
4572 {
4573         struct sock *sk = skb->sk;
4574         struct sk_security_struct *sksec;
4575         struct common_audit_data ad;
4576         char *addrp;
4577         u8 proto;
4578
4579         if (sk == NULL)
4580                 return NF_ACCEPT;
4581         sksec = sk->sk_security;
4582
4583         COMMON_AUDIT_DATA_INIT(&ad, NET);
4584         ad.u.net.netif = ifindex;
4585         ad.u.net.family = family;
4586         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4587                 return NF_DROP;
4588
4589         if (selinux_secmark_enabled())
4590                 if (avc_has_perm(sksec->sid, skb->secmark,
4591                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4592                         return NF_DROP;
4593
4594         if (selinux_policycap_netpeer)
4595                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4596                         return NF_DROP;
4597
4598         return NF_ACCEPT;
4599 }
4600
4601 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4602                                          u16 family)
4603 {
4604         u32 secmark_perm;
4605         u32 peer_sid;
4606         struct sock *sk;
4607         struct common_audit_data ad;
4608         char *addrp;
4609         u8 secmark_active;
4610         u8 peerlbl_active;
4611
4612         /* If any sort of compatibility mode is enabled then handoff processing
4613          * to the selinux_ip_postroute_compat() function to deal with the
4614          * special handling.  We do this in an attempt to keep this function
4615          * as fast and as clean as possible. */
4616         if (!selinux_policycap_netpeer)
4617                 return selinux_ip_postroute_compat(skb, ifindex, family);
4618 #ifdef CONFIG_XFRM
4619         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4620          * packet transformation so allow the packet to pass without any checks
4621          * since we'll have another chance to perform access control checks
4622          * when the packet is on it's final way out.
4623          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4624          *       is NULL, in this case go ahead and apply access control. */
4625         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4626                 return NF_ACCEPT;
4627 #endif
4628         secmark_active = selinux_secmark_enabled();
4629         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4630         if (!secmark_active && !peerlbl_active)
4631                 return NF_ACCEPT;
4632
4633         /* if the packet is being forwarded then get the peer label from the
4634          * packet itself; otherwise check to see if it is from a local
4635          * application or the kernel, if from an application get the peer label
4636          * from the sending socket, otherwise use the kernel's sid */
4637         sk = skb->sk;
4638         if (sk == NULL) {
4639                 switch (family) {
4640                 case PF_INET:
4641                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4642                                 secmark_perm = PACKET__FORWARD_OUT;
4643                         else
4644                                 secmark_perm = PACKET__SEND;
4645                         break;
4646                 case PF_INET6:
4647                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4648                                 secmark_perm = PACKET__FORWARD_OUT;
4649                         else
4650                                 secmark_perm = PACKET__SEND;
4651                         break;
4652                 default:
4653                         return NF_DROP;
4654                 }
4655                 if (secmark_perm == PACKET__FORWARD_OUT) {
4656                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4657                                 return NF_DROP;
4658                 } else
4659                         peer_sid = SECINITSID_KERNEL;
4660         } else {
4661                 struct sk_security_struct *sksec = sk->sk_security;
4662                 peer_sid = sksec->sid;
4663                 secmark_perm = PACKET__SEND;
4664         }
4665
4666         COMMON_AUDIT_DATA_INIT(&ad, NET);
4667         ad.u.net.netif = ifindex;
4668         ad.u.net.family = family;
4669         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4670                 return NF_DROP;
4671
4672         if (secmark_active)
4673                 if (avc_has_perm(peer_sid, skb->secmark,
4674                                  SECCLASS_PACKET, secmark_perm, &ad))
4675                         return NF_DROP;
4676
4677         if (peerlbl_active) {
4678                 u32 if_sid;
4679                 u32 node_sid;
4680
4681                 if (sel_netif_sid(ifindex, &if_sid))
4682                         return NF_DROP;
4683                 if (avc_has_perm(peer_sid, if_sid,
4684                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4685                         return NF_DROP;
4686
4687                 if (sel_netnode_sid(addrp, family, &node_sid))
4688                         return NF_DROP;
4689                 if (avc_has_perm(peer_sid, node_sid,
4690                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4691                         return NF_DROP;
4692         }
4693
4694         return NF_ACCEPT;
4695 }
4696
4697 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4698                                            struct sk_buff *skb,
4699                                            const struct net_device *in,
4700                                            const struct net_device *out,
4701                                            int (*okfn)(struct sk_buff *))
4702 {
4703         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4704 }
4705
4706 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4707 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4708                                            struct sk_buff *skb,
4709                                            const struct net_device *in,
4710                                            const struct net_device *out,
4711                                            int (*okfn)(struct sk_buff *))
4712 {
4713         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4714 }
4715 #endif  /* IPV6 */
4716
4717 #endif  /* CONFIG_NETFILTER */
4718
4719 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4720 {
4721         int err;
4722
4723         err = cap_netlink_send(sk, skb);
4724         if (err)
4725                 return err;
4726
4727         return selinux_nlmsg_perm(sk, skb);
4728 }
4729
4730 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4731 {
4732         int err;
4733         struct common_audit_data ad;
4734
4735         err = cap_netlink_recv(skb, capability);
4736         if (err)
4737                 return err;
4738
4739         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4740         ad.u.cap = capability;
4741
4742         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4743                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4744 }
4745
4746 static int ipc_alloc_security(struct task_struct *task,
4747                               struct kern_ipc_perm *perm,
4748                               u16 sclass)
4749 {
4750         struct ipc_security_struct *isec;
4751         u32 sid;
4752
4753         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4754         if (!isec)
4755                 return -ENOMEM;
4756
4757         sid = task_sid(task);
4758         isec->sclass = sclass;
4759         isec->sid = sid;
4760         perm->security = isec;
4761
4762         return 0;
4763 }
4764
4765 static void ipc_free_security(struct kern_ipc_perm *perm)
4766 {
4767         struct ipc_security_struct *isec = perm->security;
4768         perm->security = NULL;
4769         kfree(isec);
4770 }
4771
4772 static int msg_msg_alloc_security(struct msg_msg *msg)
4773 {
4774         struct msg_security_struct *msec;
4775
4776         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4777         if (!msec)
4778                 return -ENOMEM;
4779
4780         msec->sid = SECINITSID_UNLABELED;
4781         msg->security = msec;
4782
4783         return 0;
4784 }
4785
4786 static void msg_msg_free_security(struct msg_msg *msg)
4787 {
4788         struct msg_security_struct *msec = msg->security;
4789
4790         msg->security = NULL;
4791         kfree(msec);
4792 }
4793
4794 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4795                         u32 perms)
4796 {
4797         struct ipc_security_struct *isec;
4798         struct common_audit_data ad;
4799         u32 sid = current_sid();
4800
4801         isec = ipc_perms->security;
4802
4803         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4804         ad.u.ipc_id = ipc_perms->key;
4805
4806         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4807 }
4808
4809 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4810 {
4811         return msg_msg_alloc_security(msg);
4812 }
4813
4814 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4815 {
4816         msg_msg_free_security(msg);
4817 }
4818
4819 /* message queue security operations */
4820 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4821 {
4822         struct ipc_security_struct *isec;
4823         struct common_audit_data ad;
4824         u32 sid = current_sid();
4825         int rc;
4826
4827         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4828         if (rc)
4829                 return rc;
4830
4831         isec = msq->q_perm.security;
4832
4833         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4834         ad.u.ipc_id = msq->q_perm.key;
4835
4836         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4837                           MSGQ__CREATE, &ad);
4838         if (rc) {
4839                 ipc_free_security(&msq->q_perm);
4840                 return rc;
4841         }
4842         return 0;
4843 }
4844
4845 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4846 {
4847         ipc_free_security(&msq->q_perm);
4848 }
4849
4850 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4851 {
4852         struct ipc_security_struct *isec;
4853         struct common_audit_data ad;
4854         u32 sid = current_sid();
4855
4856         isec = msq->q_perm.security;
4857
4858         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4859         ad.u.ipc_id = msq->q_perm.key;
4860
4861         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4862                             MSGQ__ASSOCIATE, &ad);
4863 }
4864
4865 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4866 {
4867         int err;
4868         int perms;
4869
4870         switch (cmd) {
4871         case IPC_INFO:
4872         case MSG_INFO:
4873                 /* No specific object, just general system-wide information. */
4874                 return task_has_system(current, SYSTEM__IPC_INFO);
4875         case IPC_STAT:
4876         case MSG_STAT:
4877                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4878                 break;
4879         case IPC_SET:
4880                 perms = MSGQ__SETATTR;
4881                 break;
4882         case IPC_RMID:
4883                 perms = MSGQ__DESTROY;
4884                 break;
4885         default:
4886                 return 0;
4887         }
4888
4889         err = ipc_has_perm(&msq->q_perm, perms);
4890         return err;
4891 }
4892
4893 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4894 {
4895         struct ipc_security_struct *isec;
4896         struct msg_security_struct *msec;
4897         struct common_audit_data ad;
4898         u32 sid = current_sid();
4899         int rc;
4900
4901         isec = msq->q_perm.security;
4902         msec = msg->security;
4903
4904         /*
4905          * First time through, need to assign label to the message
4906          */
4907         if (msec->sid == SECINITSID_UNLABELED) {
4908                 /*
4909                  * Compute new sid based on current process and
4910                  * message queue this message will be stored in
4911                  */
4912                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4913                                              &msec->sid);
4914                 if (rc)
4915                         return rc;
4916         }
4917
4918         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4919         ad.u.ipc_id = msq->q_perm.key;
4920
4921         /* Can this process write to the queue? */
4922         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4923                           MSGQ__WRITE, &ad);
4924         if (!rc)
4925                 /* Can this process send the message */
4926                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4927                                   MSG__SEND, &ad);
4928         if (!rc)
4929                 /* Can the message be put in the queue? */
4930                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4931                                   MSGQ__ENQUEUE, &ad);
4932
4933         return rc;
4934 }
4935
4936 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4937                                     struct task_struct *target,
4938                                     long type, int mode)
4939 {
4940         struct ipc_security_struct *isec;
4941         struct msg_security_struct *msec;
4942         struct common_audit_data ad;
4943         u32 sid = task_sid(target);
4944         int rc;
4945
4946         isec = msq->q_perm.security;
4947         msec = msg->security;
4948
4949         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4950         ad.u.ipc_id = msq->q_perm.key;
4951
4952         rc = avc_has_perm(sid, isec->sid,
4953                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4954         if (!rc)
4955                 rc = avc_has_perm(sid, msec->sid,
4956                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4957         return rc;
4958 }
4959
4960 /* Shared Memory security operations */
4961 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4962 {
4963         struct ipc_security_struct *isec;
4964         struct common_audit_data ad;
4965         u32 sid = current_sid();
4966         int rc;
4967
4968         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4969         if (rc)
4970                 return rc;
4971
4972         isec = shp->shm_perm.security;
4973
4974         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4975         ad.u.ipc_id = shp->shm_perm.key;
4976
4977         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4978                           SHM__CREATE, &ad);
4979         if (rc) {
4980                 ipc_free_security(&shp->shm_perm);
4981                 return rc;
4982         }
4983         return 0;
4984 }
4985
4986 static void selinux_shm_free_security(struct shmid_kernel *shp)
4987 {
4988         ipc_free_security(&shp->shm_perm);
4989 }
4990
4991 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4992 {
4993         struct ipc_security_struct *isec;
4994         struct common_audit_data ad;
4995         u32 sid = current_sid();
4996
4997         isec = shp->shm_perm.security;
4998
4999         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5000         ad.u.ipc_id = shp->shm_perm.key;
5001
5002         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5003                             SHM__ASSOCIATE, &ad);
5004 }
5005
5006 /* Note, at this point, shp is locked down */
5007 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5008 {
5009         int perms;
5010         int err;
5011
5012         switch (cmd) {
5013         case IPC_INFO:
5014         case SHM_INFO:
5015                 /* No specific object, just general system-wide information. */
5016                 return task_has_system(current, SYSTEM__IPC_INFO);
5017         case IPC_STAT:
5018         case SHM_STAT:
5019                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5020                 break;
5021         case IPC_SET:
5022                 perms = SHM__SETATTR;
5023                 break;
5024         case SHM_LOCK:
5025         case SHM_UNLOCK:
5026                 perms = SHM__LOCK;
5027                 break;
5028         case IPC_RMID:
5029                 perms = SHM__DESTROY;
5030                 break;
5031         default:
5032                 return 0;
5033         }
5034
5035         err = ipc_has_perm(&shp->shm_perm, perms);
5036         return err;
5037 }
5038
5039 static int selinux_shm_shmat(struct shmid_kernel *shp,
5040                              char __user *shmaddr, int shmflg)
5041 {
5042         u32 perms;
5043
5044         if (shmflg & SHM_RDONLY)
5045                 perms = SHM__READ;
5046         else
5047                 perms = SHM__READ | SHM__WRITE;
5048
5049         return ipc_has_perm(&shp->shm_perm, perms);
5050 }
5051
5052 /* Semaphore security operations */
5053 static int selinux_sem_alloc_security(struct sem_array *sma)
5054 {
5055         struct ipc_security_struct *isec;
5056         struct common_audit_data ad;
5057         u32 sid = current_sid();
5058         int rc;
5059
5060         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5061         if (rc)
5062                 return rc;
5063
5064         isec = sma->sem_perm.security;
5065
5066         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5067         ad.u.ipc_id = sma->sem_perm.key;
5068
5069         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5070                           SEM__CREATE, &ad);
5071         if (rc) {
5072                 ipc_free_security(&sma->sem_perm);
5073                 return rc;
5074         }
5075         return 0;
5076 }
5077
5078 static void selinux_sem_free_security(struct sem_array *sma)
5079 {
5080         ipc_free_security(&sma->sem_perm);
5081 }
5082
5083 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5084 {
5085         struct ipc_security_struct *isec;
5086         struct common_audit_data ad;
5087         u32 sid = current_sid();
5088
5089         isec = sma->sem_perm.security;
5090
5091         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5092         ad.u.ipc_id = sma->sem_perm.key;
5093
5094         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5095                             SEM__ASSOCIATE, &ad);
5096 }
5097
5098 /* Note, at this point, sma is locked down */
5099 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5100 {
5101         int err;
5102         u32 perms;
5103
5104         switch (cmd) {
5105         case IPC_INFO:
5106         case SEM_INFO:
5107                 /* No specific object, just general system-wide information. */
5108                 return task_has_system(current, SYSTEM__IPC_INFO);
5109         case GETPID:
5110         case GETNCNT:
5111         case GETZCNT:
5112                 perms = SEM__GETATTR;
5113                 break;
5114         case GETVAL:
5115         case GETALL:
5116                 perms = SEM__READ;
5117                 break;
5118         case SETVAL:
5119         case SETALL:
5120                 perms = SEM__WRITE;
5121                 break;
5122         case IPC_RMID:
5123                 perms = SEM__DESTROY;
5124                 break;
5125         case IPC_SET:
5126                 perms = SEM__SETATTR;
5127                 break;
5128         case IPC_STAT:
5129         case SEM_STAT:
5130                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5131                 break;
5132         default:
5133                 return 0;
5134         }
5135
5136         err = ipc_has_perm(&sma->sem_perm, perms);
5137         return err;
5138 }
5139
5140 static int selinux_sem_semop(struct sem_array *sma,
5141                              struct sembuf *sops, unsigned nsops, int alter)
5142 {
5143         u32 perms;
5144
5145         if (alter)
5146                 perms = SEM__READ | SEM__WRITE;
5147         else
5148                 perms = SEM__READ;
5149
5150         return ipc_has_perm(&sma->sem_perm, perms);
5151 }
5152
5153 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5154 {
5155         u32 av = 0;
5156
5157         av = 0;
5158         if (flag & S_IRUGO)
5159                 av |= IPC__UNIX_READ;
5160         if (flag & S_IWUGO)
5161                 av |= IPC__UNIX_WRITE;
5162
5163         if (av == 0)
5164                 return 0;
5165
5166         return ipc_has_perm(ipcp, av);
5167 }
5168
5169 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5170 {
5171         struct ipc_security_struct *isec = ipcp->security;
5172         *secid = isec->sid;
5173 }
5174
5175 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5176 {
5177         if (inode)
5178                 inode_doinit_with_dentry(inode, dentry);
5179 }
5180
5181 static int selinux_getprocattr(struct task_struct *p,
5182                                char *name, char **value)
5183 {
5184         const struct task_security_struct *__tsec;
5185         u32 sid;
5186         int error;
5187         unsigned len;
5188
5189         if (current != p) {
5190                 error = current_has_perm(p, PROCESS__GETATTR);
5191                 if (error)
5192                         return error;
5193         }
5194
5195         rcu_read_lock();
5196         __tsec = __task_cred(p)->security;
5197
5198         if (!strcmp(name, "current"))
5199                 sid = __tsec->sid;
5200         else if (!strcmp(name, "prev"))
5201                 sid = __tsec->osid;
5202         else if (!strcmp(name, "exec"))
5203                 sid = __tsec->exec_sid;
5204         else if (!strcmp(name, "fscreate"))
5205                 sid = __tsec->create_sid;
5206         else if (!strcmp(name, "keycreate"))
5207                 sid = __tsec->keycreate_sid;
5208         else if (!strcmp(name, "sockcreate"))
5209                 sid = __tsec->sockcreate_sid;
5210         else
5211                 goto invalid;
5212         rcu_read_unlock();
5213
5214         if (!sid)
5215                 return 0;
5216
5217         error = security_sid_to_context(sid, value, &len);
5218         if (error)
5219                 return error;
5220         return len;
5221
5222 invalid:
5223         rcu_read_unlock();
5224         return -EINVAL;
5225 }
5226
5227 static int selinux_setprocattr(struct task_struct *p,
5228                                char *name, void *value, size_t size)
5229 {
5230         struct task_security_struct *tsec;
5231         struct task_struct *tracer;
5232         struct cred *new;
5233         u32 sid = 0, ptsid;
5234         int error;
5235         char *str = value;
5236
5237         if (current != p) {
5238                 /* SELinux only allows a process to change its own
5239                    security attributes. */
5240                 return -EACCES;
5241         }
5242
5243         /*
5244          * Basic control over ability to set these attributes at all.
5245          * current == p, but we'll pass them separately in case the
5246          * above restriction is ever removed.
5247          */
5248         if (!strcmp(name, "exec"))
5249                 error = current_has_perm(p, PROCESS__SETEXEC);
5250         else if (!strcmp(name, "fscreate"))
5251                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5252         else if (!strcmp(name, "keycreate"))
5253                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5254         else if (!strcmp(name, "sockcreate"))
5255                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5256         else if (!strcmp(name, "current"))
5257                 error = current_has_perm(p, PROCESS__SETCURRENT);
5258         else
5259                 error = -EINVAL;
5260         if (error)
5261                 return error;
5262
5263         /* Obtain a SID for the context, if one was specified. */
5264         if (size && str[1] && str[1] != '\n') {
5265                 if (str[size-1] == '\n') {
5266                         str[size-1] = 0;
5267                         size--;
5268                 }
5269                 error = security_context_to_sid(value, size, &sid);
5270                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5271                         if (!capable(CAP_MAC_ADMIN))
5272                                 return error;
5273                         error = security_context_to_sid_force(value, size,
5274                                                               &sid);
5275                 }
5276                 if (error)
5277                         return error;
5278         }
5279
5280         new = prepare_creds();
5281         if (!new)
5282                 return -ENOMEM;
5283
5284         /* Permission checking based on the specified context is
5285            performed during the actual operation (execve,
5286            open/mkdir/...), when we know the full context of the
5287            operation.  See selinux_bprm_set_creds for the execve
5288            checks and may_create for the file creation checks. The
5289            operation will then fail if the context is not permitted. */
5290         tsec = new->security;
5291         if (!strcmp(name, "exec")) {
5292                 tsec->exec_sid = sid;
5293         } else if (!strcmp(name, "fscreate")) {
5294                 tsec->create_sid = sid;
5295         } else if (!strcmp(name, "keycreate")) {
5296                 error = may_create_key(sid, p);
5297                 if (error)
5298                         goto abort_change;
5299                 tsec->keycreate_sid = sid;
5300         } else if (!strcmp(name, "sockcreate")) {
5301                 tsec->sockcreate_sid = sid;
5302         } else if (!strcmp(name, "current")) {
5303                 error = -EINVAL;
5304                 if (sid == 0)
5305                         goto abort_change;
5306
5307                 /* Only allow single threaded processes to change context */
5308                 error = -EPERM;
5309                 if (!current_is_single_threaded()) {
5310                         error = security_bounded_transition(tsec->sid, sid);
5311                         if (error)
5312                                 goto abort_change;
5313                 }
5314
5315                 /* Check permissions for the transition. */
5316                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5317                                      PROCESS__DYNTRANSITION, NULL);
5318                 if (error)
5319                         goto abort_change;
5320
5321                 /* Check for ptracing, and update the task SID if ok.
5322                    Otherwise, leave SID unchanged and fail. */
5323                 ptsid = 0;
5324                 task_lock(p);
5325                 tracer = tracehook_tracer_task(p);
5326                 if (tracer)
5327                         ptsid = task_sid(tracer);
5328                 task_unlock(p);
5329
5330                 if (tracer) {
5331                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5332                                              PROCESS__PTRACE, NULL);
5333                         if (error)
5334                                 goto abort_change;
5335                 }
5336
5337                 tsec->sid = sid;
5338         } else {
5339                 error = -EINVAL;
5340                 goto abort_change;
5341         }
5342
5343         commit_creds(new);
5344         return size;
5345
5346 abort_change:
5347         abort_creds(new);
5348         return error;
5349 }
5350
5351 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5352 {
5353         return security_sid_to_context(secid, secdata, seclen);
5354 }
5355
5356 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5357 {
5358         return security_context_to_sid(secdata, seclen, secid);
5359 }
5360
5361 static void selinux_release_secctx(char *secdata, u32 seclen)
5362 {
5363         kfree(secdata);
5364 }
5365
5366 /*
5367  *      called with inode->i_mutex locked
5368  */
5369 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5370 {
5371         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5372 }
5373
5374 /*
5375  *      called with inode->i_mutex locked
5376  */
5377 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5378 {
5379         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5380 }
5381
5382 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5383 {
5384         int len = 0;
5385         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5386                                                 ctx, true);
5387         if (len < 0)
5388                 return len;
5389         *ctxlen = len;
5390         return 0;
5391 }
5392 #ifdef CONFIG_KEYS
5393
5394 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5395                              unsigned long flags)
5396 {
5397         const struct task_security_struct *tsec;
5398         struct key_security_struct *ksec;
5399
5400         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5401         if (!ksec)
5402                 return -ENOMEM;
5403
5404         tsec = cred->security;
5405         if (tsec->keycreate_sid)
5406                 ksec->sid = tsec->keycreate_sid;
5407         else
5408                 ksec->sid = tsec->sid;
5409
5410         k->security = ksec;
5411         return 0;
5412 }
5413
5414 static void selinux_key_free(struct key *k)
5415 {
5416         struct key_security_struct *ksec = k->security;
5417
5418         k->security = NULL;
5419         kfree(ksec);
5420 }
5421
5422 static int selinux_key_permission(key_ref_t key_ref,
5423                                   const struct cred *cred,
5424                                   key_perm_t perm)
5425 {
5426         struct key *key;
5427         struct key_security_struct *ksec;
5428         u32 sid;
5429
5430         /* if no specific permissions are requested, we skip the
5431            permission check. No serious, additional covert channels
5432            appear to be created. */
5433         if (perm == 0)
5434                 return 0;
5435
5436         sid = cred_sid(cred);
5437
5438         key = key_ref_to_ptr(key_ref);
5439         ksec = key->security;
5440
5441         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5442 }
5443
5444 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5445 {
5446         struct key_security_struct *ksec = key->security;
5447         char *context = NULL;
5448         unsigned len;
5449         int rc;
5450
5451         rc = security_sid_to_context(ksec->sid, &context, &len);
5452         if (!rc)
5453                 rc = len;
5454         *_buffer = context;
5455         return rc;
5456 }
5457
5458 #endif
5459
5460 static struct security_operations selinux_ops = {
5461         .name =                         "selinux",
5462
5463         .ptrace_access_check =          selinux_ptrace_access_check,
5464         .ptrace_traceme =               selinux_ptrace_traceme,
5465         .capget =                       selinux_capget,
5466         .capset =                       selinux_capset,
5467         .sysctl =                       selinux_sysctl,
5468         .capable =                      selinux_capable,
5469         .quotactl =                     selinux_quotactl,
5470         .quota_on =                     selinux_quota_on,
5471         .syslog =                       selinux_syslog,
5472         .vm_enough_memory =             selinux_vm_enough_memory,
5473
5474         .netlink_send =                 selinux_netlink_send,
5475         .netlink_recv =                 selinux_netlink_recv,
5476
5477         .bprm_set_creds =               selinux_bprm_set_creds,
5478         .bprm_committing_creds =        selinux_bprm_committing_creds,
5479         .bprm_committed_creds =         selinux_bprm_committed_creds,
5480         .bprm_secureexec =              selinux_bprm_secureexec,
5481
5482         .sb_alloc_security =            selinux_sb_alloc_security,
5483         .sb_free_security =             selinux_sb_free_security,
5484         .sb_copy_data =                 selinux_sb_copy_data,
5485         .sb_kern_mount =                selinux_sb_kern_mount,
5486         .sb_show_options =              selinux_sb_show_options,
5487         .sb_statfs =                    selinux_sb_statfs,
5488         .sb_mount =                     selinux_mount,
5489         .sb_umount =                    selinux_umount,
5490         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5491         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5492         .sb_parse_opts_str =            selinux_parse_opts_str,
5493
5494
5495         .inode_alloc_security =         selinux_inode_alloc_security,
5496         .inode_free_security =          selinux_inode_free_security,
5497         .inode_init_security =          selinux_inode_init_security,
5498         .inode_create =                 selinux_inode_create,
5499         .inode_link =                   selinux_inode_link,
5500         .inode_unlink =                 selinux_inode_unlink,
5501         .inode_symlink =                selinux_inode_symlink,
5502         .inode_mkdir =                  selinux_inode_mkdir,
5503         .inode_rmdir =                  selinux_inode_rmdir,
5504         .inode_mknod =                  selinux_inode_mknod,
5505         .inode_rename =                 selinux_inode_rename,
5506         .inode_readlink =               selinux_inode_readlink,
5507         .inode_follow_link =            selinux_inode_follow_link,
5508         .inode_permission =             selinux_inode_permission,
5509         .inode_setattr =                selinux_inode_setattr,
5510         .inode_getattr =                selinux_inode_getattr,
5511         .inode_setxattr =               selinux_inode_setxattr,
5512         .inode_post_setxattr =          selinux_inode_post_setxattr,
5513         .inode_getxattr =               selinux_inode_getxattr,
5514         .inode_listxattr =              selinux_inode_listxattr,
5515         .inode_removexattr =            selinux_inode_removexattr,
5516         .inode_getsecurity =            selinux_inode_getsecurity,
5517         .inode_setsecurity =            selinux_inode_setsecurity,
5518         .inode_listsecurity =           selinux_inode_listsecurity,
5519         .inode_getsecid =               selinux_inode_getsecid,
5520
5521         .file_permission =              selinux_file_permission,
5522         .file_alloc_security =          selinux_file_alloc_security,
5523         .file_free_security =           selinux_file_free_security,
5524         .file_ioctl =                   selinux_file_ioctl,
5525         .file_mmap =                    selinux_file_mmap,
5526         .file_mprotect =                selinux_file_mprotect,
5527         .file_lock =                    selinux_file_lock,
5528         .file_fcntl =                   selinux_file_fcntl,
5529         .file_set_fowner =              selinux_file_set_fowner,
5530         .file_send_sigiotask =          selinux_file_send_sigiotask,
5531         .file_receive =                 selinux_file_receive,
5532
5533         .dentry_open =                  selinux_dentry_open,
5534
5535         .task_create =                  selinux_task_create,
5536         .cred_alloc_blank =             selinux_cred_alloc_blank,
5537         .cred_free =                    selinux_cred_free,
5538         .cred_prepare =                 selinux_cred_prepare,
5539         .cred_transfer =                selinux_cred_transfer,
5540         .kernel_act_as =                selinux_kernel_act_as,
5541         .kernel_create_files_as =       selinux_kernel_create_files_as,
5542         .kernel_module_request =        selinux_kernel_module_request,
5543         .task_setpgid =                 selinux_task_setpgid,
5544         .task_getpgid =                 selinux_task_getpgid,
5545         .task_getsid =                  selinux_task_getsid,
5546         .task_getsecid =                selinux_task_getsecid,
5547         .task_setnice =                 selinux_task_setnice,
5548         .task_setioprio =               selinux_task_setioprio,
5549         .task_getioprio =               selinux_task_getioprio,
5550         .task_setrlimit =               selinux_task_setrlimit,
5551         .task_setscheduler =            selinux_task_setscheduler,
5552         .task_getscheduler =            selinux_task_getscheduler,
5553         .task_movememory =              selinux_task_movememory,
5554         .task_kill =                    selinux_task_kill,
5555         .task_wait =                    selinux_task_wait,
5556         .task_to_inode =                selinux_task_to_inode,
5557
5558         .ipc_permission =               selinux_ipc_permission,
5559         .ipc_getsecid =                 selinux_ipc_getsecid,
5560
5561         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5562         .msg_msg_free_security =        selinux_msg_msg_free_security,
5563
5564         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5565         .msg_queue_free_security =      selinux_msg_queue_free_security,
5566         .msg_queue_associate =          selinux_msg_queue_associate,
5567         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5568         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5569         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5570
5571         .shm_alloc_security =           selinux_shm_alloc_security,
5572         .shm_free_security =            selinux_shm_free_security,
5573         .shm_associate =                selinux_shm_associate,
5574         .shm_shmctl =                   selinux_shm_shmctl,
5575         .shm_shmat =                    selinux_shm_shmat,
5576
5577         .sem_alloc_security =           selinux_sem_alloc_security,
5578         .sem_free_security =            selinux_sem_free_security,
5579         .sem_associate =                selinux_sem_associate,
5580         .sem_semctl =                   selinux_sem_semctl,
5581         .sem_semop =                    selinux_sem_semop,
5582
5583         .d_instantiate =                selinux_d_instantiate,
5584
5585         .getprocattr =                  selinux_getprocattr,
5586         .setprocattr =                  selinux_setprocattr,
5587
5588         .secid_to_secctx =              selinux_secid_to_secctx,
5589         .secctx_to_secid =              selinux_secctx_to_secid,
5590         .release_secctx =               selinux_release_secctx,
5591         .inode_notifysecctx =           selinux_inode_notifysecctx,
5592         .inode_setsecctx =              selinux_inode_setsecctx,
5593         .inode_getsecctx =              selinux_inode_getsecctx,
5594
5595         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5596         .unix_may_send =                selinux_socket_unix_may_send,
5597
5598         .socket_create =                selinux_socket_create,
5599         .socket_post_create =           selinux_socket_post_create,
5600         .socket_bind =                  selinux_socket_bind,
5601         .socket_connect =               selinux_socket_connect,
5602         .socket_listen =                selinux_socket_listen,
5603         .socket_accept =                selinux_socket_accept,
5604         .socket_sendmsg =               selinux_socket_sendmsg,
5605         .socket_recvmsg =               selinux_socket_recvmsg,
5606         .socket_getsockname =           selinux_socket_getsockname,
5607         .socket_getpeername =           selinux_socket_getpeername,
5608         .socket_getsockopt =            selinux_socket_getsockopt,
5609         .socket_setsockopt =            selinux_socket_setsockopt,
5610         .socket_shutdown =              selinux_socket_shutdown,
5611         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5612         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5613         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5614         .sk_alloc_security =            selinux_sk_alloc_security,
5615         .sk_free_security =             selinux_sk_free_security,
5616         .sk_clone_security =            selinux_sk_clone_security,
5617         .sk_getsecid =                  selinux_sk_getsecid,
5618         .sock_graft =                   selinux_sock_graft,
5619         .inet_conn_request =            selinux_inet_conn_request,
5620         .inet_csk_clone =               selinux_inet_csk_clone,
5621         .inet_conn_established =        selinux_inet_conn_established,
5622         .req_classify_flow =            selinux_req_classify_flow,
5623         .tun_dev_create =               selinux_tun_dev_create,
5624         .tun_dev_post_create =          selinux_tun_dev_post_create,
5625         .tun_dev_attach =               selinux_tun_dev_attach,
5626
5627 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5628         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5629         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5630         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5631         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5632         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5633         .xfrm_state_free_security =     selinux_xfrm_state_free,
5634         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5635         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5636         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5637         .xfrm_decode_session =          selinux_xfrm_decode_session,
5638 #endif
5639
5640 #ifdef CONFIG_KEYS
5641         .key_alloc =                    selinux_key_alloc,
5642         .key_free =                     selinux_key_free,
5643         .key_permission =               selinux_key_permission,
5644         .key_getsecurity =              selinux_key_getsecurity,
5645 #endif
5646
5647 #ifdef CONFIG_AUDIT
5648         .audit_rule_init =              selinux_audit_rule_init,
5649         .audit_rule_known =             selinux_audit_rule_known,
5650         .audit_rule_match =             selinux_audit_rule_match,
5651         .audit_rule_free =              selinux_audit_rule_free,
5652 #endif
5653 };
5654
5655 static __init int selinux_init(void)
5656 {
5657         if (!security_module_enable(&selinux_ops)) {
5658                 selinux_enabled = 0;
5659                 return 0;
5660         }
5661
5662         if (!selinux_enabled) {
5663                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5664                 return 0;
5665         }
5666
5667         printk(KERN_INFO "SELinux:  Initializing.\n");
5668
5669         /* Set the security state for the initial task. */
5670         cred_init_security();
5671
5672         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5673                                             sizeof(struct inode_security_struct),
5674                                             0, SLAB_PANIC, NULL);
5675         avc_init();
5676
5677         secondary_ops = security_ops;
5678         if (!secondary_ops)
5679                 panic("SELinux: No initial security operations\n");
5680         if (register_security(&selinux_ops))
5681                 panic("SELinux: Unable to register with kernel.\n");
5682
5683         if (selinux_enforcing)
5684                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5685         else
5686                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5687
5688         return 0;
5689 }
5690
5691 void selinux_complete_init(void)
5692 {
5693         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5694
5695         /* Set up any superblocks initialized prior to the policy load. */
5696         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5697         spin_lock(&sb_lock);
5698         spin_lock(&sb_security_lock);
5699 next_sb:
5700         if (!list_empty(&superblock_security_head)) {
5701                 struct superblock_security_struct *sbsec =
5702                                 list_entry(superblock_security_head.next,
5703                                            struct superblock_security_struct,
5704                                            list);
5705                 struct super_block *sb = sbsec->sb;
5706                 sb->s_count++;
5707                 spin_unlock(&sb_security_lock);
5708                 spin_unlock(&sb_lock);
5709                 down_read(&sb->s_umount);
5710                 if (sb->s_root)
5711                         superblock_doinit(sb, NULL);
5712                 drop_super(sb);
5713                 spin_lock(&sb_lock);
5714                 spin_lock(&sb_security_lock);
5715                 list_del_init(&sbsec->list);
5716                 goto next_sb;
5717         }
5718         spin_unlock(&sb_security_lock);
5719         spin_unlock(&sb_lock);
5720 }
5721
5722 /* SELinux requires early initialization in order to label
5723    all processes and objects when they are created. */
5724 security_initcall(selinux_init);
5725
5726 #if defined(CONFIG_NETFILTER)
5727
5728 static struct nf_hook_ops selinux_ipv4_ops[] = {
5729         {
5730                 .hook =         selinux_ipv4_postroute,
5731                 .owner =        THIS_MODULE,
5732                 .pf =           PF_INET,
5733                 .hooknum =      NF_INET_POST_ROUTING,
5734                 .priority =     NF_IP_PRI_SELINUX_LAST,
5735         },
5736         {
5737                 .hook =         selinux_ipv4_forward,
5738                 .owner =        THIS_MODULE,
5739                 .pf =           PF_INET,
5740                 .hooknum =      NF_INET_FORWARD,
5741                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5742         },
5743         {
5744                 .hook =         selinux_ipv4_output,
5745                 .owner =        THIS_MODULE,
5746                 .pf =           PF_INET,
5747                 .hooknum =      NF_INET_LOCAL_OUT,
5748                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5749         }
5750 };
5751
5752 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5753
5754 static struct nf_hook_ops selinux_ipv6_ops[] = {
5755         {
5756                 .hook =         selinux_ipv6_postroute,
5757                 .owner =        THIS_MODULE,
5758                 .pf =           PF_INET6,
5759                 .hooknum =      NF_INET_POST_ROUTING,
5760                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5761         },
5762         {
5763                 .hook =         selinux_ipv6_forward,
5764                 .owner =        THIS_MODULE,
5765                 .pf =           PF_INET6,
5766                 .hooknum =      NF_INET_FORWARD,
5767                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5768         }
5769 };
5770
5771 #endif  /* IPV6 */
5772
5773 static int __init selinux_nf_ip_init(void)
5774 {
5775         int err = 0;
5776
5777         if (!selinux_enabled)
5778                 goto out;
5779
5780         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5781
5782         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5783         if (err)
5784                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5785
5786 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5787         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5788         if (err)
5789                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5790 #endif  /* IPV6 */
5791
5792 out:
5793         return err;
5794 }
5795
5796 __initcall(selinux_nf_ip_init);
5797
5798 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5799 static void selinux_nf_ip_exit(void)
5800 {
5801         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5802
5803         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5804 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5805         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5806 #endif  /* IPV6 */
5807 }
5808 #endif
5809
5810 #else /* CONFIG_NETFILTER */
5811
5812 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5813 #define selinux_nf_ip_exit()
5814 #endif
5815
5816 #endif /* CONFIG_NETFILTER */
5817
5818 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5819 static int selinux_disabled;
5820
5821 int selinux_disable(void)
5822 {
5823         extern void exit_sel_fs(void);
5824
5825         if (ss_initialized) {
5826                 /* Not permitted after initial policy load. */
5827                 return -EINVAL;
5828         }
5829
5830         if (selinux_disabled) {
5831                 /* Only do this once. */
5832                 return -EINVAL;
5833         }
5834
5835         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5836
5837         selinux_disabled = 1;
5838         selinux_enabled = 0;
5839
5840         /* Reset security_ops to the secondary module, dummy or capability. */
5841         security_ops = secondary_ops;
5842
5843         /* Try to destroy the avc node cache */
5844         avc_disable();
5845
5846         /* Unregister netfilter hooks. */
5847         selinux_nf_ip_exit();
5848
5849         /* Unregister selinuxfs. */
5850         exit_sel_fs();
5851
5852         return 0;
5853 }
5854 #endif