632ac3e80a61845c1a6634aaa19265f0ae28e78a
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "netport.h"
84 #include "xfrm.h"
85 #include "netlabel.h"
86 #include "audit.h"
87
88 #define XATTR_SELINUX_SUFFIX "selinux"
89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
90
91 #define NUM_SEL_MNT_OPTS 4
92
93 extern unsigned int policydb_loaded_version;
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern int selinux_compat_net;
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /* Allocate and free functions for each kind of security blob. */
159
160 static int task_alloc_security(struct task_struct *task)
161 {
162         struct task_security_struct *tsec;
163
164         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165         if (!tsec)
166                 return -ENOMEM;
167
168         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
169         task->security = tsec;
170
171         return 0;
172 }
173
174 static void task_free_security(struct task_struct *task)
175 {
176         struct task_security_struct *tsec = task->security;
177         task->security = NULL;
178         kfree(tsec);
179 }
180
181 static int inode_alloc_security(struct inode *inode)
182 {
183         struct task_security_struct *tsec = current->security;
184         struct inode_security_struct *isec;
185
186         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
187         if (!isec)
188                 return -ENOMEM;
189
190         mutex_init(&isec->lock);
191         INIT_LIST_HEAD(&isec->list);
192         isec->inode = inode;
193         isec->sid = SECINITSID_UNLABELED;
194         isec->sclass = SECCLASS_FILE;
195         isec->task_sid = tsec->sid;
196         inode->i_security = isec;
197
198         return 0;
199 }
200
201 static void inode_free_security(struct inode *inode)
202 {
203         struct inode_security_struct *isec = inode->i_security;
204         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
205
206         spin_lock(&sbsec->isec_lock);
207         if (!list_empty(&isec->list))
208                 list_del_init(&isec->list);
209         spin_unlock(&sbsec->isec_lock);
210
211         inode->i_security = NULL;
212         kmem_cache_free(sel_inode_cache, isec);
213 }
214
215 static int file_alloc_security(struct file *file)
216 {
217         struct task_security_struct *tsec = current->security;
218         struct file_security_struct *fsec;
219
220         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
221         if (!fsec)
222                 return -ENOMEM;
223
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_reset(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304         "uses xattr",
305         "uses transition SIDs",
306         "uses task SIDs",
307         "uses genfs_contexts",
308         "not configured for labeling",
309         "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316         return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320         Opt_error = -1,
321         Opt_context = 1,
322         Opt_fscontext = 2,
323         Opt_defcontext = 3,
324         Opt_rootcontext = 4,
325 };
326
327 static match_table_t tokens = {
328         {Opt_context, CONTEXT_STR "%s"},
329         {Opt_fscontext, FSCONTEXT_STR "%s"},
330         {Opt_defcontext, DEFCONTEXT_STR "%s"},
331         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
332         {Opt_error, NULL},
333 };
334
335 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
336
337 static int may_context_mount_sb_relabel(u32 sid,
338                         struct superblock_security_struct *sbsec,
339                         struct task_security_struct *tsec)
340 {
341         int rc;
342
343         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
344                           FILESYSTEM__RELABELFROM, NULL);
345         if (rc)
346                 return rc;
347
348         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
349                           FILESYSTEM__RELABELTO, NULL);
350         return rc;
351 }
352
353 static int may_context_mount_inode_relabel(u32 sid,
354                         struct superblock_security_struct *sbsec,
355                         struct task_security_struct *tsec)
356 {
357         int rc;
358         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
359                           FILESYSTEM__RELABELFROM, NULL);
360         if (rc)
361                 return rc;
362
363         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
364                           FILESYSTEM__ASSOCIATE, NULL);
365         return rc;
366 }
367
368 static int sb_finish_set_opts(struct super_block *sb)
369 {
370         struct superblock_security_struct *sbsec = sb->s_security;
371         struct dentry *root = sb->s_root;
372         struct inode *root_inode = root->d_inode;
373         int rc = 0;
374
375         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
376                 /* Make sure that the xattr handler exists and that no
377                    error other than -ENODATA is returned by getxattr on
378                    the root directory.  -ENODATA is ok, as this may be
379                    the first boot of the SELinux kernel before we have
380                    assigned xattr values to the filesystem. */
381                 if (!root_inode->i_op->getxattr) {
382                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
383                                "xattr support\n", sb->s_id, sb->s_type->name);
384                         rc = -EOPNOTSUPP;
385                         goto out;
386                 }
387                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
388                 if (rc < 0 && rc != -ENODATA) {
389                         if (rc == -EOPNOTSUPP)
390                                 printk(KERN_WARNING "SELinux: (dev %s, type "
391                                        "%s) has no security xattr handler\n",
392                                        sb->s_id, sb->s_type->name);
393                         else
394                                 printk(KERN_WARNING "SELinux: (dev %s, type "
395                                        "%s) getxattr errno %d\n", sb->s_id,
396                                        sb->s_type->name, -rc);
397                         goto out;
398                 }
399         }
400
401         sbsec->initialized = 1;
402
403         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
404                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
405                        sb->s_id, sb->s_type->name);
406         else
407                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
408                        sb->s_id, sb->s_type->name,
409                        labeling_behaviors[sbsec->behavior-1]);
410
411         /* Initialize the root inode. */
412         rc = inode_doinit_with_dentry(root_inode, root);
413
414         /* Initialize any other inodes associated with the superblock, e.g.
415            inodes created prior to initial policy load or inodes created
416            during get_sb by a pseudo filesystem that directly
417            populates itself. */
418         spin_lock(&sbsec->isec_lock);
419 next_inode:
420         if (!list_empty(&sbsec->isec_head)) {
421                 struct inode_security_struct *isec =
422                                 list_entry(sbsec->isec_head.next,
423                                            struct inode_security_struct, list);
424                 struct inode *inode = isec->inode;
425                 spin_unlock(&sbsec->isec_lock);
426                 inode = igrab(inode);
427                 if (inode) {
428                         if (!IS_PRIVATE(inode))
429                                 inode_doinit(inode);
430                         iput(inode);
431                 }
432                 spin_lock(&sbsec->isec_lock);
433                 list_del_init(&isec->list);
434                 goto next_inode;
435         }
436         spin_unlock(&sbsec->isec_lock);
437 out:
438         return rc;
439 }
440
441 /*
442  * This function should allow an FS to ask what it's mount security
443  * options were so it can use those later for submounts, displaying
444  * mount options, or whatever.
445  */
446 static int selinux_get_mnt_opts(const struct super_block *sb,
447                                 struct security_mnt_opts *opts)
448 {
449         int rc = 0, i;
450         struct superblock_security_struct *sbsec = sb->s_security;
451         char *context = NULL;
452         u32 len;
453         char tmp;
454
455         security_init_mnt_opts(opts);
456
457         if (!sbsec->initialized)
458                 return -EINVAL;
459
460         if (!ss_initialized)
461                 return -EINVAL;
462
463         /*
464          * if we ever use sbsec flags for anything other than tracking mount
465          * settings this is going to need a mask
466          */
467         tmp = sbsec->flags;
468         /* count the number of mount options for this sb */
469         for (i = 0; i < 8; i++) {
470                 if (tmp & 0x01)
471                         opts->num_mnt_opts++;
472                 tmp >>= 1;
473         }
474
475         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
476         if (!opts->mnt_opts) {
477                 rc = -ENOMEM;
478                 goto out_free;
479         }
480
481         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
482         if (!opts->mnt_opts_flags) {
483                 rc = -ENOMEM;
484                 goto out_free;
485         }
486
487         i = 0;
488         if (sbsec->flags & FSCONTEXT_MNT) {
489                 rc = security_sid_to_context(sbsec->sid, &context, &len);
490                 if (rc)
491                         goto out_free;
492                 opts->mnt_opts[i] = context;
493                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
494         }
495         if (sbsec->flags & CONTEXT_MNT) {
496                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
497                 if (rc)
498                         goto out_free;
499                 opts->mnt_opts[i] = context;
500                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
501         }
502         if (sbsec->flags & DEFCONTEXT_MNT) {
503                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
504                 if (rc)
505                         goto out_free;
506                 opts->mnt_opts[i] = context;
507                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
508         }
509         if (sbsec->flags & ROOTCONTEXT_MNT) {
510                 struct inode *root = sbsec->sb->s_root->d_inode;
511                 struct inode_security_struct *isec = root->i_security;
512
513                 rc = security_sid_to_context(isec->sid, &context, &len);
514                 if (rc)
515                         goto out_free;
516                 opts->mnt_opts[i] = context;
517                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
518         }
519
520         BUG_ON(i != opts->num_mnt_opts);
521
522         return 0;
523
524 out_free:
525         security_free_mnt_opts(opts);
526         return rc;
527 }
528
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530                       u32 old_sid, u32 new_sid)
531 {
532         /* check if the old mount command had the same options */
533         if (sbsec->initialized)
534                 if (!(sbsec->flags & flag) ||
535                     (old_sid != new_sid))
536                         return 1;
537
538         /* check if we were passed the same options twice,
539          * aka someone passed context=a,context=b
540          */
541         if (!sbsec->initialized)
542                 if (sbsec->flags & flag)
543                         return 1;
544         return 0;
545 }
546
547 /*
548  * Allow filesystems with binary mount data to explicitly set mount point
549  * labeling information.
550  */
551 static int selinux_set_mnt_opts(struct super_block *sb,
552                                 struct security_mnt_opts *opts)
553 {
554         int rc = 0, i;
555         struct task_security_struct *tsec = current->security;
556         struct superblock_security_struct *sbsec = sb->s_security;
557         const char *name = sb->s_type->name;
558         struct inode *inode = sbsec->sb->s_root->d_inode;
559         struct inode_security_struct *root_isec = inode->i_security;
560         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
561         u32 defcontext_sid = 0;
562         char **mount_options = opts->mnt_opts;
563         int *flags = opts->mnt_opts_flags;
564         int num_opts = opts->num_mnt_opts;
565
566         mutex_lock(&sbsec->lock);
567
568         if (!ss_initialized) {
569                 if (!num_opts) {
570                         /* Defer initialization until selinux_complete_init,
571                            after the initial policy is loaded and the security
572                            server is ready to handle calls. */
573                         spin_lock(&sb_security_lock);
574                         if (list_empty(&sbsec->list))
575                                 list_add(&sbsec->list, &superblock_security_head);
576                         spin_unlock(&sb_security_lock);
577                         goto out;
578                 }
579                 rc = -EINVAL;
580                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
581                         "before the security server is initialized\n");
582                 goto out;
583         }
584
585         /*
586          * Binary mount data FS will come through this function twice.  Once
587          * from an explicit call and once from the generic calls from the vfs.
588          * Since the generic VFS calls will not contain any security mount data
589          * we need to skip the double mount verification.
590          *
591          * This does open a hole in which we will not notice if the first
592          * mount using this sb set explict options and a second mount using
593          * this sb does not set any security options.  (The first options
594          * will be used for both mounts)
595          */
596         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
597             && (num_opts == 0))
598                 goto out;
599
600         /*
601          * parse the mount options, check if they are valid sids.
602          * also check if someone is trying to mount the same sb more
603          * than once with different security options.
604          */
605         for (i = 0; i < num_opts; i++) {
606                 u32 sid;
607                 rc = security_context_to_sid(mount_options[i],
608                                              strlen(mount_options[i]), &sid);
609                 if (rc) {
610                         printk(KERN_WARNING "SELinux: security_context_to_sid"
611                                "(%s) failed for (dev %s, type %s) errno=%d\n",
612                                mount_options[i], sb->s_id, name, rc);
613                         goto out;
614                 }
615                 switch (flags[i]) {
616                 case FSCONTEXT_MNT:
617                         fscontext_sid = sid;
618
619                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620                                         fscontext_sid))
621                                 goto out_double_mount;
622
623                         sbsec->flags |= FSCONTEXT_MNT;
624                         break;
625                 case CONTEXT_MNT:
626                         context_sid = sid;
627
628                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629                                         context_sid))
630                                 goto out_double_mount;
631
632                         sbsec->flags |= CONTEXT_MNT;
633                         break;
634                 case ROOTCONTEXT_MNT:
635                         rootcontext_sid = sid;
636
637                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638                                         rootcontext_sid))
639                                 goto out_double_mount;
640
641                         sbsec->flags |= ROOTCONTEXT_MNT;
642
643                         break;
644                 case DEFCONTEXT_MNT:
645                         defcontext_sid = sid;
646
647                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648                                         defcontext_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= DEFCONTEXT_MNT;
652
653                         break;
654                 default:
655                         rc = -EINVAL;
656                         goto out;
657                 }
658         }
659
660         if (sbsec->initialized) {
661                 /* previously mounted with options, but not on this attempt? */
662                 if (sbsec->flags && !num_opts)
663                         goto out_double_mount;
664                 rc = 0;
665                 goto out;
666         }
667
668         if (strcmp(sb->s_type->name, "proc") == 0)
669                 sbsec->proc = 1;
670
671         /* Determine the labeling behavior to use for this filesystem type. */
672         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673         if (rc) {
674                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675                        __func__, sb->s_type->name, rc);
676                 goto out;
677         }
678
679         /* sets the context of the superblock for the fs being mounted. */
680         if (fscontext_sid) {
681
682                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
683                 if (rc)
684                         goto out;
685
686                 sbsec->sid = fscontext_sid;
687         }
688
689         /*
690          * Switch to using mount point labeling behavior.
691          * sets the label used on all file below the mountpoint, and will set
692          * the superblock context if not already set.
693          */
694         if (context_sid) {
695                 if (!fscontext_sid) {
696                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
697                         if (rc)
698                                 goto out;
699                         sbsec->sid = context_sid;
700                 } else {
701                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
702                         if (rc)
703                                 goto out;
704                 }
705                 if (!rootcontext_sid)
706                         rootcontext_sid = context_sid;
707
708                 sbsec->mntpoint_sid = context_sid;
709                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
710         }
711
712         if (rootcontext_sid) {
713                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
714                 if (rc)
715                         goto out;
716
717                 root_isec->sid = rootcontext_sid;
718                 root_isec->initialized = 1;
719         }
720
721         if (defcontext_sid) {
722                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
723                         rc = -EINVAL;
724                         printk(KERN_WARNING "SELinux: defcontext option is "
725                                "invalid for this filesystem type\n");
726                         goto out;
727                 }
728
729                 if (defcontext_sid != sbsec->def_sid) {
730                         rc = may_context_mount_inode_relabel(defcontext_sid,
731                                                              sbsec, tsec);
732                         if (rc)
733                                 goto out;
734                 }
735
736                 sbsec->def_sid = defcontext_sid;
737         }
738
739         rc = sb_finish_set_opts(sb);
740 out:
741         mutex_unlock(&sbsec->lock);
742         return rc;
743 out_double_mount:
744         rc = -EINVAL;
745         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
746                "security settings for (dev %s, type %s)\n", sb->s_id, name);
747         goto out;
748 }
749
750 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
751                                         struct super_block *newsb)
752 {
753         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
754         struct superblock_security_struct *newsbsec = newsb->s_security;
755
756         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
757         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
758         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
759
760         /*
761          * if the parent was able to be mounted it clearly had no special lsm
762          * mount options.  thus we can safely put this sb on the list and deal
763          * with it later
764          */
765         if (!ss_initialized) {
766                 spin_lock(&sb_security_lock);
767                 if (list_empty(&newsbsec->list))
768                         list_add(&newsbsec->list, &superblock_security_head);
769                 spin_unlock(&sb_security_lock);
770                 return;
771         }
772
773         /* how can we clone if the old one wasn't set up?? */
774         BUG_ON(!oldsbsec->initialized);
775
776         /* if fs is reusing a sb, just let its options stand... */
777         if (newsbsec->initialized)
778                 return;
779
780         mutex_lock(&newsbsec->lock);
781
782         newsbsec->flags = oldsbsec->flags;
783
784         newsbsec->sid = oldsbsec->sid;
785         newsbsec->def_sid = oldsbsec->def_sid;
786         newsbsec->behavior = oldsbsec->behavior;
787
788         if (set_context) {
789                 u32 sid = oldsbsec->mntpoint_sid;
790
791                 if (!set_fscontext)
792                         newsbsec->sid = sid;
793                 if (!set_rootcontext) {
794                         struct inode *newinode = newsb->s_root->d_inode;
795                         struct inode_security_struct *newisec = newinode->i_security;
796                         newisec->sid = sid;
797                 }
798                 newsbsec->mntpoint_sid = sid;
799         }
800         if (set_rootcontext) {
801                 const struct inode *oldinode = oldsb->s_root->d_inode;
802                 const struct inode_security_struct *oldisec = oldinode->i_security;
803                 struct inode *newinode = newsb->s_root->d_inode;
804                 struct inode_security_struct *newisec = newinode->i_security;
805
806                 newisec->sid = oldisec->sid;
807         }
808
809         sb_finish_set_opts(newsb);
810         mutex_unlock(&newsbsec->lock);
811 }
812
813 static int selinux_parse_opts_str(char *options,
814                                   struct security_mnt_opts *opts)
815 {
816         char *p;
817         char *context = NULL, *defcontext = NULL;
818         char *fscontext = NULL, *rootcontext = NULL;
819         int rc, num_mnt_opts = 0;
820
821         opts->num_mnt_opts = 0;
822
823         /* Standard string-based options. */
824         while ((p = strsep(&options, "|")) != NULL) {
825                 int token;
826                 substring_t args[MAX_OPT_ARGS];
827
828                 if (!*p)
829                         continue;
830
831                 token = match_token(p, tokens, args);
832
833                 switch (token) {
834                 case Opt_context:
835                         if (context || defcontext) {
836                                 rc = -EINVAL;
837                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
838                                 goto out_err;
839                         }
840                         context = match_strdup(&args[0]);
841                         if (!context) {
842                                 rc = -ENOMEM;
843                                 goto out_err;
844                         }
845                         break;
846
847                 case Opt_fscontext:
848                         if (fscontext) {
849                                 rc = -EINVAL;
850                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
851                                 goto out_err;
852                         }
853                         fscontext = match_strdup(&args[0]);
854                         if (!fscontext) {
855                                 rc = -ENOMEM;
856                                 goto out_err;
857                         }
858                         break;
859
860                 case Opt_rootcontext:
861                         if (rootcontext) {
862                                 rc = -EINVAL;
863                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
864                                 goto out_err;
865                         }
866                         rootcontext = match_strdup(&args[0]);
867                         if (!rootcontext) {
868                                 rc = -ENOMEM;
869                                 goto out_err;
870                         }
871                         break;
872
873                 case Opt_defcontext:
874                         if (context || defcontext) {
875                                 rc = -EINVAL;
876                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
877                                 goto out_err;
878                         }
879                         defcontext = match_strdup(&args[0]);
880                         if (!defcontext) {
881                                 rc = -ENOMEM;
882                                 goto out_err;
883                         }
884                         break;
885
886                 default:
887                         rc = -EINVAL;
888                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
889                         goto out_err;
890
891                 }
892         }
893
894         rc = -ENOMEM;
895         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
896         if (!opts->mnt_opts)
897                 goto out_err;
898
899         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
900         if (!opts->mnt_opts_flags) {
901                 kfree(opts->mnt_opts);
902                 goto out_err;
903         }
904
905         if (fscontext) {
906                 opts->mnt_opts[num_mnt_opts] = fscontext;
907                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
908         }
909         if (context) {
910                 opts->mnt_opts[num_mnt_opts] = context;
911                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
912         }
913         if (rootcontext) {
914                 opts->mnt_opts[num_mnt_opts] = rootcontext;
915                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
916         }
917         if (defcontext) {
918                 opts->mnt_opts[num_mnt_opts] = defcontext;
919                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
920         }
921
922         opts->num_mnt_opts = num_mnt_opts;
923         return 0;
924
925 out_err:
926         kfree(context);
927         kfree(defcontext);
928         kfree(fscontext);
929         kfree(rootcontext);
930         return rc;
931 }
932 /*
933  * string mount options parsing and call set the sbsec
934  */
935 static int superblock_doinit(struct super_block *sb, void *data)
936 {
937         int rc = 0;
938         char *options = data;
939         struct security_mnt_opts opts;
940
941         security_init_mnt_opts(&opts);
942
943         if (!data)
944                 goto out;
945
946         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
947
948         rc = selinux_parse_opts_str(options, &opts);
949         if (rc)
950                 goto out_err;
951
952 out:
953         rc = selinux_set_mnt_opts(sb, &opts);
954
955 out_err:
956         security_free_mnt_opts(&opts);
957         return rc;
958 }
959
960 void selinux_write_opts(struct seq_file *m, struct security_mnt_opts *opts)
961 {
962         int i;
963         char *prefix;
964
965         for (i = 0; i < opts->num_mnt_opts; i++) {
966                 char *has_comma = strchr(opts->mnt_opts[i], ',');
967
968                 switch (opts->mnt_opts_flags[i]) {
969                 case CONTEXT_MNT:
970                         prefix = CONTEXT_STR;
971                         break;
972                 case FSCONTEXT_MNT:
973                         prefix = FSCONTEXT_STR;
974                         break;
975                 case ROOTCONTEXT_MNT:
976                         prefix = ROOTCONTEXT_STR;
977                         break;
978                 case DEFCONTEXT_MNT:
979                         prefix = DEFCONTEXT_STR;
980                         break;
981                 default:
982                         BUG();
983                 };
984                 /* we need a comma before each option */
985                 seq_putc(m, ',');
986                 seq_puts(m, prefix);
987                 if (has_comma)
988                         seq_putc(m, '\"');
989                 seq_puts(m, opts->mnt_opts[i]);
990                 if (has_comma)
991                         seq_putc(m, '\"');
992         }
993 }
994
995 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
996 {
997         struct security_mnt_opts opts;
998         int rc;
999
1000         rc = selinux_get_mnt_opts(sb, &opts);
1001         if (rc) {
1002                 /* before policy load we may get EINVAL, don't show anything */
1003                 if (rc == -EINVAL)
1004                         rc = 0;
1005                 return rc;
1006         }
1007
1008         selinux_write_opts(m, &opts);
1009
1010         security_free_mnt_opts(&opts);
1011
1012         return rc;
1013 }
1014
1015 static inline u16 inode_mode_to_security_class(umode_t mode)
1016 {
1017         switch (mode & S_IFMT) {
1018         case S_IFSOCK:
1019                 return SECCLASS_SOCK_FILE;
1020         case S_IFLNK:
1021                 return SECCLASS_LNK_FILE;
1022         case S_IFREG:
1023                 return SECCLASS_FILE;
1024         case S_IFBLK:
1025                 return SECCLASS_BLK_FILE;
1026         case S_IFDIR:
1027                 return SECCLASS_DIR;
1028         case S_IFCHR:
1029                 return SECCLASS_CHR_FILE;
1030         case S_IFIFO:
1031                 return SECCLASS_FIFO_FILE;
1032
1033         }
1034
1035         return SECCLASS_FILE;
1036 }
1037
1038 static inline int default_protocol_stream(int protocol)
1039 {
1040         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1041 }
1042
1043 static inline int default_protocol_dgram(int protocol)
1044 {
1045         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1046 }
1047
1048 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1049 {
1050         switch (family) {
1051         case PF_UNIX:
1052                 switch (type) {
1053                 case SOCK_STREAM:
1054                 case SOCK_SEQPACKET:
1055                         return SECCLASS_UNIX_STREAM_SOCKET;
1056                 case SOCK_DGRAM:
1057                         return SECCLASS_UNIX_DGRAM_SOCKET;
1058                 }
1059                 break;
1060         case PF_INET:
1061         case PF_INET6:
1062                 switch (type) {
1063                 case SOCK_STREAM:
1064                         if (default_protocol_stream(protocol))
1065                                 return SECCLASS_TCP_SOCKET;
1066                         else
1067                                 return SECCLASS_RAWIP_SOCKET;
1068                 case SOCK_DGRAM:
1069                         if (default_protocol_dgram(protocol))
1070                                 return SECCLASS_UDP_SOCKET;
1071                         else
1072                                 return SECCLASS_RAWIP_SOCKET;
1073                 case SOCK_DCCP:
1074                         return SECCLASS_DCCP_SOCKET;
1075                 default:
1076                         return SECCLASS_RAWIP_SOCKET;
1077                 }
1078                 break;
1079         case PF_NETLINK:
1080                 switch (protocol) {
1081                 case NETLINK_ROUTE:
1082                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1083                 case NETLINK_FIREWALL:
1084                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1085                 case NETLINK_INET_DIAG:
1086                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1087                 case NETLINK_NFLOG:
1088                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1089                 case NETLINK_XFRM:
1090                         return SECCLASS_NETLINK_XFRM_SOCKET;
1091                 case NETLINK_SELINUX:
1092                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1093                 case NETLINK_AUDIT:
1094                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1095                 case NETLINK_IP6_FW:
1096                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1097                 case NETLINK_DNRTMSG:
1098                         return SECCLASS_NETLINK_DNRT_SOCKET;
1099                 case NETLINK_KOBJECT_UEVENT:
1100                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1101                 default:
1102                         return SECCLASS_NETLINK_SOCKET;
1103                 }
1104         case PF_PACKET:
1105                 return SECCLASS_PACKET_SOCKET;
1106         case PF_KEY:
1107                 return SECCLASS_KEY_SOCKET;
1108         case PF_APPLETALK:
1109                 return SECCLASS_APPLETALK_SOCKET;
1110         }
1111
1112         return SECCLASS_SOCKET;
1113 }
1114
1115 #ifdef CONFIG_PROC_FS
1116 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1117                                 u16 tclass,
1118                                 u32 *sid)
1119 {
1120         int buflen, rc;
1121         char *buffer, *path, *end;
1122
1123         buffer = (char *)__get_free_page(GFP_KERNEL);
1124         if (!buffer)
1125                 return -ENOMEM;
1126
1127         buflen = PAGE_SIZE;
1128         end = buffer+buflen;
1129         *--end = '\0';
1130         buflen--;
1131         path = end-1;
1132         *path = '/';
1133         while (de && de != de->parent) {
1134                 buflen -= de->namelen + 1;
1135                 if (buflen < 0)
1136                         break;
1137                 end -= de->namelen;
1138                 memcpy(end, de->name, de->namelen);
1139                 *--end = '/';
1140                 path = end;
1141                 de = de->parent;
1142         }
1143         rc = security_genfs_sid("proc", path, tclass, sid);
1144         free_page((unsigned long)buffer);
1145         return rc;
1146 }
1147 #else
1148 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1149                                 u16 tclass,
1150                                 u32 *sid)
1151 {
1152         return -EINVAL;
1153 }
1154 #endif
1155
1156 /* The inode's security attributes must be initialized before first use. */
1157 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1158 {
1159         struct superblock_security_struct *sbsec = NULL;
1160         struct inode_security_struct *isec = inode->i_security;
1161         u32 sid;
1162         struct dentry *dentry;
1163 #define INITCONTEXTLEN 255
1164         char *context = NULL;
1165         unsigned len = 0;
1166         int rc = 0;
1167
1168         if (isec->initialized)
1169                 goto out;
1170
1171         mutex_lock(&isec->lock);
1172         if (isec->initialized)
1173                 goto out_unlock;
1174
1175         sbsec = inode->i_sb->s_security;
1176         if (!sbsec->initialized) {
1177                 /* Defer initialization until selinux_complete_init,
1178                    after the initial policy is loaded and the security
1179                    server is ready to handle calls. */
1180                 spin_lock(&sbsec->isec_lock);
1181                 if (list_empty(&isec->list))
1182                         list_add(&isec->list, &sbsec->isec_head);
1183                 spin_unlock(&sbsec->isec_lock);
1184                 goto out_unlock;
1185         }
1186
1187         switch (sbsec->behavior) {
1188         case SECURITY_FS_USE_XATTR:
1189                 if (!inode->i_op->getxattr) {
1190                         isec->sid = sbsec->def_sid;
1191                         break;
1192                 }
1193
1194                 /* Need a dentry, since the xattr API requires one.
1195                    Life would be simpler if we could just pass the inode. */
1196                 if (opt_dentry) {
1197                         /* Called from d_instantiate or d_splice_alias. */
1198                         dentry = dget(opt_dentry);
1199                 } else {
1200                         /* Called from selinux_complete_init, try to find a dentry. */
1201                         dentry = d_find_alias(inode);
1202                 }
1203                 if (!dentry) {
1204                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1205                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1206                                inode->i_ino);
1207                         goto out_unlock;
1208                 }
1209
1210                 len = INITCONTEXTLEN;
1211                 context = kmalloc(len, GFP_NOFS);
1212                 if (!context) {
1213                         rc = -ENOMEM;
1214                         dput(dentry);
1215                         goto out_unlock;
1216                 }
1217                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1218                                            context, len);
1219                 if (rc == -ERANGE) {
1220                         /* Need a larger buffer.  Query for the right size. */
1221                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1222                                                    NULL, 0);
1223                         if (rc < 0) {
1224                                 dput(dentry);
1225                                 goto out_unlock;
1226                         }
1227                         kfree(context);
1228                         len = rc;
1229                         context = kmalloc(len, GFP_NOFS);
1230                         if (!context) {
1231                                 rc = -ENOMEM;
1232                                 dput(dentry);
1233                                 goto out_unlock;
1234                         }
1235                         rc = inode->i_op->getxattr(dentry,
1236                                                    XATTR_NAME_SELINUX,
1237                                                    context, len);
1238                 }
1239                 dput(dentry);
1240                 if (rc < 0) {
1241                         if (rc != -ENODATA) {
1242                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1243                                        "%d for dev=%s ino=%ld\n", __func__,
1244                                        -rc, inode->i_sb->s_id, inode->i_ino);
1245                                 kfree(context);
1246                                 goto out_unlock;
1247                         }
1248                         /* Map ENODATA to the default file SID */
1249                         sid = sbsec->def_sid;
1250                         rc = 0;
1251                 } else {
1252                         rc = security_context_to_sid_default(context, rc, &sid,
1253                                                              sbsec->def_sid,
1254                                                              GFP_NOFS);
1255                         if (rc) {
1256                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1257                                        "returned %d for dev=%s ino=%ld\n",
1258                                        __func__, context, -rc,
1259                                        inode->i_sb->s_id, inode->i_ino);
1260                                 kfree(context);
1261                                 /* Leave with the unlabeled SID */
1262                                 rc = 0;
1263                                 break;
1264                         }
1265                 }
1266                 kfree(context);
1267                 isec->sid = sid;
1268                 break;
1269         case SECURITY_FS_USE_TASK:
1270                 isec->sid = isec->task_sid;
1271                 break;
1272         case SECURITY_FS_USE_TRANS:
1273                 /* Default to the fs SID. */
1274                 isec->sid = sbsec->sid;
1275
1276                 /* Try to obtain a transition SID. */
1277                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1278                 rc = security_transition_sid(isec->task_sid,
1279                                              sbsec->sid,
1280                                              isec->sclass,
1281                                              &sid);
1282                 if (rc)
1283                         goto out_unlock;
1284                 isec->sid = sid;
1285                 break;
1286         case SECURITY_FS_USE_MNTPOINT:
1287                 isec->sid = sbsec->mntpoint_sid;
1288                 break;
1289         default:
1290                 /* Default to the fs superblock SID. */
1291                 isec->sid = sbsec->sid;
1292
1293                 if (sbsec->proc) {
1294                         struct proc_inode *proci = PROC_I(inode);
1295                         if (proci->pde) {
1296                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1297                                 rc = selinux_proc_get_sid(proci->pde,
1298                                                           isec->sclass,
1299                                                           &sid);
1300                                 if (rc)
1301                                         goto out_unlock;
1302                                 isec->sid = sid;
1303                         }
1304                 }
1305                 break;
1306         }
1307
1308         isec->initialized = 1;
1309
1310 out_unlock:
1311         mutex_unlock(&isec->lock);
1312 out:
1313         if (isec->sclass == SECCLASS_FILE)
1314                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1315         return rc;
1316 }
1317
1318 /* Convert a Linux signal to an access vector. */
1319 static inline u32 signal_to_av(int sig)
1320 {
1321         u32 perm = 0;
1322
1323         switch (sig) {
1324         case SIGCHLD:
1325                 /* Commonly granted from child to parent. */
1326                 perm = PROCESS__SIGCHLD;
1327                 break;
1328         case SIGKILL:
1329                 /* Cannot be caught or ignored */
1330                 perm = PROCESS__SIGKILL;
1331                 break;
1332         case SIGSTOP:
1333                 /* Cannot be caught or ignored */
1334                 perm = PROCESS__SIGSTOP;
1335                 break;
1336         default:
1337                 /* All other signals. */
1338                 perm = PROCESS__SIGNAL;
1339                 break;
1340         }
1341
1342         return perm;
1343 }
1344
1345 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1346    fork check, ptrace check, etc. */
1347 static int task_has_perm(struct task_struct *tsk1,
1348                          struct task_struct *tsk2,
1349                          u32 perms)
1350 {
1351         struct task_security_struct *tsec1, *tsec2;
1352
1353         tsec1 = tsk1->security;
1354         tsec2 = tsk2->security;
1355         return avc_has_perm(tsec1->sid, tsec2->sid,
1356                             SECCLASS_PROCESS, perms, NULL);
1357 }
1358
1359 #if CAP_LAST_CAP > 63
1360 #error Fix SELinux to handle capabilities > 63.
1361 #endif
1362
1363 /* Check whether a task is allowed to use a capability. */
1364 static int task_has_capability(struct task_struct *tsk,
1365                                int cap)
1366 {
1367         struct task_security_struct *tsec;
1368         struct avc_audit_data ad;
1369         u16 sclass;
1370         u32 av = CAP_TO_MASK(cap);
1371
1372         tsec = tsk->security;
1373
1374         AVC_AUDIT_DATA_INIT(&ad, CAP);
1375         ad.tsk = tsk;
1376         ad.u.cap = cap;
1377
1378         switch (CAP_TO_INDEX(cap)) {
1379         case 0:
1380                 sclass = SECCLASS_CAPABILITY;
1381                 break;
1382         case 1:
1383                 sclass = SECCLASS_CAPABILITY2;
1384                 break;
1385         default:
1386                 printk(KERN_ERR
1387                        "SELinux:  out of range capability %d\n", cap);
1388                 BUG();
1389         }
1390         return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1391 }
1392
1393 /* Check whether a task is allowed to use a system operation. */
1394 static int task_has_system(struct task_struct *tsk,
1395                            u32 perms)
1396 {
1397         struct task_security_struct *tsec;
1398
1399         tsec = tsk->security;
1400
1401         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1402                             SECCLASS_SYSTEM, perms, NULL);
1403 }
1404
1405 /* Check whether a task has a particular permission to an inode.
1406    The 'adp' parameter is optional and allows other audit
1407    data to be passed (e.g. the dentry). */
1408 static int inode_has_perm(struct task_struct *tsk,
1409                           struct inode *inode,
1410                           u32 perms,
1411                           struct avc_audit_data *adp)
1412 {
1413         struct task_security_struct *tsec;
1414         struct inode_security_struct *isec;
1415         struct avc_audit_data ad;
1416
1417         if (unlikely(IS_PRIVATE(inode)))
1418                 return 0;
1419
1420         tsec = tsk->security;
1421         isec = inode->i_security;
1422
1423         if (!adp) {
1424                 adp = &ad;
1425                 AVC_AUDIT_DATA_INIT(&ad, FS);
1426                 ad.u.fs.inode = inode;
1427         }
1428
1429         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1430 }
1431
1432 /* Same as inode_has_perm, but pass explicit audit data containing
1433    the dentry to help the auditing code to more easily generate the
1434    pathname if needed. */
1435 static inline int dentry_has_perm(struct task_struct *tsk,
1436                                   struct vfsmount *mnt,
1437                                   struct dentry *dentry,
1438                                   u32 av)
1439 {
1440         struct inode *inode = dentry->d_inode;
1441         struct avc_audit_data ad;
1442         AVC_AUDIT_DATA_INIT(&ad, FS);
1443         ad.u.fs.path.mnt = mnt;
1444         ad.u.fs.path.dentry = dentry;
1445         return inode_has_perm(tsk, inode, av, &ad);
1446 }
1447
1448 /* Check whether a task can use an open file descriptor to
1449    access an inode in a given way.  Check access to the
1450    descriptor itself, and then use dentry_has_perm to
1451    check a particular permission to the file.
1452    Access to the descriptor is implicitly granted if it
1453    has the same SID as the process.  If av is zero, then
1454    access to the file is not checked, e.g. for cases
1455    where only the descriptor is affected like seek. */
1456 static int file_has_perm(struct task_struct *tsk,
1457                                 struct file *file,
1458                                 u32 av)
1459 {
1460         struct task_security_struct *tsec = tsk->security;
1461         struct file_security_struct *fsec = file->f_security;
1462         struct inode *inode = file->f_path.dentry->d_inode;
1463         struct avc_audit_data ad;
1464         int rc;
1465
1466         AVC_AUDIT_DATA_INIT(&ad, FS);
1467         ad.u.fs.path = file->f_path;
1468
1469         if (tsec->sid != fsec->sid) {
1470                 rc = avc_has_perm(tsec->sid, fsec->sid,
1471                                   SECCLASS_FD,
1472                                   FD__USE,
1473                                   &ad);
1474                 if (rc)
1475                         return rc;
1476         }
1477
1478         /* av is zero if only checking access to the descriptor. */
1479         if (av)
1480                 return inode_has_perm(tsk, inode, av, &ad);
1481
1482         return 0;
1483 }
1484
1485 /* Check whether a task can create a file. */
1486 static int may_create(struct inode *dir,
1487                       struct dentry *dentry,
1488                       u16 tclass)
1489 {
1490         struct task_security_struct *tsec;
1491         struct inode_security_struct *dsec;
1492         struct superblock_security_struct *sbsec;
1493         u32 newsid;
1494         struct avc_audit_data ad;
1495         int rc;
1496
1497         tsec = current->security;
1498         dsec = dir->i_security;
1499         sbsec = dir->i_sb->s_security;
1500
1501         AVC_AUDIT_DATA_INIT(&ad, FS);
1502         ad.u.fs.path.dentry = dentry;
1503
1504         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1505                           DIR__ADD_NAME | DIR__SEARCH,
1506                           &ad);
1507         if (rc)
1508                 return rc;
1509
1510         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1511                 newsid = tsec->create_sid;
1512         } else {
1513                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1514                                              &newsid);
1515                 if (rc)
1516                         return rc;
1517         }
1518
1519         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1520         if (rc)
1521                 return rc;
1522
1523         return avc_has_perm(newsid, sbsec->sid,
1524                             SECCLASS_FILESYSTEM,
1525                             FILESYSTEM__ASSOCIATE, &ad);
1526 }
1527
1528 /* Check whether a task can create a key. */
1529 static int may_create_key(u32 ksid,
1530                           struct task_struct *ctx)
1531 {
1532         struct task_security_struct *tsec;
1533
1534         tsec = ctx->security;
1535
1536         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1537 }
1538
1539 #define MAY_LINK        0
1540 #define MAY_UNLINK      1
1541 #define MAY_RMDIR       2
1542
1543 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1544 static int may_link(struct inode *dir,
1545                     struct dentry *dentry,
1546                     int kind)
1547
1548 {
1549         struct task_security_struct *tsec;
1550         struct inode_security_struct *dsec, *isec;
1551         struct avc_audit_data ad;
1552         u32 av;
1553         int rc;
1554
1555         tsec = current->security;
1556         dsec = dir->i_security;
1557         isec = dentry->d_inode->i_security;
1558
1559         AVC_AUDIT_DATA_INIT(&ad, FS);
1560         ad.u.fs.path.dentry = dentry;
1561
1562         av = DIR__SEARCH;
1563         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1564         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1565         if (rc)
1566                 return rc;
1567
1568         switch (kind) {
1569         case MAY_LINK:
1570                 av = FILE__LINK;
1571                 break;
1572         case MAY_UNLINK:
1573                 av = FILE__UNLINK;
1574                 break;
1575         case MAY_RMDIR:
1576                 av = DIR__RMDIR;
1577                 break;
1578         default:
1579                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1580                         __func__, kind);
1581                 return 0;
1582         }
1583
1584         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1585         return rc;
1586 }
1587
1588 static inline int may_rename(struct inode *old_dir,
1589                              struct dentry *old_dentry,
1590                              struct inode *new_dir,
1591                              struct dentry *new_dentry)
1592 {
1593         struct task_security_struct *tsec;
1594         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1595         struct avc_audit_data ad;
1596         u32 av;
1597         int old_is_dir, new_is_dir;
1598         int rc;
1599
1600         tsec = current->security;
1601         old_dsec = old_dir->i_security;
1602         old_isec = old_dentry->d_inode->i_security;
1603         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1604         new_dsec = new_dir->i_security;
1605
1606         AVC_AUDIT_DATA_INIT(&ad, FS);
1607
1608         ad.u.fs.path.dentry = old_dentry;
1609         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1610                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1611         if (rc)
1612                 return rc;
1613         rc = avc_has_perm(tsec->sid, old_isec->sid,
1614                           old_isec->sclass, FILE__RENAME, &ad);
1615         if (rc)
1616                 return rc;
1617         if (old_is_dir && new_dir != old_dir) {
1618                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1619                                   old_isec->sclass, DIR__REPARENT, &ad);
1620                 if (rc)
1621                         return rc;
1622         }
1623
1624         ad.u.fs.path.dentry = new_dentry;
1625         av = DIR__ADD_NAME | DIR__SEARCH;
1626         if (new_dentry->d_inode)
1627                 av |= DIR__REMOVE_NAME;
1628         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1629         if (rc)
1630                 return rc;
1631         if (new_dentry->d_inode) {
1632                 new_isec = new_dentry->d_inode->i_security;
1633                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1634                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1635                                   new_isec->sclass,
1636                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1637                 if (rc)
1638                         return rc;
1639         }
1640
1641         return 0;
1642 }
1643
1644 /* Check whether a task can perform a filesystem operation. */
1645 static int superblock_has_perm(struct task_struct *tsk,
1646                                struct super_block *sb,
1647                                u32 perms,
1648                                struct avc_audit_data *ad)
1649 {
1650         struct task_security_struct *tsec;
1651         struct superblock_security_struct *sbsec;
1652
1653         tsec = tsk->security;
1654         sbsec = sb->s_security;
1655         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1656                             perms, ad);
1657 }
1658
1659 /* Convert a Linux mode and permission mask to an access vector. */
1660 static inline u32 file_mask_to_av(int mode, int mask)
1661 {
1662         u32 av = 0;
1663
1664         if ((mode & S_IFMT) != S_IFDIR) {
1665                 if (mask & MAY_EXEC)
1666                         av |= FILE__EXECUTE;
1667                 if (mask & MAY_READ)
1668                         av |= FILE__READ;
1669
1670                 if (mask & MAY_APPEND)
1671                         av |= FILE__APPEND;
1672                 else if (mask & MAY_WRITE)
1673                         av |= FILE__WRITE;
1674
1675         } else {
1676                 if (mask & MAY_EXEC)
1677                         av |= DIR__SEARCH;
1678                 if (mask & MAY_WRITE)
1679                         av |= DIR__WRITE;
1680                 if (mask & MAY_READ)
1681                         av |= DIR__READ;
1682         }
1683
1684         return av;
1685 }
1686
1687 /*
1688  * Convert a file mask to an access vector and include the correct open
1689  * open permission.
1690  */
1691 static inline u32 open_file_mask_to_av(int mode, int mask)
1692 {
1693         u32 av = file_mask_to_av(mode, mask);
1694
1695         if (selinux_policycap_openperm) {
1696                 /*
1697                  * lnk files and socks do not really have an 'open'
1698                  */
1699                 if (S_ISREG(mode))
1700                         av |= FILE__OPEN;
1701                 else if (S_ISCHR(mode))
1702                         av |= CHR_FILE__OPEN;
1703                 else if (S_ISBLK(mode))
1704                         av |= BLK_FILE__OPEN;
1705                 else if (S_ISFIFO(mode))
1706                         av |= FIFO_FILE__OPEN;
1707                 else if (S_ISDIR(mode))
1708                         av |= DIR__OPEN;
1709                 else
1710                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1711                                 "unknown mode:%x\n", __func__, mode);
1712         }
1713         return av;
1714 }
1715
1716 /* Convert a Linux file to an access vector. */
1717 static inline u32 file_to_av(struct file *file)
1718 {
1719         u32 av = 0;
1720
1721         if (file->f_mode & FMODE_READ)
1722                 av |= FILE__READ;
1723         if (file->f_mode & FMODE_WRITE) {
1724                 if (file->f_flags & O_APPEND)
1725                         av |= FILE__APPEND;
1726                 else
1727                         av |= FILE__WRITE;
1728         }
1729         if (!av) {
1730                 /*
1731                  * Special file opened with flags 3 for ioctl-only use.
1732                  */
1733                 av = FILE__IOCTL;
1734         }
1735
1736         return av;
1737 }
1738
1739 /* Hook functions begin here. */
1740
1741 static int selinux_ptrace_may_access(struct task_struct *child,
1742                                      unsigned int mode)
1743 {
1744         int rc;
1745
1746         rc = secondary_ops->ptrace_may_access(child, mode);
1747         if (rc)
1748                 return rc;
1749
1750         if (mode == PTRACE_MODE_READ) {
1751                 struct task_security_struct *tsec = current->security;
1752                 struct task_security_struct *csec = child->security;
1753                 return avc_has_perm(tsec->sid, csec->sid,
1754                                     SECCLASS_FILE, FILE__READ, NULL);
1755         }
1756
1757         return task_has_perm(current, child, PROCESS__PTRACE);
1758 }
1759
1760 static int selinux_ptrace_traceme(struct task_struct *parent)
1761 {
1762         int rc;
1763
1764         rc = secondary_ops->ptrace_traceme(parent);
1765         if (rc)
1766                 return rc;
1767
1768         return task_has_perm(parent, current, PROCESS__PTRACE);
1769 }
1770
1771 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1772                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1773 {
1774         int error;
1775
1776         error = task_has_perm(current, target, PROCESS__GETCAP);
1777         if (error)
1778                 return error;
1779
1780         return secondary_ops->capget(target, effective, inheritable, permitted);
1781 }
1782
1783 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1784                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1785 {
1786         int error;
1787
1788         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1789         if (error)
1790                 return error;
1791
1792         return task_has_perm(current, target, PROCESS__SETCAP);
1793 }
1794
1795 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1796                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1797 {
1798         secondary_ops->capset_set(target, effective, inheritable, permitted);
1799 }
1800
1801 static int selinux_capable(struct task_struct *tsk, int cap)
1802 {
1803         int rc;
1804
1805         rc = secondary_ops->capable(tsk, cap);
1806         if (rc)
1807                 return rc;
1808
1809         return task_has_capability(tsk, cap);
1810 }
1811
1812 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1813 {
1814         int buflen, rc;
1815         char *buffer, *path, *end;
1816
1817         rc = -ENOMEM;
1818         buffer = (char *)__get_free_page(GFP_KERNEL);
1819         if (!buffer)
1820                 goto out;
1821
1822         buflen = PAGE_SIZE;
1823         end = buffer+buflen;
1824         *--end = '\0';
1825         buflen--;
1826         path = end-1;
1827         *path = '/';
1828         while (table) {
1829                 const char *name = table->procname;
1830                 size_t namelen = strlen(name);
1831                 buflen -= namelen + 1;
1832                 if (buflen < 0)
1833                         goto out_free;
1834                 end -= namelen;
1835                 memcpy(end, name, namelen);
1836                 *--end = '/';
1837                 path = end;
1838                 table = table->parent;
1839         }
1840         buflen -= 4;
1841         if (buflen < 0)
1842                 goto out_free;
1843         end -= 4;
1844         memcpy(end, "/sys", 4);
1845         path = end;
1846         rc = security_genfs_sid("proc", path, tclass, sid);
1847 out_free:
1848         free_page((unsigned long)buffer);
1849 out:
1850         return rc;
1851 }
1852
1853 static int selinux_sysctl(ctl_table *table, int op)
1854 {
1855         int error = 0;
1856         u32 av;
1857         struct task_security_struct *tsec;
1858         u32 tsid;
1859         int rc;
1860
1861         rc = secondary_ops->sysctl(table, op);
1862         if (rc)
1863                 return rc;
1864
1865         tsec = current->security;
1866
1867         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1868                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1869         if (rc) {
1870                 /* Default to the well-defined sysctl SID. */
1871                 tsid = SECINITSID_SYSCTL;
1872         }
1873
1874         /* The op values are "defined" in sysctl.c, thereby creating
1875          * a bad coupling between this module and sysctl.c */
1876         if (op == 001) {
1877                 error = avc_has_perm(tsec->sid, tsid,
1878                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1879         } else {
1880                 av = 0;
1881                 if (op & 004)
1882                         av |= FILE__READ;
1883                 if (op & 002)
1884                         av |= FILE__WRITE;
1885                 if (av)
1886                         error = avc_has_perm(tsec->sid, tsid,
1887                                              SECCLASS_FILE, av, NULL);
1888         }
1889
1890         return error;
1891 }
1892
1893 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1894 {
1895         int rc = 0;
1896
1897         if (!sb)
1898                 return 0;
1899
1900         switch (cmds) {
1901         case Q_SYNC:
1902         case Q_QUOTAON:
1903         case Q_QUOTAOFF:
1904         case Q_SETINFO:
1905         case Q_SETQUOTA:
1906                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1907                                          NULL);
1908                 break;
1909         case Q_GETFMT:
1910         case Q_GETINFO:
1911         case Q_GETQUOTA:
1912                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1913                                          NULL);
1914                 break;
1915         default:
1916                 rc = 0;  /* let the kernel handle invalid cmds */
1917                 break;
1918         }
1919         return rc;
1920 }
1921
1922 static int selinux_quota_on(struct dentry *dentry)
1923 {
1924         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1925 }
1926
1927 static int selinux_syslog(int type)
1928 {
1929         int rc;
1930
1931         rc = secondary_ops->syslog(type);
1932         if (rc)
1933                 return rc;
1934
1935         switch (type) {
1936         case 3:         /* Read last kernel messages */
1937         case 10:        /* Return size of the log buffer */
1938                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1939                 break;
1940         case 6:         /* Disable logging to console */
1941         case 7:         /* Enable logging to console */
1942         case 8:         /* Set level of messages printed to console */
1943                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1944                 break;
1945         case 0:         /* Close log */
1946         case 1:         /* Open log */
1947         case 2:         /* Read from log */
1948         case 4:         /* Read/clear last kernel messages */
1949         case 5:         /* Clear ring buffer */
1950         default:
1951                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1952                 break;
1953         }
1954         return rc;
1955 }
1956
1957 /*
1958  * Check that a process has enough memory to allocate a new virtual
1959  * mapping. 0 means there is enough memory for the allocation to
1960  * succeed and -ENOMEM implies there is not.
1961  *
1962  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1963  * if the capability is granted, but __vm_enough_memory requires 1 if
1964  * the capability is granted.
1965  *
1966  * Do not audit the selinux permission check, as this is applied to all
1967  * processes that allocate mappings.
1968  */
1969 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1970 {
1971         int rc, cap_sys_admin = 0;
1972         struct task_security_struct *tsec = current->security;
1973
1974         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1975         if (rc == 0)
1976                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1977                                           SECCLASS_CAPABILITY,
1978                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1979                                           0,
1980                                           NULL);
1981
1982         if (rc == 0)
1983                 cap_sys_admin = 1;
1984
1985         return __vm_enough_memory(mm, pages, cap_sys_admin);
1986 }
1987
1988 /* binprm security operations */
1989
1990 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1991 {
1992         struct bprm_security_struct *bsec;
1993
1994         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1995         if (!bsec)
1996                 return -ENOMEM;
1997
1998         bsec->sid = SECINITSID_UNLABELED;
1999         bsec->set = 0;
2000
2001         bprm->security = bsec;
2002         return 0;
2003 }
2004
2005 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2006 {
2007         struct task_security_struct *tsec;
2008         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2009         struct inode_security_struct *isec;
2010         struct bprm_security_struct *bsec;
2011         u32 newsid;
2012         struct avc_audit_data ad;
2013         int rc;
2014
2015         rc = secondary_ops->bprm_set_security(bprm);
2016         if (rc)
2017                 return rc;
2018
2019         bsec = bprm->security;
2020
2021         if (bsec->set)
2022                 return 0;
2023
2024         tsec = current->security;
2025         isec = inode->i_security;
2026
2027         /* Default to the current task SID. */
2028         bsec->sid = tsec->sid;
2029
2030         /* Reset fs, key, and sock SIDs on execve. */
2031         tsec->create_sid = 0;
2032         tsec->keycreate_sid = 0;
2033         tsec->sockcreate_sid = 0;
2034
2035         if (tsec->exec_sid) {
2036                 newsid = tsec->exec_sid;
2037                 /* Reset exec SID on execve. */
2038                 tsec->exec_sid = 0;
2039         } else {
2040                 /* Check for a default transition on this program. */
2041                 rc = security_transition_sid(tsec->sid, isec->sid,
2042                                              SECCLASS_PROCESS, &newsid);
2043                 if (rc)
2044                         return rc;
2045         }
2046
2047         AVC_AUDIT_DATA_INIT(&ad, FS);
2048         ad.u.fs.path = bprm->file->f_path;
2049
2050         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2051                 newsid = tsec->sid;
2052
2053         if (tsec->sid == newsid) {
2054                 rc = avc_has_perm(tsec->sid, isec->sid,
2055                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2056                 if (rc)
2057                         return rc;
2058         } else {
2059                 /* Check permissions for the transition. */
2060                 rc = avc_has_perm(tsec->sid, newsid,
2061                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2062                 if (rc)
2063                         return rc;
2064
2065                 rc = avc_has_perm(newsid, isec->sid,
2066                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2067                 if (rc)
2068                         return rc;
2069
2070                 /* Clear any possibly unsafe personality bits on exec: */
2071                 current->personality &= ~PER_CLEAR_ON_SETID;
2072
2073                 /* Set the security field to the new SID. */
2074                 bsec->sid = newsid;
2075         }
2076
2077         bsec->set = 1;
2078         return 0;
2079 }
2080
2081 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2082 {
2083         return secondary_ops->bprm_check_security(bprm);
2084 }
2085
2086
2087 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2088 {
2089         struct task_security_struct *tsec = current->security;
2090         int atsecure = 0;
2091
2092         if (tsec->osid != tsec->sid) {
2093                 /* Enable secure mode for SIDs transitions unless
2094                    the noatsecure permission is granted between
2095                    the two SIDs, i.e. ahp returns 0. */
2096                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2097                                          SECCLASS_PROCESS,
2098                                          PROCESS__NOATSECURE, NULL);
2099         }
2100
2101         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2102 }
2103
2104 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2105 {
2106         kfree(bprm->security);
2107         bprm->security = NULL;
2108 }
2109
2110 extern struct vfsmount *selinuxfs_mount;
2111 extern struct dentry *selinux_null;
2112
2113 /* Derived from fs/exec.c:flush_old_files. */
2114 static inline void flush_unauthorized_files(struct files_struct *files)
2115 {
2116         struct avc_audit_data ad;
2117         struct file *file, *devnull = NULL;
2118         struct tty_struct *tty;
2119         struct fdtable *fdt;
2120         long j = -1;
2121         int drop_tty = 0;
2122
2123         mutex_lock(&tty_mutex);
2124         tty = get_current_tty();
2125         if (tty) {
2126                 file_list_lock();
2127                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2128                 if (file) {
2129                         /* Revalidate access to controlling tty.
2130                            Use inode_has_perm on the tty inode directly rather
2131                            than using file_has_perm, as this particular open
2132                            file may belong to another process and we are only
2133                            interested in the inode-based check here. */
2134                         struct inode *inode = file->f_path.dentry->d_inode;
2135                         if (inode_has_perm(current, inode,
2136                                            FILE__READ | FILE__WRITE, NULL)) {
2137                                 drop_tty = 1;
2138                         }
2139                 }
2140                 file_list_unlock();
2141         }
2142         mutex_unlock(&tty_mutex);
2143         /* Reset controlling tty. */
2144         if (drop_tty)
2145                 no_tty();
2146
2147         /* Revalidate access to inherited open files. */
2148
2149         AVC_AUDIT_DATA_INIT(&ad, FS);
2150
2151         spin_lock(&files->file_lock);
2152         for (;;) {
2153                 unsigned long set, i;
2154                 int fd;
2155
2156                 j++;
2157                 i = j * __NFDBITS;
2158                 fdt = files_fdtable(files);
2159                 if (i >= fdt->max_fds)
2160                         break;
2161                 set = fdt->open_fds->fds_bits[j];
2162                 if (!set)
2163                         continue;
2164                 spin_unlock(&files->file_lock);
2165                 for ( ; set ; i++, set >>= 1) {
2166                         if (set & 1) {
2167                                 file = fget(i);
2168                                 if (!file)
2169                                         continue;
2170                                 if (file_has_perm(current,
2171                                                   file,
2172                                                   file_to_av(file))) {
2173                                         sys_close(i);
2174                                         fd = get_unused_fd();
2175                                         if (fd != i) {
2176                                                 if (fd >= 0)
2177                                                         put_unused_fd(fd);
2178                                                 fput(file);
2179                                                 continue;
2180                                         }
2181                                         if (devnull) {
2182                                                 get_file(devnull);
2183                                         } else {
2184                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2185                                                 if (IS_ERR(devnull)) {
2186                                                         devnull = NULL;
2187                                                         put_unused_fd(fd);
2188                                                         fput(file);
2189                                                         continue;
2190                                                 }
2191                                         }
2192                                         fd_install(fd, devnull);
2193                                 }
2194                                 fput(file);
2195                         }
2196                 }
2197                 spin_lock(&files->file_lock);
2198
2199         }
2200         spin_unlock(&files->file_lock);
2201 }
2202
2203 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2204 {
2205         struct task_security_struct *tsec;
2206         struct bprm_security_struct *bsec;
2207         u32 sid;
2208         int rc;
2209
2210         secondary_ops->bprm_apply_creds(bprm, unsafe);
2211
2212         tsec = current->security;
2213
2214         bsec = bprm->security;
2215         sid = bsec->sid;
2216
2217         tsec->osid = tsec->sid;
2218         bsec->unsafe = 0;
2219         if (tsec->sid != sid) {
2220                 /* Check for shared state.  If not ok, leave SID
2221                    unchanged and kill. */
2222                 if (unsafe & LSM_UNSAFE_SHARE) {
2223                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2224                                         PROCESS__SHARE, NULL);
2225                         if (rc) {
2226                                 bsec->unsafe = 1;
2227                                 return;
2228                         }
2229                 }
2230
2231                 /* Check for ptracing, and update the task SID if ok.
2232                    Otherwise, leave SID unchanged and kill. */
2233                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2234                         struct task_struct *tracer;
2235                         struct task_security_struct *sec;
2236                         u32 ptsid = 0;
2237
2238                         rcu_read_lock();
2239                         tracer = tracehook_tracer_task(current);
2240                         if (likely(tracer != NULL)) {
2241                                 sec = tracer->security;
2242                                 ptsid = sec->sid;
2243                         }
2244                         rcu_read_unlock();
2245
2246                         if (ptsid != 0) {
2247                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2248                                                   PROCESS__PTRACE, NULL);
2249                                 if (rc) {
2250                                         bsec->unsafe = 1;
2251                                         return;
2252                                 }
2253                         }
2254                 }
2255                 tsec->sid = sid;
2256         }
2257 }
2258
2259 /*
2260  * called after apply_creds without the task lock held
2261  */
2262 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2263 {
2264         struct task_security_struct *tsec;
2265         struct rlimit *rlim, *initrlim;
2266         struct itimerval itimer;
2267         struct bprm_security_struct *bsec;
2268         int rc, i;
2269
2270         tsec = current->security;
2271         bsec = bprm->security;
2272
2273         if (bsec->unsafe) {
2274                 force_sig_specific(SIGKILL, current);
2275                 return;
2276         }
2277         if (tsec->osid == tsec->sid)
2278                 return;
2279
2280         /* Close files for which the new task SID is not authorized. */
2281         flush_unauthorized_files(current->files);
2282
2283         /* Check whether the new SID can inherit signal state
2284            from the old SID.  If not, clear itimers to avoid
2285            subsequent signal generation and flush and unblock
2286            signals. This must occur _after_ the task SID has
2287           been updated so that any kill done after the flush
2288           will be checked against the new SID. */
2289         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2290                           PROCESS__SIGINH, NULL);
2291         if (rc) {
2292                 memset(&itimer, 0, sizeof itimer);
2293                 for (i = 0; i < 3; i++)
2294                         do_setitimer(i, &itimer, NULL);
2295                 flush_signals(current);
2296                 spin_lock_irq(&current->sighand->siglock);
2297                 flush_signal_handlers(current, 1);
2298                 sigemptyset(&current->blocked);
2299                 recalc_sigpending();
2300                 spin_unlock_irq(&current->sighand->siglock);
2301         }
2302
2303         /* Always clear parent death signal on SID transitions. */
2304         current->pdeath_signal = 0;
2305
2306         /* Check whether the new SID can inherit resource limits
2307            from the old SID.  If not, reset all soft limits to
2308            the lower of the current task's hard limit and the init
2309            task's soft limit.  Note that the setting of hard limits
2310            (even to lower them) can be controlled by the setrlimit
2311            check. The inclusion of the init task's soft limit into
2312            the computation is to avoid resetting soft limits higher
2313            than the default soft limit for cases where the default
2314            is lower than the hard limit, e.g. RLIMIT_CORE or
2315            RLIMIT_STACK.*/
2316         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2317                           PROCESS__RLIMITINH, NULL);
2318         if (rc) {
2319                 for (i = 0; i < RLIM_NLIMITS; i++) {
2320                         rlim = current->signal->rlim + i;
2321                         initrlim = init_task.signal->rlim+i;
2322                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2323                 }
2324                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2325                         /*
2326                          * This will cause RLIMIT_CPU calculations
2327                          * to be refigured.
2328                          */
2329                         current->it_prof_expires = jiffies_to_cputime(1);
2330                 }
2331         }
2332
2333         /* Wake up the parent if it is waiting so that it can
2334            recheck wait permission to the new task SID. */
2335         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2336 }
2337
2338 /* superblock security operations */
2339
2340 static int selinux_sb_alloc_security(struct super_block *sb)
2341 {
2342         return superblock_alloc_security(sb);
2343 }
2344
2345 static void selinux_sb_free_security(struct super_block *sb)
2346 {
2347         superblock_free_security(sb);
2348 }
2349
2350 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2351 {
2352         if (plen > olen)
2353                 return 0;
2354
2355         return !memcmp(prefix, option, plen);
2356 }
2357
2358 static inline int selinux_option(char *option, int len)
2359 {
2360         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2361                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2362                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2363                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2364 }
2365
2366 static inline void take_option(char **to, char *from, int *first, int len)
2367 {
2368         if (!*first) {
2369                 **to = ',';
2370                 *to += 1;
2371         } else
2372                 *first = 0;
2373         memcpy(*to, from, len);
2374         *to += len;
2375 }
2376
2377 static inline void take_selinux_option(char **to, char *from, int *first,
2378                                        int len)
2379 {
2380         int current_size = 0;
2381
2382         if (!*first) {
2383                 **to = '|';
2384                 *to += 1;
2385         } else
2386                 *first = 0;
2387
2388         while (current_size < len) {
2389                 if (*from != '"') {
2390                         **to = *from;
2391                         *to += 1;
2392                 }
2393                 from += 1;
2394                 current_size += 1;
2395         }
2396 }
2397
2398 static int selinux_sb_copy_data(char *orig, char *copy)
2399 {
2400         int fnosec, fsec, rc = 0;
2401         char *in_save, *in_curr, *in_end;
2402         char *sec_curr, *nosec_save, *nosec;
2403         int open_quote = 0;
2404
2405         in_curr = orig;
2406         sec_curr = copy;
2407
2408         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2409         if (!nosec) {
2410                 rc = -ENOMEM;
2411                 goto out;
2412         }
2413
2414         nosec_save = nosec;
2415         fnosec = fsec = 1;
2416         in_save = in_end = orig;
2417
2418         do {
2419                 if (*in_end == '"')
2420                         open_quote = !open_quote;
2421                 if ((*in_end == ',' && open_quote == 0) ||
2422                                 *in_end == '\0') {
2423                         int len = in_end - in_curr;
2424
2425                         if (selinux_option(in_curr, len))
2426                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2427                         else
2428                                 take_option(&nosec, in_curr, &fnosec, len);
2429
2430                         in_curr = in_end + 1;
2431                 }
2432         } while (*in_end++);
2433
2434         strcpy(in_save, nosec_save);
2435         free_page((unsigned long)nosec_save);
2436 out:
2437         return rc;
2438 }
2439
2440 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2441 {
2442         struct avc_audit_data ad;
2443         int rc;
2444
2445         rc = superblock_doinit(sb, data);
2446         if (rc)
2447                 return rc;
2448
2449         AVC_AUDIT_DATA_INIT(&ad, FS);
2450         ad.u.fs.path.dentry = sb->s_root;
2451         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2452 }
2453
2454 static int selinux_sb_statfs(struct dentry *dentry)
2455 {
2456         struct avc_audit_data ad;
2457
2458         AVC_AUDIT_DATA_INIT(&ad, FS);
2459         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2460         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2461 }
2462
2463 static int selinux_mount(char *dev_name,
2464                          struct path *path,
2465                          char *type,
2466                          unsigned long flags,
2467                          void *data)
2468 {
2469         int rc;
2470
2471         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2472         if (rc)
2473                 return rc;
2474
2475         if (flags & MS_REMOUNT)
2476                 return superblock_has_perm(current, path->mnt->mnt_sb,
2477                                            FILESYSTEM__REMOUNT, NULL);
2478         else
2479                 return dentry_has_perm(current, path->mnt, path->dentry,
2480                                        FILE__MOUNTON);
2481 }
2482
2483 static int selinux_umount(struct vfsmount *mnt, int flags)
2484 {
2485         int rc;
2486
2487         rc = secondary_ops->sb_umount(mnt, flags);
2488         if (rc)
2489                 return rc;
2490
2491         return superblock_has_perm(current, mnt->mnt_sb,
2492                                    FILESYSTEM__UNMOUNT, NULL);
2493 }
2494
2495 /* inode security operations */
2496
2497 static int selinux_inode_alloc_security(struct inode *inode)
2498 {
2499         return inode_alloc_security(inode);
2500 }
2501
2502 static void selinux_inode_free_security(struct inode *inode)
2503 {
2504         inode_free_security(inode);
2505 }
2506
2507 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2508                                        char **name, void **value,
2509                                        size_t *len)
2510 {
2511         struct task_security_struct *tsec;
2512         struct inode_security_struct *dsec;
2513         struct superblock_security_struct *sbsec;
2514         u32 newsid, clen;
2515         int rc;
2516         char *namep = NULL, *context;
2517
2518         tsec = current->security;
2519         dsec = dir->i_security;
2520         sbsec = dir->i_sb->s_security;
2521
2522         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2523                 newsid = tsec->create_sid;
2524         } else {
2525                 rc = security_transition_sid(tsec->sid, dsec->sid,
2526                                              inode_mode_to_security_class(inode->i_mode),
2527                                              &newsid);
2528                 if (rc) {
2529                         printk(KERN_WARNING "%s:  "
2530                                "security_transition_sid failed, rc=%d (dev=%s "
2531                                "ino=%ld)\n",
2532                                __func__,
2533                                -rc, inode->i_sb->s_id, inode->i_ino);
2534                         return rc;
2535                 }
2536         }
2537
2538         /* Possibly defer initialization to selinux_complete_init. */
2539         if (sbsec->initialized) {
2540                 struct inode_security_struct *isec = inode->i_security;
2541                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2542                 isec->sid = newsid;
2543                 isec->initialized = 1;
2544         }
2545
2546         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2547                 return -EOPNOTSUPP;
2548
2549         if (name) {
2550                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2551                 if (!namep)
2552                         return -ENOMEM;
2553                 *name = namep;
2554         }
2555
2556         if (value && len) {
2557                 rc = security_sid_to_context_force(newsid, &context, &clen);
2558                 if (rc) {
2559                         kfree(namep);
2560                         return rc;
2561                 }
2562                 *value = context;
2563                 *len = clen;
2564         }
2565
2566         return 0;
2567 }
2568
2569 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2570 {
2571         return may_create(dir, dentry, SECCLASS_FILE);
2572 }
2573
2574 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2575 {
2576         int rc;
2577
2578         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2579         if (rc)
2580                 return rc;
2581         return may_link(dir, old_dentry, MAY_LINK);
2582 }
2583
2584 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2585 {
2586         int rc;
2587
2588         rc = secondary_ops->inode_unlink(dir, dentry);
2589         if (rc)
2590                 return rc;
2591         return may_link(dir, dentry, MAY_UNLINK);
2592 }
2593
2594 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2595 {
2596         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2597 }
2598
2599 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2600 {
2601         return may_create(dir, dentry, SECCLASS_DIR);
2602 }
2603
2604 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2605 {
2606         return may_link(dir, dentry, MAY_RMDIR);
2607 }
2608
2609 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2610 {
2611         int rc;
2612
2613         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2614         if (rc)
2615                 return rc;
2616
2617         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2618 }
2619
2620 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2621                                 struct inode *new_inode, struct dentry *new_dentry)
2622 {
2623         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2624 }
2625
2626 static int selinux_inode_readlink(struct dentry *dentry)
2627 {
2628         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2629 }
2630
2631 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2632 {
2633         int rc;
2634
2635         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2636         if (rc)
2637                 return rc;
2638         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2639 }
2640
2641 static int selinux_inode_permission(struct inode *inode, int mask)
2642 {
2643         int rc;
2644
2645         rc = secondary_ops->inode_permission(inode, mask);
2646         if (rc)
2647                 return rc;
2648
2649         if (!mask) {
2650                 /* No permission to check.  Existence test. */
2651                 return 0;
2652         }
2653
2654         return inode_has_perm(current, inode,
2655                                open_file_mask_to_av(inode->i_mode, mask), NULL);
2656 }
2657
2658 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2659 {
2660         int rc;
2661
2662         rc = secondary_ops->inode_setattr(dentry, iattr);
2663         if (rc)
2664                 return rc;
2665
2666         if (iattr->ia_valid & ATTR_FORCE)
2667                 return 0;
2668
2669         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2670                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2671                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2672
2673         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2674 }
2675
2676 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2677 {
2678         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2679 }
2680
2681 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2682 {
2683         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2684                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2685                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2686                         if (!capable(CAP_SETFCAP))
2687                                 return -EPERM;
2688                 } else if (!capable(CAP_SYS_ADMIN)) {
2689                         /* A different attribute in the security namespace.
2690                            Restrict to administrator. */
2691                         return -EPERM;
2692                 }
2693         }
2694
2695         /* Not an attribute we recognize, so just check the
2696            ordinary setattr permission. */
2697         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2698 }
2699
2700 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2701                                   const void *value, size_t size, int flags)
2702 {
2703         struct task_security_struct *tsec = current->security;
2704         struct inode *inode = dentry->d_inode;
2705         struct inode_security_struct *isec = inode->i_security;
2706         struct superblock_security_struct *sbsec;
2707         struct avc_audit_data ad;
2708         u32 newsid;
2709         int rc = 0;
2710
2711         if (strcmp(name, XATTR_NAME_SELINUX))
2712                 return selinux_inode_setotherxattr(dentry, name);
2713
2714         sbsec = inode->i_sb->s_security;
2715         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2716                 return -EOPNOTSUPP;
2717
2718         if (!is_owner_or_cap(inode))
2719                 return -EPERM;
2720
2721         AVC_AUDIT_DATA_INIT(&ad, FS);
2722         ad.u.fs.path.dentry = dentry;
2723
2724         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2725                           FILE__RELABELFROM, &ad);
2726         if (rc)
2727                 return rc;
2728
2729         rc = security_context_to_sid(value, size, &newsid);
2730         if (rc == -EINVAL) {
2731                 if (!capable(CAP_MAC_ADMIN))
2732                         return rc;
2733                 rc = security_context_to_sid_force(value, size, &newsid);
2734         }
2735         if (rc)
2736                 return rc;
2737
2738         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2739                           FILE__RELABELTO, &ad);
2740         if (rc)
2741                 return rc;
2742
2743         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2744                                           isec->sclass);
2745         if (rc)
2746                 return rc;
2747
2748         return avc_has_perm(newsid,
2749                             sbsec->sid,
2750                             SECCLASS_FILESYSTEM,
2751                             FILESYSTEM__ASSOCIATE,
2752                             &ad);
2753 }
2754
2755 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2756                                         const void *value, size_t size,
2757                                         int flags)
2758 {
2759         struct inode *inode = dentry->d_inode;
2760         struct inode_security_struct *isec = inode->i_security;
2761         u32 newsid;
2762         int rc;
2763
2764         if (strcmp(name, XATTR_NAME_SELINUX)) {
2765                 /* Not an attribute we recognize, so nothing to do. */
2766                 return;
2767         }
2768
2769         rc = security_context_to_sid_force(value, size, &newsid);
2770         if (rc) {
2771                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2772                        "for (%s, %lu), rc=%d\n",
2773                        inode->i_sb->s_id, inode->i_ino, -rc);
2774                 return;
2775         }
2776
2777         isec->sid = newsid;
2778         return;
2779 }
2780
2781 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2782 {
2783         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2784 }
2785
2786 static int selinux_inode_listxattr(struct dentry *dentry)
2787 {
2788         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2789 }
2790
2791 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2792 {
2793         if (strcmp(name, XATTR_NAME_SELINUX))
2794                 return selinux_inode_setotherxattr(dentry, name);
2795
2796         /* No one is allowed to remove a SELinux security label.
2797            You can change the label, but all data must be labeled. */
2798         return -EACCES;
2799 }
2800
2801 /*
2802  * Copy the inode security context value to the user.
2803  *
2804  * Permission check is handled by selinux_inode_getxattr hook.
2805  */
2806 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2807 {
2808         u32 size;
2809         int error;
2810         char *context = NULL;
2811         struct task_security_struct *tsec = current->security;
2812         struct inode_security_struct *isec = inode->i_security;
2813
2814         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2815                 return -EOPNOTSUPP;
2816
2817         /*
2818          * If the caller has CAP_MAC_ADMIN, then get the raw context
2819          * value even if it is not defined by current policy; otherwise,
2820          * use the in-core value under current policy.
2821          * Use the non-auditing forms of the permission checks since
2822          * getxattr may be called by unprivileged processes commonly
2823          * and lack of permission just means that we fall back to the
2824          * in-core context value, not a denial.
2825          */
2826         error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2827         if (!error)
2828                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2829                                              SECCLASS_CAPABILITY2,
2830                                              CAPABILITY2__MAC_ADMIN,
2831                                              0,
2832                                              NULL);
2833         if (!error)
2834                 error = security_sid_to_context_force(isec->sid, &context,
2835                                                       &size);
2836         else
2837                 error = security_sid_to_context(isec->sid, &context, &size);
2838         if (error)
2839                 return error;
2840         error = size;
2841         if (alloc) {
2842                 *buffer = context;
2843                 goto out_nofree;
2844         }
2845         kfree(context);
2846 out_nofree:
2847         return error;
2848 }
2849
2850 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2851                                      const void *value, size_t size, int flags)
2852 {
2853         struct inode_security_struct *isec = inode->i_security;
2854         u32 newsid;
2855         int rc;
2856
2857         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2858                 return -EOPNOTSUPP;
2859
2860         if (!value || !size)
2861                 return -EACCES;
2862
2863         rc = security_context_to_sid((void *)value, size, &newsid);
2864         if (rc)
2865                 return rc;
2866
2867         isec->sid = newsid;
2868         return 0;
2869 }
2870
2871 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2872 {
2873         const int len = sizeof(XATTR_NAME_SELINUX);
2874         if (buffer && len <= buffer_size)
2875                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2876         return len;
2877 }
2878
2879 static int selinux_inode_need_killpriv(struct dentry *dentry)
2880 {
2881         return secondary_ops->inode_need_killpriv(dentry);
2882 }
2883
2884 static int selinux_inode_killpriv(struct dentry *dentry)
2885 {
2886         return secondary_ops->inode_killpriv(dentry);
2887 }
2888
2889 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2890 {
2891         struct inode_security_struct *isec = inode->i_security;
2892         *secid = isec->sid;
2893 }
2894
2895 /* file security operations */
2896
2897 static int selinux_revalidate_file_permission(struct file *file, int mask)
2898 {
2899         int rc;
2900         struct inode *inode = file->f_path.dentry->d_inode;
2901
2902         if (!mask) {
2903                 /* No permission to check.  Existence test. */
2904                 return 0;
2905         }
2906
2907         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2908         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2909                 mask |= MAY_APPEND;
2910
2911         rc = file_has_perm(current, file,
2912                            file_mask_to_av(inode->i_mode, mask));
2913         if (rc)
2914                 return rc;
2915
2916         return selinux_netlbl_inode_permission(inode, mask);
2917 }
2918
2919 static int selinux_file_permission(struct file *file, int mask)
2920 {
2921         struct inode *inode = file->f_path.dentry->d_inode;
2922         struct task_security_struct *tsec = current->security;
2923         struct file_security_struct *fsec = file->f_security;
2924         struct inode_security_struct *isec = inode->i_security;
2925
2926         if (!mask) {
2927                 /* No permission to check.  Existence test. */
2928                 return 0;
2929         }
2930
2931         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2932             && fsec->pseqno == avc_policy_seqno())
2933                 return selinux_netlbl_inode_permission(inode, mask);
2934
2935         return selinux_revalidate_file_permission(file, mask);
2936 }
2937
2938 static int selinux_file_alloc_security(struct file *file)
2939 {
2940         return file_alloc_security(file);
2941 }
2942
2943 static void selinux_file_free_security(struct file *file)
2944 {
2945         file_free_security(file);
2946 }
2947
2948 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2949                               unsigned long arg)
2950 {
2951         u32 av = 0;
2952
2953         if (_IOC_DIR(cmd) & _IOC_WRITE)
2954                 av |= FILE__WRITE;
2955         if (_IOC_DIR(cmd) & _IOC_READ)
2956                 av |= FILE__READ;
2957         if (!av)
2958                 av = FILE__IOCTL;
2959
2960         return file_has_perm(current, file, av);
2961 }
2962
2963 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2964 {
2965 #ifndef CONFIG_PPC32
2966         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2967                 /*
2968                  * We are making executable an anonymous mapping or a
2969                  * private file mapping that will also be writable.
2970                  * This has an additional check.
2971                  */
2972                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2973                 if (rc)
2974                         return rc;
2975         }
2976 #endif
2977
2978         if (file) {
2979                 /* read access is always possible with a mapping */
2980                 u32 av = FILE__READ;
2981
2982                 /* write access only matters if the mapping is shared */
2983                 if (shared && (prot & PROT_WRITE))
2984                         av |= FILE__WRITE;
2985
2986                 if (prot & PROT_EXEC)
2987                         av |= FILE__EXECUTE;
2988
2989                 return file_has_perm(current, file, av);
2990         }
2991         return 0;
2992 }
2993
2994 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2995                              unsigned long prot, unsigned long flags,
2996                              unsigned long addr, unsigned long addr_only)
2997 {
2998         int rc = 0;
2999         u32 sid = ((struct task_security_struct *)(current->security))->sid;
3000
3001         if (addr < mmap_min_addr)
3002                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3003                                   MEMPROTECT__MMAP_ZERO, NULL);
3004         if (rc || addr_only)
3005                 return rc;
3006
3007         if (selinux_checkreqprot)
3008                 prot = reqprot;
3009
3010         return file_map_prot_check(file, prot,
3011                                    (flags & MAP_TYPE) == MAP_SHARED);
3012 }
3013
3014 static int selinux_file_mprotect(struct vm_area_struct *vma,
3015                                  unsigned long reqprot,
3016                                  unsigned long prot)
3017 {
3018         int rc;
3019
3020         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3021         if (rc)
3022                 return rc;
3023
3024         if (selinux_checkreqprot)
3025                 prot = reqprot;
3026
3027 #ifndef CONFIG_PPC32
3028         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3029                 rc = 0;
3030                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3031                     vma->vm_end <= vma->vm_mm->brk) {
3032                         rc = task_has_perm(current, current,
3033                                            PROCESS__EXECHEAP);
3034                 } else if (!vma->vm_file &&
3035                            vma->vm_start <= vma->vm_mm->start_stack &&
3036                            vma->vm_end >= vma->vm_mm->start_stack) {
3037                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3038                 } else if (vma->vm_file && vma->anon_vma) {
3039                         /*
3040                          * We are making executable a file mapping that has
3041                          * had some COW done. Since pages might have been
3042                          * written, check ability to execute the possibly
3043                          * modified content.  This typically should only
3044                          * occur for text relocations.
3045                          */
3046                         rc = file_has_perm(current, vma->vm_file,
3047                                            FILE__EXECMOD);
3048                 }
3049                 if (rc)
3050                         return rc;
3051         }
3052 #endif
3053
3054         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3055 }
3056
3057 static int selinux_file_lock(struct file *file, unsigned int cmd)
3058 {
3059         return file_has_perm(current, file, FILE__LOCK);
3060 }
3061
3062 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3063                               unsigned long arg)
3064 {
3065         int err = 0;
3066
3067         switch (cmd) {
3068         case F_SETFL:
3069                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3070                         err = -EINVAL;
3071                         break;
3072                 }
3073
3074                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3075                         err = file_has_perm(current, file, FILE__WRITE);
3076                         break;
3077                 }
3078                 /* fall through */
3079         case F_SETOWN:
3080         case F_SETSIG:
3081         case F_GETFL:
3082         case F_GETOWN:
3083         case F_GETSIG:
3084                 /* Just check FD__USE permission */
3085                 err = file_has_perm(current, file, 0);
3086                 break;
3087         case F_GETLK:
3088         case F_SETLK:
3089         case F_SETLKW:
3090 #if BITS_PER_LONG == 32
3091         case F_GETLK64:
3092         case F_SETLK64:
3093         case F_SETLKW64:
3094 #endif
3095                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3096                         err = -EINVAL;
3097                         break;
3098                 }
3099                 err = file_has_perm(current, file, FILE__LOCK);
3100                 break;
3101         }
3102
3103         return err;
3104 }
3105
3106 static int selinux_file_set_fowner(struct file *file)
3107 {
3108         struct task_security_struct *tsec;
3109         struct file_security_struct *fsec;
3110
3111         tsec = current->security;
3112         fsec = file->f_security;
3113         fsec->fown_sid = tsec->sid;
3114
3115         return 0;
3116 }
3117
3118 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3119                                        struct fown_struct *fown, int signum)
3120 {
3121         struct file *file;
3122         u32 perm;
3123         struct task_security_struct *tsec;
3124         struct file_security_struct *fsec;
3125
3126         /* struct fown_struct is never outside the context of a struct file */
3127         file = container_of(fown, struct file, f_owner);
3128
3129         tsec = tsk->security;
3130         fsec = file->f_security;
3131
3132         if (!signum)
3133                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3134         else
3135                 perm = signal_to_av(signum);
3136
3137         return avc_has_perm(fsec->fown_sid, tsec->sid,
3138                             SECCLASS_PROCESS, perm, NULL);
3139 }
3140
3141 static int selinux_file_receive(struct file *file)
3142 {
3143         return file_has_perm(current, file, file_to_av(file));
3144 }
3145
3146 static int selinux_dentry_open(struct file *file)
3147 {
3148         struct file_security_struct *fsec;
3149         struct inode *inode;
3150         struct inode_security_struct *isec;
3151         inode = file->f_path.dentry->d_inode;
3152         fsec = file->f_security;
3153         isec = inode->i_security;
3154         /*
3155          * Save inode label and policy sequence number
3156          * at open-time so that selinux_file_permission
3157          * can determine whether revalidation is necessary.
3158          * Task label is already saved in the file security
3159          * struct as its SID.
3160          */
3161         fsec->isid = isec->sid;
3162         fsec->pseqno = avc_policy_seqno();
3163         /*
3164          * Since the inode label or policy seqno may have changed
3165          * between the selinux_inode_permission check and the saving
3166          * of state above, recheck that access is still permitted.
3167          * Otherwise, access might never be revalidated against the
3168          * new inode label or new policy.
3169          * This check is not redundant - do not remove.
3170          */
3171         return inode_has_perm(current, inode, file_to_av(file), NULL);
3172 }
3173
3174 /* task security operations */
3175
3176 static int selinux_task_create(unsigned long clone_flags)
3177 {
3178         int rc;
3179
3180         rc = secondary_ops->task_create(clone_flags);
3181         if (rc)
3182                 return rc;
3183
3184         return task_has_perm(current, current, PROCESS__FORK);
3185 }
3186
3187 static int selinux_task_alloc_security(struct task_struct *tsk)
3188 {
3189         struct task_security_struct *tsec1, *tsec2;
3190         int rc;
3191
3192         tsec1 = current->security;
3193
3194         rc = task_alloc_security(tsk);
3195         if (rc)
3196                 return rc;
3197         tsec2 = tsk->security;
3198
3199         tsec2->osid = tsec1->osid;
3200         tsec2->sid = tsec1->sid;
3201
3202         /* Retain the exec, fs, key, and sock SIDs across fork */
3203         tsec2->exec_sid = tsec1->exec_sid;
3204         tsec2->create_sid = tsec1->create_sid;
3205         tsec2->keycreate_sid = tsec1->keycreate_sid;
3206         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3207
3208         return 0;
3209 }
3210
3211 static void selinux_task_free_security(struct task_struct *tsk)
3212 {
3213         task_free_security(tsk);
3214 }
3215
3216 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3217 {
3218         /* Since setuid only affects the current process, and
3219            since the SELinux controls are not based on the Linux
3220            identity attributes, SELinux does not need to control
3221            this operation.  However, SELinux does control the use
3222            of the CAP_SETUID and CAP_SETGID capabilities using the
3223            capable hook. */
3224         return 0;
3225 }
3226
3227 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3228 {
3229         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3230 }
3231
3232 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3233 {
3234         /* See the comment for setuid above. */
3235         return 0;
3236 }
3237
3238 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3239 {
3240         return task_has_perm(current, p, PROCESS__SETPGID);
3241 }
3242
3243 static int selinux_task_getpgid(struct task_struct *p)
3244 {
3245         return task_has_perm(current, p, PROCESS__GETPGID);
3246 }
3247
3248 static int selinux_task_getsid(struct task_struct *p)
3249 {
3250         return task_has_perm(current, p, PROCESS__GETSESSION);
3251 }
3252
3253 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3254 {
3255         struct task_security_struct *tsec = p->security;
3256         *secid = tsec->sid;
3257 }
3258
3259 static int selinux_task_setgroups(struct group_info *group_info)
3260 {
3261         /* See the comment for setuid above. */
3262         return 0;
3263 }
3264
3265 static int selinux_task_setnice(struct task_struct *p, int nice)
3266 {
3267         int rc;
3268
3269         rc = secondary_ops->task_setnice(p, nice);
3270         if (rc)
3271                 return rc;
3272
3273         return task_has_perm(current, p, PROCESS__SETSCHED);
3274 }
3275
3276 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3277 {
3278         int rc;
3279
3280         rc = secondary_ops->task_setioprio(p, ioprio);
3281         if (rc)
3282                 return rc;
3283
3284         return task_has_perm(current, p, PROCESS__SETSCHED);
3285 }
3286
3287 static int selinux_task_getioprio(struct task_struct *p)
3288 {
3289         return task_has_perm(current, p, PROCESS__GETSCHED);
3290 }
3291
3292 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3293 {
3294         struct rlimit *old_rlim = current->signal->rlim + resource;
3295         int rc;
3296
3297         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3298         if (rc)
3299                 return rc;
3300
3301         /* Control the ability to change the hard limit (whether
3302            lowering or raising it), so that the hard limit can
3303            later be used as a safe reset point for the soft limit
3304            upon context transitions. See selinux_bprm_apply_creds. */
3305         if (old_rlim->rlim_max != new_rlim->rlim_max)
3306                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3307
3308         return 0;
3309 }
3310
3311 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3312 {
3313         int rc;
3314
3315         rc = secondary_ops->task_setscheduler(p, policy, lp);
3316         if (rc)
3317                 return rc;
3318
3319         return task_has_perm(current, p, PROCESS__SETSCHED);
3320 }
3321
3322 static int selinux_task_getscheduler(struct task_struct *p)
3323 {
3324         return task_has_perm(current, p, PROCESS__GETSCHED);
3325 }
3326
3327 static int selinux_task_movememory(struct task_struct *p)
3328 {
3329         return task_has_perm(current, p, PROCESS__SETSCHED);
3330 }
3331
3332 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3333                                 int sig, u32 secid)
3334 {
3335         u32 perm;
3336         int rc;
3337         struct task_security_struct *tsec;
3338
3339         rc = secondary_ops->task_kill(p, info, sig, secid);
3340         if (rc)
3341                 return rc;
3342
3343         if (!sig)
3344                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3345         else
3346                 perm = signal_to_av(sig);
3347         tsec = p->security;
3348         if (secid)
3349                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3350         else
3351                 rc = task_has_perm(current, p, perm);
3352         return rc;
3353 }
3354
3355 static int selinux_task_prctl(int option,
3356                               unsigned long arg2,
3357                               unsigned long arg3,
3358                               unsigned long arg4,
3359                               unsigned long arg5,
3360                               long *rc_p)
3361 {
3362         /* The current prctl operations do not appear to require
3363            any SELinux controls since they merely observe or modify
3364            the state of the current process. */
3365         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3366 }
3367
3368 static int selinux_task_wait(struct task_struct *p)
3369 {
3370         return task_has_perm(p, current, PROCESS__SIGCHLD);
3371 }
3372
3373 static void selinux_task_reparent_to_init(struct task_struct *p)
3374 {
3375         struct task_security_struct *tsec;
3376
3377         secondary_ops->task_reparent_to_init(p);
3378
3379         tsec = p->security;
3380         tsec->osid = tsec->sid;
3381         tsec->sid = SECINITSID_KERNEL;
3382         return;
3383 }
3384
3385 static void selinux_task_to_inode(struct task_struct *p,
3386                                   struct inode *inode)
3387 {
3388         struct task_security_struct *tsec = p->security;
3389         struct inode_security_struct *isec = inode->i_security;
3390
3391         isec->sid = tsec->sid;
3392         isec->initialized = 1;
3393         return;
3394 }
3395
3396 /* Returns error only if unable to parse addresses */
3397 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3398                         struct avc_audit_data *ad, u8 *proto)
3399 {
3400         int offset, ihlen, ret = -EINVAL;
3401         struct iphdr _iph, *ih;
3402
3403         offset = skb_network_offset(skb);
3404         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3405         if (ih == NULL)
3406                 goto out;
3407
3408         ihlen = ih->ihl * 4;
3409         if (ihlen < sizeof(_iph))
3410                 goto out;
3411
3412         ad->u.net.v4info.saddr = ih->saddr;
3413         ad->u.net.v4info.daddr = ih->daddr;
3414         ret = 0;
3415
3416         if (proto)
3417                 *proto = ih->protocol;
3418
3419         switch (ih->protocol) {
3420         case IPPROTO_TCP: {
3421                 struct tcphdr _tcph, *th;
3422
3423                 if (ntohs(ih->frag_off) & IP_OFFSET)
3424                         break;
3425
3426                 offset += ihlen;
3427                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3428                 if (th == NULL)
3429                         break;
3430
3431                 ad->u.net.sport = th->source;
3432                 ad->u.net.dport = th->dest;
3433                 break;
3434         }
3435
3436         case IPPROTO_UDP: {
3437                 struct udphdr _udph, *uh;
3438
3439                 if (ntohs(ih->frag_off) & IP_OFFSET)
3440                         break;
3441
3442                 offset += ihlen;
3443                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3444                 if (uh == NULL)
3445                         break;
3446
3447                 ad->u.net.sport = uh->source;
3448                 ad->u.net.dport = uh->dest;
3449                 break;
3450         }
3451
3452         case IPPROTO_DCCP: {
3453                 struct dccp_hdr _dccph, *dh;
3454
3455                 if (ntohs(ih->frag_off) & IP_OFFSET)
3456                         break;
3457
3458                 offset += ihlen;
3459                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3460                 if (dh == NULL)
3461                         break;
3462
3463                 ad->u.net.sport = dh->dccph_sport;
3464                 ad->u.net.dport = dh->dccph_dport;
3465                 break;
3466         }
3467
3468         default:
3469                 break;
3470         }
3471 out:
3472         return ret;
3473 }
3474
3475 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3476
3477 /* Returns error only if unable to parse addresses */
3478 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3479                         struct avc_audit_data *ad, u8 *proto)
3480 {
3481         u8 nexthdr;
3482         int ret = -EINVAL, offset;
3483         struct ipv6hdr _ipv6h, *ip6;
3484
3485         offset = skb_network_offset(skb);
3486         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3487         if (ip6 == NULL)
3488                 goto out;
3489
3490         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3491         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3492         ret = 0;
3493
3494         nexthdr = ip6->nexthdr;
3495         offset += sizeof(_ipv6h);
3496         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3497         if (offset < 0)
3498                 goto out;
3499
3500         if (proto)
3501                 *proto = nexthdr;
3502
3503         switch (nexthdr) {
3504         case IPPROTO_TCP: {
3505                 struct tcphdr _tcph, *th;
3506
3507                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3508                 if (th == NULL)
3509                         break;
3510
3511                 ad->u.net.sport = th->source;
3512                 ad->u.net.dport = th->dest;
3513                 break;
3514         }
3515
3516         case IPPROTO_UDP: {
3517                 struct udphdr _udph, *uh;
3518
3519                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3520                 if (uh == NULL)
3521                         break;
3522
3523                 ad->u.net.sport = uh->source;
3524                 ad->u.net.dport = uh->dest;
3525                 break;
3526         }
3527
3528         case IPPROTO_DCCP: {
3529                 struct dccp_hdr _dccph, *dh;
3530
3531                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3532                 if (dh == NULL)
3533                         break;
3534
3535                 ad->u.net.sport = dh->dccph_sport;
3536                 ad->u.net.dport = dh->dccph_dport;
3537                 break;
3538         }
3539
3540         /* includes fragments */
3541         default:
3542                 break;
3543         }
3544 out:
3545         return ret;
3546 }
3547
3548 #endif /* IPV6 */
3549
3550 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3551                              char **addrp, int src, u8 *proto)
3552 {
3553         int ret = 0;
3554
3555         switch (ad->u.net.family) {
3556         case PF_INET:
3557                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3558                 if (ret || !addrp)
3559                         break;
3560                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3561                                         &ad->u.net.v4info.daddr);
3562                 break;
3563
3564 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3565         case PF_INET6:
3566                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3567                 if (ret || !addrp)
3568                         break;
3569                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3570                                         &ad->u.net.v6info.daddr);
3571                 break;
3572 #endif  /* IPV6 */
3573         default:
3574                 break;
3575         }
3576
3577         if (unlikely(ret))
3578                 printk(KERN_WARNING
3579                        "SELinux: failure in selinux_parse_skb(),"
3580                        " unable to parse packet\n");
3581
3582         return ret;
3583 }
3584
3585 /**
3586  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3587  * @skb: the packet
3588  * @family: protocol family
3589  * @sid: the packet's peer label SID
3590  *
3591  * Description:
3592  * Check the various different forms of network peer labeling and determine
3593  * the peer label/SID for the packet; most of the magic actually occurs in
3594  * the security server function security_net_peersid_cmp().  The function
3595  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3596  * or -EACCES if @sid is invalid due to inconsistencies with the different
3597  * peer labels.
3598  *
3599  */
3600 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3601 {
3602         int err;
3603         u32 xfrm_sid;
3604         u32 nlbl_sid;
3605         u32 nlbl_type;
3606
3607         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3608         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3609
3610         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3611         if (unlikely(err)) {
3612                 printk(KERN_WARNING
3613                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3614                        " unable to determine packet's peer label\n");
3615                 return -EACCES;
3616         }
3617
3618         return 0;
3619 }
3620
3621 /* socket security operations */
3622 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3623                            u32 perms)
3624 {
3625         struct inode_security_struct *isec;
3626         struct task_security_struct *tsec;
3627         struct avc_audit_data ad;
3628         int err = 0;
3629
3630         tsec = task->security;
3631         isec = SOCK_INODE(sock)->i_security;
3632
3633         if (isec->sid == SECINITSID_KERNEL)
3634                 goto out;
3635
3636         AVC_AUDIT_DATA_INIT(&ad, NET);
3637         ad.u.net.sk = sock->sk;
3638         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3639
3640 out:
3641         return err;
3642 }
3643
3644 static int selinux_socket_create(int family, int type,
3645                                  int protocol, int kern)
3646 {
3647         int err = 0;
3648         struct task_security_struct *tsec;
3649         u32 newsid;
3650
3651         if (kern)
3652                 goto out;
3653
3654         tsec = current->security;
3655         newsid = tsec->sockcreate_sid ? : tsec->sid;
3656         err = avc_has_perm(tsec->sid, newsid,
3657                            socket_type_to_security_class(family, type,
3658                            protocol), SOCKET__CREATE, NULL);
3659
3660 out:
3661         return err;
3662 }
3663
3664 static int selinux_socket_post_create(struct socket *sock, int family,
3665                                       int type, int protocol, int kern)
3666 {
3667         int err = 0;
3668         struct inode_security_struct *isec;
3669         struct task_security_struct *tsec;
3670         struct sk_security_struct *sksec;
3671         u32 newsid;
3672
3673         isec = SOCK_INODE(sock)->i_security;
3674
3675         tsec = current->security;
3676         newsid = tsec->sockcreate_sid ? : tsec->sid;
3677         isec->sclass = socket_type_to_security_class(family, type, protocol);
3678         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3679         isec->initialized = 1;
3680
3681         if (sock->sk) {
3682                 sksec = sock->sk->sk_security;
3683                 sksec->sid = isec->sid;
3684                 sksec->sclass = isec->sclass;
3685                 err = selinux_netlbl_socket_post_create(sock);
3686         }
3687
3688         return err;
3689 }
3690
3691 /* Range of port numbers used to automatically bind.
3692    Need to determine whether we should perform a name_bind
3693    permission check between the socket and the port number. */
3694
3695 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3696 {
3697         u16 family;
3698         int err;
3699
3700         err = socket_has_perm(current, sock, SOCKET__BIND);
3701         if (err)
3702                 goto out;
3703
3704         /*
3705          * If PF_INET or PF_INET6, check name_bind permission for the port.
3706          * Multiple address binding for SCTP is not supported yet: we just
3707          * check the first address now.
3708          */
3709         family = sock->sk->sk_family;
3710         if (family == PF_INET || family == PF_INET6) {
3711                 char *addrp;
3712                 struct inode_security_struct *isec;
3713                 struct task_security_struct *tsec;
3714                 struct avc_audit_data ad;
3715                 struct sockaddr_in *addr4 = NULL;
3716                 struct sockaddr_in6 *addr6 = NULL;
3717                 unsigned short snum;
3718                 struct sock *sk = sock->sk;
3719                 u32 sid, node_perm;
3720
3721                 tsec = current->security;
3722                 isec = SOCK_INODE(sock)->i_security;
3723
3724                 if (family == PF_INET) {
3725                         addr4 = (struct sockaddr_in *)address;
3726                         snum = ntohs(addr4->sin_port);
3727                         addrp = (char *)&addr4->sin_addr.s_addr;
3728                 } else {
3729                         addr6 = (struct sockaddr_in6 *)address;
3730                         snum = ntohs(addr6->sin6_port);
3731                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3732                 }
3733
3734                 if (snum) {
3735                         int low, high;
3736
3737                         inet_get_local_port_range(&low, &high);
3738
3739                         if (snum < max(PROT_SOCK, low) || snum > high) {
3740                                 err = sel_netport_sid(sk->sk_protocol,
3741                                                       snum, &sid);
3742                                 if (err)
3743                                         goto out;
3744                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3745                                 ad.u.net.sport = htons(snum);
3746                                 ad.u.net.family = family;
3747                                 err = avc_has_perm(isec->sid, sid,
3748                                                    isec->sclass,
3749                                                    SOCKET__NAME_BIND, &ad);
3750                                 if (err)
3751                                         goto out;
3752                         }
3753                 }
3754
3755                 switch (isec->sclass) {
3756                 case SECCLASS_TCP_SOCKET:
3757                         node_perm = TCP_SOCKET__NODE_BIND;
3758                         break;
3759
3760                 case SECCLASS_UDP_SOCKET:
3761                         node_perm = UDP_SOCKET__NODE_BIND;
3762                         break;
3763
3764                 case SECCLASS_DCCP_SOCKET:
3765                         node_perm = DCCP_SOCKET__NODE_BIND;
3766                         break;
3767
3768                 default:
3769                         node_perm = RAWIP_SOCKET__NODE_BIND;
3770                         break;
3771                 }
3772
3773                 err = sel_netnode_sid(addrp, family, &sid);
3774                 if (err)
3775                         goto out;
3776
3777                 AVC_AUDIT_DATA_INIT(&ad, NET);
3778                 ad.u.net.sport = htons(snum);
3779                 ad.u.net.family = family;
3780
3781                 if (family == PF_INET)
3782                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3783                 else
3784                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3785
3786                 err = avc_has_perm(isec->sid, sid,
3787                                    isec->sclass, node_perm, &ad);
3788                 if (err)
3789                         goto out;
3790         }
3791 out:
3792         return err;
3793 }
3794
3795 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3796 {
3797         struct sock *sk = sock->sk;
3798         struct inode_security_struct *isec;
3799         int err;
3800
3801         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3802         if (err)
3803                 return err;
3804
3805         /*
3806          * If a TCP or DCCP socket, check name_connect permission for the port.
3807          */
3808         isec = SOCK_INODE(sock)->i_security;
3809         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3810             isec->sclass == SECCLASS_DCCP_SOCKET) {
3811                 struct avc_audit_data ad;
3812                 struct sockaddr_in *addr4 = NULL;
3813                 struct sockaddr_in6 *addr6 = NULL;
3814                 unsigned short snum;
3815                 u32 sid, perm;
3816
3817                 if (sk->sk_family == PF_INET) {
3818                         addr4 = (struct sockaddr_in *)address;
3819                         if (addrlen < sizeof(struct sockaddr_in))
3820                                 return -EINVAL;
3821                         snum = ntohs(addr4->sin_port);
3822                 } else {
3823                         addr6 = (struct sockaddr_in6 *)address;
3824                         if (addrlen < SIN6_LEN_RFC2133)
3825                                 return -EINVAL;
3826                         snum = ntohs(addr6->sin6_port);
3827                 }
3828
3829                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3830                 if (err)
3831                         goto out;
3832
3833                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3834                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3835
3836                 AVC_AUDIT_DATA_INIT(&ad, NET);
3837                 ad.u.net.dport = htons(snum);
3838                 ad.u.net.family = sk->sk_family;
3839                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3840                 if (err)
3841                         goto out;
3842         }
3843
3844         err = selinux_netlbl_socket_connect(sk, address);
3845
3846 out:
3847         return err;
3848 }
3849
3850 static int selinux_socket_listen(struct socket *sock, int backlog)
3851 {
3852         return socket_has_perm(current, sock, SOCKET__LISTEN);
3853 }
3854
3855 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3856 {
3857         int err;
3858         struct inode_security_struct *isec;
3859         struct inode_security_struct *newisec;
3860
3861         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3862         if (err)
3863                 return err;
3864
3865         newisec = SOCK_INODE(newsock)->i_security;
3866
3867         isec = SOCK_INODE(sock)->i_security;
3868         newisec->sclass = isec->sclass;
3869         newisec->sid = isec->sid;
3870         newisec->initialized = 1;
3871
3872         return 0;
3873 }
3874
3875 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3876                                   int size)
3877 {
3878         int rc;
3879
3880         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3881         if (rc)
3882                 return rc;
3883
3884         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3885 }
3886
3887 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3888                                   int size, int flags)
3889 {
3890         return socket_has_perm(current, sock, SOCKET__READ);
3891 }
3892
3893 static int selinux_socket_getsockname(struct socket *sock)
3894 {
3895         return socket_has_perm(current, sock, SOCKET__GETATTR);
3896 }
3897
3898 static int selinux_socket_getpeername(struct socket *sock)
3899 {
3900         return socket_has_perm(current, sock, SOCKET__GETATTR);
3901 }
3902
3903 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3904 {
3905         int err;
3906
3907         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3908         if (err)
3909                 return err;
3910
3911         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3912 }
3913
3914 static int selinux_socket_getsockopt(struct socket *sock, int level,
3915                                      int optname)
3916 {
3917         return socket_has_perm(current, sock, SOCKET__GETOPT);
3918 }
3919
3920 static int selinux_socket_shutdown(struct socket *sock, int how)
3921 {
3922         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3923 }
3924
3925 static int selinux_socket_unix_stream_connect(struct socket *sock,
3926                                               struct socket *other,
3927                                               struct sock *newsk)
3928 {
3929         struct sk_security_struct *ssec;
3930         struct inode_security_struct *isec;
3931         struct inode_security_struct *other_isec;
3932         struct avc_audit_data ad;
3933         int err;
3934
3935         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3936         if (err)
3937                 return err;
3938
3939         isec = SOCK_INODE(sock)->i_security;
3940         other_isec = SOCK_INODE(other)->i_security;
3941
3942         AVC_AUDIT_DATA_INIT(&ad, NET);
3943         ad.u.net.sk = other->sk;
3944
3945         err = avc_has_perm(isec->sid, other_isec->sid,
3946                            isec->sclass,
3947                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3948         if (err)
3949                 return err;
3950
3951         /* connecting socket */
3952         ssec = sock->sk->sk_security;
3953         ssec->peer_sid = other_isec->sid;
3954
3955         /* server child socket */
3956         ssec = newsk->sk_security;
3957         ssec->peer_sid = isec->sid;
3958         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3959
3960         return err;
3961 }
3962
3963 static int selinux_socket_unix_may_send(struct socket *sock,
3964                                         struct socket *other)
3965 {
3966         struct inode_security_struct *isec;
3967         struct inode_security_struct *other_isec;
3968         struct avc_audit_data ad;
3969         int err;
3970
3971         isec = SOCK_INODE(sock)->i_security;
3972         other_isec = SOCK_INODE(other)->i_security;
3973
3974         AVC_AUDIT_DATA_INIT(&ad, NET);
3975         ad.u.net.sk = other->sk;
3976
3977         err = avc_has_perm(isec->sid, other_isec->sid,
3978                            isec->sclass, SOCKET__SENDTO, &ad);
3979         if (err)
3980                 return err;
3981
3982         return 0;
3983 }
3984
3985 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3986                                     u32 peer_sid,
3987                                     struct avc_audit_data *ad)
3988 {
3989         int err;
3990         u32 if_sid;
3991         u32 node_sid;
3992
3993         err = sel_netif_sid(ifindex, &if_sid);
3994         if (err)
3995                 return err;
3996         err = avc_has_perm(peer_sid, if_sid,
3997                            SECCLASS_NETIF, NETIF__INGRESS, ad);
3998         if (err)
3999                 return err;
4000
4001         err = sel_netnode_sid(addrp, family, &node_sid);
4002         if (err)
4003                 return err;
4004         return avc_has_perm(peer_sid, node_sid,
4005                             SECCLASS_NODE, NODE__RECVFROM, ad);
4006 }
4007
4008 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4009                                                 struct sk_buff *skb,
4010                                                 struct avc_audit_data *ad,
4011                                                 u16 family,
4012                                                 char *addrp)
4013 {
4014         int err;
4015         struct sk_security_struct *sksec = sk->sk_security;
4016         u16 sk_class;
4017         u32 netif_perm, node_perm, recv_perm;
4018         u32 port_sid, node_sid, if_sid, sk_sid;
4019
4020         sk_sid = sksec->sid;
4021         sk_class = sksec->sclass;
4022
4023         switch (sk_class) {
4024         case SECCLASS_UDP_SOCKET:
4025                 netif_perm = NETIF__UDP_RECV;
4026                 node_perm = NODE__UDP_RECV;
4027                 recv_perm = UDP_SOCKET__RECV_MSG;
4028                 break;
4029         case SECCLASS_TCP_SOCKET:
4030                 netif_perm = NETIF__TCP_RECV;
4031                 node_perm = NODE__TCP_RECV;
4032                 recv_perm = TCP_SOCKET__RECV_MSG;
4033                 break;
4034         case SECCLASS_DCCP_SOCKET:
4035                 netif_perm = NETIF__DCCP_RECV;
4036                 node_perm = NODE__DCCP_RECV;
4037                 recv_perm = DCCP_SOCKET__RECV_MSG;
4038                 break;
4039         default:
4040                 netif_perm = NETIF__RAWIP_RECV;
4041                 node_perm = NODE__RAWIP_RECV;
4042                 recv_perm = 0;
4043                 break;
4044         }
4045
4046         err = sel_netif_sid(skb->iif, &if_sid);
4047         if (err)
4048                 return err;
4049         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4050         if (err)
4051                 return err;
4052
4053         err = sel_netnode_sid(addrp, family, &node_sid);
4054         if (err)
4055                 return err;
4056         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4057         if (err)
4058                 return err;
4059
4060         if (!recv_perm)
4061                 return 0;
4062         err = sel_netport_sid(sk->sk_protocol,
4063                               ntohs(ad->u.net.sport), &port_sid);
4064         if (unlikely(err)) {
4065                 printk(KERN_WARNING
4066                        "SELinux: failure in"
4067                        " selinux_sock_rcv_skb_iptables_compat(),"
4068                        " network port label not found\n");
4069                 return err;
4070         }
4071         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4072 }
4073
4074 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4075                                        u16 family)
4076 {
4077         int err;
4078         struct sk_security_struct *sksec = sk->sk_security;
4079         u32 peer_sid;
4080         u32 sk_sid = sksec->sid;
4081         struct avc_audit_data ad;
4082         char *addrp;
4083
4084         AVC_AUDIT_DATA_INIT(&ad, NET);
4085         ad.u.net.netif = skb->iif;
4086         ad.u.net.family = family;
4087         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4088         if (err)
4089                 return err;
4090
4091         if (selinux_compat_net)
4092                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4093                                                            family, addrp);
4094         else
4095                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4096                                    PACKET__RECV, &ad);
4097         if (err)
4098                 return err;
4099
4100         if (selinux_policycap_netpeer) {
4101                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4102                 if (err)
4103                         return err;
4104                 err = avc_has_perm(sk_sid, peer_sid,
4105                                    SECCLASS_PEER, PEER__RECV, &ad);
4106                 if (err)
4107                         selinux_netlbl_err(skb, err, 0);
4108         } else {
4109                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4110                 if (err)
4111                         return err;
4112                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4113         }
4114
4115         return err;
4116 }
4117
4118 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4119 {
4120         int err;
4121         struct sk_security_struct *sksec = sk->sk_security;
4122         u16 family = sk->sk_family;
4123         u32 sk_sid = sksec->sid;
4124         struct avc_audit_data ad;
4125         char *addrp;
4126         u8 secmark_active;
4127         u8 peerlbl_active;
4128
4129         if (family != PF_INET && family != PF_INET6)
4130                 return 0;
4131
4132         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4133         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4134                 family = PF_INET;
4135
4136         /* If any sort of compatibility mode is enabled then handoff processing
4137          * to the selinux_sock_rcv_skb_compat() function to deal with the
4138          * special handling.  We do this in an attempt to keep this function
4139          * as fast and as clean as possible. */
4140         if (selinux_compat_net || !selinux_policycap_netpeer)
4141                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4142
4143         secmark_active = selinux_secmark_enabled();
4144         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4145         if (!secmark_active && !peerlbl_active)
4146                 return 0;
4147
4148         AVC_AUDIT_DATA_INIT(&ad, NET);
4149         ad.u.net.netif = skb->iif;
4150         ad.u.net.family = family;
4151         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4152         if (err)
4153                 return err;
4154
4155         if (peerlbl_active) {
4156                 u32 peer_sid;
4157
4158                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4159                 if (err)
4160                         return err;
4161                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4162                                                peer_sid, &ad);
4163                 if (err) {
4164                         selinux_netlbl_err(skb, err, 0);
4165                         return err;
4166                 }
4167                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4168                                    PEER__RECV, &ad);
4169                 if (err)
4170                         selinux_netlbl_err(skb, err, 0);
4171         }
4172
4173         if (secmark_active) {
4174                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4175                                    PACKET__RECV, &ad);
4176                 if (err)
4177                         return err;
4178         }
4179
4180         return err;
4181 }
4182
4183 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4184                                             int __user *optlen, unsigned len)
4185 {
4186         int err = 0;
4187         char *scontext;
4188         u32 scontext_len;
4189         struct sk_security_struct *ssec;
4190         struct inode_security_struct *isec;
4191         u32 peer_sid = SECSID_NULL;
4192
4193         isec = SOCK_INODE(sock)->i_security;
4194
4195         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4196             isec->sclass == SECCLASS_TCP_SOCKET) {
4197                 ssec = sock->sk->sk_security;
4198                 peer_sid = ssec->peer_sid;
4199         }
4200         if (peer_sid == SECSID_NULL) {
4201                 err = -ENOPROTOOPT;
4202                 goto out;
4203         }
4204
4205         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4206
4207         if (err)
4208                 goto out;
4209
4210         if (scontext_len > len) {
4211                 err = -ERANGE;
4212                 goto out_len;
4213         }
4214
4215         if (copy_to_user(optval, scontext, scontext_len))
4216                 err = -EFAULT;
4217
4218 out_len:
4219         if (put_user(scontext_len, optlen))
4220                 err = -EFAULT;
4221
4222         kfree(scontext);
4223 out:
4224         return err;
4225 }
4226
4227 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4228 {
4229         u32 peer_secid = SECSID_NULL;
4230         u16 family;
4231
4232         if (skb && skb->protocol == htons(ETH_P_IP))
4233                 family = PF_INET;
4234         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4235                 family = PF_INET6;
4236         else if (sock)
4237                 family = sock->sk->sk_family;
4238         else
4239                 goto out;
4240
4241         if (sock && family == PF_UNIX)
4242                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4243         else if (skb)
4244                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4245
4246 out:
4247         *secid = peer_secid;
4248         if (peer_secid == SECSID_NULL)
4249                 return -EINVAL;
4250         return 0;
4251 }
4252
4253 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4254 {
4255         return sk_alloc_security(sk, family, priority);
4256 }
4257
4258 static void selinux_sk_free_security(struct sock *sk)
4259 {
4260         sk_free_security(sk);
4261 }
4262
4263 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4264 {
4265         struct sk_security_struct *ssec = sk->sk_security;
4266         struct sk_security_struct *newssec = newsk->sk_security;
4267
4268         newssec->sid = ssec->sid;
4269         newssec->peer_sid = ssec->peer_sid;
4270         newssec->sclass = ssec->sclass;
4271
4272         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4273 }
4274
4275 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4276 {
4277         if (!sk)
4278                 *secid = SECINITSID_ANY_SOCKET;
4279         else {
4280                 struct sk_security_struct *sksec = sk->sk_security;
4281
4282                 *secid = sksec->sid;
4283         }
4284 }
4285
4286 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4287 {
4288         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4289         struct sk_security_struct *sksec = sk->sk_security;
4290
4291         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4292             sk->sk_family == PF_UNIX)
4293                 isec->sid = sksec->sid;
4294         sksec->sclass = isec->sclass;
4295 }
4296
4297 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4298                                      struct request_sock *req)
4299 {
4300         struct sk_security_struct *sksec = sk->sk_security;
4301         int err;
4302         u16 family = sk->sk_family;
4303         u32 newsid;
4304         u32 peersid;
4305
4306         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4307         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4308                 family = PF_INET;
4309
4310         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4311         if (err)
4312                 return err;
4313         if (peersid == SECSID_NULL) {
4314                 req->secid = sksec->sid;
4315                 req->peer_secid = SECSID_NULL;
4316                 return 0;
4317         }
4318
4319         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4320         if (err)
4321                 return err;
4322
4323         req->secid = newsid;
4324         req->peer_secid = peersid;
4325         return 0;
4326 }
4327
4328 static void selinux_inet_csk_clone(struct sock *newsk,
4329                                    const struct request_sock *req)
4330 {
4331         struct sk_security_struct *newsksec = newsk->sk_security;
4332
4333         newsksec->sid = req->secid;
4334         newsksec->peer_sid = req->peer_secid;
4335         /* NOTE: Ideally, we should also get the isec->sid for the
4336            new socket in sync, but we don't have the isec available yet.
4337            So we will wait until sock_graft to do it, by which
4338            time it will have been created and available. */
4339
4340         /* We don't need to take any sort of lock here as we are the only
4341          * thread with access to newsksec */
4342         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4343 }
4344
4345 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4346 {
4347         u16 family = sk->sk_family;
4348         struct sk_security_struct *sksec = sk->sk_security;
4349
4350         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4351         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4352                 family = PF_INET;
4353
4354         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4355
4356         selinux_netlbl_inet_conn_established(sk, family);
4357 }
4358
4359 static void selinux_req_classify_flow(const struct request_sock *req,
4360                                       struct flowi *fl)
4361 {
4362         fl->secid = req->secid;
4363 }
4364
4365 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4366 {
4367         int err = 0;
4368         u32 perm;
4369         struct nlmsghdr *nlh;
4370         struct socket *sock = sk->sk_socket;
4371         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4372
4373         if (skb->len < NLMSG_SPACE(0)) {
4374                 err = -EINVAL;
4375                 goto out;
4376         }
4377         nlh = nlmsg_hdr(skb);
4378
4379         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4380         if (err) {
4381                 if (err == -EINVAL) {
4382                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4383                                   "SELinux:  unrecognized netlink message"
4384                                   " type=%hu for sclass=%hu\n",
4385                                   nlh->nlmsg_type, isec->sclass);
4386                         if (!selinux_enforcing)
4387                                 err = 0;
4388                 }
4389
4390                 /* Ignore */
4391                 if (err == -ENOENT)
4392                         err = 0;
4393                 goto out;
4394         }
4395
4396         err = socket_has_perm(current, sock, perm);
4397 out:
4398         return err;
4399 }
4400
4401 #ifdef CONFIG_NETFILTER
4402
4403 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4404                                        u16 family)
4405 {
4406         int err;
4407         char *addrp;
4408         u32 peer_sid;
4409         struct avc_audit_data ad;
4410         u8 secmark_active;
4411         u8 netlbl_active;
4412         u8 peerlbl_active;
4413
4414         if (!selinux_policycap_netpeer)
4415                 return NF_ACCEPT;
4416
4417         secmark_active = selinux_secmark_enabled();
4418         netlbl_active = netlbl_enabled();
4419         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4420         if (!secmark_active && !peerlbl_active)
4421                 return NF_ACCEPT;
4422
4423         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4424                 return NF_DROP;
4425
4426         AVC_AUDIT_DATA_INIT(&ad, NET);
4427         ad.u.net.netif = ifindex;
4428         ad.u.net.family = family;
4429         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4430                 return NF_DROP;
4431
4432         if (peerlbl_active) {
4433                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4434                                                peer_sid, &ad);
4435                 if (err) {
4436                         selinux_netlbl_err(skb, err, 1);
4437                         return NF_DROP;
4438                 }
4439         }
4440
4441         if (secmark_active)
4442                 if (avc_has_perm(peer_sid, skb->secmark,
4443                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4444                         return NF_DROP;
4445
4446         if (netlbl_active)
4447                 /* we do this in the FORWARD path and not the POST_ROUTING
4448                  * path because we want to make sure we apply the necessary
4449                  * labeling before IPsec is applied so we can leverage AH
4450                  * protection */
4451                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4452                         return NF_DROP;
4453
4454         return NF_ACCEPT;
4455 }
4456
4457 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4458                                          struct sk_buff *skb,
4459                                          const struct net_device *in,
4460                                          const struct net_device *out,
4461                                          int (*okfn)(struct sk_buff *))
4462 {
4463         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4464 }
4465
4466 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4467 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4468                                          struct sk_buff *skb,
4469                                          const struct net_device *in,
4470                                          const struct net_device *out,
4471                                          int (*okfn)(struct sk_buff *))
4472 {
4473         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4474 }
4475 #endif  /* IPV6 */
4476
4477 static unsigned int selinux_ip_output(struct sk_buff *skb,
4478                                       u16 family)
4479 {
4480         u32 sid;
4481
4482         if (!netlbl_enabled())
4483                 return NF_ACCEPT;
4484
4485         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4486          * because we want to make sure we apply the necessary labeling
4487          * before IPsec is applied so we can leverage AH protection */
4488         if (skb->sk) {
4489                 struct sk_security_struct *sksec = skb->sk->sk_security;
4490                 sid = sksec->sid;
4491         } else
4492                 sid = SECINITSID_KERNEL;
4493         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4494                 return NF_DROP;
4495
4496         return NF_ACCEPT;
4497 }
4498
4499 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4500                                         struct sk_buff *skb,
4501                                         const struct net_device *in,
4502                                         const struct net_device *out,
4503                                         int (*okfn)(struct sk_buff *))
4504 {
4505         return selinux_ip_output(skb, PF_INET);
4506 }
4507
4508 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4509                                                 int ifindex,
4510                                                 struct avc_audit_data *ad,
4511                                                 u16 family, char *addrp)
4512 {
4513         int err;
4514         struct sk_security_struct *sksec = sk->sk_security;
4515         u16 sk_class;
4516         u32 netif_perm, node_perm, send_perm;
4517         u32 port_sid, node_sid, if_sid, sk_sid;
4518
4519         sk_sid = sksec->sid;
4520         sk_class = sksec->sclass;
4521
4522         switch (sk_class) {
4523         case SECCLASS_UDP_SOCKET:
4524                 netif_perm = NETIF__UDP_SEND;
4525                 node_perm = NODE__UDP_SEND;
4526                 send_perm = UDP_SOCKET__SEND_MSG;
4527                 break;
4528         case SECCLASS_TCP_SOCKET:
4529                 netif_perm = NETIF__TCP_SEND;
4530                 node_perm = NODE__TCP_SEND;
4531                 send_perm = TCP_SOCKET__SEND_MSG;
4532                 break;
4533         case SECCLASS_DCCP_SOCKET:
4534                 netif_perm = NETIF__DCCP_SEND;
4535                 node_perm = NODE__DCCP_SEND;
4536                 send_perm = DCCP_SOCKET__SEND_MSG;
4537                 break;
4538         default:
4539                 netif_perm = NETIF__RAWIP_SEND;
4540                 node_perm = NODE__RAWIP_SEND;
4541                 send_perm = 0;
4542                 break;
4543         }
4544
4545         err = sel_netif_sid(ifindex, &if_sid);
4546         if (err)
4547                 return err;
4548         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4549                 return err;
4550
4551         err = sel_netnode_sid(addrp, family, &node_sid);
4552         if (err)
4553                 return err;
4554         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4555         if (err)
4556                 return err;
4557
4558         if (send_perm != 0)
4559                 return 0;
4560
4561         err = sel_netport_sid(sk->sk_protocol,
4562                               ntohs(ad->u.net.dport), &port_sid);
4563         if (unlikely(err)) {
4564                 printk(KERN_WARNING
4565                        "SELinux: failure in"
4566                        " selinux_ip_postroute_iptables_compat(),"
4567                        " network port label not found\n");
4568                 return err;
4569         }
4570         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4571 }
4572
4573 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4574                                                 int ifindex,
4575                                                 u16 family)
4576 {
4577         struct sock *sk = skb->sk;
4578         struct sk_security_struct *sksec;
4579         struct avc_audit_data ad;
4580         char *addrp;
4581         u8 proto;
4582
4583         if (sk == NULL)
4584                 return NF_ACCEPT;
4585         sksec = sk->sk_security;
4586
4587         AVC_AUDIT_DATA_INIT(&ad, NET);
4588         ad.u.net.netif = ifindex;
4589         ad.u.net.family = family;
4590         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4591                 return NF_DROP;
4592
4593         if (selinux_compat_net) {
4594                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4595                                                          &ad, family, addrp))
4596                         return NF_DROP;
4597         } else {
4598                 if (avc_has_perm(sksec->sid, skb->secmark,
4599                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4600                         return NF_DROP;
4601         }
4602
4603         if (selinux_policycap_netpeer)
4604                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4605                         return NF_DROP;
4606
4607         return NF_ACCEPT;
4608 }
4609
4610 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4611                                          u16 family)
4612 {
4613         u32 secmark_perm;
4614         u32 peer_sid;
4615         struct sock *sk;
4616         struct avc_audit_data ad;
4617         char *addrp;
4618         u8 secmark_active;
4619         u8 peerlbl_active;
4620
4621         /* If any sort of compatibility mode is enabled then handoff processing
4622          * to the selinux_ip_postroute_compat() function to deal with the
4623          * special handling.  We do this in an attempt to keep this function
4624          * as fast and as clean as possible. */
4625         if (selinux_compat_net || !selinux_policycap_netpeer)
4626                 return selinux_ip_postroute_compat(skb, ifindex, family);
4627
4628         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4629          * packet transformation so allow the packet to pass without any checks
4630          * since we'll have another chance to perform access control checks
4631          * when the packet is on it's final way out.
4632          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4633          *       is NULL, in this case go ahead and apply access control. */
4634         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4635                 return NF_ACCEPT;
4636
4637         secmark_active = selinux_secmark_enabled();
4638         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4639         if (!secmark_active && !peerlbl_active)
4640                 return NF_ACCEPT;
4641
4642         /* if the packet is being forwarded then get the peer label from the
4643          * packet itself; otherwise check to see if it is from a local
4644          * application or the kernel, if from an application get the peer label
4645          * from the sending socket, otherwise use the kernel's sid */
4646         sk = skb->sk;
4647         if (sk == NULL) {
4648                 switch (family) {
4649                 case PF_INET:
4650                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4651                                 secmark_perm = PACKET__FORWARD_OUT;
4652                         else
4653                                 secmark_perm = PACKET__SEND;
4654                         break;
4655                 case PF_INET6:
4656                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4657                                 secmark_perm = PACKET__FORWARD_OUT;
4658                         else
4659                                 secmark_perm = PACKET__SEND;
4660                         break;
4661                 default:
4662                         return NF_DROP;
4663                 }
4664                 if (secmark_perm == PACKET__FORWARD_OUT) {
4665                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4666                                 return NF_DROP;
4667                 } else
4668                         peer_sid = SECINITSID_KERNEL;
4669         } else {
4670                 struct sk_security_struct *sksec = sk->sk_security;
4671                 peer_sid = sksec->sid;
4672                 secmark_perm = PACKET__SEND;
4673         }
4674
4675         AVC_AUDIT_DATA_INIT(&ad, NET);
4676         ad.u.net.netif = ifindex;
4677         ad.u.net.family = family;
4678         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4679                 return NF_DROP;
4680
4681         if (secmark_active)
4682                 if (avc_has_perm(peer_sid, skb->secmark,
4683                                  SECCLASS_PACKET, secmark_perm, &ad))
4684                         return NF_DROP;
4685
4686         if (peerlbl_active) {
4687                 u32 if_sid;
4688                 u32 node_sid;
4689
4690                 if (sel_netif_sid(ifindex, &if_sid))
4691                         return NF_DROP;
4692                 if (avc_has_perm(peer_sid, if_sid,
4693                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4694                         return NF_DROP;
4695
4696                 if (sel_netnode_sid(addrp, family, &node_sid))
4697                         return NF_DROP;
4698                 if (avc_has_perm(peer_sid, node_sid,
4699                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4700                         return NF_DROP;
4701         }
4702
4703         return NF_ACCEPT;
4704 }
4705
4706 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4707                                            struct sk_buff *skb,
4708                                            const struct net_device *in,
4709                                            const struct net_device *out,
4710                                            int (*okfn)(struct sk_buff *))
4711 {
4712         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4713 }
4714
4715 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4716 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4717                                            struct sk_buff *skb,
4718                                            const struct net_device *in,
4719                                            const struct net_device *out,
4720                                            int (*okfn)(struct sk_buff *))
4721 {
4722         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4723 }
4724 #endif  /* IPV6 */
4725
4726 #endif  /* CONFIG_NETFILTER */
4727
4728 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4729 {
4730         int err;
4731
4732         err = secondary_ops->netlink_send(sk, skb);
4733         if (err)
4734                 return err;
4735
4736         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4737                 err = selinux_nlmsg_perm(sk, skb);
4738
4739         return err;
4740 }
4741
4742 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4743 {
4744         int err;
4745         struct avc_audit_data ad;
4746
4747         err = secondary_ops->netlink_recv(skb, capability);
4748         if (err)
4749                 return err;
4750
4751         AVC_AUDIT_DATA_INIT(&ad, CAP);
4752         ad.u.cap = capability;
4753
4754         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4755                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4756 }
4757
4758 static int ipc_alloc_security(struct task_struct *task,
4759                               struct kern_ipc_perm *perm,
4760                               u16 sclass)
4761 {
4762         struct task_security_struct *tsec = task->security;
4763         struct ipc_security_struct *isec;
4764
4765         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4766         if (!isec)
4767                 return -ENOMEM;
4768
4769         isec->sclass = sclass;
4770         isec->sid = tsec->sid;
4771         perm->security = isec;
4772
4773         return 0;
4774 }
4775
4776 static void ipc_free_security(struct kern_ipc_perm *perm)
4777 {
4778         struct ipc_security_struct *isec = perm->security;
4779         perm->security = NULL;
4780         kfree(isec);
4781 }
4782
4783 static int msg_msg_alloc_security(struct msg_msg *msg)
4784 {
4785         struct msg_security_struct *msec;
4786
4787         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4788         if (!msec)
4789                 return -ENOMEM;
4790
4791         msec->sid = SECINITSID_UNLABELED;
4792         msg->security = msec;
4793
4794         return 0;
4795 }
4796
4797 static void msg_msg_free_security(struct msg_msg *msg)
4798 {
4799         struct msg_security_struct *msec = msg->security;
4800
4801         msg->security = NULL;
4802         kfree(msec);
4803 }
4804
4805 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4806                         u32 perms)
4807 {
4808         struct task_security_struct *tsec;
4809         struct ipc_security_struct *isec;
4810         struct avc_audit_data ad;
4811
4812         tsec = current->security;
4813         isec = ipc_perms->security;
4814
4815         AVC_AUDIT_DATA_INIT(&ad, IPC);
4816         ad.u.ipc_id = ipc_perms->key;
4817
4818         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4819 }
4820
4821 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4822 {
4823         return msg_msg_alloc_security(msg);
4824 }
4825
4826 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4827 {
4828         msg_msg_free_security(msg);
4829 }
4830
4831 /* message queue security operations */
4832 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4833 {
4834         struct task_security_struct *tsec;
4835         struct ipc_security_struct *isec;
4836         struct avc_audit_data ad;
4837         int rc;
4838
4839         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4840         if (rc)
4841                 return rc;
4842
4843         tsec = current->security;
4844         isec = msq->q_perm.security;
4845
4846         AVC_AUDIT_DATA_INIT(&ad, IPC);
4847         ad.u.ipc_id = msq->q_perm.key;
4848
4849         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4850                           MSGQ__CREATE, &ad);
4851         if (rc) {
4852                 ipc_free_security(&msq->q_perm);
4853                 return rc;
4854         }
4855         return 0;
4856 }
4857
4858 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4859 {
4860         ipc_free_security(&msq->q_perm);
4861 }
4862
4863 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4864 {
4865         struct task_security_struct *tsec;
4866         struct ipc_security_struct *isec;
4867         struct avc_audit_data ad;
4868
4869         tsec = current->security;
4870         isec = msq->q_perm.security;
4871
4872         AVC_AUDIT_DATA_INIT(&ad, IPC);
4873         ad.u.ipc_id = msq->q_perm.key;
4874
4875         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4876                             MSGQ__ASSOCIATE, &ad);
4877 }
4878
4879 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4880 {
4881         int err;
4882         int perms;
4883
4884         switch (cmd) {
4885         case IPC_INFO:
4886         case MSG_INFO:
4887                 /* No specific object, just general system-wide information. */
4888                 return task_has_system(current, SYSTEM__IPC_INFO);
4889         case IPC_STAT:
4890         case MSG_STAT:
4891                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4892                 break;
4893         case IPC_SET:
4894                 perms = MSGQ__SETATTR;
4895                 break;
4896         case IPC_RMID:
4897                 perms = MSGQ__DESTROY;
4898                 break;
4899         default:
4900                 return 0;
4901         }
4902
4903         err = ipc_has_perm(&msq->q_perm, perms);
4904         return err;
4905 }
4906
4907 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4908 {
4909         struct task_security_struct *tsec;
4910         struct ipc_security_struct *isec;
4911         struct msg_security_struct *msec;
4912         struct avc_audit_data ad;
4913         int rc;
4914
4915         tsec = current->security;
4916         isec = msq->q_perm.security;
4917         msec = msg->security;
4918
4919         /*
4920          * First time through, need to assign label to the message
4921          */
4922         if (msec->sid == SECINITSID_UNLABELED) {
4923                 /*
4924                  * Compute new sid based on current process and
4925                  * message queue this message will be stored in
4926                  */
4927                 rc = security_transition_sid(tsec->sid,
4928                                              isec->sid,
4929                                              SECCLASS_MSG,
4930                                              &msec->sid);
4931                 if (rc)
4932                         return rc;
4933         }
4934
4935         AVC_AUDIT_DATA_INIT(&ad, IPC);
4936         ad.u.ipc_id = msq->q_perm.key;
4937
4938         /* Can this process write to the queue? */
4939         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4940                           MSGQ__WRITE, &ad);
4941         if (!rc)
4942                 /* Can this process send the message */
4943                 rc = avc_has_perm(tsec->sid, msec->sid,
4944                                   SECCLASS_MSG, MSG__SEND, &ad);
4945         if (!rc)
4946                 /* Can the message be put in the queue? */
4947                 rc = avc_has_perm(msec->sid, isec->sid,
4948                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4949
4950         return rc;
4951 }
4952
4953 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4954                                     struct task_struct *target,
4955                                     long type, int mode)
4956 {
4957         struct task_security_struct *tsec;
4958         struct ipc_security_struct *isec;
4959         struct msg_security_struct *msec;
4960         struct avc_audit_data ad;
4961         int rc;
4962
4963         tsec = target->security;
4964         isec = msq->q_perm.security;
4965         msec = msg->security;
4966
4967         AVC_AUDIT_DATA_INIT(&ad, IPC);
4968         ad.u.ipc_id = msq->q_perm.key;
4969
4970         rc = avc_has_perm(tsec->sid, isec->sid,
4971                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4972         if (!rc)
4973                 rc = avc_has_perm(tsec->sid, msec->sid,
4974                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4975         return rc;
4976 }
4977
4978 /* Shared Memory security operations */
4979 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4980 {
4981         struct task_security_struct *tsec;
4982         struct ipc_security_struct *isec;
4983         struct avc_audit_data ad;
4984         int rc;
4985
4986         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4987         if (rc)
4988                 return rc;
4989
4990         tsec = current->security;
4991         isec = shp->shm_perm.security;
4992
4993         AVC_AUDIT_DATA_INIT(&ad, IPC);
4994         ad.u.ipc_id = shp->shm_perm.key;
4995
4996         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4997                           SHM__CREATE, &ad);
4998         if (rc) {
4999                 ipc_free_security(&shp->shm_perm);
5000                 return rc;
5001         }
5002         return 0;
5003 }
5004
5005 static void selinux_shm_free_security(struct shmid_kernel *shp)
5006 {
5007         ipc_free_security(&shp->shm_perm);
5008 }
5009
5010 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5011 {
5012         struct task_security_struct *tsec;
5013         struct ipc_security_struct *isec;
5014         struct avc_audit_data ad;
5015
5016         tsec = current->security;
5017         isec = shp->shm_perm.security;
5018
5019         AVC_AUDIT_DATA_INIT(&ad, IPC);
5020         ad.u.ipc_id = shp->shm_perm.key;
5021
5022         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5023                             SHM__ASSOCIATE, &ad);
5024 }
5025
5026 /* Note, at this point, shp is locked down */
5027 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5028 {
5029         int perms;
5030         int err;
5031
5032         switch (cmd) {
5033         case IPC_INFO:
5034         case SHM_INFO:
5035                 /* No specific object, just general system-wide information. */
5036                 return task_has_system(current, SYSTEM__IPC_INFO);
5037         case IPC_STAT:
5038         case SHM_STAT:
5039                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5040                 break;
5041         case IPC_SET:
5042                 perms = SHM__SETATTR;
5043                 break;
5044         case SHM_LOCK:
5045         case SHM_UNLOCK:
5046                 perms = SHM__LOCK;
5047                 break;
5048         case IPC_RMID:
5049                 perms = SHM__DESTROY;
5050                 break;
5051         default:
5052                 return 0;
5053         }
5054
5055         err = ipc_has_perm(&shp->shm_perm, perms);
5056         return err;
5057 }
5058
5059 static int selinux_shm_shmat(struct shmid_kernel *shp,
5060                              char __user *shmaddr, int shmflg)
5061 {
5062         u32 perms;
5063         int rc;
5064
5065         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5066         if (rc)
5067                 return rc;
5068
5069         if (shmflg & SHM_RDONLY)
5070                 perms = SHM__READ;
5071         else
5072                 perms = SHM__READ | SHM__WRITE;
5073
5074         return ipc_has_perm(&shp->shm_perm, perms);
5075 }
5076
5077 /* Semaphore security operations */
5078 static int selinux_sem_alloc_security(struct sem_array *sma)
5079 {
5080         struct task_security_struct *tsec;
5081         struct ipc_security_struct *isec;
5082         struct avc_audit_data ad;
5083         int rc;
5084
5085         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5086         if (rc)
5087                 return rc;
5088
5089         tsec = current->security;
5090         isec = sma->sem_perm.security;
5091
5092         AVC_AUDIT_DATA_INIT(&ad, IPC);
5093         ad.u.ipc_id = sma->sem_perm.key;
5094
5095         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5096                           SEM__CREATE, &ad);
5097         if (rc) {
5098                 ipc_free_security(&sma->sem_perm);
5099                 return rc;
5100         }
5101         return 0;
5102 }
5103
5104 static void selinux_sem_free_security(struct sem_array *sma)
5105 {
5106         ipc_free_security(&sma->sem_perm);
5107 }
5108
5109 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5110 {
5111         struct task_security_struct *tsec;
5112         struct ipc_security_struct *isec;
5113         struct avc_audit_data ad;
5114
5115         tsec = current->security;
5116         isec = sma->sem_perm.security;
5117
5118         AVC_AUDIT_DATA_INIT(&ad, IPC);
5119         ad.u.ipc_id = sma->sem_perm.key;
5120
5121         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5122                             SEM__ASSOCIATE, &ad);
5123 }
5124
5125 /* Note, at this point, sma is locked down */
5126 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5127 {
5128         int err;
5129         u32 perms;
5130
5131         switch (cmd) {
5132         case IPC_INFO:
5133         case SEM_INFO:
5134                 /* No specific object, just general system-wide information. */
5135                 return task_has_system(current, SYSTEM__IPC_INFO);
5136         case GETPID:
5137         case GETNCNT:
5138         case GETZCNT:
5139                 perms = SEM__GETATTR;
5140                 break;
5141         case GETVAL:
5142         case GETALL:
5143                 perms = SEM__READ;
5144                 break;
5145         case SETVAL:
5146         case SETALL:
5147                 perms = SEM__WRITE;
5148                 break;
5149         case IPC_RMID:
5150                 perms = SEM__DESTROY;
5151                 break;
5152         case IPC_SET:
5153                 perms = SEM__SETATTR;
5154                 break;
5155         case IPC_STAT:
5156         case SEM_STAT:
5157                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5158                 break;
5159         default:
5160                 return 0;
5161         }
5162
5163         err = ipc_has_perm(&sma->sem_perm, perms);
5164         return err;
5165 }
5166
5167 static int selinux_sem_semop(struct sem_array *sma,
5168                              struct sembuf *sops, unsigned nsops, int alter)
5169 {
5170         u32 perms;
5171
5172         if (alter)
5173                 perms = SEM__READ | SEM__WRITE;
5174         else
5175                 perms = SEM__READ;
5176
5177         return ipc_has_perm(&sma->sem_perm, perms);
5178 }
5179
5180 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5181 {
5182         u32 av = 0;
5183
5184         av = 0;
5185         if (flag & S_IRUGO)
5186                 av |= IPC__UNIX_READ;
5187         if (flag & S_IWUGO)
5188                 av |= IPC__UNIX_WRITE;
5189
5190         if (av == 0)
5191                 return 0;
5192
5193         return ipc_has_perm(ipcp, av);
5194 }
5195
5196 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5197 {
5198         struct ipc_security_struct *isec = ipcp->security;
5199         *secid = isec->sid;
5200 }
5201
5202 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5203 {
5204         if (inode)
5205                 inode_doinit_with_dentry(inode, dentry);
5206 }
5207
5208 static int selinux_getprocattr(struct task_struct *p,
5209                                char *name, char **value)
5210 {
5211         struct task_security_struct *tsec;
5212         u32 sid;
5213         int error;
5214         unsigned len;
5215
5216         if (current != p) {
5217                 error = task_has_perm(current, p, PROCESS__GETATTR);
5218                 if (error)
5219                         return error;
5220         }
5221
5222         tsec = p->security;
5223
5224         if (!strcmp(name, "current"))
5225                 sid = tsec->sid;
5226         else if (!strcmp(name, "prev"))
5227                 sid = tsec->osid;
5228         else if (!strcmp(name, "exec"))
5229                 sid = tsec->exec_sid;
5230         else if (!strcmp(name, "fscreate"))
5231                 sid = tsec->create_sid;
5232         else if (!strcmp(name, "keycreate"))
5233                 sid = tsec->keycreate_sid;
5234         else if (!strcmp(name, "sockcreate"))
5235                 sid = tsec->sockcreate_sid;
5236         else
5237                 return -EINVAL;
5238
5239         if (!sid)
5240                 return 0;
5241
5242         error = security_sid_to_context(sid, value, &len);
5243         if (error)
5244                 return error;
5245         return len;
5246 }
5247
5248 static int selinux_setprocattr(struct task_struct *p,
5249                                char *name, void *value, size_t size)
5250 {
5251         struct task_security_struct *tsec;
5252         struct task_struct *tracer;
5253         u32 sid = 0;
5254         int error;
5255         char *str = value;
5256
5257         if (current != p) {
5258                 /* SELinux only allows a process to change its own
5259                    security attributes. */
5260                 return -EACCES;
5261         }
5262
5263         /*
5264          * Basic control over ability to set these attributes at all.
5265          * current == p, but we'll pass them separately in case the
5266          * above restriction is ever removed.
5267          */
5268         if (!strcmp(name, "exec"))
5269                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5270         else if (!strcmp(name, "fscreate"))
5271                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5272         else if (!strcmp(name, "keycreate"))
5273                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5274         else if (!strcmp(name, "sockcreate"))
5275                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5276         else if (!strcmp(name, "current"))
5277                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5278         else
5279                 error = -EINVAL;
5280         if (error)
5281                 return error;
5282
5283         /* Obtain a SID for the context, if one was specified. */
5284         if (size && str[1] && str[1] != '\n') {
5285                 if (str[size-1] == '\n') {
5286                         str[size-1] = 0;
5287                         size--;
5288                 }
5289                 error = security_context_to_sid(value, size, &sid);
5290                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5291                         if (!capable(CAP_MAC_ADMIN))
5292                                 return error;
5293                         error = security_context_to_sid_force(value, size,
5294                                                               &sid);
5295                 }
5296                 if (error)
5297                         return error;
5298         }
5299
5300         /* Permission checking based on the specified context is
5301            performed during the actual operation (execve,
5302            open/mkdir/...), when we know the full context of the
5303            operation.  See selinux_bprm_set_security for the execve
5304            checks and may_create for the file creation checks. The
5305            operation will then fail if the context is not permitted. */
5306         tsec = p->security;
5307         if (!strcmp(name, "exec"))
5308                 tsec->exec_sid = sid;
5309         else if (!strcmp(name, "fscreate"))
5310                 tsec->create_sid = sid;
5311         else if (!strcmp(name, "keycreate")) {
5312                 error = may_create_key(sid, p);
5313                 if (error)
5314                         return error;
5315                 tsec->keycreate_sid = sid;
5316         } else if (!strcmp(name, "sockcreate"))
5317                 tsec->sockcreate_sid = sid;
5318         else if (!strcmp(name, "current")) {
5319                 struct av_decision avd;
5320
5321                 if (sid == 0)
5322                         return -EINVAL;
5323
5324                 /* Only allow single threaded processes to change context */
5325                 if (atomic_read(&p->mm->mm_users) != 1) {
5326                         struct task_struct *g, *t;
5327                         struct mm_struct *mm = p->mm;
5328                         read_lock(&tasklist_lock);
5329                         do_each_thread(g, t) {
5330                                 if (t->mm == mm && t != p) {
5331                                         read_unlock(&tasklist_lock);
5332                                         return -EPERM;
5333                                 }
5334                         } while_each_thread(g, t);
5335                         read_unlock(&tasklist_lock);
5336                 }
5337
5338                 /* Check permissions for the transition. */
5339                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5340                                      PROCESS__DYNTRANSITION, NULL);
5341                 if (error)
5342                         return error;
5343
5344                 /* Check for ptracing, and update the task SID if ok.
5345                    Otherwise, leave SID unchanged and fail. */
5346                 task_lock(p);
5347                 rcu_read_lock();
5348                 tracer = tracehook_tracer_task(p);
5349                 if (tracer != NULL) {
5350                         struct task_security_struct *ptsec = tracer->security;
5351                         u32 ptsid = ptsec->sid;
5352                         rcu_read_unlock();
5353                         error = avc_has_perm_noaudit(ptsid, sid,
5354                                                      SECCLASS_PROCESS,
5355                                                      PROCESS__PTRACE, 0, &avd);
5356                         if (!error)
5357                                 tsec->sid = sid;
5358                         task_unlock(p);
5359                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5360                                   PROCESS__PTRACE, &avd, error, NULL);
5361                         if (error)
5362                                 return error;
5363                 } else {
5364                         rcu_read_unlock();
5365                         tsec->sid = sid;
5366                         task_unlock(p);
5367                 }
5368         } else
5369                 return -EINVAL;
5370
5371         return size;
5372 }
5373
5374 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5375 {
5376         return security_sid_to_context(secid, secdata, seclen);
5377 }
5378
5379 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5380 {
5381         return security_context_to_sid(secdata, seclen, secid);
5382 }
5383
5384 static void selinux_release_secctx(char *secdata, u32 seclen)
5385 {
5386         kfree(secdata);
5387 }
5388
5389 #ifdef CONFIG_KEYS
5390
5391 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5392                              unsigned long flags)
5393 {
5394         struct task_security_struct *tsec = tsk->security;
5395         struct key_security_struct *ksec;
5396
5397         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5398         if (!ksec)
5399                 return -ENOMEM;
5400
5401         if (tsec->keycreate_sid)
5402                 ksec->sid = tsec->keycreate_sid;
5403         else
5404                 ksec->sid = tsec->sid;
5405         k->security = ksec;
5406
5407         return 0;
5408 }
5409
5410 static void selinux_key_free(struct key *k)
5411 {
5412         struct key_security_struct *ksec = k->security;
5413
5414         k->security = NULL;
5415         kfree(ksec);
5416 }
5417
5418 static int selinux_key_permission(key_ref_t key_ref,
5419                             struct task_struct *ctx,
5420                             key_perm_t perm)
5421 {
5422         struct key *key;
5423         struct task_security_struct *tsec;
5424         struct key_security_struct *ksec;
5425
5426         key = key_ref_to_ptr(key_ref);
5427
5428         tsec = ctx->security;
5429         ksec = key->security;
5430
5431         /* if no specific permissions are requested, we skip the
5432            permission check. No serious, additional covert channels
5433            appear to be created. */
5434         if (perm == 0)
5435                 return 0;
5436
5437         return avc_has_perm(tsec->sid, ksec->sid,
5438                             SECCLASS_KEY, perm, NULL);
5439 }
5440
5441 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5442 {
5443         struct key_security_struct *ksec = key->security;
5444         char *context = NULL;
5445         unsigned len;
5446         int rc;
5447
5448         rc = security_sid_to_context(ksec->sid, &context, &len);
5449         if (!rc)
5450                 rc = len;
5451         *_buffer = context;
5452         return rc;
5453 }
5454
5455 #endif
5456
5457 static struct security_operations selinux_ops = {
5458         .name =                         "selinux",
5459
5460         .ptrace_may_access =            selinux_ptrace_may_access,
5461         .ptrace_traceme =               selinux_ptrace_traceme,
5462         .capget =                       selinux_capget,
5463         .capset_check =                 selinux_capset_check,
5464         .capset_set =                   selinux_capset_set,
5465         .sysctl =                       selinux_sysctl,
5466         .capable =                      selinux_capable,
5467         .quotactl =                     selinux_quotactl,
5468         .quota_on =                     selinux_quota_on,
5469         .syslog =                       selinux_syslog,
5470         .vm_enough_memory =             selinux_vm_enough_memory,
5471
5472         .netlink_send =                 selinux_netlink_send,
5473         .netlink_recv =                 selinux_netlink_recv,
5474
5475         .bprm_alloc_security =          selinux_bprm_alloc_security,
5476         .bprm_free_security =           selinux_bprm_free_security,
5477         .bprm_apply_creds =             selinux_bprm_apply_creds,
5478         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5479         .bprm_set_security =            selinux_bprm_set_security,
5480         .bprm_check_security =          selinux_bprm_check_security,
5481         .bprm_secureexec =              selinux_bprm_secureexec,
5482
5483         .sb_alloc_security =            selinux_sb_alloc_security,
5484         .sb_free_security =             selinux_sb_free_security,
5485         .sb_copy_data =                 selinux_sb_copy_data,
5486         .sb_kern_mount =                selinux_sb_kern_mount,
5487         .sb_show_options =              selinux_sb_show_options,
5488         .sb_statfs =                    selinux_sb_statfs,
5489         .sb_mount =                     selinux_mount,
5490         .sb_umount =                    selinux_umount,
5491         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5492         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5493         .sb_parse_opts_str =            selinux_parse_opts_str,
5494
5495
5496         .inode_alloc_security =         selinux_inode_alloc_security,
5497         .inode_free_security =          selinux_inode_free_security,
5498         .inode_init_security =          selinux_inode_init_security,
5499         .inode_create =                 selinux_inode_create,
5500         .inode_link =                   selinux_inode_link,
5501         .inode_unlink =                 selinux_inode_unlink,
5502         .inode_symlink =                selinux_inode_symlink,
5503         .inode_mkdir =                  selinux_inode_mkdir,
5504         .inode_rmdir =                  selinux_inode_rmdir,
5505         .inode_mknod =                  selinux_inode_mknod,
5506         .inode_rename =                 selinux_inode_rename,
5507         .inode_readlink =               selinux_inode_readlink,
5508         .inode_follow_link =            selinux_inode_follow_link,
5509         .inode_permission =             selinux_inode_permission,
5510         .inode_setattr =                selinux_inode_setattr,
5511         .inode_getattr =                selinux_inode_getattr,
5512         .inode_setxattr =               selinux_inode_setxattr,
5513         .inode_post_setxattr =          selinux_inode_post_setxattr,
5514         .inode_getxattr =               selinux_inode_getxattr,
5515         .inode_listxattr =              selinux_inode_listxattr,
5516         .inode_removexattr =            selinux_inode_removexattr,
5517         .inode_getsecurity =            selinux_inode_getsecurity,
5518         .inode_setsecurity =            selinux_inode_setsecurity,
5519         .inode_listsecurity =           selinux_inode_listsecurity,
5520         .inode_need_killpriv =          selinux_inode_need_killpriv,
5521         .inode_killpriv =               selinux_inode_killpriv,
5522         .inode_getsecid =               selinux_inode_getsecid,
5523
5524         .file_permission =              selinux_file_permission,
5525         .file_alloc_security =          selinux_file_alloc_security,
5526         .file_free_security =           selinux_file_free_security,
5527         .file_ioctl =                   selinux_file_ioctl,
5528         .file_mmap =                    selinux_file_mmap,
5529         .file_mprotect =                selinux_file_mprotect,
5530         .file_lock =                    selinux_file_lock,
5531         .file_fcntl =                   selinux_file_fcntl,
5532         .file_set_fowner =              selinux_file_set_fowner,
5533         .file_send_sigiotask =          selinux_file_send_sigiotask,
5534         .file_receive =                 selinux_file_receive,
5535
5536         .dentry_open =                  selinux_dentry_open,
5537
5538         .task_create =                  selinux_task_create,
5539         .task_alloc_security =          selinux_task_alloc_security,
5540         .task_free_security =           selinux_task_free_security,
5541         .task_setuid =                  selinux_task_setuid,
5542         .task_post_setuid =             selinux_task_post_setuid,
5543         .task_setgid =                  selinux_task_setgid,
5544         .task_setpgid =                 selinux_task_setpgid,
5545         .task_getpgid =                 selinux_task_getpgid,
5546         .task_getsid =                  selinux_task_getsid,
5547         .task_getsecid =                selinux_task_getsecid,
5548         .task_setgroups =               selinux_task_setgroups,
5549         .task_setnice =                 selinux_task_setnice,
5550         .task_setioprio =               selinux_task_setioprio,
5551         .task_getioprio =               selinux_task_getioprio,
5552         .task_setrlimit =               selinux_task_setrlimit,
5553         .task_setscheduler =            selinux_task_setscheduler,
5554         .task_getscheduler =            selinux_task_getscheduler,
5555         .task_movememory =              selinux_task_movememory,
5556         .task_kill =                    selinux_task_kill,
5557         .task_wait =                    selinux_task_wait,
5558         .task_prctl =                   selinux_task_prctl,
5559         .task_reparent_to_init =        selinux_task_reparent_to_init,
5560         .task_to_inode =                selinux_task_to_inode,
5561
5562         .ipc_permission =               selinux_ipc_permission,
5563         .ipc_getsecid =                 selinux_ipc_getsecid,
5564
5565         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5566         .msg_msg_free_security =        selinux_msg_msg_free_security,
5567
5568         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5569         .msg_queue_free_security =      selinux_msg_queue_free_security,
5570         .msg_queue_associate =          selinux_msg_queue_associate,
5571         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5572         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5573         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5574
5575         .shm_alloc_security =           selinux_shm_alloc_security,
5576         .shm_free_security =            selinux_shm_free_security,
5577         .shm_associate =                selinux_shm_associate,
5578         .shm_shmctl =                   selinux_shm_shmctl,
5579         .shm_shmat =                    selinux_shm_shmat,
5580
5581         .sem_alloc_security =           selinux_sem_alloc_security,
5582         .sem_free_security =            selinux_sem_free_security,
5583         .sem_associate =                selinux_sem_associate,
5584         .sem_semctl =                   selinux_sem_semctl,
5585         .sem_semop =                    selinux_sem_semop,
5586
5587         .d_instantiate =                selinux_d_instantiate,
5588
5589         .getprocattr =                  selinux_getprocattr,
5590         .setprocattr =                  selinux_setprocattr,
5591
5592         .secid_to_secctx =              selinux_secid_to_secctx,
5593         .secctx_to_secid =              selinux_secctx_to_secid,
5594         .release_secctx =               selinux_release_secctx,
5595
5596         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5597         .unix_may_send =                selinux_socket_unix_may_send,
5598
5599         .socket_create =                selinux_socket_create,
5600         .socket_post_create =           selinux_socket_post_create,
5601         .socket_bind =                  selinux_socket_bind,
5602         .socket_connect =               selinux_socket_connect,
5603         .socket_listen =                selinux_socket_listen,
5604         .socket_accept =                selinux_socket_accept,
5605         .socket_sendmsg =               selinux_socket_sendmsg,
5606         .socket_recvmsg =               selinux_socket_recvmsg,
5607         .socket_getsockname =           selinux_socket_getsockname,
5608         .socket_getpeername =           selinux_socket_getpeername,
5609         .socket_getsockopt =            selinux_socket_getsockopt,
5610         .socket_setsockopt =            selinux_socket_setsockopt,
5611         .socket_shutdown =              selinux_socket_shutdown,
5612         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5613         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5614         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5615         .sk_alloc_security =            selinux_sk_alloc_security,
5616         .sk_free_security =             selinux_sk_free_security,
5617         .sk_clone_security =            selinux_sk_clone_security,
5618         .sk_getsecid =                  selinux_sk_getsecid,
5619         .sock_graft =                   selinux_sock_graft,
5620         .inet_conn_request =            selinux_inet_conn_request,
5621         .inet_csk_clone =               selinux_inet_csk_clone,
5622         .inet_conn_established =        selinux_inet_conn_established,
5623         .req_classify_flow =            selinux_req_classify_flow,
5624
5625 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5626         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5627         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5628         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5629         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5630         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5631         .xfrm_state_free_security =     selinux_xfrm_state_free,
5632         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5633         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5634         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5635         .xfrm_decode_session =          selinux_xfrm_decode_session,
5636 #endif
5637
5638 #ifdef CONFIG_KEYS
5639         .key_alloc =                    selinux_key_alloc,
5640         .key_free =                     selinux_key_free,
5641         .key_permission =               selinux_key_permission,
5642         .key_getsecurity =              selinux_key_getsecurity,
5643 #endif
5644
5645 #ifdef CONFIG_AUDIT
5646         .audit_rule_init =              selinux_audit_rule_init,
5647         .audit_rule_known =             selinux_audit_rule_known,
5648         .audit_rule_match =             selinux_audit_rule_match,
5649         .audit_rule_free =              selinux_audit_rule_free,
5650 #endif
5651 };
5652
5653 static __init int selinux_init(void)
5654 {
5655         struct task_security_struct *tsec;
5656
5657         if (!security_module_enable(&selinux_ops)) {
5658                 selinux_enabled = 0;
5659                 return 0;
5660         }
5661
5662         if (!selinux_enabled) {
5663                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5664                 return 0;
5665         }
5666
5667         printk(KERN_INFO "SELinux:  Initializing.\n");
5668
5669         /* Set the security state for the initial task. */
5670         if (task_alloc_security(current))
5671                 panic("SELinux:  Failed to initialize initial task.\n");
5672         tsec = current->security;
5673         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5674
5675         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5676                                             sizeof(struct inode_security_struct),
5677                                             0, SLAB_PANIC, NULL);
5678         avc_init();
5679
5680         secondary_ops = security_ops;
5681         if (!secondary_ops)
5682                 panic("SELinux: No initial security operations\n");
5683         if (register_security(&selinux_ops))
5684                 panic("SELinux: Unable to register with kernel.\n");
5685
5686         if (selinux_enforcing)
5687                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5688         else
5689                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5690
5691         return 0;
5692 }
5693
5694 void selinux_complete_init(void)
5695 {
5696         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5697
5698         /* Set up any superblocks initialized prior to the policy load. */
5699         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5700         spin_lock(&sb_lock);
5701         spin_lock(&sb_security_lock);
5702 next_sb:
5703         if (!list_empty(&superblock_security_head)) {
5704                 struct superblock_security_struct *sbsec =
5705                                 list_entry(superblock_security_head.next,
5706                                            struct superblock_security_struct,
5707                                            list);
5708                 struct super_block *sb = sbsec->sb;
5709                 sb->s_count++;
5710                 spin_unlock(&sb_security_lock);
5711                 spin_unlock(&sb_lock);
5712                 down_read(&sb->s_umount);
5713                 if (sb->s_root)
5714                         superblock_doinit(sb, NULL);
5715                 drop_super(sb);
5716                 spin_lock(&sb_lock);
5717                 spin_lock(&sb_security_lock);
5718                 list_del_init(&sbsec->list);
5719                 goto next_sb;
5720         }
5721         spin_unlock(&sb_security_lock);
5722         spin_unlock(&sb_lock);
5723 }
5724
5725 /* SELinux requires early initialization in order to label
5726    all processes and objects when they are created. */
5727 security_initcall(selinux_init);
5728
5729 #if defined(CONFIG_NETFILTER)
5730
5731 static struct nf_hook_ops selinux_ipv4_ops[] = {
5732         {
5733                 .hook =         selinux_ipv4_postroute,
5734                 .owner =        THIS_MODULE,
5735                 .pf =           PF_INET,
5736                 .hooknum =      NF_INET_POST_ROUTING,
5737                 .priority =     NF_IP_PRI_SELINUX_LAST,
5738         },
5739         {
5740                 .hook =         selinux_ipv4_forward,
5741                 .owner =        THIS_MODULE,
5742                 .pf =           PF_INET,
5743                 .hooknum =      NF_INET_FORWARD,
5744                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5745         },
5746         {
5747                 .hook =         selinux_ipv4_output,
5748                 .owner =        THIS_MODULE,
5749                 .pf =           PF_INET,
5750                 .hooknum =      NF_INET_LOCAL_OUT,
5751                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5752         }
5753 };
5754
5755 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5756
5757 static struct nf_hook_ops selinux_ipv6_ops[] = {
5758         {
5759                 .hook =         selinux_ipv6_postroute,
5760                 .owner =        THIS_MODULE,
5761                 .pf =           PF_INET6,
5762                 .hooknum =      NF_INET_POST_ROUTING,
5763                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5764         },
5765         {
5766                 .hook =         selinux_ipv6_forward,
5767                 .owner =        THIS_MODULE,
5768                 .pf =           PF_INET6,
5769                 .hooknum =      NF_INET_FORWARD,
5770                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5771         }
5772 };
5773
5774 #endif  /* IPV6 */
5775
5776 static int __init selinux_nf_ip_init(void)
5777 {
5778         int err = 0;
5779
5780         if (!selinux_enabled)
5781                 goto out;
5782
5783         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5784
5785         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5786         if (err)
5787                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5788
5789 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5790         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5791         if (err)
5792                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5793 #endif  /* IPV6 */
5794
5795 out:
5796         return err;
5797 }
5798
5799 __initcall(selinux_nf_ip_init);
5800
5801 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5802 static void selinux_nf_ip_exit(void)
5803 {
5804         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5805
5806         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5807 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5808         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5809 #endif  /* IPV6 */
5810 }
5811 #endif
5812
5813 #else /* CONFIG_NETFILTER */
5814
5815 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5816 #define selinux_nf_ip_exit()
5817 #endif
5818
5819 #endif /* CONFIG_NETFILTER */
5820
5821 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5822 static int selinux_disabled;
5823
5824 int selinux_disable(void)
5825 {
5826         extern void exit_sel_fs(void);
5827
5828         if (ss_initialized) {
5829                 /* Not permitted after initial policy load. */
5830                 return -EINVAL;
5831         }
5832
5833         if (selinux_disabled) {
5834                 /* Only do this once. */
5835                 return -EINVAL;
5836         }
5837
5838         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5839
5840         selinux_disabled = 1;
5841         selinux_enabled = 0;
5842
5843         /* Reset security_ops to the secondary module, dummy or capability. */
5844         security_ops = secondary_ops;
5845
5846         /* Unregister netfilter hooks. */
5847         selinux_nf_ip_exit();
5848
5849         /* Unregister selinuxfs. */
5850         exit_sel_fs();
5851
5852         return 0;
5853 }
5854 #endif