658435dce37cd05a0280a15b1696443f3cb4dc6b
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /* Allocate and free functions for each kind of security blob. */
160
161 static int cred_alloc_security(struct cred *cred)
162 {
163         struct task_security_struct *tsec;
164
165         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
166         if (!tsec)
167                 return -ENOMEM;
168
169         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
170         cred->security = tsec;
171
172         return 0;
173 }
174
175 static int inode_alloc_security(struct inode *inode)
176 {
177         struct task_security_struct *tsec = current->cred->security;
178         struct inode_security_struct *isec;
179
180         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
181         if (!isec)
182                 return -ENOMEM;
183
184         mutex_init(&isec->lock);
185         INIT_LIST_HEAD(&isec->list);
186         isec->inode = inode;
187         isec->sid = SECINITSID_UNLABELED;
188         isec->sclass = SECCLASS_FILE;
189         isec->task_sid = tsec->sid;
190         inode->i_security = isec;
191
192         return 0;
193 }
194
195 static void inode_free_security(struct inode *inode)
196 {
197         struct inode_security_struct *isec = inode->i_security;
198         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
199
200         spin_lock(&sbsec->isec_lock);
201         if (!list_empty(&isec->list))
202                 list_del_init(&isec->list);
203         spin_unlock(&sbsec->isec_lock);
204
205         inode->i_security = NULL;
206         kmem_cache_free(sel_inode_cache, isec);
207 }
208
209 static int file_alloc_security(struct file *file)
210 {
211         struct task_security_struct *tsec = current->cred->security;
212         struct file_security_struct *fsec;
213
214         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
215         if (!fsec)
216                 return -ENOMEM;
217
218         fsec->sid = tsec->sid;
219         fsec->fown_sid = tsec->sid;
220         file->f_security = fsec;
221
222         return 0;
223 }
224
225 static void file_free_security(struct file *file)
226 {
227         struct file_security_struct *fsec = file->f_security;
228         file->f_security = NULL;
229         kfree(fsec);
230 }
231
232 static int superblock_alloc_security(struct super_block *sb)
233 {
234         struct superblock_security_struct *sbsec;
235
236         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
237         if (!sbsec)
238                 return -ENOMEM;
239
240         mutex_init(&sbsec->lock);
241         INIT_LIST_HEAD(&sbsec->list);
242         INIT_LIST_HEAD(&sbsec->isec_head);
243         spin_lock_init(&sbsec->isec_lock);
244         sbsec->sb = sb;
245         sbsec->sid = SECINITSID_UNLABELED;
246         sbsec->def_sid = SECINITSID_FILE;
247         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
248         sb->s_security = sbsec;
249
250         return 0;
251 }
252
253 static void superblock_free_security(struct super_block *sb)
254 {
255         struct superblock_security_struct *sbsec = sb->s_security;
256
257         spin_lock(&sb_security_lock);
258         if (!list_empty(&sbsec->list))
259                 list_del_init(&sbsec->list);
260         spin_unlock(&sb_security_lock);
261
262         sb->s_security = NULL;
263         kfree(sbsec);
264 }
265
266 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
267 {
268         struct sk_security_struct *ssec;
269
270         ssec = kzalloc(sizeof(*ssec), priority);
271         if (!ssec)
272                 return -ENOMEM;
273
274         ssec->peer_sid = SECINITSID_UNLABELED;
275         ssec->sid = SECINITSID_UNLABELED;
276         sk->sk_security = ssec;
277
278         selinux_netlbl_sk_security_reset(ssec, family);
279
280         return 0;
281 }
282
283 static void sk_free_security(struct sock *sk)
284 {
285         struct sk_security_struct *ssec = sk->sk_security;
286
287         sk->sk_security = NULL;
288         selinux_netlbl_sk_security_free(ssec);
289         kfree(ssec);
290 }
291
292 /* The security server must be initialized before
293    any labeling or access decisions can be provided. */
294 extern int ss_initialized;
295
296 /* The file system's label must be initialized prior to use. */
297
298 static char *labeling_behaviors[6] = {
299         "uses xattr",
300         "uses transition SIDs",
301         "uses task SIDs",
302         "uses genfs_contexts",
303         "not configured for labeling",
304         "uses mountpoint labeling",
305 };
306
307 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
308
309 static inline int inode_doinit(struct inode *inode)
310 {
311         return inode_doinit_with_dentry(inode, NULL);
312 }
313
314 enum {
315         Opt_error = -1,
316         Opt_context = 1,
317         Opt_fscontext = 2,
318         Opt_defcontext = 3,
319         Opt_rootcontext = 4,
320 };
321
322 static const match_table_t tokens = {
323         {Opt_context, CONTEXT_STR "%s"},
324         {Opt_fscontext, FSCONTEXT_STR "%s"},
325         {Opt_defcontext, DEFCONTEXT_STR "%s"},
326         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
327         {Opt_error, NULL},
328 };
329
330 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
331
332 static int may_context_mount_sb_relabel(u32 sid,
333                         struct superblock_security_struct *sbsec,
334                         struct task_security_struct *tsec)
335 {
336         int rc;
337
338         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
339                           FILESYSTEM__RELABELFROM, NULL);
340         if (rc)
341                 return rc;
342
343         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
344                           FILESYSTEM__RELABELTO, NULL);
345         return rc;
346 }
347
348 static int may_context_mount_inode_relabel(u32 sid,
349                         struct superblock_security_struct *sbsec,
350                         struct task_security_struct *tsec)
351 {
352         int rc;
353         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
354                           FILESYSTEM__RELABELFROM, NULL);
355         if (rc)
356                 return rc;
357
358         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
359                           FILESYSTEM__ASSOCIATE, NULL);
360         return rc;
361 }
362
363 static int sb_finish_set_opts(struct super_block *sb)
364 {
365         struct superblock_security_struct *sbsec = sb->s_security;
366         struct dentry *root = sb->s_root;
367         struct inode *root_inode = root->d_inode;
368         int rc = 0;
369
370         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
371                 /* Make sure that the xattr handler exists and that no
372                    error other than -ENODATA is returned by getxattr on
373                    the root directory.  -ENODATA is ok, as this may be
374                    the first boot of the SELinux kernel before we have
375                    assigned xattr values to the filesystem. */
376                 if (!root_inode->i_op->getxattr) {
377                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
378                                "xattr support\n", sb->s_id, sb->s_type->name);
379                         rc = -EOPNOTSUPP;
380                         goto out;
381                 }
382                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
383                 if (rc < 0 && rc != -ENODATA) {
384                         if (rc == -EOPNOTSUPP)
385                                 printk(KERN_WARNING "SELinux: (dev %s, type "
386                                        "%s) has no security xattr handler\n",
387                                        sb->s_id, sb->s_type->name);
388                         else
389                                 printk(KERN_WARNING "SELinux: (dev %s, type "
390                                        "%s) getxattr errno %d\n", sb->s_id,
391                                        sb->s_type->name, -rc);
392                         goto out;
393                 }
394         }
395
396         sbsec->initialized = 1;
397
398         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
399                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
400                        sb->s_id, sb->s_type->name);
401         else
402                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
403                        sb->s_id, sb->s_type->name,
404                        labeling_behaviors[sbsec->behavior-1]);
405
406         /* Initialize the root inode. */
407         rc = inode_doinit_with_dentry(root_inode, root);
408
409         /* Initialize any other inodes associated with the superblock, e.g.
410            inodes created prior to initial policy load or inodes created
411            during get_sb by a pseudo filesystem that directly
412            populates itself. */
413         spin_lock(&sbsec->isec_lock);
414 next_inode:
415         if (!list_empty(&sbsec->isec_head)) {
416                 struct inode_security_struct *isec =
417                                 list_entry(sbsec->isec_head.next,
418                                            struct inode_security_struct, list);
419                 struct inode *inode = isec->inode;
420                 spin_unlock(&sbsec->isec_lock);
421                 inode = igrab(inode);
422                 if (inode) {
423                         if (!IS_PRIVATE(inode))
424                                 inode_doinit(inode);
425                         iput(inode);
426                 }
427                 spin_lock(&sbsec->isec_lock);
428                 list_del_init(&isec->list);
429                 goto next_inode;
430         }
431         spin_unlock(&sbsec->isec_lock);
432 out:
433         return rc;
434 }
435
436 /*
437  * This function should allow an FS to ask what it's mount security
438  * options were so it can use those later for submounts, displaying
439  * mount options, or whatever.
440  */
441 static int selinux_get_mnt_opts(const struct super_block *sb,
442                                 struct security_mnt_opts *opts)
443 {
444         int rc = 0, i;
445         struct superblock_security_struct *sbsec = sb->s_security;
446         char *context = NULL;
447         u32 len;
448         char tmp;
449
450         security_init_mnt_opts(opts);
451
452         if (!sbsec->initialized)
453                 return -EINVAL;
454
455         if (!ss_initialized)
456                 return -EINVAL;
457
458         /*
459          * if we ever use sbsec flags for anything other than tracking mount
460          * settings this is going to need a mask
461          */
462         tmp = sbsec->flags;
463         /* count the number of mount options for this sb */
464         for (i = 0; i < 8; i++) {
465                 if (tmp & 0x01)
466                         opts->num_mnt_opts++;
467                 tmp >>= 1;
468         }
469
470         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
471         if (!opts->mnt_opts) {
472                 rc = -ENOMEM;
473                 goto out_free;
474         }
475
476         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
477         if (!opts->mnt_opts_flags) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         i = 0;
483         if (sbsec->flags & FSCONTEXT_MNT) {
484                 rc = security_sid_to_context(sbsec->sid, &context, &len);
485                 if (rc)
486                         goto out_free;
487                 opts->mnt_opts[i] = context;
488                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
489         }
490         if (sbsec->flags & CONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
496         }
497         if (sbsec->flags & DEFCONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
503         }
504         if (sbsec->flags & ROOTCONTEXT_MNT) {
505                 struct inode *root = sbsec->sb->s_root->d_inode;
506                 struct inode_security_struct *isec = root->i_security;
507
508                 rc = security_sid_to_context(isec->sid, &context, &len);
509                 if (rc)
510                         goto out_free;
511                 opts->mnt_opts[i] = context;
512                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
513         }
514
515         BUG_ON(i != opts->num_mnt_opts);
516
517         return 0;
518
519 out_free:
520         security_free_mnt_opts(opts);
521         return rc;
522 }
523
524 static int bad_option(struct superblock_security_struct *sbsec, char flag,
525                       u32 old_sid, u32 new_sid)
526 {
527         /* check if the old mount command had the same options */
528         if (sbsec->initialized)
529                 if (!(sbsec->flags & flag) ||
530                     (old_sid != new_sid))
531                         return 1;
532
533         /* check if we were passed the same options twice,
534          * aka someone passed context=a,context=b
535          */
536         if (!sbsec->initialized)
537                 if (sbsec->flags & flag)
538                         return 1;
539         return 0;
540 }
541
542 /*
543  * Allow filesystems with binary mount data to explicitly set mount point
544  * labeling information.
545  */
546 static int selinux_set_mnt_opts(struct super_block *sb,
547                                 struct security_mnt_opts *opts)
548 {
549         int rc = 0, i;
550         struct task_security_struct *tsec = current->cred->security;
551         struct superblock_security_struct *sbsec = sb->s_security;
552         const char *name = sb->s_type->name;
553         struct inode *inode = sbsec->sb->s_root->d_inode;
554         struct inode_security_struct *root_isec = inode->i_security;
555         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
556         u32 defcontext_sid = 0;
557         char **mount_options = opts->mnt_opts;
558         int *flags = opts->mnt_opts_flags;
559         int num_opts = opts->num_mnt_opts;
560
561         mutex_lock(&sbsec->lock);
562
563         if (!ss_initialized) {
564                 if (!num_opts) {
565                         /* Defer initialization until selinux_complete_init,
566                            after the initial policy is loaded and the security
567                            server is ready to handle calls. */
568                         spin_lock(&sb_security_lock);
569                         if (list_empty(&sbsec->list))
570                                 list_add(&sbsec->list, &superblock_security_head);
571                         spin_unlock(&sb_security_lock);
572                         goto out;
573                 }
574                 rc = -EINVAL;
575                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
576                         "before the security server is initialized\n");
577                 goto out;
578         }
579
580         /*
581          * Binary mount data FS will come through this function twice.  Once
582          * from an explicit call and once from the generic calls from the vfs.
583          * Since the generic VFS calls will not contain any security mount data
584          * we need to skip the double mount verification.
585          *
586          * This does open a hole in which we will not notice if the first
587          * mount using this sb set explict options and a second mount using
588          * this sb does not set any security options.  (The first options
589          * will be used for both mounts)
590          */
591         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
592             && (num_opts == 0))
593                 goto out;
594
595         /*
596          * parse the mount options, check if they are valid sids.
597          * also check if someone is trying to mount the same sb more
598          * than once with different security options.
599          */
600         for (i = 0; i < num_opts; i++) {
601                 u32 sid;
602                 rc = security_context_to_sid(mount_options[i],
603                                              strlen(mount_options[i]), &sid);
604                 if (rc) {
605                         printk(KERN_WARNING "SELinux: security_context_to_sid"
606                                "(%s) failed for (dev %s, type %s) errno=%d\n",
607                                mount_options[i], sb->s_id, name, rc);
608                         goto out;
609                 }
610                 switch (flags[i]) {
611                 case FSCONTEXT_MNT:
612                         fscontext_sid = sid;
613
614                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
615                                         fscontext_sid))
616                                 goto out_double_mount;
617
618                         sbsec->flags |= FSCONTEXT_MNT;
619                         break;
620                 case CONTEXT_MNT:
621                         context_sid = sid;
622
623                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
624                                         context_sid))
625                                 goto out_double_mount;
626
627                         sbsec->flags |= CONTEXT_MNT;
628                         break;
629                 case ROOTCONTEXT_MNT:
630                         rootcontext_sid = sid;
631
632                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
633                                         rootcontext_sid))
634                                 goto out_double_mount;
635
636                         sbsec->flags |= ROOTCONTEXT_MNT;
637
638                         break;
639                 case DEFCONTEXT_MNT:
640                         defcontext_sid = sid;
641
642                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
643                                         defcontext_sid))
644                                 goto out_double_mount;
645
646                         sbsec->flags |= DEFCONTEXT_MNT;
647
648                         break;
649                 default:
650                         rc = -EINVAL;
651                         goto out;
652                 }
653         }
654
655         if (sbsec->initialized) {
656                 /* previously mounted with options, but not on this attempt? */
657                 if (sbsec->flags && !num_opts)
658                         goto out_double_mount;
659                 rc = 0;
660                 goto out;
661         }
662
663         if (strcmp(sb->s_type->name, "proc") == 0)
664                 sbsec->proc = 1;
665
666         /* Determine the labeling behavior to use for this filesystem type. */
667         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
668         if (rc) {
669                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
670                        __func__, sb->s_type->name, rc);
671                 goto out;
672         }
673
674         /* sets the context of the superblock for the fs being mounted. */
675         if (fscontext_sid) {
676
677                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
678                 if (rc)
679                         goto out;
680
681                 sbsec->sid = fscontext_sid;
682         }
683
684         /*
685          * Switch to using mount point labeling behavior.
686          * sets the label used on all file below the mountpoint, and will set
687          * the superblock context if not already set.
688          */
689         if (context_sid) {
690                 if (!fscontext_sid) {
691                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
692                         if (rc)
693                                 goto out;
694                         sbsec->sid = context_sid;
695                 } else {
696                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
697                         if (rc)
698                                 goto out;
699                 }
700                 if (!rootcontext_sid)
701                         rootcontext_sid = context_sid;
702
703                 sbsec->mntpoint_sid = context_sid;
704                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
705         }
706
707         if (rootcontext_sid) {
708                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
709                 if (rc)
710                         goto out;
711
712                 root_isec->sid = rootcontext_sid;
713                 root_isec->initialized = 1;
714         }
715
716         if (defcontext_sid) {
717                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
718                         rc = -EINVAL;
719                         printk(KERN_WARNING "SELinux: defcontext option is "
720                                "invalid for this filesystem type\n");
721                         goto out;
722                 }
723
724                 if (defcontext_sid != sbsec->def_sid) {
725                         rc = may_context_mount_inode_relabel(defcontext_sid,
726                                                              sbsec, tsec);
727                         if (rc)
728                                 goto out;
729                 }
730
731                 sbsec->def_sid = defcontext_sid;
732         }
733
734         rc = sb_finish_set_opts(sb);
735 out:
736         mutex_unlock(&sbsec->lock);
737         return rc;
738 out_double_mount:
739         rc = -EINVAL;
740         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
741                "security settings for (dev %s, type %s)\n", sb->s_id, name);
742         goto out;
743 }
744
745 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
746                                         struct super_block *newsb)
747 {
748         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
749         struct superblock_security_struct *newsbsec = newsb->s_security;
750
751         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
752         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
753         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
754
755         /*
756          * if the parent was able to be mounted it clearly had no special lsm
757          * mount options.  thus we can safely put this sb on the list and deal
758          * with it later
759          */
760         if (!ss_initialized) {
761                 spin_lock(&sb_security_lock);
762                 if (list_empty(&newsbsec->list))
763                         list_add(&newsbsec->list, &superblock_security_head);
764                 spin_unlock(&sb_security_lock);
765                 return;
766         }
767
768         /* how can we clone if the old one wasn't set up?? */
769         BUG_ON(!oldsbsec->initialized);
770
771         /* if fs is reusing a sb, just let its options stand... */
772         if (newsbsec->initialized)
773                 return;
774
775         mutex_lock(&newsbsec->lock);
776
777         newsbsec->flags = oldsbsec->flags;
778
779         newsbsec->sid = oldsbsec->sid;
780         newsbsec->def_sid = oldsbsec->def_sid;
781         newsbsec->behavior = oldsbsec->behavior;
782
783         if (set_context) {
784                 u32 sid = oldsbsec->mntpoint_sid;
785
786                 if (!set_fscontext)
787                         newsbsec->sid = sid;
788                 if (!set_rootcontext) {
789                         struct inode *newinode = newsb->s_root->d_inode;
790                         struct inode_security_struct *newisec = newinode->i_security;
791                         newisec->sid = sid;
792                 }
793                 newsbsec->mntpoint_sid = sid;
794         }
795         if (set_rootcontext) {
796                 const struct inode *oldinode = oldsb->s_root->d_inode;
797                 const struct inode_security_struct *oldisec = oldinode->i_security;
798                 struct inode *newinode = newsb->s_root->d_inode;
799                 struct inode_security_struct *newisec = newinode->i_security;
800
801                 newisec->sid = oldisec->sid;
802         }
803
804         sb_finish_set_opts(newsb);
805         mutex_unlock(&newsbsec->lock);
806 }
807
808 static int selinux_parse_opts_str(char *options,
809                                   struct security_mnt_opts *opts)
810 {
811         char *p;
812         char *context = NULL, *defcontext = NULL;
813         char *fscontext = NULL, *rootcontext = NULL;
814         int rc, num_mnt_opts = 0;
815
816         opts->num_mnt_opts = 0;
817
818         /* Standard string-based options. */
819         while ((p = strsep(&options, "|")) != NULL) {
820                 int token;
821                 substring_t args[MAX_OPT_ARGS];
822
823                 if (!*p)
824                         continue;
825
826                 token = match_token(p, tokens, args);
827
828                 switch (token) {
829                 case Opt_context:
830                         if (context || defcontext) {
831                                 rc = -EINVAL;
832                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
833                                 goto out_err;
834                         }
835                         context = match_strdup(&args[0]);
836                         if (!context) {
837                                 rc = -ENOMEM;
838                                 goto out_err;
839                         }
840                         break;
841
842                 case Opt_fscontext:
843                         if (fscontext) {
844                                 rc = -EINVAL;
845                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
846                                 goto out_err;
847                         }
848                         fscontext = match_strdup(&args[0]);
849                         if (!fscontext) {
850                                 rc = -ENOMEM;
851                                 goto out_err;
852                         }
853                         break;
854
855                 case Opt_rootcontext:
856                         if (rootcontext) {
857                                 rc = -EINVAL;
858                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
859                                 goto out_err;
860                         }
861                         rootcontext = match_strdup(&args[0]);
862                         if (!rootcontext) {
863                                 rc = -ENOMEM;
864                                 goto out_err;
865                         }
866                         break;
867
868                 case Opt_defcontext:
869                         if (context || defcontext) {
870                                 rc = -EINVAL;
871                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
872                                 goto out_err;
873                         }
874                         defcontext = match_strdup(&args[0]);
875                         if (!defcontext) {
876                                 rc = -ENOMEM;
877                                 goto out_err;
878                         }
879                         break;
880
881                 default:
882                         rc = -EINVAL;
883                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
884                         goto out_err;
885
886                 }
887         }
888
889         rc = -ENOMEM;
890         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
891         if (!opts->mnt_opts)
892                 goto out_err;
893
894         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
895         if (!opts->mnt_opts_flags) {
896                 kfree(opts->mnt_opts);
897                 goto out_err;
898         }
899
900         if (fscontext) {
901                 opts->mnt_opts[num_mnt_opts] = fscontext;
902                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
903         }
904         if (context) {
905                 opts->mnt_opts[num_mnt_opts] = context;
906                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
907         }
908         if (rootcontext) {
909                 opts->mnt_opts[num_mnt_opts] = rootcontext;
910                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
911         }
912         if (defcontext) {
913                 opts->mnt_opts[num_mnt_opts] = defcontext;
914                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
915         }
916
917         opts->num_mnt_opts = num_mnt_opts;
918         return 0;
919
920 out_err:
921         kfree(context);
922         kfree(defcontext);
923         kfree(fscontext);
924         kfree(rootcontext);
925         return rc;
926 }
927 /*
928  * string mount options parsing and call set the sbsec
929  */
930 static int superblock_doinit(struct super_block *sb, void *data)
931 {
932         int rc = 0;
933         char *options = data;
934         struct security_mnt_opts opts;
935
936         security_init_mnt_opts(&opts);
937
938         if (!data)
939                 goto out;
940
941         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
942
943         rc = selinux_parse_opts_str(options, &opts);
944         if (rc)
945                 goto out_err;
946
947 out:
948         rc = selinux_set_mnt_opts(sb, &opts);
949
950 out_err:
951         security_free_mnt_opts(&opts);
952         return rc;
953 }
954
955 static void selinux_write_opts(struct seq_file *m,
956                                struct security_mnt_opts *opts)
957 {
958         int i;
959         char *prefix;
960
961         for (i = 0; i < opts->num_mnt_opts; i++) {
962                 char *has_comma = strchr(opts->mnt_opts[i], ',');
963
964                 switch (opts->mnt_opts_flags[i]) {
965                 case CONTEXT_MNT:
966                         prefix = CONTEXT_STR;
967                         break;
968                 case FSCONTEXT_MNT:
969                         prefix = FSCONTEXT_STR;
970                         break;
971                 case ROOTCONTEXT_MNT:
972                         prefix = ROOTCONTEXT_STR;
973                         break;
974                 case DEFCONTEXT_MNT:
975                         prefix = DEFCONTEXT_STR;
976                         break;
977                 default:
978                         BUG();
979                 };
980                 /* we need a comma before each option */
981                 seq_putc(m, ',');
982                 seq_puts(m, prefix);
983                 if (has_comma)
984                         seq_putc(m, '\"');
985                 seq_puts(m, opts->mnt_opts[i]);
986                 if (has_comma)
987                         seq_putc(m, '\"');
988         }
989 }
990
991 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
992 {
993         struct security_mnt_opts opts;
994         int rc;
995
996         rc = selinux_get_mnt_opts(sb, &opts);
997         if (rc) {
998                 /* before policy load we may get EINVAL, don't show anything */
999                 if (rc == -EINVAL)
1000                         rc = 0;
1001                 return rc;
1002         }
1003
1004         selinux_write_opts(m, &opts);
1005
1006         security_free_mnt_opts(&opts);
1007
1008         return rc;
1009 }
1010
1011 static inline u16 inode_mode_to_security_class(umode_t mode)
1012 {
1013         switch (mode & S_IFMT) {
1014         case S_IFSOCK:
1015                 return SECCLASS_SOCK_FILE;
1016         case S_IFLNK:
1017                 return SECCLASS_LNK_FILE;
1018         case S_IFREG:
1019                 return SECCLASS_FILE;
1020         case S_IFBLK:
1021                 return SECCLASS_BLK_FILE;
1022         case S_IFDIR:
1023                 return SECCLASS_DIR;
1024         case S_IFCHR:
1025                 return SECCLASS_CHR_FILE;
1026         case S_IFIFO:
1027                 return SECCLASS_FIFO_FILE;
1028
1029         }
1030
1031         return SECCLASS_FILE;
1032 }
1033
1034 static inline int default_protocol_stream(int protocol)
1035 {
1036         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1037 }
1038
1039 static inline int default_protocol_dgram(int protocol)
1040 {
1041         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1042 }
1043
1044 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1045 {
1046         switch (family) {
1047         case PF_UNIX:
1048                 switch (type) {
1049                 case SOCK_STREAM:
1050                 case SOCK_SEQPACKET:
1051                         return SECCLASS_UNIX_STREAM_SOCKET;
1052                 case SOCK_DGRAM:
1053                         return SECCLASS_UNIX_DGRAM_SOCKET;
1054                 }
1055                 break;
1056         case PF_INET:
1057         case PF_INET6:
1058                 switch (type) {
1059                 case SOCK_STREAM:
1060                         if (default_protocol_stream(protocol))
1061                                 return SECCLASS_TCP_SOCKET;
1062                         else
1063                                 return SECCLASS_RAWIP_SOCKET;
1064                 case SOCK_DGRAM:
1065                         if (default_protocol_dgram(protocol))
1066                                 return SECCLASS_UDP_SOCKET;
1067                         else
1068                                 return SECCLASS_RAWIP_SOCKET;
1069                 case SOCK_DCCP:
1070                         return SECCLASS_DCCP_SOCKET;
1071                 default:
1072                         return SECCLASS_RAWIP_SOCKET;
1073                 }
1074                 break;
1075         case PF_NETLINK:
1076                 switch (protocol) {
1077                 case NETLINK_ROUTE:
1078                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1079                 case NETLINK_FIREWALL:
1080                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1081                 case NETLINK_INET_DIAG:
1082                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1083                 case NETLINK_NFLOG:
1084                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1085                 case NETLINK_XFRM:
1086                         return SECCLASS_NETLINK_XFRM_SOCKET;
1087                 case NETLINK_SELINUX:
1088                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1089                 case NETLINK_AUDIT:
1090                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1091                 case NETLINK_IP6_FW:
1092                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1093                 case NETLINK_DNRTMSG:
1094                         return SECCLASS_NETLINK_DNRT_SOCKET;
1095                 case NETLINK_KOBJECT_UEVENT:
1096                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1097                 default:
1098                         return SECCLASS_NETLINK_SOCKET;
1099                 }
1100         case PF_PACKET:
1101                 return SECCLASS_PACKET_SOCKET;
1102         case PF_KEY:
1103                 return SECCLASS_KEY_SOCKET;
1104         case PF_APPLETALK:
1105                 return SECCLASS_APPLETALK_SOCKET;
1106         }
1107
1108         return SECCLASS_SOCKET;
1109 }
1110
1111 #ifdef CONFIG_PROC_FS
1112 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1113                                 u16 tclass,
1114                                 u32 *sid)
1115 {
1116         int buflen, rc;
1117         char *buffer, *path, *end;
1118
1119         buffer = (char *)__get_free_page(GFP_KERNEL);
1120         if (!buffer)
1121                 return -ENOMEM;
1122
1123         buflen = PAGE_SIZE;
1124         end = buffer+buflen;
1125         *--end = '\0';
1126         buflen--;
1127         path = end-1;
1128         *path = '/';
1129         while (de && de != de->parent) {
1130                 buflen -= de->namelen + 1;
1131                 if (buflen < 0)
1132                         break;
1133                 end -= de->namelen;
1134                 memcpy(end, de->name, de->namelen);
1135                 *--end = '/';
1136                 path = end;
1137                 de = de->parent;
1138         }
1139         rc = security_genfs_sid("proc", path, tclass, sid);
1140         free_page((unsigned long)buffer);
1141         return rc;
1142 }
1143 #else
1144 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1145                                 u16 tclass,
1146                                 u32 *sid)
1147 {
1148         return -EINVAL;
1149 }
1150 #endif
1151
1152 /* The inode's security attributes must be initialized before first use. */
1153 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1154 {
1155         struct superblock_security_struct *sbsec = NULL;
1156         struct inode_security_struct *isec = inode->i_security;
1157         u32 sid;
1158         struct dentry *dentry;
1159 #define INITCONTEXTLEN 255
1160         char *context = NULL;
1161         unsigned len = 0;
1162         int rc = 0;
1163
1164         if (isec->initialized)
1165                 goto out;
1166
1167         mutex_lock(&isec->lock);
1168         if (isec->initialized)
1169                 goto out_unlock;
1170
1171         sbsec = inode->i_sb->s_security;
1172         if (!sbsec->initialized) {
1173                 /* Defer initialization until selinux_complete_init,
1174                    after the initial policy is loaded and the security
1175                    server is ready to handle calls. */
1176                 spin_lock(&sbsec->isec_lock);
1177                 if (list_empty(&isec->list))
1178                         list_add(&isec->list, &sbsec->isec_head);
1179                 spin_unlock(&sbsec->isec_lock);
1180                 goto out_unlock;
1181         }
1182
1183         switch (sbsec->behavior) {
1184         case SECURITY_FS_USE_XATTR:
1185                 if (!inode->i_op->getxattr) {
1186                         isec->sid = sbsec->def_sid;
1187                         break;
1188                 }
1189
1190                 /* Need a dentry, since the xattr API requires one.
1191                    Life would be simpler if we could just pass the inode. */
1192                 if (opt_dentry) {
1193                         /* Called from d_instantiate or d_splice_alias. */
1194                         dentry = dget(opt_dentry);
1195                 } else {
1196                         /* Called from selinux_complete_init, try to find a dentry. */
1197                         dentry = d_find_alias(inode);
1198                 }
1199                 if (!dentry) {
1200                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1201                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1202                                inode->i_ino);
1203                         goto out_unlock;
1204                 }
1205
1206                 len = INITCONTEXTLEN;
1207                 context = kmalloc(len, GFP_NOFS);
1208                 if (!context) {
1209                         rc = -ENOMEM;
1210                         dput(dentry);
1211                         goto out_unlock;
1212                 }
1213                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1214                                            context, len);
1215                 if (rc == -ERANGE) {
1216                         /* Need a larger buffer.  Query for the right size. */
1217                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1218                                                    NULL, 0);
1219                         if (rc < 0) {
1220                                 dput(dentry);
1221                                 goto out_unlock;
1222                         }
1223                         kfree(context);
1224                         len = rc;
1225                         context = kmalloc(len, GFP_NOFS);
1226                         if (!context) {
1227                                 rc = -ENOMEM;
1228                                 dput(dentry);
1229                                 goto out_unlock;
1230                         }
1231                         rc = inode->i_op->getxattr(dentry,
1232                                                    XATTR_NAME_SELINUX,
1233                                                    context, len);
1234                 }
1235                 dput(dentry);
1236                 if (rc < 0) {
1237                         if (rc != -ENODATA) {
1238                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1239                                        "%d for dev=%s ino=%ld\n", __func__,
1240                                        -rc, inode->i_sb->s_id, inode->i_ino);
1241                                 kfree(context);
1242                                 goto out_unlock;
1243                         }
1244                         /* Map ENODATA to the default file SID */
1245                         sid = sbsec->def_sid;
1246                         rc = 0;
1247                 } else {
1248                         rc = security_context_to_sid_default(context, rc, &sid,
1249                                                              sbsec->def_sid,
1250                                                              GFP_NOFS);
1251                         if (rc) {
1252                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1253                                        "returned %d for dev=%s ino=%ld\n",
1254                                        __func__, context, -rc,
1255                                        inode->i_sb->s_id, inode->i_ino);
1256                                 kfree(context);
1257                                 /* Leave with the unlabeled SID */
1258                                 rc = 0;
1259                                 break;
1260                         }
1261                 }
1262                 kfree(context);
1263                 isec->sid = sid;
1264                 break;
1265         case SECURITY_FS_USE_TASK:
1266                 isec->sid = isec->task_sid;
1267                 break;
1268         case SECURITY_FS_USE_TRANS:
1269                 /* Default to the fs SID. */
1270                 isec->sid = sbsec->sid;
1271
1272                 /* Try to obtain a transition SID. */
1273                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1274                 rc = security_transition_sid(isec->task_sid,
1275                                              sbsec->sid,
1276                                              isec->sclass,
1277                                              &sid);
1278                 if (rc)
1279                         goto out_unlock;
1280                 isec->sid = sid;
1281                 break;
1282         case SECURITY_FS_USE_MNTPOINT:
1283                 isec->sid = sbsec->mntpoint_sid;
1284                 break;
1285         default:
1286                 /* Default to the fs superblock SID. */
1287                 isec->sid = sbsec->sid;
1288
1289                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1290                         struct proc_inode *proci = PROC_I(inode);
1291                         if (proci->pde) {
1292                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1293                                 rc = selinux_proc_get_sid(proci->pde,
1294                                                           isec->sclass,
1295                                                           &sid);
1296                                 if (rc)
1297                                         goto out_unlock;
1298                                 isec->sid = sid;
1299                         }
1300                 }
1301                 break;
1302         }
1303
1304         isec->initialized = 1;
1305
1306 out_unlock:
1307         mutex_unlock(&isec->lock);
1308 out:
1309         if (isec->sclass == SECCLASS_FILE)
1310                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1311         return rc;
1312 }
1313
1314 /* Convert a Linux signal to an access vector. */
1315 static inline u32 signal_to_av(int sig)
1316 {
1317         u32 perm = 0;
1318
1319         switch (sig) {
1320         case SIGCHLD:
1321                 /* Commonly granted from child to parent. */
1322                 perm = PROCESS__SIGCHLD;
1323                 break;
1324         case SIGKILL:
1325                 /* Cannot be caught or ignored */
1326                 perm = PROCESS__SIGKILL;
1327                 break;
1328         case SIGSTOP:
1329                 /* Cannot be caught or ignored */
1330                 perm = PROCESS__SIGSTOP;
1331                 break;
1332         default:
1333                 /* All other signals. */
1334                 perm = PROCESS__SIGNAL;
1335                 break;
1336         }
1337
1338         return perm;
1339 }
1340
1341 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1342    fork check, ptrace check, etc. */
1343 static int task_has_perm(struct task_struct *tsk1,
1344                          struct task_struct *tsk2,
1345                          u32 perms)
1346 {
1347         struct task_security_struct *tsec1, *tsec2;
1348
1349         tsec1 = tsk1->cred->security;
1350         tsec2 = tsk2->cred->security;
1351         return avc_has_perm(tsec1->sid, tsec2->sid,
1352                             SECCLASS_PROCESS, perms, NULL);
1353 }
1354
1355 #if CAP_LAST_CAP > 63
1356 #error Fix SELinux to handle capabilities > 63.
1357 #endif
1358
1359 /* Check whether a task is allowed to use a capability. */
1360 static int task_has_capability(struct task_struct *tsk,
1361                                int cap, int audit)
1362 {
1363         struct task_security_struct *tsec;
1364         struct avc_audit_data ad;
1365         struct av_decision avd;
1366         u16 sclass;
1367         u32 av = CAP_TO_MASK(cap);
1368         int rc;
1369
1370         tsec = tsk->cred->security;
1371
1372         AVC_AUDIT_DATA_INIT(&ad, CAP);
1373         ad.tsk = tsk;
1374         ad.u.cap = cap;
1375
1376         switch (CAP_TO_INDEX(cap)) {
1377         case 0:
1378                 sclass = SECCLASS_CAPABILITY;
1379                 break;
1380         case 1:
1381                 sclass = SECCLASS_CAPABILITY2;
1382                 break;
1383         default:
1384                 printk(KERN_ERR
1385                        "SELinux:  out of range capability %d\n", cap);
1386                 BUG();
1387         }
1388
1389         rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, sclass, av, 0, &avd);
1390         if (audit == SECURITY_CAP_AUDIT)
1391                 avc_audit(tsec->sid, tsec->sid, sclass, av, &avd, rc, &ad);
1392         return rc;
1393 }
1394
1395 /* Check whether a task is allowed to use a system operation. */
1396 static int task_has_system(struct task_struct *tsk,
1397                            u32 perms)
1398 {
1399         struct task_security_struct *tsec;
1400
1401         tsec = tsk->cred->security;
1402
1403         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1404                             SECCLASS_SYSTEM, perms, NULL);
1405 }
1406
1407 /* Check whether a task has a particular permission to an inode.
1408    The 'adp' parameter is optional and allows other audit
1409    data to be passed (e.g. the dentry). */
1410 static int inode_has_perm(struct task_struct *tsk,
1411                           struct inode *inode,
1412                           u32 perms,
1413                           struct avc_audit_data *adp)
1414 {
1415         struct task_security_struct *tsec;
1416         struct inode_security_struct *isec;
1417         struct avc_audit_data ad;
1418
1419         if (unlikely(IS_PRIVATE(inode)))
1420                 return 0;
1421
1422         tsec = tsk->cred->security;
1423         isec = inode->i_security;
1424
1425         if (!adp) {
1426                 adp = &ad;
1427                 AVC_AUDIT_DATA_INIT(&ad, FS);
1428                 ad.u.fs.inode = inode;
1429         }
1430
1431         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1432 }
1433
1434 /* Same as inode_has_perm, but pass explicit audit data containing
1435    the dentry to help the auditing code to more easily generate the
1436    pathname if needed. */
1437 static inline int dentry_has_perm(struct task_struct *tsk,
1438                                   struct vfsmount *mnt,
1439                                   struct dentry *dentry,
1440                                   u32 av)
1441 {
1442         struct inode *inode = dentry->d_inode;
1443         struct avc_audit_data ad;
1444         AVC_AUDIT_DATA_INIT(&ad, FS);
1445         ad.u.fs.path.mnt = mnt;
1446         ad.u.fs.path.dentry = dentry;
1447         return inode_has_perm(tsk, inode, av, &ad);
1448 }
1449
1450 /* Check whether a task can use an open file descriptor to
1451    access an inode in a given way.  Check access to the
1452    descriptor itself, and then use dentry_has_perm to
1453    check a particular permission to the file.
1454    Access to the descriptor is implicitly granted if it
1455    has the same SID as the process.  If av is zero, then
1456    access to the file is not checked, e.g. for cases
1457    where only the descriptor is affected like seek. */
1458 static int file_has_perm(struct task_struct *tsk,
1459                                 struct file *file,
1460                                 u32 av)
1461 {
1462         struct task_security_struct *tsec = tsk->cred->security;
1463         struct file_security_struct *fsec = file->f_security;
1464         struct inode *inode = file->f_path.dentry->d_inode;
1465         struct avc_audit_data ad;
1466         int rc;
1467
1468         AVC_AUDIT_DATA_INIT(&ad, FS);
1469         ad.u.fs.path = file->f_path;
1470
1471         if (tsec->sid != fsec->sid) {
1472                 rc = avc_has_perm(tsec->sid, fsec->sid,
1473                                   SECCLASS_FD,
1474                                   FD__USE,
1475                                   &ad);
1476                 if (rc)
1477                         return rc;
1478         }
1479
1480         /* av is zero if only checking access to the descriptor. */
1481         if (av)
1482                 return inode_has_perm(tsk, inode, av, &ad);
1483
1484         return 0;
1485 }
1486
1487 /* Check whether a task can create a file. */
1488 static int may_create(struct inode *dir,
1489                       struct dentry *dentry,
1490                       u16 tclass)
1491 {
1492         struct task_security_struct *tsec;
1493         struct inode_security_struct *dsec;
1494         struct superblock_security_struct *sbsec;
1495         u32 newsid;
1496         struct avc_audit_data ad;
1497         int rc;
1498
1499         tsec = current->cred->security;
1500         dsec = dir->i_security;
1501         sbsec = dir->i_sb->s_security;
1502
1503         AVC_AUDIT_DATA_INIT(&ad, FS);
1504         ad.u.fs.path.dentry = dentry;
1505
1506         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1507                           DIR__ADD_NAME | DIR__SEARCH,
1508                           &ad);
1509         if (rc)
1510                 return rc;
1511
1512         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1513                 newsid = tsec->create_sid;
1514         } else {
1515                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1516                                              &newsid);
1517                 if (rc)
1518                         return rc;
1519         }
1520
1521         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1522         if (rc)
1523                 return rc;
1524
1525         return avc_has_perm(newsid, sbsec->sid,
1526                             SECCLASS_FILESYSTEM,
1527                             FILESYSTEM__ASSOCIATE, &ad);
1528 }
1529
1530 /* Check whether a task can create a key. */
1531 static int may_create_key(u32 ksid,
1532                           struct task_struct *ctx)
1533 {
1534         struct task_security_struct *tsec;
1535
1536         tsec = ctx->cred->security;
1537
1538         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1539 }
1540
1541 #define MAY_LINK        0
1542 #define MAY_UNLINK      1
1543 #define MAY_RMDIR       2
1544
1545 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1546 static int may_link(struct inode *dir,
1547                     struct dentry *dentry,
1548                     int kind)
1549
1550 {
1551         struct task_security_struct *tsec;
1552         struct inode_security_struct *dsec, *isec;
1553         struct avc_audit_data ad;
1554         u32 av;
1555         int rc;
1556
1557         tsec = current->cred->security;
1558         dsec = dir->i_security;
1559         isec = dentry->d_inode->i_security;
1560
1561         AVC_AUDIT_DATA_INIT(&ad, FS);
1562         ad.u.fs.path.dentry = dentry;
1563
1564         av = DIR__SEARCH;
1565         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1566         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1567         if (rc)
1568                 return rc;
1569
1570         switch (kind) {
1571         case MAY_LINK:
1572                 av = FILE__LINK;
1573                 break;
1574         case MAY_UNLINK:
1575                 av = FILE__UNLINK;
1576                 break;
1577         case MAY_RMDIR:
1578                 av = DIR__RMDIR;
1579                 break;
1580         default:
1581                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1582                         __func__, kind);
1583                 return 0;
1584         }
1585
1586         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1587         return rc;
1588 }
1589
1590 static inline int may_rename(struct inode *old_dir,
1591                              struct dentry *old_dentry,
1592                              struct inode *new_dir,
1593                              struct dentry *new_dentry)
1594 {
1595         struct task_security_struct *tsec;
1596         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1597         struct avc_audit_data ad;
1598         u32 av;
1599         int old_is_dir, new_is_dir;
1600         int rc;
1601
1602         tsec = current->cred->security;
1603         old_dsec = old_dir->i_security;
1604         old_isec = old_dentry->d_inode->i_security;
1605         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1606         new_dsec = new_dir->i_security;
1607
1608         AVC_AUDIT_DATA_INIT(&ad, FS);
1609
1610         ad.u.fs.path.dentry = old_dentry;
1611         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1612                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1613         if (rc)
1614                 return rc;
1615         rc = avc_has_perm(tsec->sid, old_isec->sid,
1616                           old_isec->sclass, FILE__RENAME, &ad);
1617         if (rc)
1618                 return rc;
1619         if (old_is_dir && new_dir != old_dir) {
1620                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1621                                   old_isec->sclass, DIR__REPARENT, &ad);
1622                 if (rc)
1623                         return rc;
1624         }
1625
1626         ad.u.fs.path.dentry = new_dentry;
1627         av = DIR__ADD_NAME | DIR__SEARCH;
1628         if (new_dentry->d_inode)
1629                 av |= DIR__REMOVE_NAME;
1630         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1631         if (rc)
1632                 return rc;
1633         if (new_dentry->d_inode) {
1634                 new_isec = new_dentry->d_inode->i_security;
1635                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1636                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1637                                   new_isec->sclass,
1638                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1639                 if (rc)
1640                         return rc;
1641         }
1642
1643         return 0;
1644 }
1645
1646 /* Check whether a task can perform a filesystem operation. */
1647 static int superblock_has_perm(struct task_struct *tsk,
1648                                struct super_block *sb,
1649                                u32 perms,
1650                                struct avc_audit_data *ad)
1651 {
1652         struct task_security_struct *tsec;
1653         struct superblock_security_struct *sbsec;
1654
1655         tsec = tsk->cred->security;
1656         sbsec = sb->s_security;
1657         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1658                             perms, ad);
1659 }
1660
1661 /* Convert a Linux mode and permission mask to an access vector. */
1662 static inline u32 file_mask_to_av(int mode, int mask)
1663 {
1664         u32 av = 0;
1665
1666         if ((mode & S_IFMT) != S_IFDIR) {
1667                 if (mask & MAY_EXEC)
1668                         av |= FILE__EXECUTE;
1669                 if (mask & MAY_READ)
1670                         av |= FILE__READ;
1671
1672                 if (mask & MAY_APPEND)
1673                         av |= FILE__APPEND;
1674                 else if (mask & MAY_WRITE)
1675                         av |= FILE__WRITE;
1676
1677         } else {
1678                 if (mask & MAY_EXEC)
1679                         av |= DIR__SEARCH;
1680                 if (mask & MAY_WRITE)
1681                         av |= DIR__WRITE;
1682                 if (mask & MAY_READ)
1683                         av |= DIR__READ;
1684         }
1685
1686         return av;
1687 }
1688
1689 /* Convert a Linux file to an access vector. */
1690 static inline u32 file_to_av(struct file *file)
1691 {
1692         u32 av = 0;
1693
1694         if (file->f_mode & FMODE_READ)
1695                 av |= FILE__READ;
1696         if (file->f_mode & FMODE_WRITE) {
1697                 if (file->f_flags & O_APPEND)
1698                         av |= FILE__APPEND;
1699                 else
1700                         av |= FILE__WRITE;
1701         }
1702         if (!av) {
1703                 /*
1704                  * Special file opened with flags 3 for ioctl-only use.
1705                  */
1706                 av = FILE__IOCTL;
1707         }
1708
1709         return av;
1710 }
1711
1712 /*
1713  * Convert a file to an access vector and include the correct open
1714  * open permission.
1715  */
1716 static inline u32 open_file_to_av(struct file *file)
1717 {
1718         u32 av = file_to_av(file);
1719
1720         if (selinux_policycap_openperm) {
1721                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1722                 /*
1723                  * lnk files and socks do not really have an 'open'
1724                  */
1725                 if (S_ISREG(mode))
1726                         av |= FILE__OPEN;
1727                 else if (S_ISCHR(mode))
1728                         av |= CHR_FILE__OPEN;
1729                 else if (S_ISBLK(mode))
1730                         av |= BLK_FILE__OPEN;
1731                 else if (S_ISFIFO(mode))
1732                         av |= FIFO_FILE__OPEN;
1733                 else if (S_ISDIR(mode))
1734                         av |= DIR__OPEN;
1735                 else
1736                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1737                                 "unknown mode:%o\n", __func__, mode);
1738         }
1739         return av;
1740 }
1741
1742 /* Hook functions begin here. */
1743
1744 static int selinux_ptrace_may_access(struct task_struct *child,
1745                                      unsigned int mode)
1746 {
1747         int rc;
1748
1749         rc = secondary_ops->ptrace_may_access(child, mode);
1750         if (rc)
1751                 return rc;
1752
1753         if (mode == PTRACE_MODE_READ) {
1754                 struct task_security_struct *tsec = current->cred->security;
1755                 struct task_security_struct *csec = child->cred->security;
1756                 return avc_has_perm(tsec->sid, csec->sid,
1757                                     SECCLASS_FILE, FILE__READ, NULL);
1758         }
1759
1760         return task_has_perm(current, child, PROCESS__PTRACE);
1761 }
1762
1763 static int selinux_ptrace_traceme(struct task_struct *parent)
1764 {
1765         int rc;
1766
1767         rc = secondary_ops->ptrace_traceme(parent);
1768         if (rc)
1769                 return rc;
1770
1771         return task_has_perm(parent, current, PROCESS__PTRACE);
1772 }
1773
1774 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1775                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1776 {
1777         int error;
1778
1779         error = task_has_perm(current, target, PROCESS__GETCAP);
1780         if (error)
1781                 return error;
1782
1783         return secondary_ops->capget(target, effective, inheritable, permitted);
1784 }
1785
1786 static int selinux_capset_check(const kernel_cap_t *effective,
1787                                 const kernel_cap_t *inheritable,
1788                                 const kernel_cap_t *permitted)
1789 {
1790         int error;
1791
1792         error = secondary_ops->capset_check(effective, inheritable, permitted);
1793         if (error)
1794                 return error;
1795
1796         return task_has_perm(current, current, PROCESS__SETCAP);
1797 }
1798
1799 static void selinux_capset_set(const kernel_cap_t *effective,
1800                                const kernel_cap_t *inheritable,
1801                                const kernel_cap_t *permitted)
1802 {
1803         secondary_ops->capset_set(effective, inheritable, permitted);
1804 }
1805
1806 static int selinux_capable(struct task_struct *tsk, int cap, int audit)
1807 {
1808         int rc;
1809
1810         rc = secondary_ops->capable(tsk, cap, audit);
1811         if (rc)
1812                 return rc;
1813
1814         return task_has_capability(tsk, cap, audit);
1815 }
1816
1817 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1818 {
1819         int buflen, rc;
1820         char *buffer, *path, *end;
1821
1822         rc = -ENOMEM;
1823         buffer = (char *)__get_free_page(GFP_KERNEL);
1824         if (!buffer)
1825                 goto out;
1826
1827         buflen = PAGE_SIZE;
1828         end = buffer+buflen;
1829         *--end = '\0';
1830         buflen--;
1831         path = end-1;
1832         *path = '/';
1833         while (table) {
1834                 const char *name = table->procname;
1835                 size_t namelen = strlen(name);
1836                 buflen -= namelen + 1;
1837                 if (buflen < 0)
1838                         goto out_free;
1839                 end -= namelen;
1840                 memcpy(end, name, namelen);
1841                 *--end = '/';
1842                 path = end;
1843                 table = table->parent;
1844         }
1845         buflen -= 4;
1846         if (buflen < 0)
1847                 goto out_free;
1848         end -= 4;
1849         memcpy(end, "/sys", 4);
1850         path = end;
1851         rc = security_genfs_sid("proc", path, tclass, sid);
1852 out_free:
1853         free_page((unsigned long)buffer);
1854 out:
1855         return rc;
1856 }
1857
1858 static int selinux_sysctl(ctl_table *table, int op)
1859 {
1860         int error = 0;
1861         u32 av;
1862         struct task_security_struct *tsec;
1863         u32 tsid;
1864         int rc;
1865
1866         rc = secondary_ops->sysctl(table, op);
1867         if (rc)
1868                 return rc;
1869
1870         tsec = current->cred->security;
1871
1872         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1873                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1874         if (rc) {
1875                 /* Default to the well-defined sysctl SID. */
1876                 tsid = SECINITSID_SYSCTL;
1877         }
1878
1879         /* The op values are "defined" in sysctl.c, thereby creating
1880          * a bad coupling between this module and sysctl.c */
1881         if (op == 001) {
1882                 error = avc_has_perm(tsec->sid, tsid,
1883                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1884         } else {
1885                 av = 0;
1886                 if (op & 004)
1887                         av |= FILE__READ;
1888                 if (op & 002)
1889                         av |= FILE__WRITE;
1890                 if (av)
1891                         error = avc_has_perm(tsec->sid, tsid,
1892                                              SECCLASS_FILE, av, NULL);
1893         }
1894
1895         return error;
1896 }
1897
1898 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1899 {
1900         int rc = 0;
1901
1902         if (!sb)
1903                 return 0;
1904
1905         switch (cmds) {
1906         case Q_SYNC:
1907         case Q_QUOTAON:
1908         case Q_QUOTAOFF:
1909         case Q_SETINFO:
1910         case Q_SETQUOTA:
1911                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1912                                          NULL);
1913                 break;
1914         case Q_GETFMT:
1915         case Q_GETINFO:
1916         case Q_GETQUOTA:
1917                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1918                                          NULL);
1919                 break;
1920         default:
1921                 rc = 0;  /* let the kernel handle invalid cmds */
1922                 break;
1923         }
1924         return rc;
1925 }
1926
1927 static int selinux_quota_on(struct dentry *dentry)
1928 {
1929         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1930 }
1931
1932 static int selinux_syslog(int type)
1933 {
1934         int rc;
1935
1936         rc = secondary_ops->syslog(type);
1937         if (rc)
1938                 return rc;
1939
1940         switch (type) {
1941         case 3:         /* Read last kernel messages */
1942         case 10:        /* Return size of the log buffer */
1943                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1944                 break;
1945         case 6:         /* Disable logging to console */
1946         case 7:         /* Enable logging to console */
1947         case 8:         /* Set level of messages printed to console */
1948                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1949                 break;
1950         case 0:         /* Close log */
1951         case 1:         /* Open log */
1952         case 2:         /* Read from log */
1953         case 4:         /* Read/clear last kernel messages */
1954         case 5:         /* Clear ring buffer */
1955         default:
1956                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1957                 break;
1958         }
1959         return rc;
1960 }
1961
1962 /*
1963  * Check that a process has enough memory to allocate a new virtual
1964  * mapping. 0 means there is enough memory for the allocation to
1965  * succeed and -ENOMEM implies there is not.
1966  *
1967  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1968  * if the capability is granted, but __vm_enough_memory requires 1 if
1969  * the capability is granted.
1970  *
1971  * Do not audit the selinux permission check, as this is applied to all
1972  * processes that allocate mappings.
1973  */
1974 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1975 {
1976         int rc, cap_sys_admin = 0;
1977
1978         rc = selinux_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT);
1979         if (rc == 0)
1980                 cap_sys_admin = 1;
1981
1982         return __vm_enough_memory(mm, pages, cap_sys_admin);
1983 }
1984
1985 /* binprm security operations */
1986
1987 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1988 {
1989         struct bprm_security_struct *bsec;
1990
1991         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1992         if (!bsec)
1993                 return -ENOMEM;
1994
1995         bsec->sid = SECINITSID_UNLABELED;
1996         bsec->set = 0;
1997
1998         bprm->security = bsec;
1999         return 0;
2000 }
2001
2002 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2003 {
2004         struct task_security_struct *tsec;
2005         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2006         struct inode_security_struct *isec;
2007         struct bprm_security_struct *bsec;
2008         u32 newsid;
2009         struct avc_audit_data ad;
2010         int rc;
2011
2012         rc = secondary_ops->bprm_set_security(bprm);
2013         if (rc)
2014                 return rc;
2015
2016         bsec = bprm->security;
2017
2018         if (bsec->set)
2019                 return 0;
2020
2021         tsec = current->cred->security;
2022         isec = inode->i_security;
2023
2024         /* Default to the current task SID. */
2025         bsec->sid = tsec->sid;
2026
2027         /* Reset fs, key, and sock SIDs on execve. */
2028         tsec->create_sid = 0;
2029         tsec->keycreate_sid = 0;
2030         tsec->sockcreate_sid = 0;
2031
2032         if (tsec->exec_sid) {
2033                 newsid = tsec->exec_sid;
2034                 /* Reset exec SID on execve. */
2035                 tsec->exec_sid = 0;
2036         } else {
2037                 /* Check for a default transition on this program. */
2038                 rc = security_transition_sid(tsec->sid, isec->sid,
2039                                              SECCLASS_PROCESS, &newsid);
2040                 if (rc)
2041                         return rc;
2042         }
2043
2044         AVC_AUDIT_DATA_INIT(&ad, FS);
2045         ad.u.fs.path = bprm->file->f_path;
2046
2047         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2048                 newsid = tsec->sid;
2049
2050         if (tsec->sid == newsid) {
2051                 rc = avc_has_perm(tsec->sid, isec->sid,
2052                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2053                 if (rc)
2054                         return rc;
2055         } else {
2056                 /* Check permissions for the transition. */
2057                 rc = avc_has_perm(tsec->sid, newsid,
2058                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2059                 if (rc)
2060                         return rc;
2061
2062                 rc = avc_has_perm(newsid, isec->sid,
2063                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2064                 if (rc)
2065                         return rc;
2066
2067                 /* Clear any possibly unsafe personality bits on exec: */
2068                 current->personality &= ~PER_CLEAR_ON_SETID;
2069
2070                 /* Set the security field to the new SID. */
2071                 bsec->sid = newsid;
2072         }
2073
2074         bsec->set = 1;
2075         return 0;
2076 }
2077
2078 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2079 {
2080         return secondary_ops->bprm_check_security(bprm);
2081 }
2082
2083
2084 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2085 {
2086         struct task_security_struct *tsec = current->cred->security;
2087         int atsecure = 0;
2088
2089         if (tsec->osid != tsec->sid) {
2090                 /* Enable secure mode for SIDs transitions unless
2091                    the noatsecure permission is granted between
2092                    the two SIDs, i.e. ahp returns 0. */
2093                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2094                                          SECCLASS_PROCESS,
2095                                          PROCESS__NOATSECURE, NULL);
2096         }
2097
2098         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2099 }
2100
2101 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2102 {
2103         kfree(bprm->security);
2104         bprm->security = NULL;
2105 }
2106
2107 extern struct vfsmount *selinuxfs_mount;
2108 extern struct dentry *selinux_null;
2109
2110 /* Derived from fs/exec.c:flush_old_files. */
2111 static inline void flush_unauthorized_files(struct files_struct *files)
2112 {
2113         struct avc_audit_data ad;
2114         struct file *file, *devnull = NULL;
2115         struct tty_struct *tty;
2116         struct fdtable *fdt;
2117         long j = -1;
2118         int drop_tty = 0;
2119
2120         tty = get_current_tty();
2121         if (tty) {
2122                 file_list_lock();
2123                 if (!list_empty(&tty->tty_files)) {
2124                         struct inode *inode;
2125
2126                         /* Revalidate access to controlling tty.
2127                            Use inode_has_perm on the tty inode directly rather
2128                            than using file_has_perm, as this particular open
2129                            file may belong to another process and we are only
2130                            interested in the inode-based check here. */
2131                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2132                         inode = file->f_path.dentry->d_inode;
2133                         if (inode_has_perm(current, inode,
2134                                            FILE__READ | FILE__WRITE, NULL)) {
2135                                 drop_tty = 1;
2136                         }
2137                 }
2138                 file_list_unlock();
2139                 tty_kref_put(tty);
2140         }
2141         /* Reset controlling tty. */
2142         if (drop_tty)
2143                 no_tty();
2144
2145         /* Revalidate access to inherited open files. */
2146
2147         AVC_AUDIT_DATA_INIT(&ad, FS);
2148
2149         spin_lock(&files->file_lock);
2150         for (;;) {
2151                 unsigned long set, i;
2152                 int fd;
2153
2154                 j++;
2155                 i = j * __NFDBITS;
2156                 fdt = files_fdtable(files);
2157                 if (i >= fdt->max_fds)
2158                         break;
2159                 set = fdt->open_fds->fds_bits[j];
2160                 if (!set)
2161                         continue;
2162                 spin_unlock(&files->file_lock);
2163                 for ( ; set ; i++, set >>= 1) {
2164                         if (set & 1) {
2165                                 file = fget(i);
2166                                 if (!file)
2167                                         continue;
2168                                 if (file_has_perm(current,
2169                                                   file,
2170                                                   file_to_av(file))) {
2171                                         sys_close(i);
2172                                         fd = get_unused_fd();
2173                                         if (fd != i) {
2174                                                 if (fd >= 0)
2175                                                         put_unused_fd(fd);
2176                                                 fput(file);
2177                                                 continue;
2178                                         }
2179                                         if (devnull) {
2180                                                 get_file(devnull);
2181                                         } else {
2182                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2183                                                 if (IS_ERR(devnull)) {
2184                                                         devnull = NULL;
2185                                                         put_unused_fd(fd);
2186                                                         fput(file);
2187                                                         continue;
2188                                                 }
2189                                         }
2190                                         fd_install(fd, devnull);
2191                                 }
2192                                 fput(file);
2193                         }
2194                 }
2195                 spin_lock(&files->file_lock);
2196
2197         }
2198         spin_unlock(&files->file_lock);
2199 }
2200
2201 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2202 {
2203         struct task_security_struct *tsec;
2204         struct bprm_security_struct *bsec;
2205         u32 sid;
2206         int rc;
2207
2208         secondary_ops->bprm_apply_creds(bprm, unsafe);
2209
2210         tsec = current->cred->security;
2211
2212         bsec = bprm->security;
2213         sid = bsec->sid;
2214
2215         tsec->osid = tsec->sid;
2216         bsec->unsafe = 0;
2217         if (tsec->sid != sid) {
2218                 /* Check for shared state.  If not ok, leave SID
2219                    unchanged and kill. */
2220                 if (unsafe & LSM_UNSAFE_SHARE) {
2221                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2222                                         PROCESS__SHARE, NULL);
2223                         if (rc) {
2224                                 bsec->unsafe = 1;
2225                                 return;
2226                         }
2227                 }
2228
2229                 /* Check for ptracing, and update the task SID if ok.
2230                    Otherwise, leave SID unchanged and kill. */
2231                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2232                         struct task_struct *tracer;
2233                         struct task_security_struct *sec;
2234                         u32 ptsid = 0;
2235
2236                         rcu_read_lock();
2237                         tracer = tracehook_tracer_task(current);
2238                         if (likely(tracer != NULL)) {
2239                                 sec = tracer->cred->security;
2240                                 ptsid = sec->sid;
2241                         }
2242                         rcu_read_unlock();
2243
2244                         if (ptsid != 0) {
2245                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2246                                                   PROCESS__PTRACE, NULL);
2247                                 if (rc) {
2248                                         bsec->unsafe = 1;
2249                                         return;
2250                                 }
2251                         }
2252                 }
2253                 tsec->sid = sid;
2254         }
2255 }
2256
2257 /*
2258  * called after apply_creds without the task lock held
2259  */
2260 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2261 {
2262         struct task_security_struct *tsec;
2263         struct rlimit *rlim, *initrlim;
2264         struct itimerval itimer;
2265         struct bprm_security_struct *bsec;
2266         struct sighand_struct *psig;
2267         int rc, i;
2268         unsigned long flags;
2269
2270         tsec = current->cred->security;
2271         bsec = bprm->security;
2272
2273         if (bsec->unsafe) {
2274                 force_sig_specific(SIGKILL, current);
2275                 return;
2276         }
2277         if (tsec->osid == tsec->sid)
2278                 return;
2279
2280         /* Close files for which the new task SID is not authorized. */
2281         flush_unauthorized_files(current->files);
2282
2283         /* Check whether the new SID can inherit signal state
2284            from the old SID.  If not, clear itimers to avoid
2285            subsequent signal generation and flush and unblock
2286            signals. This must occur _after_ the task SID has
2287           been updated so that any kill done after the flush
2288           will be checked against the new SID. */
2289         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2290                           PROCESS__SIGINH, NULL);
2291         if (rc) {
2292                 memset(&itimer, 0, sizeof itimer);
2293                 for (i = 0; i < 3; i++)
2294                         do_setitimer(i, &itimer, NULL);
2295                 flush_signals(current);
2296                 spin_lock_irq(&current->sighand->siglock);
2297                 flush_signal_handlers(current, 1);
2298                 sigemptyset(&current->blocked);
2299                 recalc_sigpending();
2300                 spin_unlock_irq(&current->sighand->siglock);
2301         }
2302
2303         /* Always clear parent death signal on SID transitions. */
2304         current->pdeath_signal = 0;
2305
2306         /* Check whether the new SID can inherit resource limits
2307            from the old SID.  If not, reset all soft limits to
2308            the lower of the current task's hard limit and the init
2309            task's soft limit.  Note that the setting of hard limits
2310            (even to lower them) can be controlled by the setrlimit
2311            check. The inclusion of the init task's soft limit into
2312            the computation is to avoid resetting soft limits higher
2313            than the default soft limit for cases where the default
2314            is lower than the hard limit, e.g. RLIMIT_CORE or
2315            RLIMIT_STACK.*/
2316         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2317                           PROCESS__RLIMITINH, NULL);
2318         if (rc) {
2319                 for (i = 0; i < RLIM_NLIMITS; i++) {
2320                         rlim = current->signal->rlim + i;
2321                         initrlim = init_task.signal->rlim+i;
2322                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2323                 }
2324                 update_rlimit_cpu(rlim->rlim_cur);
2325         }
2326
2327         /* Wake up the parent if it is waiting so that it can
2328            recheck wait permission to the new task SID. */
2329         read_lock_irq(&tasklist_lock);
2330         psig = current->parent->sighand;
2331         spin_lock_irqsave(&psig->siglock, flags);
2332         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2333         spin_unlock_irqrestore(&psig->siglock, flags);
2334         read_unlock_irq(&tasklist_lock);
2335 }
2336
2337 /* superblock security operations */
2338
2339 static int selinux_sb_alloc_security(struct super_block *sb)
2340 {
2341         return superblock_alloc_security(sb);
2342 }
2343
2344 static void selinux_sb_free_security(struct super_block *sb)
2345 {
2346         superblock_free_security(sb);
2347 }
2348
2349 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2350 {
2351         if (plen > olen)
2352                 return 0;
2353
2354         return !memcmp(prefix, option, plen);
2355 }
2356
2357 static inline int selinux_option(char *option, int len)
2358 {
2359         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2360                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2361                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2362                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2363 }
2364
2365 static inline void take_option(char **to, char *from, int *first, int len)
2366 {
2367         if (!*first) {
2368                 **to = ',';
2369                 *to += 1;
2370         } else
2371                 *first = 0;
2372         memcpy(*to, from, len);
2373         *to += len;
2374 }
2375
2376 static inline void take_selinux_option(char **to, char *from, int *first,
2377                                        int len)
2378 {
2379         int current_size = 0;
2380
2381         if (!*first) {
2382                 **to = '|';
2383                 *to += 1;
2384         } else
2385                 *first = 0;
2386
2387         while (current_size < len) {
2388                 if (*from != '"') {
2389                         **to = *from;
2390                         *to += 1;
2391                 }
2392                 from += 1;
2393                 current_size += 1;
2394         }
2395 }
2396
2397 static int selinux_sb_copy_data(char *orig, char *copy)
2398 {
2399         int fnosec, fsec, rc = 0;
2400         char *in_save, *in_curr, *in_end;
2401         char *sec_curr, *nosec_save, *nosec;
2402         int open_quote = 0;
2403
2404         in_curr = orig;
2405         sec_curr = copy;
2406
2407         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2408         if (!nosec) {
2409                 rc = -ENOMEM;
2410                 goto out;
2411         }
2412
2413         nosec_save = nosec;
2414         fnosec = fsec = 1;
2415         in_save = in_end = orig;
2416
2417         do {
2418                 if (*in_end == '"')
2419                         open_quote = !open_quote;
2420                 if ((*in_end == ',' && open_quote == 0) ||
2421                                 *in_end == '\0') {
2422                         int len = in_end - in_curr;
2423
2424                         if (selinux_option(in_curr, len))
2425                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2426                         else
2427                                 take_option(&nosec, in_curr, &fnosec, len);
2428
2429                         in_curr = in_end + 1;
2430                 }
2431         } while (*in_end++);
2432
2433         strcpy(in_save, nosec_save);
2434         free_page((unsigned long)nosec_save);
2435 out:
2436         return rc;
2437 }
2438
2439 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2440 {
2441         struct avc_audit_data ad;
2442         int rc;
2443
2444         rc = superblock_doinit(sb, data);
2445         if (rc)
2446                 return rc;
2447
2448         AVC_AUDIT_DATA_INIT(&ad, FS);
2449         ad.u.fs.path.dentry = sb->s_root;
2450         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2451 }
2452
2453 static int selinux_sb_statfs(struct dentry *dentry)
2454 {
2455         struct avc_audit_data ad;
2456
2457         AVC_AUDIT_DATA_INIT(&ad, FS);
2458         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2459         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2460 }
2461
2462 static int selinux_mount(char *dev_name,
2463                          struct path *path,
2464                          char *type,
2465                          unsigned long flags,
2466                          void *data)
2467 {
2468         int rc;
2469
2470         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2471         if (rc)
2472                 return rc;
2473
2474         if (flags & MS_REMOUNT)
2475                 return superblock_has_perm(current, path->mnt->mnt_sb,
2476                                            FILESYSTEM__REMOUNT, NULL);
2477         else
2478                 return dentry_has_perm(current, path->mnt, path->dentry,
2479                                        FILE__MOUNTON);
2480 }
2481
2482 static int selinux_umount(struct vfsmount *mnt, int flags)
2483 {
2484         int rc;
2485
2486         rc = secondary_ops->sb_umount(mnt, flags);
2487         if (rc)
2488                 return rc;
2489
2490         return superblock_has_perm(current, mnt->mnt_sb,
2491                                    FILESYSTEM__UNMOUNT, NULL);
2492 }
2493
2494 /* inode security operations */
2495
2496 static int selinux_inode_alloc_security(struct inode *inode)
2497 {
2498         return inode_alloc_security(inode);
2499 }
2500
2501 static void selinux_inode_free_security(struct inode *inode)
2502 {
2503         inode_free_security(inode);
2504 }
2505
2506 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2507                                        char **name, void **value,
2508                                        size_t *len)
2509 {
2510         struct task_security_struct *tsec;
2511         struct inode_security_struct *dsec;
2512         struct superblock_security_struct *sbsec;
2513         u32 newsid, clen;
2514         int rc;
2515         char *namep = NULL, *context;
2516
2517         tsec = current->cred->security;
2518         dsec = dir->i_security;
2519         sbsec = dir->i_sb->s_security;
2520
2521         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2522                 newsid = tsec->create_sid;
2523         } else {
2524                 rc = security_transition_sid(tsec->sid, dsec->sid,
2525                                              inode_mode_to_security_class(inode->i_mode),
2526                                              &newsid);
2527                 if (rc) {
2528                         printk(KERN_WARNING "%s:  "
2529                                "security_transition_sid failed, rc=%d (dev=%s "
2530                                "ino=%ld)\n",
2531                                __func__,
2532                                -rc, inode->i_sb->s_id, inode->i_ino);
2533                         return rc;
2534                 }
2535         }
2536
2537         /* Possibly defer initialization to selinux_complete_init. */
2538         if (sbsec->initialized) {
2539                 struct inode_security_struct *isec = inode->i_security;
2540                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2541                 isec->sid = newsid;
2542                 isec->initialized = 1;
2543         }
2544
2545         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2546                 return -EOPNOTSUPP;
2547
2548         if (name) {
2549                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2550                 if (!namep)
2551                         return -ENOMEM;
2552                 *name = namep;
2553         }
2554
2555         if (value && len) {
2556                 rc = security_sid_to_context_force(newsid, &context, &clen);
2557                 if (rc) {
2558                         kfree(namep);
2559                         return rc;
2560                 }
2561                 *value = context;
2562                 *len = clen;
2563         }
2564
2565         return 0;
2566 }
2567
2568 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2569 {
2570         return may_create(dir, dentry, SECCLASS_FILE);
2571 }
2572
2573 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2574 {
2575         int rc;
2576
2577         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2578         if (rc)
2579                 return rc;
2580         return may_link(dir, old_dentry, MAY_LINK);
2581 }
2582
2583 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2584 {
2585         int rc;
2586
2587         rc = secondary_ops->inode_unlink(dir, dentry);
2588         if (rc)
2589                 return rc;
2590         return may_link(dir, dentry, MAY_UNLINK);
2591 }
2592
2593 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2594 {
2595         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2596 }
2597
2598 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2599 {
2600         return may_create(dir, dentry, SECCLASS_DIR);
2601 }
2602
2603 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2604 {
2605         return may_link(dir, dentry, MAY_RMDIR);
2606 }
2607
2608 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2609 {
2610         int rc;
2611
2612         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2613         if (rc)
2614                 return rc;
2615
2616         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2617 }
2618
2619 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2620                                 struct inode *new_inode, struct dentry *new_dentry)
2621 {
2622         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2623 }
2624
2625 static int selinux_inode_readlink(struct dentry *dentry)
2626 {
2627         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2628 }
2629
2630 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2631 {
2632         int rc;
2633
2634         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2635         if (rc)
2636                 return rc;
2637         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2638 }
2639
2640 static int selinux_inode_permission(struct inode *inode, int mask)
2641 {
2642         int rc;
2643
2644         rc = secondary_ops->inode_permission(inode, mask);
2645         if (rc)
2646                 return rc;
2647
2648         if (!mask) {
2649                 /* No permission to check.  Existence test. */
2650                 return 0;
2651         }
2652
2653         return inode_has_perm(current, inode,
2654                               file_mask_to_av(inode->i_mode, mask), NULL);
2655 }
2656
2657 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2658 {
2659         int rc;
2660
2661         rc = secondary_ops->inode_setattr(dentry, iattr);
2662         if (rc)
2663                 return rc;
2664
2665         if (iattr->ia_valid & ATTR_FORCE)
2666                 return 0;
2667
2668         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2669                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2670                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2671
2672         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2673 }
2674
2675 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2676 {
2677         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2678 }
2679
2680 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2681 {
2682         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2683                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2684                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2685                         if (!capable(CAP_SETFCAP))
2686                                 return -EPERM;
2687                 } else if (!capable(CAP_SYS_ADMIN)) {
2688                         /* A different attribute in the security namespace.
2689                            Restrict to administrator. */
2690                         return -EPERM;
2691                 }
2692         }
2693
2694         /* Not an attribute we recognize, so just check the
2695            ordinary setattr permission. */
2696         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2697 }
2698
2699 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2700                                   const void *value, size_t size, int flags)
2701 {
2702         struct task_security_struct *tsec = current->cred->security;
2703         struct inode *inode = dentry->d_inode;
2704         struct inode_security_struct *isec = inode->i_security;
2705         struct superblock_security_struct *sbsec;
2706         struct avc_audit_data ad;
2707         u32 newsid;
2708         int rc = 0;
2709
2710         if (strcmp(name, XATTR_NAME_SELINUX))
2711                 return selinux_inode_setotherxattr(dentry, name);
2712
2713         sbsec = inode->i_sb->s_security;
2714         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2715                 return -EOPNOTSUPP;
2716
2717         if (!is_owner_or_cap(inode))
2718                 return -EPERM;
2719
2720         AVC_AUDIT_DATA_INIT(&ad, FS);
2721         ad.u.fs.path.dentry = dentry;
2722
2723         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2724                           FILE__RELABELFROM, &ad);
2725         if (rc)
2726                 return rc;
2727
2728         rc = security_context_to_sid(value, size, &newsid);
2729         if (rc == -EINVAL) {
2730                 if (!capable(CAP_MAC_ADMIN))
2731                         return rc;
2732                 rc = security_context_to_sid_force(value, size, &newsid);
2733         }
2734         if (rc)
2735                 return rc;
2736
2737         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2738                           FILE__RELABELTO, &ad);
2739         if (rc)
2740                 return rc;
2741
2742         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2743                                           isec->sclass);
2744         if (rc)
2745                 return rc;
2746
2747         return avc_has_perm(newsid,
2748                             sbsec->sid,
2749                             SECCLASS_FILESYSTEM,
2750                             FILESYSTEM__ASSOCIATE,
2751                             &ad);
2752 }
2753
2754 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2755                                         const void *value, size_t size,
2756                                         int flags)
2757 {
2758         struct inode *inode = dentry->d_inode;
2759         struct inode_security_struct *isec = inode->i_security;
2760         u32 newsid;
2761         int rc;
2762
2763         if (strcmp(name, XATTR_NAME_SELINUX)) {
2764                 /* Not an attribute we recognize, so nothing to do. */
2765                 return;
2766         }
2767
2768         rc = security_context_to_sid_force(value, size, &newsid);
2769         if (rc) {
2770                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2771                        "for (%s, %lu), rc=%d\n",
2772                        inode->i_sb->s_id, inode->i_ino, -rc);
2773                 return;
2774         }
2775
2776         isec->sid = newsid;
2777         return;
2778 }
2779
2780 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2781 {
2782         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2783 }
2784
2785 static int selinux_inode_listxattr(struct dentry *dentry)
2786 {
2787         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2788 }
2789
2790 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2791 {
2792         if (strcmp(name, XATTR_NAME_SELINUX))
2793                 return selinux_inode_setotherxattr(dentry, name);
2794
2795         /* No one is allowed to remove a SELinux security label.
2796            You can change the label, but all data must be labeled. */
2797         return -EACCES;
2798 }
2799
2800 /*
2801  * Copy the inode security context value to the user.
2802  *
2803  * Permission check is handled by selinux_inode_getxattr hook.
2804  */
2805 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2806 {
2807         u32 size;
2808         int error;
2809         char *context = NULL;
2810         struct inode_security_struct *isec = inode->i_security;
2811
2812         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2813                 return -EOPNOTSUPP;
2814
2815         /*
2816          * If the caller has CAP_MAC_ADMIN, then get the raw context
2817          * value even if it is not defined by current policy; otherwise,
2818          * use the in-core value under current policy.
2819          * Use the non-auditing forms of the permission checks since
2820          * getxattr may be called by unprivileged processes commonly
2821          * and lack of permission just means that we fall back to the
2822          * in-core context value, not a denial.
2823          */
2824         error = selinux_capable(current, CAP_MAC_ADMIN, SECURITY_CAP_NOAUDIT);
2825         if (!error)
2826                 error = security_sid_to_context_force(isec->sid, &context,
2827                                                       &size);
2828         else
2829                 error = security_sid_to_context(isec->sid, &context, &size);
2830         if (error)
2831                 return error;
2832         error = size;
2833         if (alloc) {
2834                 *buffer = context;
2835                 goto out_nofree;
2836         }
2837         kfree(context);
2838 out_nofree:
2839         return error;
2840 }
2841
2842 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2843                                      const void *value, size_t size, int flags)
2844 {
2845         struct inode_security_struct *isec = inode->i_security;
2846         u32 newsid;
2847         int rc;
2848
2849         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2850                 return -EOPNOTSUPP;
2851
2852         if (!value || !size)
2853                 return -EACCES;
2854
2855         rc = security_context_to_sid((void *)value, size, &newsid);
2856         if (rc)
2857                 return rc;
2858
2859         isec->sid = newsid;
2860         return 0;
2861 }
2862
2863 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2864 {
2865         const int len = sizeof(XATTR_NAME_SELINUX);
2866         if (buffer && len <= buffer_size)
2867                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2868         return len;
2869 }
2870
2871 static int selinux_inode_need_killpriv(struct dentry *dentry)
2872 {
2873         return secondary_ops->inode_need_killpriv(dentry);
2874 }
2875
2876 static int selinux_inode_killpriv(struct dentry *dentry)
2877 {
2878         return secondary_ops->inode_killpriv(dentry);
2879 }
2880
2881 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2882 {
2883         struct inode_security_struct *isec = inode->i_security;
2884         *secid = isec->sid;
2885 }
2886
2887 /* file security operations */
2888
2889 static int selinux_revalidate_file_permission(struct file *file, int mask)
2890 {
2891         int rc;
2892         struct inode *inode = file->f_path.dentry->d_inode;
2893
2894         if (!mask) {
2895                 /* No permission to check.  Existence test. */
2896                 return 0;
2897         }
2898
2899         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2900         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2901                 mask |= MAY_APPEND;
2902
2903         rc = file_has_perm(current, file,
2904                            file_mask_to_av(inode->i_mode, mask));
2905         if (rc)
2906                 return rc;
2907
2908         return selinux_netlbl_inode_permission(inode, mask);
2909 }
2910
2911 static int selinux_file_permission(struct file *file, int mask)
2912 {
2913         struct inode *inode = file->f_path.dentry->d_inode;
2914         struct task_security_struct *tsec = current->cred->security;
2915         struct file_security_struct *fsec = file->f_security;
2916         struct inode_security_struct *isec = inode->i_security;
2917
2918         if (!mask) {
2919                 /* No permission to check.  Existence test. */
2920                 return 0;
2921         }
2922
2923         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2924             && fsec->pseqno == avc_policy_seqno())
2925                 return selinux_netlbl_inode_permission(inode, mask);
2926
2927         return selinux_revalidate_file_permission(file, mask);
2928 }
2929
2930 static int selinux_file_alloc_security(struct file *file)
2931 {
2932         return file_alloc_security(file);
2933 }
2934
2935 static void selinux_file_free_security(struct file *file)
2936 {
2937         file_free_security(file);
2938 }
2939
2940 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2941                               unsigned long arg)
2942 {
2943         u32 av = 0;
2944
2945         if (_IOC_DIR(cmd) & _IOC_WRITE)
2946                 av |= FILE__WRITE;
2947         if (_IOC_DIR(cmd) & _IOC_READ)
2948                 av |= FILE__READ;
2949         if (!av)
2950                 av = FILE__IOCTL;
2951
2952         return file_has_perm(current, file, av);
2953 }
2954
2955 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2956 {
2957 #ifndef CONFIG_PPC32
2958         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2959                 /*
2960                  * We are making executable an anonymous mapping or a
2961                  * private file mapping that will also be writable.
2962                  * This has an additional check.
2963                  */
2964                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2965                 if (rc)
2966                         return rc;
2967         }
2968 #endif
2969
2970         if (file) {
2971                 /* read access is always possible with a mapping */
2972                 u32 av = FILE__READ;
2973
2974                 /* write access only matters if the mapping is shared */
2975                 if (shared && (prot & PROT_WRITE))
2976                         av |= FILE__WRITE;
2977
2978                 if (prot & PROT_EXEC)
2979                         av |= FILE__EXECUTE;
2980
2981                 return file_has_perm(current, file, av);
2982         }
2983         return 0;
2984 }
2985
2986 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2987                              unsigned long prot, unsigned long flags,
2988                              unsigned long addr, unsigned long addr_only)
2989 {
2990         int rc = 0;
2991         u32 sid = ((struct task_security_struct *)
2992                    (current->cred->security))->sid;
2993
2994         if (addr < mmap_min_addr)
2995                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2996                                   MEMPROTECT__MMAP_ZERO, NULL);
2997         if (rc || addr_only)
2998                 return rc;
2999
3000         if (selinux_checkreqprot)
3001                 prot = reqprot;
3002
3003         return file_map_prot_check(file, prot,
3004                                    (flags & MAP_TYPE) == MAP_SHARED);
3005 }
3006
3007 static int selinux_file_mprotect(struct vm_area_struct *vma,
3008                                  unsigned long reqprot,
3009                                  unsigned long prot)
3010 {
3011         int rc;
3012
3013         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3014         if (rc)
3015                 return rc;
3016
3017         if (selinux_checkreqprot)
3018                 prot = reqprot;
3019
3020 #ifndef CONFIG_PPC32
3021         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3022                 rc = 0;
3023                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3024                     vma->vm_end <= vma->vm_mm->brk) {
3025                         rc = task_has_perm(current, current,
3026                                            PROCESS__EXECHEAP);
3027                 } else if (!vma->vm_file &&
3028                            vma->vm_start <= vma->vm_mm->start_stack &&
3029                            vma->vm_end >= vma->vm_mm->start_stack) {
3030                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3031                 } else if (vma->vm_file && vma->anon_vma) {
3032                         /*
3033                          * We are making executable a file mapping that has
3034                          * had some COW done. Since pages might have been
3035                          * written, check ability to execute the possibly
3036                          * modified content.  This typically should only
3037                          * occur for text relocations.
3038                          */
3039                         rc = file_has_perm(current, vma->vm_file,
3040                                            FILE__EXECMOD);
3041                 }
3042                 if (rc)
3043                         return rc;
3044         }
3045 #endif
3046
3047         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3048 }
3049
3050 static int selinux_file_lock(struct file *file, unsigned int cmd)
3051 {
3052         return file_has_perm(current, file, FILE__LOCK);
3053 }
3054
3055 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3056                               unsigned long arg)
3057 {
3058         int err = 0;
3059
3060         switch (cmd) {
3061         case F_SETFL:
3062                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3063                         err = -EINVAL;
3064                         break;
3065                 }
3066
3067                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3068                         err = file_has_perm(current, file, FILE__WRITE);
3069                         break;
3070                 }
3071                 /* fall through */
3072         case F_SETOWN:
3073         case F_SETSIG:
3074         case F_GETFL:
3075         case F_GETOWN:
3076         case F_GETSIG:
3077                 /* Just check FD__USE permission */
3078                 err = file_has_perm(current, file, 0);
3079                 break;
3080         case F_GETLK:
3081         case F_SETLK:
3082         case F_SETLKW:
3083 #if BITS_PER_LONG == 32
3084         case F_GETLK64:
3085         case F_SETLK64:
3086         case F_SETLKW64:
3087 #endif
3088                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3089                         err = -EINVAL;
3090                         break;
3091                 }
3092                 err = file_has_perm(current, file, FILE__LOCK);
3093                 break;
3094         }
3095
3096         return err;
3097 }
3098
3099 static int selinux_file_set_fowner(struct file *file)
3100 {
3101         struct task_security_struct *tsec;
3102         struct file_security_struct *fsec;
3103
3104         tsec = current->cred->security;
3105         fsec = file->f_security;
3106         fsec->fown_sid = tsec->sid;
3107
3108         return 0;
3109 }
3110
3111 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3112                                        struct fown_struct *fown, int signum)
3113 {
3114         struct file *file;
3115         u32 perm;
3116         struct task_security_struct *tsec;
3117         struct file_security_struct *fsec;
3118
3119         /* struct fown_struct is never outside the context of a struct file */
3120         file = container_of(fown, struct file, f_owner);
3121
3122         tsec = tsk->cred->security;
3123         fsec = file->f_security;
3124
3125         if (!signum)
3126                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3127         else
3128                 perm = signal_to_av(signum);
3129
3130         return avc_has_perm(fsec->fown_sid, tsec->sid,
3131                             SECCLASS_PROCESS, perm, NULL);
3132 }
3133
3134 static int selinux_file_receive(struct file *file)
3135 {
3136         return file_has_perm(current, file, file_to_av(file));
3137 }
3138
3139 static int selinux_dentry_open(struct file *file)
3140 {
3141         struct file_security_struct *fsec;
3142         struct inode *inode;
3143         struct inode_security_struct *isec;
3144         inode = file->f_path.dentry->d_inode;
3145         fsec = file->f_security;
3146         isec = inode->i_security;
3147         /*
3148          * Save inode label and policy sequence number
3149          * at open-time so that selinux_file_permission
3150          * can determine whether revalidation is necessary.
3151          * Task label is already saved in the file security
3152          * struct as its SID.
3153          */
3154         fsec->isid = isec->sid;
3155         fsec->pseqno = avc_policy_seqno();
3156         /*
3157          * Since the inode label or policy seqno may have changed
3158          * between the selinux_inode_permission check and the saving
3159          * of state above, recheck that access is still permitted.
3160          * Otherwise, access might never be revalidated against the
3161          * new inode label or new policy.
3162          * This check is not redundant - do not remove.
3163          */
3164         return inode_has_perm(current, inode, open_file_to_av(file), NULL);
3165 }
3166
3167 /* task security operations */
3168
3169 static int selinux_task_create(unsigned long clone_flags)
3170 {
3171         int rc;
3172
3173         rc = secondary_ops->task_create(clone_flags);
3174         if (rc)
3175                 return rc;
3176
3177         return task_has_perm(current, current, PROCESS__FORK);
3178 }
3179
3180 static int selinux_cred_alloc_security(struct cred *cred)
3181 {
3182         struct task_security_struct *tsec1, *tsec2;
3183         int rc;
3184
3185         tsec1 = current->cred->security;
3186
3187         rc = cred_alloc_security(cred);
3188         if (rc)
3189                 return rc;
3190         tsec2 = cred->security;
3191
3192         tsec2->osid = tsec1->osid;
3193         tsec2->sid = tsec1->sid;
3194
3195         /* Retain the exec, fs, key, and sock SIDs across fork */
3196         tsec2->exec_sid = tsec1->exec_sid;
3197         tsec2->create_sid = tsec1->create_sid;
3198         tsec2->keycreate_sid = tsec1->keycreate_sid;
3199         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3200
3201         return 0;
3202 }
3203
3204 /*
3205  * detach and free the LSM part of a set of credentials
3206  */
3207 static void selinux_cred_free(struct cred *cred)
3208 {
3209         struct task_security_struct *tsec = cred->security;
3210         cred->security = NULL;
3211         kfree(tsec);
3212 }
3213
3214 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3215 {
3216         /* Since setuid only affects the current process, and
3217            since the SELinux controls are not based on the Linux
3218            identity attributes, SELinux does not need to control
3219            this operation.  However, SELinux does control the use
3220            of the CAP_SETUID and CAP_SETGID capabilities using the
3221            capable hook. */
3222         return 0;
3223 }
3224
3225 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3226 {
3227         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3228 }
3229
3230 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3231 {
3232         /* See the comment for setuid above. */
3233         return 0;
3234 }
3235
3236 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3237 {
3238         return task_has_perm(current, p, PROCESS__SETPGID);
3239 }
3240
3241 static int selinux_task_getpgid(struct task_struct *p)
3242 {
3243         return task_has_perm(current, p, PROCESS__GETPGID);
3244 }
3245
3246 static int selinux_task_getsid(struct task_struct *p)
3247 {
3248         return task_has_perm(current, p, PROCESS__GETSESSION);
3249 }
3250
3251 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3252 {
3253         struct task_security_struct *tsec = p->cred->security;
3254         *secid = tsec->sid;
3255 }
3256
3257 static int selinux_task_setgroups(struct group_info *group_info)
3258 {
3259         /* See the comment for setuid above. */
3260         return 0;
3261 }
3262
3263 static int selinux_task_setnice(struct task_struct *p, int nice)
3264 {
3265         int rc;
3266
3267         rc = secondary_ops->task_setnice(p, nice);
3268         if (rc)
3269                 return rc;
3270
3271         return task_has_perm(current, p, PROCESS__SETSCHED);
3272 }
3273
3274 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3275 {
3276         int rc;
3277
3278         rc = secondary_ops->task_setioprio(p, ioprio);
3279         if (rc)
3280                 return rc;
3281
3282         return task_has_perm(current, p, PROCESS__SETSCHED);
3283 }
3284
3285 static int selinux_task_getioprio(struct task_struct *p)
3286 {
3287         return task_has_perm(current, p, PROCESS__GETSCHED);
3288 }
3289
3290 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3291 {
3292         struct rlimit *old_rlim = current->signal->rlim + resource;
3293         int rc;
3294
3295         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3296         if (rc)
3297                 return rc;
3298
3299         /* Control the ability to change the hard limit (whether
3300            lowering or raising it), so that the hard limit can
3301            later be used as a safe reset point for the soft limit
3302            upon context transitions. See selinux_bprm_apply_creds. */
3303         if (old_rlim->rlim_max != new_rlim->rlim_max)
3304                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3305
3306         return 0;
3307 }
3308
3309 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3310 {
3311         int rc;
3312
3313         rc = secondary_ops->task_setscheduler(p, policy, lp);
3314         if (rc)
3315                 return rc;
3316
3317         return task_has_perm(current, p, PROCESS__SETSCHED);
3318 }
3319
3320 static int selinux_task_getscheduler(struct task_struct *p)
3321 {
3322         return task_has_perm(current, p, PROCESS__GETSCHED);
3323 }
3324
3325 static int selinux_task_movememory(struct task_struct *p)
3326 {
3327         return task_has_perm(current, p, PROCESS__SETSCHED);
3328 }
3329
3330 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3331                                 int sig, u32 secid)
3332 {
3333         u32 perm;
3334         int rc;
3335         struct task_security_struct *tsec;
3336
3337         rc = secondary_ops->task_kill(p, info, sig, secid);
3338         if (rc)
3339                 return rc;
3340
3341         if (!sig)
3342                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3343         else
3344                 perm = signal_to_av(sig);
3345         tsec = p->cred->security;
3346         if (secid)
3347                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3348         else
3349                 rc = task_has_perm(current, p, perm);
3350         return rc;
3351 }
3352
3353 static int selinux_task_prctl(int option,
3354                               unsigned long arg2,
3355                               unsigned long arg3,
3356                               unsigned long arg4,
3357                               unsigned long arg5,
3358                               long *rc_p)
3359 {
3360         /* The current prctl operations do not appear to require
3361            any SELinux controls since they merely observe or modify
3362            the state of the current process. */
3363         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3364 }
3365
3366 static int selinux_task_wait(struct task_struct *p)
3367 {
3368         return task_has_perm(p, current, PROCESS__SIGCHLD);
3369 }
3370
3371 static void selinux_task_reparent_to_init(struct task_struct *p)
3372 {
3373         struct task_security_struct *tsec;
3374
3375         secondary_ops->task_reparent_to_init(p);
3376
3377         tsec = p->cred->security;
3378         tsec->osid = tsec->sid;
3379         tsec->sid = SECINITSID_KERNEL;
3380         return;
3381 }
3382
3383 static void selinux_task_to_inode(struct task_struct *p,
3384                                   struct inode *inode)
3385 {
3386         struct task_security_struct *tsec = p->cred->security;
3387         struct inode_security_struct *isec = inode->i_security;
3388
3389         isec->sid = tsec->sid;
3390         isec->initialized = 1;
3391         return;
3392 }
3393
3394 /* Returns error only if unable to parse addresses */
3395 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3396                         struct avc_audit_data *ad, u8 *proto)
3397 {
3398         int offset, ihlen, ret = -EINVAL;
3399         struct iphdr _iph, *ih;
3400
3401         offset = skb_network_offset(skb);
3402         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3403         if (ih == NULL)
3404                 goto out;
3405
3406         ihlen = ih->ihl * 4;
3407         if (ihlen < sizeof(_iph))
3408                 goto out;
3409
3410         ad->u.net.v4info.saddr = ih->saddr;
3411         ad->u.net.v4info.daddr = ih->daddr;
3412         ret = 0;
3413
3414         if (proto)
3415                 *proto = ih->protocol;
3416
3417         switch (ih->protocol) {
3418         case IPPROTO_TCP: {
3419                 struct tcphdr _tcph, *th;
3420
3421                 if (ntohs(ih->frag_off) & IP_OFFSET)
3422                         break;
3423
3424                 offset += ihlen;
3425                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3426                 if (th == NULL)
3427                         break;
3428
3429                 ad->u.net.sport = th->source;
3430                 ad->u.net.dport = th->dest;
3431                 break;
3432         }
3433
3434         case IPPROTO_UDP: {
3435                 struct udphdr _udph, *uh;
3436
3437                 if (ntohs(ih->frag_off) & IP_OFFSET)
3438                         break;
3439
3440                 offset += ihlen;
3441                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3442                 if (uh == NULL)
3443                         break;
3444
3445                 ad->u.net.sport = uh->source;
3446                 ad->u.net.dport = uh->dest;
3447                 break;
3448         }
3449
3450         case IPPROTO_DCCP: {
3451                 struct dccp_hdr _dccph, *dh;
3452
3453                 if (ntohs(ih->frag_off) & IP_OFFSET)
3454                         break;
3455
3456                 offset += ihlen;
3457                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3458                 if (dh == NULL)
3459                         break;
3460
3461                 ad->u.net.sport = dh->dccph_sport;
3462                 ad->u.net.dport = dh->dccph_dport;
3463                 break;
3464         }
3465
3466         default:
3467                 break;
3468         }
3469 out:
3470         return ret;
3471 }
3472
3473 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3474
3475 /* Returns error only if unable to parse addresses */
3476 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3477                         struct avc_audit_data *ad, u8 *proto)
3478 {
3479         u8 nexthdr;
3480         int ret = -EINVAL, offset;
3481         struct ipv6hdr _ipv6h, *ip6;
3482
3483         offset = skb_network_offset(skb);
3484         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3485         if (ip6 == NULL)
3486                 goto out;
3487
3488         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3489         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3490         ret = 0;
3491
3492         nexthdr = ip6->nexthdr;
3493         offset += sizeof(_ipv6h);
3494         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3495         if (offset < 0)
3496                 goto out;
3497
3498         if (proto)
3499                 *proto = nexthdr;
3500
3501         switch (nexthdr) {
3502         case IPPROTO_TCP: {
3503                 struct tcphdr _tcph, *th;
3504
3505                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3506                 if (th == NULL)
3507                         break;
3508
3509                 ad->u.net.sport = th->source;
3510                 ad->u.net.dport = th->dest;
3511                 break;
3512         }
3513
3514         case IPPROTO_UDP: {
3515                 struct udphdr _udph, *uh;
3516
3517                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3518                 if (uh == NULL)
3519                         break;
3520
3521                 ad->u.net.sport = uh->source;
3522                 ad->u.net.dport = uh->dest;
3523                 break;
3524         }
3525
3526         case IPPROTO_DCCP: {
3527                 struct dccp_hdr _dccph, *dh;
3528
3529                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3530                 if (dh == NULL)
3531                         break;
3532
3533                 ad->u.net.sport = dh->dccph_sport;
3534                 ad->u.net.dport = dh->dccph_dport;
3535                 break;
3536         }
3537
3538         /* includes fragments */
3539         default:
3540                 break;
3541         }
3542 out:
3543         return ret;
3544 }
3545
3546 #endif /* IPV6 */
3547
3548 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3549                              char **_addrp, int src, u8 *proto)
3550 {
3551         char *addrp;
3552         int ret;
3553
3554         switch (ad->u.net.family) {
3555         case PF_INET:
3556                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3557                 if (ret)
3558                         goto parse_error;
3559                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3560                                        &ad->u.net.v4info.daddr);
3561                 goto okay;
3562
3563 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3564         case PF_INET6:
3565                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3566                 if (ret)
3567                         goto parse_error;
3568                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3569                                        &ad->u.net.v6info.daddr);
3570                 goto okay;
3571 #endif  /* IPV6 */
3572         default:
3573                 addrp = NULL;
3574                 goto okay;
3575         }
3576
3577 parse_error:
3578         printk(KERN_WARNING
3579                "SELinux: failure in selinux_parse_skb(),"
3580                " unable to parse packet\n");
3581         return ret;
3582
3583 okay:
3584         if (_addrp)
3585                 *_addrp = addrp;
3586         return 0;
3587 }
3588
3589 /**
3590  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3591  * @skb: the packet
3592  * @family: protocol family
3593  * @sid: the packet's peer label SID
3594  *
3595  * Description:
3596  * Check the various different forms of network peer labeling and determine
3597  * the peer label/SID for the packet; most of the magic actually occurs in
3598  * the security server function security_net_peersid_cmp().  The function
3599  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3600  * or -EACCES if @sid is invalid due to inconsistencies with the different
3601  * peer labels.
3602  *
3603  */
3604 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3605 {
3606         int err;
3607         u32 xfrm_sid;
3608         u32 nlbl_sid;
3609         u32 nlbl_type;
3610
3611         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3612         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3613
3614         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3615         if (unlikely(err)) {
3616                 printk(KERN_WARNING
3617                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3618                        " unable to determine packet's peer label\n");
3619                 return -EACCES;
3620         }
3621
3622         return 0;
3623 }
3624
3625 /* socket security operations */
3626 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3627                            u32 perms)
3628 {
3629         struct inode_security_struct *isec;
3630         struct task_security_struct *tsec;
3631         struct avc_audit_data ad;
3632         int err = 0;
3633
3634         tsec = task->cred->security;
3635         isec = SOCK_INODE(sock)->i_security;
3636
3637         if (isec->sid == SECINITSID_KERNEL)
3638                 goto out;
3639
3640         AVC_AUDIT_DATA_INIT(&ad, NET);
3641         ad.u.net.sk = sock->sk;
3642         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3643
3644 out:
3645         return err;
3646 }
3647
3648 static int selinux_socket_create(int family, int type,
3649                                  int protocol, int kern)
3650 {
3651         int err = 0;
3652         struct task_security_struct *tsec;
3653         u32 newsid;
3654
3655         if (kern)
3656                 goto out;
3657
3658         tsec = current->cred->security;
3659         newsid = tsec->sockcreate_sid ? : tsec->sid;
3660         err = avc_has_perm(tsec->sid, newsid,
3661                            socket_type_to_security_class(family, type,
3662                            protocol), SOCKET__CREATE, NULL);
3663
3664 out:
3665         return err;
3666 }
3667
3668 static int selinux_socket_post_create(struct socket *sock, int family,
3669                                       int type, int protocol, int kern)
3670 {
3671         int err = 0;
3672         struct inode_security_struct *isec;
3673         struct task_security_struct *tsec;
3674         struct sk_security_struct *sksec;
3675         u32 newsid;
3676
3677         isec = SOCK_INODE(sock)->i_security;
3678
3679         tsec = current->cred->security;
3680         newsid = tsec->sockcreate_sid ? : tsec->sid;
3681         isec->sclass = socket_type_to_security_class(family, type, protocol);
3682         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3683         isec->initialized = 1;
3684
3685         if (sock->sk) {
3686                 sksec = sock->sk->sk_security;
3687                 sksec->sid = isec->sid;
3688                 sksec->sclass = isec->sclass;
3689                 err = selinux_netlbl_socket_post_create(sock);
3690         }
3691
3692         return err;
3693 }
3694
3695 /* Range of port numbers used to automatically bind.
3696    Need to determine whether we should perform a name_bind
3697    permission check between the socket and the port number. */
3698
3699 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3700 {
3701         u16 family;
3702         int err;
3703
3704         err = socket_has_perm(current, sock, SOCKET__BIND);
3705         if (err)
3706                 goto out;
3707
3708         /*
3709          * If PF_INET or PF_INET6, check name_bind permission for the port.
3710          * Multiple address binding for SCTP is not supported yet: we just
3711          * check the first address now.
3712          */
3713         family = sock->sk->sk_family;
3714         if (family == PF_INET || family == PF_INET6) {
3715                 char *addrp;
3716                 struct inode_security_struct *isec;
3717                 struct task_security_struct *tsec;
3718                 struct avc_audit_data ad;
3719                 struct sockaddr_in *addr4 = NULL;
3720                 struct sockaddr_in6 *addr6 = NULL;
3721                 unsigned short snum;
3722                 struct sock *sk = sock->sk;
3723                 u32 sid, node_perm;
3724
3725                 tsec = current->cred->security;
3726                 isec = SOCK_INODE(sock)->i_security;
3727
3728                 if (family == PF_INET) {
3729                         addr4 = (struct sockaddr_in *)address;
3730                         snum = ntohs(addr4->sin_port);
3731                         addrp = (char *)&addr4->sin_addr.s_addr;
3732                 } else {
3733                         addr6 = (struct sockaddr_in6 *)address;
3734                         snum = ntohs(addr6->sin6_port);
3735                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3736                 }
3737
3738                 if (snum) {
3739                         int low, high;
3740
3741                         inet_get_local_port_range(&low, &high);
3742
3743                         if (snum < max(PROT_SOCK, low) || snum > high) {
3744                                 err = sel_netport_sid(sk->sk_protocol,
3745                                                       snum, &sid);
3746                                 if (err)
3747                                         goto out;
3748                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3749                                 ad.u.net.sport = htons(snum);
3750                                 ad.u.net.family = family;
3751                                 err = avc_has_perm(isec->sid, sid,
3752                                                    isec->sclass,
3753                                                    SOCKET__NAME_BIND, &ad);
3754                                 if (err)
3755                                         goto out;
3756                         }
3757                 }
3758
3759                 switch (isec->sclass) {
3760                 case SECCLASS_TCP_SOCKET:
3761                         node_perm = TCP_SOCKET__NODE_BIND;
3762                         break;
3763
3764                 case SECCLASS_UDP_SOCKET:
3765                         node_perm = UDP_SOCKET__NODE_BIND;
3766                         break;
3767
3768                 case SECCLASS_DCCP_SOCKET:
3769                         node_perm = DCCP_SOCKET__NODE_BIND;
3770                         break;
3771
3772                 default:
3773                         node_perm = RAWIP_SOCKET__NODE_BIND;
3774                         break;
3775                 }
3776
3777                 err = sel_netnode_sid(addrp, family, &sid);
3778                 if (err)
3779                         goto out;
3780
3781                 AVC_AUDIT_DATA_INIT(&ad, NET);
3782                 ad.u.net.sport = htons(snum);
3783                 ad.u.net.family = family;
3784
3785                 if (family == PF_INET)
3786                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3787                 else
3788                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3789
3790                 err = avc_has_perm(isec->sid, sid,
3791                                    isec->sclass, node_perm, &ad);
3792                 if (err)
3793                         goto out;
3794         }
3795 out:
3796         return err;
3797 }
3798
3799 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3800 {
3801         struct sock *sk = sock->sk;
3802         struct inode_security_struct *isec;
3803         int err;
3804
3805         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3806         if (err)
3807                 return err;
3808
3809         /*
3810          * If a TCP or DCCP socket, check name_connect permission for the port.
3811          */
3812         isec = SOCK_INODE(sock)->i_security;
3813         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3814             isec->sclass == SECCLASS_DCCP_SOCKET) {
3815                 struct avc_audit_data ad;
3816                 struct sockaddr_in *addr4 = NULL;
3817                 struct sockaddr_in6 *addr6 = NULL;
3818                 unsigned short snum;
3819                 u32 sid, perm;
3820
3821                 if (sk->sk_family == PF_INET) {
3822                         addr4 = (struct sockaddr_in *)address;
3823                         if (addrlen < sizeof(struct sockaddr_in))
3824                                 return -EINVAL;
3825                         snum = ntohs(addr4->sin_port);
3826                 } else {
3827                         addr6 = (struct sockaddr_in6 *)address;
3828                         if (addrlen < SIN6_LEN_RFC2133)
3829                                 return -EINVAL;
3830                         snum = ntohs(addr6->sin6_port);
3831                 }
3832
3833                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3834                 if (err)
3835                         goto out;
3836
3837                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3838                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3839
3840                 AVC_AUDIT_DATA_INIT(&ad, NET);
3841                 ad.u.net.dport = htons(snum);
3842                 ad.u.net.family = sk->sk_family;
3843                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3844                 if (err)
3845                         goto out;
3846         }
3847
3848         err = selinux_netlbl_socket_connect(sk, address);
3849
3850 out:
3851         return err;
3852 }
3853
3854 static int selinux_socket_listen(struct socket *sock, int backlog)
3855 {
3856         return socket_has_perm(current, sock, SOCKET__LISTEN);
3857 }
3858
3859 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3860 {
3861         int err;
3862         struct inode_security_struct *isec;
3863         struct inode_security_struct *newisec;
3864
3865         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3866         if (err)
3867                 return err;
3868
3869         newisec = SOCK_INODE(newsock)->i_security;
3870
3871         isec = SOCK_INODE(sock)->i_security;
3872         newisec->sclass = isec->sclass;
3873         newisec->sid = isec->sid;
3874         newisec->initialized = 1;
3875
3876         return 0;
3877 }
3878
3879 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3880                                   int size)
3881 {
3882         int rc;
3883
3884         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3885         if (rc)
3886                 return rc;
3887
3888         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3889 }
3890
3891 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3892                                   int size, int flags)
3893 {
3894         return socket_has_perm(current, sock, SOCKET__READ);
3895 }
3896
3897 static int selinux_socket_getsockname(struct socket *sock)
3898 {
3899         return socket_has_perm(current, sock, SOCKET__GETATTR);
3900 }
3901
3902 static int selinux_socket_getpeername(struct socket *sock)
3903 {
3904         return socket_has_perm(current, sock, SOCKET__GETATTR);
3905 }
3906
3907 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3908 {
3909         int err;
3910
3911         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3912         if (err)
3913                 return err;
3914
3915         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3916 }
3917
3918 static int selinux_socket_getsockopt(struct socket *sock, int level,
3919                                      int optname)
3920 {
3921         return socket_has_perm(current, sock, SOCKET__GETOPT);
3922 }
3923
3924 static int selinux_socket_shutdown(struct socket *sock, int how)
3925 {
3926         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3927 }
3928
3929 static int selinux_socket_unix_stream_connect(struct socket *sock,
3930                                               struct socket *other,
3931                                               struct sock *newsk)
3932 {
3933         struct sk_security_struct *ssec;
3934         struct inode_security_struct *isec;
3935         struct inode_security_struct *other_isec;
3936         struct avc_audit_data ad;
3937         int err;
3938
3939         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3940         if (err)
3941                 return err;
3942
3943         isec = SOCK_INODE(sock)->i_security;
3944         other_isec = SOCK_INODE(other)->i_security;
3945
3946         AVC_AUDIT_DATA_INIT(&ad, NET);
3947         ad.u.net.sk = other->sk;
3948
3949         err = avc_has_perm(isec->sid, other_isec->sid,
3950                            isec->sclass,
3951                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3952         if (err)
3953                 return err;
3954
3955         /* connecting socket */
3956         ssec = sock->sk->sk_security;
3957         ssec->peer_sid = other_isec->sid;
3958
3959         /* server child socket */
3960         ssec = newsk->sk_security;
3961         ssec->peer_sid = isec->sid;
3962         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3963
3964         return err;
3965 }
3966
3967 static int selinux_socket_unix_may_send(struct socket *sock,
3968                                         struct socket *other)
3969 {
3970         struct inode_security_struct *isec;
3971         struct inode_security_struct *other_isec;
3972         struct avc_audit_data ad;
3973         int err;
3974
3975         isec = SOCK_INODE(sock)->i_security;
3976         other_isec = SOCK_INODE(other)->i_security;
3977
3978         AVC_AUDIT_DATA_INIT(&ad, NET);
3979         ad.u.net.sk = other->sk;
3980
3981         err = avc_has_perm(isec->sid, other_isec->sid,
3982                            isec->sclass, SOCKET__SENDTO, &ad);
3983         if (err)
3984                 return err;
3985
3986         return 0;
3987 }
3988
3989 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3990                                     u32 peer_sid,
3991                                     struct avc_audit_data *ad)
3992 {
3993         int err;
3994         u32 if_sid;
3995         u32 node_sid;
3996
3997         err = sel_netif_sid(ifindex, &if_sid);
3998         if (err)
3999                 return err;
4000         err = avc_has_perm(peer_sid, if_sid,
4001                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4002         if (err)
4003                 return err;
4004
4005         err = sel_netnode_sid(addrp, family, &node_sid);
4006         if (err)
4007                 return err;
4008         return avc_has_perm(peer_sid, node_sid,
4009                             SECCLASS_NODE, NODE__RECVFROM, ad);
4010 }
4011
4012 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4013                                                 struct sk_buff *skb,
4014                                                 struct avc_audit_data *ad,
4015                                                 u16 family,
4016                                                 char *addrp)
4017 {
4018         int err;
4019         struct sk_security_struct *sksec = sk->sk_security;
4020         u16 sk_class;
4021         u32 netif_perm, node_perm, recv_perm;
4022         u32 port_sid, node_sid, if_sid, sk_sid;
4023
4024         sk_sid = sksec->sid;
4025         sk_class = sksec->sclass;
4026
4027         switch (sk_class) {
4028         case SECCLASS_UDP_SOCKET:
4029                 netif_perm = NETIF__UDP_RECV;
4030                 node_perm = NODE__UDP_RECV;
4031                 recv_perm = UDP_SOCKET__RECV_MSG;
4032                 break;
4033         case SECCLASS_TCP_SOCKET:
4034                 netif_perm = NETIF__TCP_RECV;
4035                 node_perm = NODE__TCP_RECV;
4036                 recv_perm = TCP_SOCKET__RECV_MSG;
4037                 break;
4038         case SECCLASS_DCCP_SOCKET:
4039                 netif_perm = NETIF__DCCP_RECV;
4040                 node_perm = NODE__DCCP_RECV;
4041                 recv_perm = DCCP_SOCKET__RECV_MSG;
4042                 break;
4043         default:
4044                 netif_perm = NETIF__RAWIP_RECV;
4045                 node_perm = NODE__RAWIP_RECV;
4046                 recv_perm = 0;
4047                 break;
4048         }
4049
4050         err = sel_netif_sid(skb->iif, &if_sid);
4051         if (err)
4052                 return err;
4053         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4054         if (err)
4055                 return err;
4056
4057         err = sel_netnode_sid(addrp, family, &node_sid);
4058         if (err)
4059                 return err;
4060         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4061         if (err)
4062                 return err;
4063
4064         if (!recv_perm)
4065                 return 0;
4066         err = sel_netport_sid(sk->sk_protocol,
4067                               ntohs(ad->u.net.sport), &port_sid);
4068         if (unlikely(err)) {
4069                 printk(KERN_WARNING
4070                        "SELinux: failure in"
4071                        " selinux_sock_rcv_skb_iptables_compat(),"
4072                        " network port label not found\n");
4073                 return err;
4074         }
4075         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4076 }
4077
4078 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4079                                        u16 family)
4080 {
4081         int err;
4082         struct sk_security_struct *sksec = sk->sk_security;
4083         u32 peer_sid;
4084         u32 sk_sid = sksec->sid;
4085         struct avc_audit_data ad;
4086         char *addrp;
4087
4088         AVC_AUDIT_DATA_INIT(&ad, NET);
4089         ad.u.net.netif = skb->iif;
4090         ad.u.net.family = family;
4091         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4092         if (err)
4093                 return err;
4094
4095         if (selinux_compat_net)
4096                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4097                                                            family, addrp);
4098         else
4099                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4100                                    PACKET__RECV, &ad);
4101         if (err)
4102                 return err;
4103
4104         if (selinux_policycap_netpeer) {
4105                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4106                 if (err)
4107                         return err;
4108                 err = avc_has_perm(sk_sid, peer_sid,
4109                                    SECCLASS_PEER, PEER__RECV, &ad);
4110                 if (err)
4111                         selinux_netlbl_err(skb, err, 0);
4112         } else {
4113                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4114                 if (err)
4115                         return err;
4116                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4117         }
4118
4119         return err;
4120 }
4121
4122 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4123 {
4124         int err;
4125         struct sk_security_struct *sksec = sk->sk_security;
4126         u16 family = sk->sk_family;
4127         u32 sk_sid = sksec->sid;
4128         struct avc_audit_data ad;
4129         char *addrp;
4130         u8 secmark_active;
4131         u8 peerlbl_active;
4132
4133         if (family != PF_INET && family != PF_INET6)
4134                 return 0;
4135
4136         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4137         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4138                 family = PF_INET;
4139
4140         /* If any sort of compatibility mode is enabled then handoff processing
4141          * to the selinux_sock_rcv_skb_compat() function to deal with the
4142          * special handling.  We do this in an attempt to keep this function
4143          * as fast and as clean as possible. */
4144         if (selinux_compat_net || !selinux_policycap_netpeer)
4145                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4146
4147         secmark_active = selinux_secmark_enabled();
4148         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4149         if (!secmark_active && !peerlbl_active)
4150                 return 0;
4151
4152         AVC_AUDIT_DATA_INIT(&ad, NET);
4153         ad.u.net.netif = skb->iif;
4154         ad.u.net.family = family;
4155         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4156         if (err)
4157                 return err;
4158
4159         if (peerlbl_active) {
4160                 u32 peer_sid;
4161
4162                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4163                 if (err)
4164                         return err;
4165                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4166                                                peer_sid, &ad);
4167                 if (err) {
4168                         selinux_netlbl_err(skb, err, 0);
4169                         return err;
4170                 }
4171                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4172                                    PEER__RECV, &ad);
4173                 if (err)
4174                         selinux_netlbl_err(skb, err, 0);
4175         }
4176
4177         if (secmark_active) {
4178                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4179                                    PACKET__RECV, &ad);
4180                 if (err)
4181                         return err;
4182         }
4183
4184         return err;
4185 }
4186
4187 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4188                                             int __user *optlen, unsigned len)
4189 {
4190         int err = 0;
4191         char *scontext;
4192         u32 scontext_len;
4193         struct sk_security_struct *ssec;
4194         struct inode_security_struct *isec;
4195         u32 peer_sid = SECSID_NULL;
4196
4197         isec = SOCK_INODE(sock)->i_security;
4198
4199         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4200             isec->sclass == SECCLASS_TCP_SOCKET) {
4201                 ssec = sock->sk->sk_security;
4202                 peer_sid = ssec->peer_sid;
4203         }
4204         if (peer_sid == SECSID_NULL) {
4205                 err = -ENOPROTOOPT;
4206                 goto out;
4207         }
4208
4209         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4210
4211         if (err)
4212                 goto out;
4213
4214         if (scontext_len > len) {
4215                 err = -ERANGE;
4216                 goto out_len;
4217         }
4218
4219         if (copy_to_user(optval, scontext, scontext_len))
4220                 err = -EFAULT;
4221
4222 out_len:
4223         if (put_user(scontext_len, optlen))
4224                 err = -EFAULT;
4225
4226         kfree(scontext);
4227 out:
4228         return err;
4229 }
4230
4231 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4232 {
4233         u32 peer_secid = SECSID_NULL;
4234         u16 family;
4235
4236         if (skb && skb->protocol == htons(ETH_P_IP))
4237                 family = PF_INET;
4238         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4239                 family = PF_INET6;
4240         else if (sock)
4241                 family = sock->sk->sk_family;
4242         else
4243                 goto out;
4244
4245         if (sock && family == PF_UNIX)
4246                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4247         else if (skb)
4248                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4249
4250 out:
4251         *secid = peer_secid;
4252         if (peer_secid == SECSID_NULL)
4253                 return -EINVAL;
4254         return 0;
4255 }
4256
4257 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4258 {
4259         return sk_alloc_security(sk, family, priority);
4260 }
4261
4262 static void selinux_sk_free_security(struct sock *sk)
4263 {
4264         sk_free_security(sk);
4265 }
4266
4267 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4268 {
4269         struct sk_security_struct *ssec = sk->sk_security;
4270         struct sk_security_struct *newssec = newsk->sk_security;
4271
4272         newssec->sid = ssec->sid;
4273         newssec->peer_sid = ssec->peer_sid;
4274         newssec->sclass = ssec->sclass;
4275
4276         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4277 }
4278
4279 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4280 {
4281         if (!sk)
4282                 *secid = SECINITSID_ANY_SOCKET;
4283         else {
4284                 struct sk_security_struct *sksec = sk->sk_security;
4285
4286                 *secid = sksec->sid;
4287         }
4288 }
4289
4290 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4291 {
4292         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4293         struct sk_security_struct *sksec = sk->sk_security;
4294
4295         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4296             sk->sk_family == PF_UNIX)
4297                 isec->sid = sksec->sid;
4298         sksec->sclass = isec->sclass;
4299 }
4300
4301 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4302                                      struct request_sock *req)
4303 {
4304         struct sk_security_struct *sksec = sk->sk_security;
4305         int err;
4306         u16 family = sk->sk_family;
4307         u32 newsid;
4308         u32 peersid;
4309
4310         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4311         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4312                 family = PF_INET;
4313
4314         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4315         if (err)
4316                 return err;
4317         if (peersid == SECSID_NULL) {
4318                 req->secid = sksec->sid;
4319                 req->peer_secid = SECSID_NULL;
4320                 return 0;
4321         }
4322
4323         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4324         if (err)
4325                 return err;
4326
4327         req->secid = newsid;
4328         req->peer_secid = peersid;
4329         return 0;
4330 }
4331
4332 static void selinux_inet_csk_clone(struct sock *newsk,
4333                                    const struct request_sock *req)
4334 {
4335         struct sk_security_struct *newsksec = newsk->sk_security;
4336
4337         newsksec->sid = req->secid;
4338         newsksec->peer_sid = req->peer_secid;
4339         /* NOTE: Ideally, we should also get the isec->sid for the
4340            new socket in sync, but we don't have the isec available yet.
4341            So we will wait until sock_graft to do it, by which
4342            time it will have been created and available. */
4343
4344         /* We don't need to take any sort of lock here as we are the only
4345          * thread with access to newsksec */
4346         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4347 }
4348
4349 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4350 {
4351         u16 family = sk->sk_family;
4352         struct sk_security_struct *sksec = sk->sk_security;
4353
4354         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4355         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4356                 family = PF_INET;
4357
4358         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4359
4360         selinux_netlbl_inet_conn_established(sk, family);
4361 }
4362
4363 static void selinux_req_classify_flow(const struct request_sock *req,
4364                                       struct flowi *fl)
4365 {
4366         fl->secid = req->secid;
4367 }
4368
4369 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4370 {
4371         int err = 0;
4372         u32 perm;
4373         struct nlmsghdr *nlh;
4374         struct socket *sock = sk->sk_socket;
4375         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4376
4377         if (skb->len < NLMSG_SPACE(0)) {
4378                 err = -EINVAL;
4379                 goto out;
4380         }
4381         nlh = nlmsg_hdr(skb);
4382
4383         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4384         if (err) {
4385                 if (err == -EINVAL) {
4386                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4387                                   "SELinux:  unrecognized netlink message"
4388                                   " type=%hu for sclass=%hu\n",
4389                                   nlh->nlmsg_type, isec->sclass);
4390                         if (!selinux_enforcing || security_get_allow_unknown())
4391                                 err = 0;
4392                 }
4393
4394                 /* Ignore */
4395                 if (err == -ENOENT)
4396                         err = 0;
4397                 goto out;
4398         }
4399
4400         err = socket_has_perm(current, sock, perm);
4401 out:
4402         return err;
4403 }
4404
4405 #ifdef CONFIG_NETFILTER
4406
4407 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4408                                        u16 family)
4409 {
4410         int err;
4411         char *addrp;
4412         u32 peer_sid;
4413         struct avc_audit_data ad;
4414         u8 secmark_active;
4415         u8 netlbl_active;
4416         u8 peerlbl_active;
4417
4418         if (!selinux_policycap_netpeer)
4419                 return NF_ACCEPT;
4420
4421         secmark_active = selinux_secmark_enabled();
4422         netlbl_active = netlbl_enabled();
4423         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4424         if (!secmark_active && !peerlbl_active)
4425                 return NF_ACCEPT;
4426
4427         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4428                 return NF_DROP;
4429
4430         AVC_AUDIT_DATA_INIT(&ad, NET);
4431         ad.u.net.netif = ifindex;
4432         ad.u.net.family = family;
4433         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4434                 return NF_DROP;
4435
4436         if (peerlbl_active) {
4437                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4438                                                peer_sid, &ad);
4439                 if (err) {
4440                         selinux_netlbl_err(skb, err, 1);
4441                         return NF_DROP;
4442                 }
4443         }
4444
4445         if (secmark_active)
4446                 if (avc_has_perm(peer_sid, skb->secmark,
4447                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4448                         return NF_DROP;
4449
4450         if (netlbl_active)
4451                 /* we do this in the FORWARD path and not the POST_ROUTING
4452                  * path because we want to make sure we apply the necessary
4453                  * labeling before IPsec is applied so we can leverage AH
4454                  * protection */
4455                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4456                         return NF_DROP;
4457
4458         return NF_ACCEPT;
4459 }
4460
4461 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4462                                          struct sk_buff *skb,
4463                                          const struct net_device *in,
4464                                          const struct net_device *out,
4465                                          int (*okfn)(struct sk_buff *))
4466 {
4467         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4468 }
4469
4470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4471 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4472                                          struct sk_buff *skb,
4473                                          const struct net_device *in,
4474                                          const struct net_device *out,
4475                                          int (*okfn)(struct sk_buff *))
4476 {
4477         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4478 }
4479 #endif  /* IPV6 */
4480
4481 static unsigned int selinux_ip_output(struct sk_buff *skb,
4482                                       u16 family)
4483 {
4484         u32 sid;
4485
4486         if (!netlbl_enabled())
4487                 return NF_ACCEPT;
4488
4489         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4490          * because we want to make sure we apply the necessary labeling
4491          * before IPsec is applied so we can leverage AH protection */
4492         if (skb->sk) {
4493                 struct sk_security_struct *sksec = skb->sk->sk_security;
4494                 sid = sksec->sid;
4495         } else
4496                 sid = SECINITSID_KERNEL;
4497         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4498                 return NF_DROP;
4499
4500         return NF_ACCEPT;
4501 }
4502
4503 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4504                                         struct sk_buff *skb,
4505                                         const struct net_device *in,
4506                                         const struct net_device *out,
4507                                         int (*okfn)(struct sk_buff *))
4508 {
4509         return selinux_ip_output(skb, PF_INET);
4510 }
4511
4512 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4513                                                 int ifindex,
4514                                                 struct avc_audit_data *ad,
4515                                                 u16 family, char *addrp)
4516 {
4517         int err;
4518         struct sk_security_struct *sksec = sk->sk_security;
4519         u16 sk_class;
4520         u32 netif_perm, node_perm, send_perm;
4521         u32 port_sid, node_sid, if_sid, sk_sid;
4522
4523         sk_sid = sksec->sid;
4524         sk_class = sksec->sclass;
4525
4526         switch (sk_class) {
4527         case SECCLASS_UDP_SOCKET:
4528                 netif_perm = NETIF__UDP_SEND;
4529                 node_perm = NODE__UDP_SEND;
4530                 send_perm = UDP_SOCKET__SEND_MSG;
4531                 break;
4532         case SECCLASS_TCP_SOCKET:
4533                 netif_perm = NETIF__TCP_SEND;
4534                 node_perm = NODE__TCP_SEND;
4535                 send_perm = TCP_SOCKET__SEND_MSG;
4536                 break;
4537         case SECCLASS_DCCP_SOCKET:
4538                 netif_perm = NETIF__DCCP_SEND;
4539                 node_perm = NODE__DCCP_SEND;
4540                 send_perm = DCCP_SOCKET__SEND_MSG;
4541                 break;
4542         default:
4543                 netif_perm = NETIF__RAWIP_SEND;
4544                 node_perm = NODE__RAWIP_SEND;
4545                 send_perm = 0;
4546                 break;
4547         }
4548
4549         err = sel_netif_sid(ifindex, &if_sid);
4550         if (err)
4551                 return err;
4552         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4553                 return err;
4554
4555         err = sel_netnode_sid(addrp, family, &node_sid);
4556         if (err)
4557                 return err;
4558         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4559         if (err)
4560                 return err;
4561
4562         if (send_perm != 0)
4563                 return 0;
4564
4565         err = sel_netport_sid(sk->sk_protocol,
4566                               ntohs(ad->u.net.dport), &port_sid);
4567         if (unlikely(err)) {
4568                 printk(KERN_WARNING
4569                        "SELinux: failure in"
4570                        " selinux_ip_postroute_iptables_compat(),"
4571                        " network port label not found\n");
4572                 return err;
4573         }
4574         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4575 }
4576
4577 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4578                                                 int ifindex,
4579                                                 u16 family)
4580 {
4581         struct sock *sk = skb->sk;
4582         struct sk_security_struct *sksec;
4583         struct avc_audit_data ad;
4584         char *addrp;
4585         u8 proto;
4586
4587         if (sk == NULL)
4588                 return NF_ACCEPT;
4589         sksec = sk->sk_security;
4590
4591         AVC_AUDIT_DATA_INIT(&ad, NET);
4592         ad.u.net.netif = ifindex;
4593         ad.u.net.family = family;
4594         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4595                 return NF_DROP;
4596
4597         if (selinux_compat_net) {
4598                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4599                                                          &ad, family, addrp))
4600                         return NF_DROP;
4601         } else {
4602                 if (avc_has_perm(sksec->sid, skb->secmark,
4603                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4604                         return NF_DROP;
4605         }
4606
4607         if (selinux_policycap_netpeer)
4608                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4609                         return NF_DROP;
4610
4611         return NF_ACCEPT;
4612 }
4613
4614 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4615                                          u16 family)
4616 {
4617         u32 secmark_perm;
4618         u32 peer_sid;
4619         struct sock *sk;
4620         struct avc_audit_data ad;
4621         char *addrp;
4622         u8 secmark_active;
4623         u8 peerlbl_active;
4624
4625         /* If any sort of compatibility mode is enabled then handoff processing
4626          * to the selinux_ip_postroute_compat() function to deal with the
4627          * special handling.  We do this in an attempt to keep this function
4628          * as fast and as clean as possible. */
4629         if (selinux_compat_net || !selinux_policycap_netpeer)
4630                 return selinux_ip_postroute_compat(skb, ifindex, family);
4631
4632         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4633          * packet transformation so allow the packet to pass without any checks
4634          * since we'll have another chance to perform access control checks
4635          * when the packet is on it's final way out.
4636          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4637          *       is NULL, in this case go ahead and apply access control. */
4638         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4639                 return NF_ACCEPT;
4640
4641         secmark_active = selinux_secmark_enabled();
4642         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4643         if (!secmark_active && !peerlbl_active)
4644                 return NF_ACCEPT;
4645
4646         /* if the packet is being forwarded then get the peer label from the
4647          * packet itself; otherwise check to see if it is from a local
4648          * application or the kernel, if from an application get the peer label
4649          * from the sending socket, otherwise use the kernel's sid */
4650         sk = skb->sk;
4651         if (sk == NULL) {
4652                 switch (family) {
4653                 case PF_INET:
4654                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4655                                 secmark_perm = PACKET__FORWARD_OUT;
4656                         else
4657                                 secmark_perm = PACKET__SEND;
4658                         break;
4659                 case PF_INET6:
4660                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4661                                 secmark_perm = PACKET__FORWARD_OUT;
4662                         else
4663                                 secmark_perm = PACKET__SEND;
4664                         break;
4665                 default:
4666                         return NF_DROP;
4667                 }
4668                 if (secmark_perm == PACKET__FORWARD_OUT) {
4669                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4670                                 return NF_DROP;
4671                 } else
4672                         peer_sid = SECINITSID_KERNEL;
4673         } else {
4674                 struct sk_security_struct *sksec = sk->sk_security;
4675                 peer_sid = sksec->sid;
4676                 secmark_perm = PACKET__SEND;
4677         }
4678
4679         AVC_AUDIT_DATA_INIT(&ad, NET);
4680         ad.u.net.netif = ifindex;
4681         ad.u.net.family = family;
4682         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4683                 return NF_DROP;
4684
4685         if (secmark_active)
4686                 if (avc_has_perm(peer_sid, skb->secmark,
4687                                  SECCLASS_PACKET, secmark_perm, &ad))
4688                         return NF_DROP;
4689
4690         if (peerlbl_active) {
4691                 u32 if_sid;
4692                 u32 node_sid;
4693
4694                 if (sel_netif_sid(ifindex, &if_sid))
4695                         return NF_DROP;
4696                 if (avc_has_perm(peer_sid, if_sid,
4697                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4698                         return NF_DROP;
4699
4700                 if (sel_netnode_sid(addrp, family, &node_sid))
4701                         return NF_DROP;
4702                 if (avc_has_perm(peer_sid, node_sid,
4703                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4704                         return NF_DROP;
4705         }
4706
4707         return NF_ACCEPT;
4708 }
4709
4710 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4711                                            struct sk_buff *skb,
4712                                            const struct net_device *in,
4713                                            const struct net_device *out,
4714                                            int (*okfn)(struct sk_buff *))
4715 {
4716         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4717 }
4718
4719 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4720 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4721                                            struct sk_buff *skb,
4722                                            const struct net_device *in,
4723                                            const struct net_device *out,
4724                                            int (*okfn)(struct sk_buff *))
4725 {
4726         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4727 }
4728 #endif  /* IPV6 */
4729
4730 #endif  /* CONFIG_NETFILTER */
4731
4732 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4733 {
4734         int err;
4735
4736         err = secondary_ops->netlink_send(sk, skb);
4737         if (err)
4738                 return err;
4739
4740         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4741                 err = selinux_nlmsg_perm(sk, skb);
4742
4743         return err;
4744 }
4745
4746 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4747 {
4748         int err;
4749         struct avc_audit_data ad;
4750
4751         err = secondary_ops->netlink_recv(skb, capability);
4752         if (err)
4753                 return err;
4754
4755         AVC_AUDIT_DATA_INIT(&ad, CAP);
4756         ad.u.cap = capability;
4757
4758         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4759                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4760 }
4761
4762 static int ipc_alloc_security(struct task_struct *task,
4763                               struct kern_ipc_perm *perm,
4764                               u16 sclass)
4765 {
4766         struct task_security_struct *tsec = task->cred->security;
4767         struct ipc_security_struct *isec;
4768
4769         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4770         if (!isec)
4771                 return -ENOMEM;
4772
4773         isec->sclass = sclass;
4774         isec->sid = tsec->sid;
4775         perm->security = isec;
4776
4777         return 0;
4778 }
4779
4780 static void ipc_free_security(struct kern_ipc_perm *perm)
4781 {
4782         struct ipc_security_struct *isec = perm->security;
4783         perm->security = NULL;
4784         kfree(isec);
4785 }
4786
4787 static int msg_msg_alloc_security(struct msg_msg *msg)
4788 {
4789         struct msg_security_struct *msec;
4790
4791         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4792         if (!msec)
4793                 return -ENOMEM;
4794
4795         msec->sid = SECINITSID_UNLABELED;
4796         msg->security = msec;
4797
4798         return 0;
4799 }
4800
4801 static void msg_msg_free_security(struct msg_msg *msg)
4802 {
4803         struct msg_security_struct *msec = msg->security;
4804
4805         msg->security = NULL;
4806         kfree(msec);
4807 }
4808
4809 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4810                         u32 perms)
4811 {
4812         struct task_security_struct *tsec;
4813         struct ipc_security_struct *isec;
4814         struct avc_audit_data ad;
4815
4816         tsec = current->cred->security;
4817         isec = ipc_perms->security;
4818
4819         AVC_AUDIT_DATA_INIT(&ad, IPC);
4820         ad.u.ipc_id = ipc_perms->key;
4821
4822         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4823 }
4824
4825 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4826 {
4827         return msg_msg_alloc_security(msg);
4828 }
4829
4830 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4831 {
4832         msg_msg_free_security(msg);
4833 }
4834
4835 /* message queue security operations */
4836 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4837 {
4838         struct task_security_struct *tsec;
4839         struct ipc_security_struct *isec;
4840         struct avc_audit_data ad;
4841         int rc;
4842
4843         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4844         if (rc)
4845                 return rc;
4846
4847         tsec = current->cred->security;
4848         isec = msq->q_perm.security;
4849
4850         AVC_AUDIT_DATA_INIT(&ad, IPC);
4851         ad.u.ipc_id = msq->q_perm.key;
4852
4853         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4854                           MSGQ__CREATE, &ad);
4855         if (rc) {
4856                 ipc_free_security(&msq->q_perm);
4857                 return rc;
4858         }
4859         return 0;
4860 }
4861
4862 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4863 {
4864         ipc_free_security(&msq->q_perm);
4865 }
4866
4867 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4868 {
4869         struct task_security_struct *tsec;
4870         struct ipc_security_struct *isec;
4871         struct avc_audit_data ad;
4872
4873         tsec = current->cred->security;
4874         isec = msq->q_perm.security;
4875
4876         AVC_AUDIT_DATA_INIT(&ad, IPC);
4877         ad.u.ipc_id = msq->q_perm.key;
4878
4879         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4880                             MSGQ__ASSOCIATE, &ad);
4881 }
4882
4883 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4884 {
4885         int err;
4886         int perms;
4887
4888         switch (cmd) {
4889         case IPC_INFO:
4890         case MSG_INFO:
4891                 /* No specific object, just general system-wide information. */
4892                 return task_has_system(current, SYSTEM__IPC_INFO);
4893         case IPC_STAT:
4894         case MSG_STAT:
4895                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4896                 break;
4897         case IPC_SET:
4898                 perms = MSGQ__SETATTR;
4899                 break;
4900         case IPC_RMID:
4901                 perms = MSGQ__DESTROY;
4902                 break;
4903         default:
4904                 return 0;
4905         }
4906
4907         err = ipc_has_perm(&msq->q_perm, perms);
4908         return err;
4909 }
4910
4911 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4912 {
4913         struct task_security_struct *tsec;
4914         struct ipc_security_struct *isec;
4915         struct msg_security_struct *msec;
4916         struct avc_audit_data ad;
4917         int rc;
4918
4919         tsec = current->cred->security;
4920         isec = msq->q_perm.security;
4921         msec = msg->security;
4922
4923         /*
4924          * First time through, need to assign label to the message
4925          */
4926         if (msec->sid == SECINITSID_UNLABELED) {
4927                 /*
4928                  * Compute new sid based on current process and
4929                  * message queue this message will be stored in
4930                  */
4931                 rc = security_transition_sid(tsec->sid,
4932                                              isec->sid,
4933                                              SECCLASS_MSG,
4934                                              &msec->sid);
4935                 if (rc)
4936                         return rc;
4937         }
4938
4939         AVC_AUDIT_DATA_INIT(&ad, IPC);
4940         ad.u.ipc_id = msq->q_perm.key;
4941
4942         /* Can this process write to the queue? */
4943         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4944                           MSGQ__WRITE, &ad);
4945         if (!rc)
4946                 /* Can this process send the message */
4947                 rc = avc_has_perm(tsec->sid, msec->sid,
4948                                   SECCLASS_MSG, MSG__SEND, &ad);
4949         if (!rc)
4950                 /* Can the message be put in the queue? */
4951                 rc = avc_has_perm(msec->sid, isec->sid,
4952                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4953
4954         return rc;
4955 }
4956
4957 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4958                                     struct task_struct *target,
4959                                     long type, int mode)
4960 {
4961         struct task_security_struct *tsec;
4962         struct ipc_security_struct *isec;
4963         struct msg_security_struct *msec;
4964         struct avc_audit_data ad;
4965         int rc;
4966
4967         tsec = target->cred->security;
4968         isec = msq->q_perm.security;
4969         msec = msg->security;
4970
4971         AVC_AUDIT_DATA_INIT(&ad, IPC);
4972         ad.u.ipc_id = msq->q_perm.key;
4973
4974         rc = avc_has_perm(tsec->sid, isec->sid,
4975                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4976         if (!rc)
4977                 rc = avc_has_perm(tsec->sid, msec->sid,
4978                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4979         return rc;
4980 }
4981
4982 /* Shared Memory security operations */
4983 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4984 {
4985         struct task_security_struct *tsec;
4986         struct ipc_security_struct *isec;
4987         struct avc_audit_data ad;
4988         int rc;
4989
4990         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4991         if (rc)
4992                 return rc;
4993
4994         tsec = current->cred->security;
4995         isec = shp->shm_perm.security;
4996
4997         AVC_AUDIT_DATA_INIT(&ad, IPC);
4998         ad.u.ipc_id = shp->shm_perm.key;
4999
5000         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5001                           SHM__CREATE, &ad);
5002         if (rc) {
5003                 ipc_free_security(&shp->shm_perm);
5004                 return rc;
5005         }
5006         return 0;
5007 }
5008
5009 static void selinux_shm_free_security(struct shmid_kernel *shp)
5010 {
5011         ipc_free_security(&shp->shm_perm);
5012 }
5013
5014 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5015 {
5016         struct task_security_struct *tsec;
5017         struct ipc_security_struct *isec;
5018         struct avc_audit_data ad;
5019
5020         tsec = current->cred->security;
5021         isec = shp->shm_perm.security;
5022
5023         AVC_AUDIT_DATA_INIT(&ad, IPC);
5024         ad.u.ipc_id = shp->shm_perm.key;
5025
5026         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5027                             SHM__ASSOCIATE, &ad);
5028 }
5029
5030 /* Note, at this point, shp is locked down */
5031 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5032 {
5033         int perms;
5034         int err;
5035
5036         switch (cmd) {
5037         case IPC_INFO:
5038         case SHM_INFO:
5039                 /* No specific object, just general system-wide information. */
5040                 return task_has_system(current, SYSTEM__IPC_INFO);
5041         case IPC_STAT:
5042         case SHM_STAT:
5043                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5044                 break;
5045         case IPC_SET:
5046                 perms = SHM__SETATTR;
5047                 break;
5048         case SHM_LOCK:
5049         case SHM_UNLOCK:
5050                 perms = SHM__LOCK;
5051                 break;
5052         case IPC_RMID:
5053                 perms = SHM__DESTROY;
5054                 break;
5055         default:
5056                 return 0;
5057         }
5058
5059         err = ipc_has_perm(&shp->shm_perm, perms);
5060         return err;
5061 }
5062
5063 static int selinux_shm_shmat(struct shmid_kernel *shp,
5064                              char __user *shmaddr, int shmflg)
5065 {
5066         u32 perms;
5067         int rc;
5068
5069         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5070         if (rc)
5071                 return rc;
5072
5073         if (shmflg & SHM_RDONLY)
5074                 perms = SHM__READ;
5075         else
5076                 perms = SHM__READ | SHM__WRITE;
5077
5078         return ipc_has_perm(&shp->shm_perm, perms);
5079 }
5080
5081 /* Semaphore security operations */
5082 static int selinux_sem_alloc_security(struct sem_array *sma)
5083 {
5084         struct task_security_struct *tsec;
5085         struct ipc_security_struct *isec;
5086         struct avc_audit_data ad;
5087         int rc;
5088
5089         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5090         if (rc)
5091                 return rc;
5092
5093         tsec = current->cred->security;
5094         isec = sma->sem_perm.security;
5095
5096         AVC_AUDIT_DATA_INIT(&ad, IPC);
5097         ad.u.ipc_id = sma->sem_perm.key;
5098
5099         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5100                           SEM__CREATE, &ad);
5101         if (rc) {
5102                 ipc_free_security(&sma->sem_perm);
5103                 return rc;
5104         }
5105         return 0;
5106 }
5107
5108 static void selinux_sem_free_security(struct sem_array *sma)
5109 {
5110         ipc_free_security(&sma->sem_perm);
5111 }
5112
5113 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5114 {
5115         struct task_security_struct *tsec;
5116         struct ipc_security_struct *isec;
5117         struct avc_audit_data ad;
5118
5119         tsec = current->cred->security;
5120         isec = sma->sem_perm.security;
5121
5122         AVC_AUDIT_DATA_INIT(&ad, IPC);
5123         ad.u.ipc_id = sma->sem_perm.key;
5124
5125         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5126                             SEM__ASSOCIATE, &ad);
5127 }
5128
5129 /* Note, at this point, sma is locked down */
5130 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5131 {
5132         int err;
5133         u32 perms;
5134
5135         switch (cmd) {
5136         case IPC_INFO:
5137         case SEM_INFO:
5138                 /* No specific object, just general system-wide information. */
5139                 return task_has_system(current, SYSTEM__IPC_INFO);
5140         case GETPID:
5141         case GETNCNT:
5142         case GETZCNT:
5143                 perms = SEM__GETATTR;
5144                 break;
5145         case GETVAL:
5146         case GETALL:
5147                 perms = SEM__READ;
5148                 break;
5149         case SETVAL:
5150         case SETALL:
5151                 perms = SEM__WRITE;
5152                 break;
5153         case IPC_RMID:
5154                 perms = SEM__DESTROY;
5155                 break;
5156         case IPC_SET:
5157                 perms = SEM__SETATTR;
5158                 break;
5159         case IPC_STAT:
5160         case SEM_STAT:
5161                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5162                 break;
5163         default:
5164                 return 0;
5165         }
5166
5167         err = ipc_has_perm(&sma->sem_perm, perms);
5168         return err;
5169 }
5170
5171 static int selinux_sem_semop(struct sem_array *sma,
5172                              struct sembuf *sops, unsigned nsops, int alter)
5173 {
5174         u32 perms;
5175
5176         if (alter)
5177                 perms = SEM__READ | SEM__WRITE;
5178         else
5179                 perms = SEM__READ;
5180
5181         return ipc_has_perm(&sma->sem_perm, perms);
5182 }
5183
5184 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5185 {
5186         u32 av = 0;
5187
5188         av = 0;
5189         if (flag & S_IRUGO)
5190                 av |= IPC__UNIX_READ;
5191         if (flag & S_IWUGO)
5192                 av |= IPC__UNIX_WRITE;
5193
5194         if (av == 0)
5195                 return 0;
5196
5197         return ipc_has_perm(ipcp, av);
5198 }
5199
5200 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5201 {
5202         struct ipc_security_struct *isec = ipcp->security;
5203         *secid = isec->sid;
5204 }
5205
5206 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5207 {
5208         if (inode)
5209                 inode_doinit_with_dentry(inode, dentry);
5210 }
5211
5212 static int selinux_getprocattr(struct task_struct *p,
5213                                char *name, char **value)
5214 {
5215         struct task_security_struct *tsec;
5216         u32 sid;
5217         int error;
5218         unsigned len;
5219
5220         if (current != p) {
5221                 error = task_has_perm(current, p, PROCESS__GETATTR);
5222                 if (error)
5223                         return error;
5224         }
5225
5226         tsec = p->cred->security;
5227
5228         if (!strcmp(name, "current"))
5229                 sid = tsec->sid;
5230         else if (!strcmp(name, "prev"))
5231                 sid = tsec->osid;
5232         else if (!strcmp(name, "exec"))
5233                 sid = tsec->exec_sid;
5234         else if (!strcmp(name, "fscreate"))
5235                 sid = tsec->create_sid;
5236         else if (!strcmp(name, "keycreate"))
5237                 sid = tsec->keycreate_sid;
5238         else if (!strcmp(name, "sockcreate"))
5239                 sid = tsec->sockcreate_sid;
5240         else
5241                 return -EINVAL;
5242
5243         if (!sid)
5244                 return 0;
5245
5246         error = security_sid_to_context(sid, value, &len);
5247         if (error)
5248                 return error;
5249         return len;
5250 }
5251
5252 static int selinux_setprocattr(struct task_struct *p,
5253                                char *name, void *value, size_t size)
5254 {
5255         struct task_security_struct *tsec;
5256         struct task_struct *tracer;
5257         u32 sid = 0;
5258         int error;
5259         char *str = value;
5260
5261         if (current != p) {
5262                 /* SELinux only allows a process to change its own
5263                    security attributes. */
5264                 return -EACCES;
5265         }
5266
5267         /*
5268          * Basic control over ability to set these attributes at all.
5269          * current == p, but we'll pass them separately in case the
5270          * above restriction is ever removed.
5271          */
5272         if (!strcmp(name, "exec"))
5273                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5274         else if (!strcmp(name, "fscreate"))
5275                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5276         else if (!strcmp(name, "keycreate"))
5277                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5278         else if (!strcmp(name, "sockcreate"))
5279                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5280         else if (!strcmp(name, "current"))
5281                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5282         else
5283                 error = -EINVAL;
5284         if (error)
5285                 return error;
5286
5287         /* Obtain a SID for the context, if one was specified. */
5288         if (size && str[1] && str[1] != '\n') {
5289                 if (str[size-1] == '\n') {
5290                         str[size-1] = 0;
5291                         size--;
5292                 }
5293                 error = security_context_to_sid(value, size, &sid);
5294                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5295                         if (!capable(CAP_MAC_ADMIN))
5296                                 return error;
5297                         error = security_context_to_sid_force(value, size,
5298                                                               &sid);
5299                 }
5300                 if (error)
5301                         return error;
5302         }
5303
5304         /* Permission checking based on the specified context is
5305            performed during the actual operation (execve,
5306            open/mkdir/...), when we know the full context of the
5307            operation.  See selinux_bprm_set_security for the execve
5308            checks and may_create for the file creation checks. The
5309            operation will then fail if the context is not permitted. */
5310         tsec = p->cred->security;
5311         if (!strcmp(name, "exec"))
5312                 tsec->exec_sid = sid;
5313         else if (!strcmp(name, "fscreate"))
5314                 tsec->create_sid = sid;
5315         else if (!strcmp(name, "keycreate")) {
5316                 error = may_create_key(sid, p);
5317                 if (error)
5318                         return error;
5319                 tsec->keycreate_sid = sid;
5320         } else if (!strcmp(name, "sockcreate"))
5321                 tsec->sockcreate_sid = sid;
5322         else if (!strcmp(name, "current")) {
5323                 struct av_decision avd;
5324
5325                 if (sid == 0)
5326                         return -EINVAL;
5327                 /*
5328                  * SELinux allows to change context in the following case only.
5329                  *  - Single threaded processes.
5330                  *  - Multi threaded processes intend to change its context into
5331                  *    more restricted domain (defined by TYPEBOUNDS statement).
5332                  */
5333                 if (atomic_read(&p->mm->mm_users) != 1) {
5334                         struct task_struct *g, *t;
5335                         struct mm_struct *mm = p->mm;
5336                         read_lock(&tasklist_lock);
5337                         do_each_thread(g, t) {
5338                                 if (t->mm == mm && t != p) {
5339                                         read_unlock(&tasklist_lock);
5340                                         error = security_bounded_transition(tsec->sid, sid);
5341                                         if (!error)
5342                                                 goto boundary_ok;
5343
5344                                         return error;
5345                                 }
5346                         } while_each_thread(g, t);
5347                         read_unlock(&tasklist_lock);
5348                 }
5349 boundary_ok:
5350
5351                 /* Check permissions for the transition. */
5352                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5353                                      PROCESS__DYNTRANSITION, NULL);
5354                 if (error)
5355                         return error;
5356
5357                 /* Check for ptracing, and update the task SID if ok.
5358                    Otherwise, leave SID unchanged and fail. */
5359                 task_lock(p);
5360                 rcu_read_lock();
5361                 tracer = tracehook_tracer_task(p);
5362                 if (tracer != NULL) {
5363                         struct task_security_struct *ptsec =
5364                                 tracer->cred->security;
5365                         u32 ptsid = ptsec->sid;
5366                         rcu_read_unlock();
5367                         error = avc_has_perm_noaudit(ptsid, sid,
5368                                                      SECCLASS_PROCESS,
5369                                                      PROCESS__PTRACE, 0, &avd);
5370                         if (!error)
5371                                 tsec->sid = sid;
5372                         task_unlock(p);
5373                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5374                                   PROCESS__PTRACE, &avd, error, NULL);
5375                         if (error)
5376                                 return error;
5377                 } else {
5378                         rcu_read_unlock();
5379                         tsec->sid = sid;
5380                         task_unlock(p);
5381                 }
5382         } else
5383                 return -EINVAL;
5384
5385         return size;
5386 }
5387
5388 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5389 {
5390         return security_sid_to_context(secid, secdata, seclen);
5391 }
5392
5393 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5394 {
5395         return security_context_to_sid(secdata, seclen, secid);
5396 }
5397
5398 static void selinux_release_secctx(char *secdata, u32 seclen)
5399 {
5400         kfree(secdata);
5401 }
5402
5403 #ifdef CONFIG_KEYS
5404
5405 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5406                              unsigned long flags)
5407 {
5408         struct task_security_struct *tsec = tsk->cred->security;
5409         struct key_security_struct *ksec;
5410
5411         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5412         if (!ksec)
5413                 return -ENOMEM;
5414
5415         if (tsec->keycreate_sid)
5416                 ksec->sid = tsec->keycreate_sid;
5417         else
5418                 ksec->sid = tsec->sid;
5419         k->security = ksec;
5420
5421         return 0;
5422 }
5423
5424 static void selinux_key_free(struct key *k)
5425 {
5426         struct key_security_struct *ksec = k->security;
5427
5428         k->security = NULL;
5429         kfree(ksec);
5430 }
5431
5432 static int selinux_key_permission(key_ref_t key_ref,
5433                             struct task_struct *ctx,
5434                             key_perm_t perm)
5435 {
5436         struct key *key;
5437         struct task_security_struct *tsec;
5438         struct key_security_struct *ksec;
5439
5440         key = key_ref_to_ptr(key_ref);
5441
5442         tsec = ctx->cred->security;
5443         ksec = key->security;
5444
5445         /* if no specific permissions are requested, we skip the
5446            permission check. No serious, additional covert channels
5447            appear to be created. */
5448         if (perm == 0)
5449                 return 0;
5450
5451         return avc_has_perm(tsec->sid, ksec->sid,
5452                             SECCLASS_KEY, perm, NULL);
5453 }
5454
5455 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5456 {
5457         struct key_security_struct *ksec = key->security;
5458         char *context = NULL;
5459         unsigned len;
5460         int rc;
5461
5462         rc = security_sid_to_context(ksec->sid, &context, &len);
5463         if (!rc)
5464                 rc = len;
5465         *_buffer = context;
5466         return rc;
5467 }
5468
5469 #endif
5470
5471 static struct security_operations selinux_ops = {
5472         .name =                         "selinux",
5473
5474         .ptrace_may_access =            selinux_ptrace_may_access,
5475         .ptrace_traceme =               selinux_ptrace_traceme,
5476         .capget =                       selinux_capget,
5477         .capset_check =                 selinux_capset_check,
5478         .capset_set =                   selinux_capset_set,
5479         .sysctl =                       selinux_sysctl,
5480         .capable =                      selinux_capable,
5481         .quotactl =                     selinux_quotactl,
5482         .quota_on =                     selinux_quota_on,
5483         .syslog =                       selinux_syslog,
5484         .vm_enough_memory =             selinux_vm_enough_memory,
5485
5486         .netlink_send =                 selinux_netlink_send,
5487         .netlink_recv =                 selinux_netlink_recv,
5488
5489         .bprm_alloc_security =          selinux_bprm_alloc_security,
5490         .bprm_free_security =           selinux_bprm_free_security,
5491         .bprm_apply_creds =             selinux_bprm_apply_creds,
5492         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5493         .bprm_set_security =            selinux_bprm_set_security,
5494         .bprm_check_security =          selinux_bprm_check_security,
5495         .bprm_secureexec =              selinux_bprm_secureexec,
5496
5497         .sb_alloc_security =            selinux_sb_alloc_security,
5498         .sb_free_security =             selinux_sb_free_security,
5499         .sb_copy_data =                 selinux_sb_copy_data,
5500         .sb_kern_mount =                selinux_sb_kern_mount,
5501         .sb_show_options =              selinux_sb_show_options,
5502         .sb_statfs =                    selinux_sb_statfs,
5503         .sb_mount =                     selinux_mount,
5504         .sb_umount =                    selinux_umount,
5505         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5506         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5507         .sb_parse_opts_str =            selinux_parse_opts_str,
5508
5509
5510         .inode_alloc_security =         selinux_inode_alloc_security,
5511         .inode_free_security =          selinux_inode_free_security,
5512         .inode_init_security =          selinux_inode_init_security,
5513         .inode_create =                 selinux_inode_create,
5514         .inode_link =                   selinux_inode_link,
5515         .inode_unlink =                 selinux_inode_unlink,
5516         .inode_symlink =                selinux_inode_symlink,
5517         .inode_mkdir =                  selinux_inode_mkdir,
5518         .inode_rmdir =                  selinux_inode_rmdir,
5519         .inode_mknod =                  selinux_inode_mknod,
5520         .inode_rename =                 selinux_inode_rename,
5521         .inode_readlink =               selinux_inode_readlink,
5522         .inode_follow_link =            selinux_inode_follow_link,
5523         .inode_permission =             selinux_inode_permission,
5524         .inode_setattr =                selinux_inode_setattr,
5525         .inode_getattr =                selinux_inode_getattr,
5526         .inode_setxattr =               selinux_inode_setxattr,
5527         .inode_post_setxattr =          selinux_inode_post_setxattr,
5528         .inode_getxattr =               selinux_inode_getxattr,
5529         .inode_listxattr =              selinux_inode_listxattr,
5530         .inode_removexattr =            selinux_inode_removexattr,
5531         .inode_getsecurity =            selinux_inode_getsecurity,
5532         .inode_setsecurity =            selinux_inode_setsecurity,
5533         .inode_listsecurity =           selinux_inode_listsecurity,
5534         .inode_need_killpriv =          selinux_inode_need_killpriv,
5535         .inode_killpriv =               selinux_inode_killpriv,
5536         .inode_getsecid =               selinux_inode_getsecid,
5537
5538         .file_permission =              selinux_file_permission,
5539         .file_alloc_security =          selinux_file_alloc_security,
5540         .file_free_security =           selinux_file_free_security,
5541         .file_ioctl =                   selinux_file_ioctl,
5542         .file_mmap =                    selinux_file_mmap,
5543         .file_mprotect =                selinux_file_mprotect,
5544         .file_lock =                    selinux_file_lock,
5545         .file_fcntl =                   selinux_file_fcntl,
5546         .file_set_fowner =              selinux_file_set_fowner,
5547         .file_send_sigiotask =          selinux_file_send_sigiotask,
5548         .file_receive =                 selinux_file_receive,
5549
5550         .dentry_open =                  selinux_dentry_open,
5551
5552         .task_create =                  selinux_task_create,
5553         .cred_alloc_security =          selinux_cred_alloc_security,
5554         .cred_free =                    selinux_cred_free,
5555         .task_setuid =                  selinux_task_setuid,
5556         .task_post_setuid =             selinux_task_post_setuid,
5557         .task_setgid =                  selinux_task_setgid,
5558         .task_setpgid =                 selinux_task_setpgid,
5559         .task_getpgid =                 selinux_task_getpgid,
5560         .task_getsid =                  selinux_task_getsid,
5561         .task_getsecid =                selinux_task_getsecid,
5562         .task_setgroups =               selinux_task_setgroups,
5563         .task_setnice =                 selinux_task_setnice,
5564         .task_setioprio =               selinux_task_setioprio,
5565         .task_getioprio =               selinux_task_getioprio,
5566         .task_setrlimit =               selinux_task_setrlimit,
5567         .task_setscheduler =            selinux_task_setscheduler,
5568         .task_getscheduler =            selinux_task_getscheduler,
5569         .task_movememory =              selinux_task_movememory,
5570         .task_kill =                    selinux_task_kill,
5571         .task_wait =                    selinux_task_wait,
5572         .task_prctl =                   selinux_task_prctl,
5573         .task_reparent_to_init =        selinux_task_reparent_to_init,
5574         .task_to_inode =                selinux_task_to_inode,
5575
5576         .ipc_permission =               selinux_ipc_permission,
5577         .ipc_getsecid =                 selinux_ipc_getsecid,
5578
5579         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5580         .msg_msg_free_security =        selinux_msg_msg_free_security,
5581
5582         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5583         .msg_queue_free_security =      selinux_msg_queue_free_security,
5584         .msg_queue_associate =          selinux_msg_queue_associate,
5585         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5586         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5587         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5588
5589         .shm_alloc_security =           selinux_shm_alloc_security,
5590         .shm_free_security =            selinux_shm_free_security,
5591         .shm_associate =                selinux_shm_associate,
5592         .shm_shmctl =                   selinux_shm_shmctl,
5593         .shm_shmat =                    selinux_shm_shmat,
5594
5595         .sem_alloc_security =           selinux_sem_alloc_security,
5596         .sem_free_security =            selinux_sem_free_security,
5597         .sem_associate =                selinux_sem_associate,
5598         .sem_semctl =                   selinux_sem_semctl,
5599         .sem_semop =                    selinux_sem_semop,
5600
5601         .d_instantiate =                selinux_d_instantiate,
5602
5603         .getprocattr =                  selinux_getprocattr,
5604         .setprocattr =                  selinux_setprocattr,
5605
5606         .secid_to_secctx =              selinux_secid_to_secctx,
5607         .secctx_to_secid =              selinux_secctx_to_secid,
5608         .release_secctx =               selinux_release_secctx,
5609
5610         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5611         .unix_may_send =                selinux_socket_unix_may_send,
5612
5613         .socket_create =                selinux_socket_create,
5614         .socket_post_create =           selinux_socket_post_create,
5615         .socket_bind =                  selinux_socket_bind,
5616         .socket_connect =               selinux_socket_connect,
5617         .socket_listen =                selinux_socket_listen,
5618         .socket_accept =                selinux_socket_accept,
5619         .socket_sendmsg =               selinux_socket_sendmsg,
5620         .socket_recvmsg =               selinux_socket_recvmsg,
5621         .socket_getsockname =           selinux_socket_getsockname,
5622         .socket_getpeername =           selinux_socket_getpeername,
5623         .socket_getsockopt =            selinux_socket_getsockopt,
5624         .socket_setsockopt =            selinux_socket_setsockopt,
5625         .socket_shutdown =              selinux_socket_shutdown,
5626         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5627         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5628         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5629         .sk_alloc_security =            selinux_sk_alloc_security,
5630         .sk_free_security =             selinux_sk_free_security,
5631         .sk_clone_security =            selinux_sk_clone_security,
5632         .sk_getsecid =                  selinux_sk_getsecid,
5633         .sock_graft =                   selinux_sock_graft,
5634         .inet_conn_request =            selinux_inet_conn_request,
5635         .inet_csk_clone =               selinux_inet_csk_clone,
5636         .inet_conn_established =        selinux_inet_conn_established,
5637         .req_classify_flow =            selinux_req_classify_flow,
5638
5639 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5640         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5641         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5642         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5643         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5644         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5645         .xfrm_state_free_security =     selinux_xfrm_state_free,
5646         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5647         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5648         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5649         .xfrm_decode_session =          selinux_xfrm_decode_session,
5650 #endif
5651
5652 #ifdef CONFIG_KEYS
5653         .key_alloc =                    selinux_key_alloc,
5654         .key_free =                     selinux_key_free,
5655         .key_permission =               selinux_key_permission,
5656         .key_getsecurity =              selinux_key_getsecurity,
5657 #endif
5658
5659 #ifdef CONFIG_AUDIT
5660         .audit_rule_init =              selinux_audit_rule_init,
5661         .audit_rule_known =             selinux_audit_rule_known,
5662         .audit_rule_match =             selinux_audit_rule_match,
5663         .audit_rule_free =              selinux_audit_rule_free,
5664 #endif
5665 };
5666
5667 static __init int selinux_init(void)
5668 {
5669         struct task_security_struct *tsec;
5670
5671         if (!security_module_enable(&selinux_ops)) {
5672                 selinux_enabled = 0;
5673                 return 0;
5674         }
5675
5676         if (!selinux_enabled) {
5677                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5678                 return 0;
5679         }
5680
5681         printk(KERN_INFO "SELinux:  Initializing.\n");
5682
5683         /* Set the security state for the initial task. */
5684         if (cred_alloc_security(current->cred))
5685                 panic("SELinux:  Failed to initialize initial task.\n");
5686         tsec = current->cred->security;
5687         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5688
5689         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5690                                             sizeof(struct inode_security_struct),
5691                                             0, SLAB_PANIC, NULL);
5692         avc_init();
5693
5694         secondary_ops = security_ops;
5695         if (!secondary_ops)
5696                 panic("SELinux: No initial security operations\n");
5697         if (register_security(&selinux_ops))
5698                 panic("SELinux: Unable to register with kernel.\n");
5699
5700         if (selinux_enforcing)
5701                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5702         else
5703                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5704
5705         return 0;
5706 }
5707
5708 void selinux_complete_init(void)
5709 {
5710         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5711
5712         /* Set up any superblocks initialized prior to the policy load. */
5713         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5714         spin_lock(&sb_lock);
5715         spin_lock(&sb_security_lock);
5716 next_sb:
5717         if (!list_empty(&superblock_security_head)) {
5718                 struct superblock_security_struct *sbsec =
5719                                 list_entry(superblock_security_head.next,
5720                                            struct superblock_security_struct,
5721                                            list);
5722                 struct super_block *sb = sbsec->sb;
5723                 sb->s_count++;
5724                 spin_unlock(&sb_security_lock);
5725                 spin_unlock(&sb_lock);
5726                 down_read(&sb->s_umount);
5727                 if (sb->s_root)
5728                         superblock_doinit(sb, NULL);
5729                 drop_super(sb);
5730                 spin_lock(&sb_lock);
5731                 spin_lock(&sb_security_lock);
5732                 list_del_init(&sbsec->list);
5733                 goto next_sb;
5734         }
5735         spin_unlock(&sb_security_lock);
5736         spin_unlock(&sb_lock);
5737 }
5738
5739 /* SELinux requires early initialization in order to label
5740    all processes and objects when they are created. */
5741 security_initcall(selinux_init);
5742
5743 #if defined(CONFIG_NETFILTER)
5744
5745 static struct nf_hook_ops selinux_ipv4_ops[] = {
5746         {
5747                 .hook =         selinux_ipv4_postroute,
5748                 .owner =        THIS_MODULE,
5749                 .pf =           PF_INET,
5750                 .hooknum =      NF_INET_POST_ROUTING,
5751                 .priority =     NF_IP_PRI_SELINUX_LAST,
5752         },
5753         {
5754                 .hook =         selinux_ipv4_forward,
5755                 .owner =        THIS_MODULE,
5756                 .pf =           PF_INET,
5757                 .hooknum =      NF_INET_FORWARD,
5758                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5759         },
5760         {
5761                 .hook =         selinux_ipv4_output,
5762                 .owner =        THIS_MODULE,
5763                 .pf =           PF_INET,
5764                 .hooknum =      NF_INET_LOCAL_OUT,
5765                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5766         }
5767 };
5768
5769 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5770
5771 static struct nf_hook_ops selinux_ipv6_ops[] = {
5772         {
5773                 .hook =         selinux_ipv6_postroute,
5774                 .owner =        THIS_MODULE,
5775                 .pf =           PF_INET6,
5776                 .hooknum =      NF_INET_POST_ROUTING,
5777                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5778         },
5779         {
5780                 .hook =         selinux_ipv6_forward,
5781                 .owner =        THIS_MODULE,
5782                 .pf =           PF_INET6,
5783                 .hooknum =      NF_INET_FORWARD,
5784                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5785         }
5786 };
5787
5788 #endif  /* IPV6 */
5789
5790 static int __init selinux_nf_ip_init(void)
5791 {
5792         int err = 0;
5793
5794         if (!selinux_enabled)
5795                 goto out;
5796
5797         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5798
5799         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5800         if (err)
5801                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5802
5803 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5804         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5805         if (err)
5806                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5807 #endif  /* IPV6 */
5808
5809 out:
5810         return err;
5811 }
5812
5813 __initcall(selinux_nf_ip_init);
5814
5815 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5816 static void selinux_nf_ip_exit(void)
5817 {
5818         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5819
5820         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5821 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5822         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5823 #endif  /* IPV6 */
5824 }
5825 #endif
5826
5827 #else /* CONFIG_NETFILTER */
5828
5829 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5830 #define selinux_nf_ip_exit()
5831 #endif
5832
5833 #endif /* CONFIG_NETFILTER */
5834
5835 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5836 static int selinux_disabled;
5837
5838 int selinux_disable(void)
5839 {
5840         extern void exit_sel_fs(void);
5841
5842         if (ss_initialized) {
5843                 /* Not permitted after initial policy load. */
5844                 return -EINVAL;
5845         }
5846
5847         if (selinux_disabled) {
5848                 /* Only do this once. */
5849                 return -EINVAL;
5850         }
5851
5852         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5853
5854         selinux_disabled = 1;
5855         selinux_enabled = 0;
5856
5857         /* Reset security_ops to the secondary module, dummy or capability. */
5858         security_ops = secondary_ops;
5859
5860         /* Unregister netfilter hooks. */
5861         selinux_nf_ip_exit();
5862
5863         /* Unregister selinuxfs. */
5864         exit_sel_fs();
5865
5866         return 0;
5867 }
5868 #endif