selinux: Cache NetLabel secattrs in the socket's security struct
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "netport.h"
84 #include "xfrm.h"
85 #include "netlabel.h"
86 #include "audit.h"
87
88 #define XATTR_SELINUX_SUFFIX "selinux"
89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
90
91 #define NUM_SEL_MNT_OPTS 4
92
93 extern unsigned int policydb_loaded_version;
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern int selinux_compat_net;
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /* Allocate and free functions for each kind of security blob. */
159
160 static int task_alloc_security(struct task_struct *task)
161 {
162         struct task_security_struct *tsec;
163
164         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165         if (!tsec)
166                 return -ENOMEM;
167
168         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
169         task->security = tsec;
170
171         return 0;
172 }
173
174 static void task_free_security(struct task_struct *task)
175 {
176         struct task_security_struct *tsec = task->security;
177         task->security = NULL;
178         kfree(tsec);
179 }
180
181 static int inode_alloc_security(struct inode *inode)
182 {
183         struct task_security_struct *tsec = current->security;
184         struct inode_security_struct *isec;
185
186         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
187         if (!isec)
188                 return -ENOMEM;
189
190         mutex_init(&isec->lock);
191         INIT_LIST_HEAD(&isec->list);
192         isec->inode = inode;
193         isec->sid = SECINITSID_UNLABELED;
194         isec->sclass = SECCLASS_FILE;
195         isec->task_sid = tsec->sid;
196         inode->i_security = isec;
197
198         return 0;
199 }
200
201 static void inode_free_security(struct inode *inode)
202 {
203         struct inode_security_struct *isec = inode->i_security;
204         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
205
206         spin_lock(&sbsec->isec_lock);
207         if (!list_empty(&isec->list))
208                 list_del_init(&isec->list);
209         spin_unlock(&sbsec->isec_lock);
210
211         inode->i_security = NULL;
212         kmem_cache_free(sel_inode_cache, isec);
213 }
214
215 static int file_alloc_security(struct file *file)
216 {
217         struct task_security_struct *tsec = current->security;
218         struct file_security_struct *fsec;
219
220         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
221         if (!fsec)
222                 return -ENOMEM;
223
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_reset(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         selinux_netlbl_sk_security_free(ssec);
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_error = -1,
322         Opt_context = 1,
323         Opt_fscontext = 2,
324         Opt_defcontext = 3,
325         Opt_rootcontext = 4,
326 };
327
328 static match_table_t tokens = {
329         {Opt_context, CONTEXT_STR "%s"},
330         {Opt_fscontext, FSCONTEXT_STR "%s"},
331         {Opt_defcontext, DEFCONTEXT_STR "%s"},
332         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
333         {Opt_error, NULL},
334 };
335
336 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
337
338 static int may_context_mount_sb_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         struct task_security_struct *tsec)
341 {
342         int rc;
343
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__RELABELTO, NULL);
351         return rc;
352 }
353
354 static int may_context_mount_inode_relabel(u32 sid,
355                         struct superblock_security_struct *sbsec,
356                         struct task_security_struct *tsec)
357 {
358         int rc;
359         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
360                           FILESYSTEM__RELABELFROM, NULL);
361         if (rc)
362                 return rc;
363
364         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
365                           FILESYSTEM__ASSOCIATE, NULL);
366         return rc;
367 }
368
369 static int sb_finish_set_opts(struct super_block *sb)
370 {
371         struct superblock_security_struct *sbsec = sb->s_security;
372         struct dentry *root = sb->s_root;
373         struct inode *root_inode = root->d_inode;
374         int rc = 0;
375
376         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
377                 /* Make sure that the xattr handler exists and that no
378                    error other than -ENODATA is returned by getxattr on
379                    the root directory.  -ENODATA is ok, as this may be
380                    the first boot of the SELinux kernel before we have
381                    assigned xattr values to the filesystem. */
382                 if (!root_inode->i_op->getxattr) {
383                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
384                                "xattr support\n", sb->s_id, sb->s_type->name);
385                         rc = -EOPNOTSUPP;
386                         goto out;
387                 }
388                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
389                 if (rc < 0 && rc != -ENODATA) {
390                         if (rc == -EOPNOTSUPP)
391                                 printk(KERN_WARNING "SELinux: (dev %s, type "
392                                        "%s) has no security xattr handler\n",
393                                        sb->s_id, sb->s_type->name);
394                         else
395                                 printk(KERN_WARNING "SELinux: (dev %s, type "
396                                        "%s) getxattr errno %d\n", sb->s_id,
397                                        sb->s_type->name, -rc);
398                         goto out;
399                 }
400         }
401
402         sbsec->initialized = 1;
403
404         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
405                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
406                        sb->s_id, sb->s_type->name);
407         else
408                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
409                        sb->s_id, sb->s_type->name,
410                        labeling_behaviors[sbsec->behavior-1]);
411
412         /* Initialize the root inode. */
413         rc = inode_doinit_with_dentry(root_inode, root);
414
415         /* Initialize any other inodes associated with the superblock, e.g.
416            inodes created prior to initial policy load or inodes created
417            during get_sb by a pseudo filesystem that directly
418            populates itself. */
419         spin_lock(&sbsec->isec_lock);
420 next_inode:
421         if (!list_empty(&sbsec->isec_head)) {
422                 struct inode_security_struct *isec =
423                                 list_entry(sbsec->isec_head.next,
424                                            struct inode_security_struct, list);
425                 struct inode *inode = isec->inode;
426                 spin_unlock(&sbsec->isec_lock);
427                 inode = igrab(inode);
428                 if (inode) {
429                         if (!IS_PRIVATE(inode))
430                                 inode_doinit(inode);
431                         iput(inode);
432                 }
433                 spin_lock(&sbsec->isec_lock);
434                 list_del_init(&isec->list);
435                 goto next_inode;
436         }
437         spin_unlock(&sbsec->isec_lock);
438 out:
439         return rc;
440 }
441
442 /*
443  * This function should allow an FS to ask what it's mount security
444  * options were so it can use those later for submounts, displaying
445  * mount options, or whatever.
446  */
447 static int selinux_get_mnt_opts(const struct super_block *sb,
448                                 struct security_mnt_opts *opts)
449 {
450         int rc = 0, i;
451         struct superblock_security_struct *sbsec = sb->s_security;
452         char *context = NULL;
453         u32 len;
454         char tmp;
455
456         security_init_mnt_opts(opts);
457
458         if (!sbsec->initialized)
459                 return -EINVAL;
460
461         if (!ss_initialized)
462                 return -EINVAL;
463
464         /*
465          * if we ever use sbsec flags for anything other than tracking mount
466          * settings this is going to need a mask
467          */
468         tmp = sbsec->flags;
469         /* count the number of mount options for this sb */
470         for (i = 0; i < 8; i++) {
471                 if (tmp & 0x01)
472                         opts->num_mnt_opts++;
473                 tmp >>= 1;
474         }
475
476         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
477         if (!opts->mnt_opts) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
483         if (!opts->mnt_opts_flags) {
484                 rc = -ENOMEM;
485                 goto out_free;
486         }
487
488         i = 0;
489         if (sbsec->flags & FSCONTEXT_MNT) {
490                 rc = security_sid_to_context(sbsec->sid, &context, &len);
491                 if (rc)
492                         goto out_free;
493                 opts->mnt_opts[i] = context;
494                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
495         }
496         if (sbsec->flags & CONTEXT_MNT) {
497                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
498                 if (rc)
499                         goto out_free;
500                 opts->mnt_opts[i] = context;
501                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
502         }
503         if (sbsec->flags & DEFCONTEXT_MNT) {
504                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
505                 if (rc)
506                         goto out_free;
507                 opts->mnt_opts[i] = context;
508                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
509         }
510         if (sbsec->flags & ROOTCONTEXT_MNT) {
511                 struct inode *root = sbsec->sb->s_root->d_inode;
512                 struct inode_security_struct *isec = root->i_security;
513
514                 rc = security_sid_to_context(isec->sid, &context, &len);
515                 if (rc)
516                         goto out_free;
517                 opts->mnt_opts[i] = context;
518                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
519         }
520
521         BUG_ON(i != opts->num_mnt_opts);
522
523         return 0;
524
525 out_free:
526         security_free_mnt_opts(opts);
527         return rc;
528 }
529
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531                       u32 old_sid, u32 new_sid)
532 {
533         /* check if the old mount command had the same options */
534         if (sbsec->initialized)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!sbsec->initialized)
543                 if (sbsec->flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         int rc = 0, i;
556         struct task_security_struct *tsec = current->security;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         spin_lock(&sb_security_lock);
575                         if (list_empty(&sbsec->list))
576                                 list_add(&sbsec->list, &superblock_security_head);
577                         spin_unlock(&sb_security_lock);
578                         goto out;
579                 }
580                 rc = -EINVAL;
581                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
582                         "before the security server is initialized\n");
583                 goto out;
584         }
585
586         /*
587          * Binary mount data FS will come through this function twice.  Once
588          * from an explicit call and once from the generic calls from the vfs.
589          * Since the generic VFS calls will not contain any security mount data
590          * we need to skip the double mount verification.
591          *
592          * This does open a hole in which we will not notice if the first
593          * mount using this sb set explict options and a second mount using
594          * this sb does not set any security options.  (The first options
595          * will be used for both mounts)
596          */
597         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
598             && (num_opts == 0))
599                 goto out;
600
601         /*
602          * parse the mount options, check if they are valid sids.
603          * also check if someone is trying to mount the same sb more
604          * than once with different security options.
605          */
606         for (i = 0; i < num_opts; i++) {
607                 u32 sid;
608                 rc = security_context_to_sid(mount_options[i],
609                                              strlen(mount_options[i]), &sid);
610                 if (rc) {
611                         printk(KERN_WARNING "SELinux: security_context_to_sid"
612                                "(%s) failed for (dev %s, type %s) errno=%d\n",
613                                mount_options[i], sb->s_id, name, rc);
614                         goto out;
615                 }
616                 switch (flags[i]) {
617                 case FSCONTEXT_MNT:
618                         fscontext_sid = sid;
619
620                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621                                         fscontext_sid))
622                                 goto out_double_mount;
623
624                         sbsec->flags |= FSCONTEXT_MNT;
625                         break;
626                 case CONTEXT_MNT:
627                         context_sid = sid;
628
629                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630                                         context_sid))
631                                 goto out_double_mount;
632
633                         sbsec->flags |= CONTEXT_MNT;
634                         break;
635                 case ROOTCONTEXT_MNT:
636                         rootcontext_sid = sid;
637
638                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639                                         rootcontext_sid))
640                                 goto out_double_mount;
641
642                         sbsec->flags |= ROOTCONTEXT_MNT;
643
644                         break;
645                 case DEFCONTEXT_MNT:
646                         defcontext_sid = sid;
647
648                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649                                         defcontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= DEFCONTEXT_MNT;
653
654                         break;
655                 default:
656                         rc = -EINVAL;
657                         goto out;
658                 }
659         }
660
661         if (sbsec->initialized) {
662                 /* previously mounted with options, but not on this attempt? */
663                 if (sbsec->flags && !num_opts)
664                         goto out_double_mount;
665                 rc = 0;
666                 goto out;
667         }
668
669         if (strcmp(sb->s_type->name, "proc") == 0)
670                 sbsec->proc = 1;
671
672         /* Determine the labeling behavior to use for this filesystem type. */
673         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674         if (rc) {
675                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676                        __func__, sb->s_type->name, rc);
677                 goto out;
678         }
679
680         /* sets the context of the superblock for the fs being mounted. */
681         if (fscontext_sid) {
682
683                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
684                 if (rc)
685                         goto out;
686
687                 sbsec->sid = fscontext_sid;
688         }
689
690         /*
691          * Switch to using mount point labeling behavior.
692          * sets the label used on all file below the mountpoint, and will set
693          * the superblock context if not already set.
694          */
695         if (context_sid) {
696                 if (!fscontext_sid) {
697                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
698                         if (rc)
699                                 goto out;
700                         sbsec->sid = context_sid;
701                 } else {
702                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
715                 if (rc)
716                         goto out;
717
718                 root_isec->sid = rootcontext_sid;
719                 root_isec->initialized = 1;
720         }
721
722         if (defcontext_sid) {
723                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
724                         rc = -EINVAL;
725                         printk(KERN_WARNING "SELinux: defcontext option is "
726                                "invalid for this filesystem type\n");
727                         goto out;
728                 }
729
730                 if (defcontext_sid != sbsec->def_sid) {
731                         rc = may_context_mount_inode_relabel(defcontext_sid,
732                                                              sbsec, tsec);
733                         if (rc)
734                                 goto out;
735                 }
736
737                 sbsec->def_sid = defcontext_sid;
738         }
739
740         rc = sb_finish_set_opts(sb);
741 out:
742         mutex_unlock(&sbsec->lock);
743         return rc;
744 out_double_mount:
745         rc = -EINVAL;
746         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
747                "security settings for (dev %s, type %s)\n", sb->s_id, name);
748         goto out;
749 }
750
751 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
752                                         struct super_block *newsb)
753 {
754         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
755         struct superblock_security_struct *newsbsec = newsb->s_security;
756
757         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
758         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
759         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
760
761         /*
762          * if the parent was able to be mounted it clearly had no special lsm
763          * mount options.  thus we can safely put this sb on the list and deal
764          * with it later
765          */
766         if (!ss_initialized) {
767                 spin_lock(&sb_security_lock);
768                 if (list_empty(&newsbsec->list))
769                         list_add(&newsbsec->list, &superblock_security_head);
770                 spin_unlock(&sb_security_lock);
771                 return;
772         }
773
774         /* how can we clone if the old one wasn't set up?? */
775         BUG_ON(!oldsbsec->initialized);
776
777         /* if fs is reusing a sb, just let its options stand... */
778         if (newsbsec->initialized)
779                 return;
780
781         mutex_lock(&newsbsec->lock);
782
783         newsbsec->flags = oldsbsec->flags;
784
785         newsbsec->sid = oldsbsec->sid;
786         newsbsec->def_sid = oldsbsec->def_sid;
787         newsbsec->behavior = oldsbsec->behavior;
788
789         if (set_context) {
790                 u32 sid = oldsbsec->mntpoint_sid;
791
792                 if (!set_fscontext)
793                         newsbsec->sid = sid;
794                 if (!set_rootcontext) {
795                         struct inode *newinode = newsb->s_root->d_inode;
796                         struct inode_security_struct *newisec = newinode->i_security;
797                         newisec->sid = sid;
798                 }
799                 newsbsec->mntpoint_sid = sid;
800         }
801         if (set_rootcontext) {
802                 const struct inode *oldinode = oldsb->s_root->d_inode;
803                 const struct inode_security_struct *oldisec = oldinode->i_security;
804                 struct inode *newinode = newsb->s_root->d_inode;
805                 struct inode_security_struct *newisec = newinode->i_security;
806
807                 newisec->sid = oldisec->sid;
808         }
809
810         sb_finish_set_opts(newsb);
811         mutex_unlock(&newsbsec->lock);
812 }
813
814 static int selinux_parse_opts_str(char *options,
815                                   struct security_mnt_opts *opts)
816 {
817         char *p;
818         char *context = NULL, *defcontext = NULL;
819         char *fscontext = NULL, *rootcontext = NULL;
820         int rc, num_mnt_opts = 0;
821
822         opts->num_mnt_opts = 0;
823
824         /* Standard string-based options. */
825         while ((p = strsep(&options, "|")) != NULL) {
826                 int token;
827                 substring_t args[MAX_OPT_ARGS];
828
829                 if (!*p)
830                         continue;
831
832                 token = match_token(p, tokens, args);
833
834                 switch (token) {
835                 case Opt_context:
836                         if (context || defcontext) {
837                                 rc = -EINVAL;
838                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
839                                 goto out_err;
840                         }
841                         context = match_strdup(&args[0]);
842                         if (!context) {
843                                 rc = -ENOMEM;
844                                 goto out_err;
845                         }
846                         break;
847
848                 case Opt_fscontext:
849                         if (fscontext) {
850                                 rc = -EINVAL;
851                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
852                                 goto out_err;
853                         }
854                         fscontext = match_strdup(&args[0]);
855                         if (!fscontext) {
856                                 rc = -ENOMEM;
857                                 goto out_err;
858                         }
859                         break;
860
861                 case Opt_rootcontext:
862                         if (rootcontext) {
863                                 rc = -EINVAL;
864                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
865                                 goto out_err;
866                         }
867                         rootcontext = match_strdup(&args[0]);
868                         if (!rootcontext) {
869                                 rc = -ENOMEM;
870                                 goto out_err;
871                         }
872                         break;
873
874                 case Opt_defcontext:
875                         if (context || defcontext) {
876                                 rc = -EINVAL;
877                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
878                                 goto out_err;
879                         }
880                         defcontext = match_strdup(&args[0]);
881                         if (!defcontext) {
882                                 rc = -ENOMEM;
883                                 goto out_err;
884                         }
885                         break;
886
887                 default:
888                         rc = -EINVAL;
889                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
890                         goto out_err;
891
892                 }
893         }
894
895         rc = -ENOMEM;
896         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
897         if (!opts->mnt_opts)
898                 goto out_err;
899
900         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
901         if (!opts->mnt_opts_flags) {
902                 kfree(opts->mnt_opts);
903                 goto out_err;
904         }
905
906         if (fscontext) {
907                 opts->mnt_opts[num_mnt_opts] = fscontext;
908                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
909         }
910         if (context) {
911                 opts->mnt_opts[num_mnt_opts] = context;
912                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
913         }
914         if (rootcontext) {
915                 opts->mnt_opts[num_mnt_opts] = rootcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
917         }
918         if (defcontext) {
919                 opts->mnt_opts[num_mnt_opts] = defcontext;
920                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
921         }
922
923         opts->num_mnt_opts = num_mnt_opts;
924         return 0;
925
926 out_err:
927         kfree(context);
928         kfree(defcontext);
929         kfree(fscontext);
930         kfree(rootcontext);
931         return rc;
932 }
933 /*
934  * string mount options parsing and call set the sbsec
935  */
936 static int superblock_doinit(struct super_block *sb, void *data)
937 {
938         int rc = 0;
939         char *options = data;
940         struct security_mnt_opts opts;
941
942         security_init_mnt_opts(&opts);
943
944         if (!data)
945                 goto out;
946
947         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
948
949         rc = selinux_parse_opts_str(options, &opts);
950         if (rc)
951                 goto out_err;
952
953 out:
954         rc = selinux_set_mnt_opts(sb, &opts);
955
956 out_err:
957         security_free_mnt_opts(&opts);
958         return rc;
959 }
960
961 void selinux_write_opts(struct seq_file *m, struct security_mnt_opts *opts)
962 {
963         int i;
964         char *prefix;
965
966         for (i = 0; i < opts->num_mnt_opts; i++) {
967                 char *has_comma = strchr(opts->mnt_opts[i], ',');
968
969                 switch (opts->mnt_opts_flags[i]) {
970                 case CONTEXT_MNT:
971                         prefix = CONTEXT_STR;
972                         break;
973                 case FSCONTEXT_MNT:
974                         prefix = FSCONTEXT_STR;
975                         break;
976                 case ROOTCONTEXT_MNT:
977                         prefix = ROOTCONTEXT_STR;
978                         break;
979                 case DEFCONTEXT_MNT:
980                         prefix = DEFCONTEXT_STR;
981                         break;
982                 default:
983                         BUG();
984                 };
985                 /* we need a comma before each option */
986                 seq_putc(m, ',');
987                 seq_puts(m, prefix);
988                 if (has_comma)
989                         seq_putc(m, '\"');
990                 seq_puts(m, opts->mnt_opts[i]);
991                 if (has_comma)
992                         seq_putc(m, '\"');
993         }
994 }
995
996 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
997 {
998         struct security_mnt_opts opts;
999         int rc;
1000
1001         rc = selinux_get_mnt_opts(sb, &opts);
1002         if (rc) {
1003                 /* before policy load we may get EINVAL, don't show anything */
1004                 if (rc == -EINVAL)
1005                         rc = 0;
1006                 return rc;
1007         }
1008
1009         selinux_write_opts(m, &opts);
1010
1011         security_free_mnt_opts(&opts);
1012
1013         return rc;
1014 }
1015
1016 static inline u16 inode_mode_to_security_class(umode_t mode)
1017 {
1018         switch (mode & S_IFMT) {
1019         case S_IFSOCK:
1020                 return SECCLASS_SOCK_FILE;
1021         case S_IFLNK:
1022                 return SECCLASS_LNK_FILE;
1023         case S_IFREG:
1024                 return SECCLASS_FILE;
1025         case S_IFBLK:
1026                 return SECCLASS_BLK_FILE;
1027         case S_IFDIR:
1028                 return SECCLASS_DIR;
1029         case S_IFCHR:
1030                 return SECCLASS_CHR_FILE;
1031         case S_IFIFO:
1032                 return SECCLASS_FIFO_FILE;
1033
1034         }
1035
1036         return SECCLASS_FILE;
1037 }
1038
1039 static inline int default_protocol_stream(int protocol)
1040 {
1041         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1042 }
1043
1044 static inline int default_protocol_dgram(int protocol)
1045 {
1046         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1047 }
1048
1049 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1050 {
1051         switch (family) {
1052         case PF_UNIX:
1053                 switch (type) {
1054                 case SOCK_STREAM:
1055                 case SOCK_SEQPACKET:
1056                         return SECCLASS_UNIX_STREAM_SOCKET;
1057                 case SOCK_DGRAM:
1058                         return SECCLASS_UNIX_DGRAM_SOCKET;
1059                 }
1060                 break;
1061         case PF_INET:
1062         case PF_INET6:
1063                 switch (type) {
1064                 case SOCK_STREAM:
1065                         if (default_protocol_stream(protocol))
1066                                 return SECCLASS_TCP_SOCKET;
1067                         else
1068                                 return SECCLASS_RAWIP_SOCKET;
1069                 case SOCK_DGRAM:
1070                         if (default_protocol_dgram(protocol))
1071                                 return SECCLASS_UDP_SOCKET;
1072                         else
1073                                 return SECCLASS_RAWIP_SOCKET;
1074                 case SOCK_DCCP:
1075                         return SECCLASS_DCCP_SOCKET;
1076                 default:
1077                         return SECCLASS_RAWIP_SOCKET;
1078                 }
1079                 break;
1080         case PF_NETLINK:
1081                 switch (protocol) {
1082                 case NETLINK_ROUTE:
1083                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1084                 case NETLINK_FIREWALL:
1085                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1086                 case NETLINK_INET_DIAG:
1087                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1088                 case NETLINK_NFLOG:
1089                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1090                 case NETLINK_XFRM:
1091                         return SECCLASS_NETLINK_XFRM_SOCKET;
1092                 case NETLINK_SELINUX:
1093                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1094                 case NETLINK_AUDIT:
1095                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1096                 case NETLINK_IP6_FW:
1097                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1098                 case NETLINK_DNRTMSG:
1099                         return SECCLASS_NETLINK_DNRT_SOCKET;
1100                 case NETLINK_KOBJECT_UEVENT:
1101                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1102                 default:
1103                         return SECCLASS_NETLINK_SOCKET;
1104                 }
1105         case PF_PACKET:
1106                 return SECCLASS_PACKET_SOCKET;
1107         case PF_KEY:
1108                 return SECCLASS_KEY_SOCKET;
1109         case PF_APPLETALK:
1110                 return SECCLASS_APPLETALK_SOCKET;
1111         }
1112
1113         return SECCLASS_SOCKET;
1114 }
1115
1116 #ifdef CONFIG_PROC_FS
1117 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1118                                 u16 tclass,
1119                                 u32 *sid)
1120 {
1121         int buflen, rc;
1122         char *buffer, *path, *end;
1123
1124         buffer = (char *)__get_free_page(GFP_KERNEL);
1125         if (!buffer)
1126                 return -ENOMEM;
1127
1128         buflen = PAGE_SIZE;
1129         end = buffer+buflen;
1130         *--end = '\0';
1131         buflen--;
1132         path = end-1;
1133         *path = '/';
1134         while (de && de != de->parent) {
1135                 buflen -= de->namelen + 1;
1136                 if (buflen < 0)
1137                         break;
1138                 end -= de->namelen;
1139                 memcpy(end, de->name, de->namelen);
1140                 *--end = '/';
1141                 path = end;
1142                 de = de->parent;
1143         }
1144         rc = security_genfs_sid("proc", path, tclass, sid);
1145         free_page((unsigned long)buffer);
1146         return rc;
1147 }
1148 #else
1149 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1150                                 u16 tclass,
1151                                 u32 *sid)
1152 {
1153         return -EINVAL;
1154 }
1155 #endif
1156
1157 /* The inode's security attributes must be initialized before first use. */
1158 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1159 {
1160         struct superblock_security_struct *sbsec = NULL;
1161         struct inode_security_struct *isec = inode->i_security;
1162         u32 sid;
1163         struct dentry *dentry;
1164 #define INITCONTEXTLEN 255
1165         char *context = NULL;
1166         unsigned len = 0;
1167         int rc = 0;
1168
1169         if (isec->initialized)
1170                 goto out;
1171
1172         mutex_lock(&isec->lock);
1173         if (isec->initialized)
1174                 goto out_unlock;
1175
1176         sbsec = inode->i_sb->s_security;
1177         if (!sbsec->initialized) {
1178                 /* Defer initialization until selinux_complete_init,
1179                    after the initial policy is loaded and the security
1180                    server is ready to handle calls. */
1181                 spin_lock(&sbsec->isec_lock);
1182                 if (list_empty(&isec->list))
1183                         list_add(&isec->list, &sbsec->isec_head);
1184                 spin_unlock(&sbsec->isec_lock);
1185                 goto out_unlock;
1186         }
1187
1188         switch (sbsec->behavior) {
1189         case SECURITY_FS_USE_XATTR:
1190                 if (!inode->i_op->getxattr) {
1191                         isec->sid = sbsec->def_sid;
1192                         break;
1193                 }
1194
1195                 /* Need a dentry, since the xattr API requires one.
1196                    Life would be simpler if we could just pass the inode. */
1197                 if (opt_dentry) {
1198                         /* Called from d_instantiate or d_splice_alias. */
1199                         dentry = dget(opt_dentry);
1200                 } else {
1201                         /* Called from selinux_complete_init, try to find a dentry. */
1202                         dentry = d_find_alias(inode);
1203                 }
1204                 if (!dentry) {
1205                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1206                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1207                                inode->i_ino);
1208                         goto out_unlock;
1209                 }
1210
1211                 len = INITCONTEXTLEN;
1212                 context = kmalloc(len, GFP_NOFS);
1213                 if (!context) {
1214                         rc = -ENOMEM;
1215                         dput(dentry);
1216                         goto out_unlock;
1217                 }
1218                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1219                                            context, len);
1220                 if (rc == -ERANGE) {
1221                         /* Need a larger buffer.  Query for the right size. */
1222                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1223                                                    NULL, 0);
1224                         if (rc < 0) {
1225                                 dput(dentry);
1226                                 goto out_unlock;
1227                         }
1228                         kfree(context);
1229                         len = rc;
1230                         context = kmalloc(len, GFP_NOFS);
1231                         if (!context) {
1232                                 rc = -ENOMEM;
1233                                 dput(dentry);
1234                                 goto out_unlock;
1235                         }
1236                         rc = inode->i_op->getxattr(dentry,
1237                                                    XATTR_NAME_SELINUX,
1238                                                    context, len);
1239                 }
1240                 dput(dentry);
1241                 if (rc < 0) {
1242                         if (rc != -ENODATA) {
1243                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1244                                        "%d for dev=%s ino=%ld\n", __func__,
1245                                        -rc, inode->i_sb->s_id, inode->i_ino);
1246                                 kfree(context);
1247                                 goto out_unlock;
1248                         }
1249                         /* Map ENODATA to the default file SID */
1250                         sid = sbsec->def_sid;
1251                         rc = 0;
1252                 } else {
1253                         rc = security_context_to_sid_default(context, rc, &sid,
1254                                                              sbsec->def_sid,
1255                                                              GFP_NOFS);
1256                         if (rc) {
1257                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1258                                        "returned %d for dev=%s ino=%ld\n",
1259                                        __func__, context, -rc,
1260                                        inode->i_sb->s_id, inode->i_ino);
1261                                 kfree(context);
1262                                 /* Leave with the unlabeled SID */
1263                                 rc = 0;
1264                                 break;
1265                         }
1266                 }
1267                 kfree(context);
1268                 isec->sid = sid;
1269                 break;
1270         case SECURITY_FS_USE_TASK:
1271                 isec->sid = isec->task_sid;
1272                 break;
1273         case SECURITY_FS_USE_TRANS:
1274                 /* Default to the fs SID. */
1275                 isec->sid = sbsec->sid;
1276
1277                 /* Try to obtain a transition SID. */
1278                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1279                 rc = security_transition_sid(isec->task_sid,
1280                                              sbsec->sid,
1281                                              isec->sclass,
1282                                              &sid);
1283                 if (rc)
1284                         goto out_unlock;
1285                 isec->sid = sid;
1286                 break;
1287         case SECURITY_FS_USE_MNTPOINT:
1288                 isec->sid = sbsec->mntpoint_sid;
1289                 break;
1290         default:
1291                 /* Default to the fs superblock SID. */
1292                 isec->sid = sbsec->sid;
1293
1294                 if (sbsec->proc) {
1295                         struct proc_inode *proci = PROC_I(inode);
1296                         if (proci->pde) {
1297                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1298                                 rc = selinux_proc_get_sid(proci->pde,
1299                                                           isec->sclass,
1300                                                           &sid);
1301                                 if (rc)
1302                                         goto out_unlock;
1303                                 isec->sid = sid;
1304                         }
1305                 }
1306                 break;
1307         }
1308
1309         isec->initialized = 1;
1310
1311 out_unlock:
1312         mutex_unlock(&isec->lock);
1313 out:
1314         if (isec->sclass == SECCLASS_FILE)
1315                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1316         return rc;
1317 }
1318
1319 /* Convert a Linux signal to an access vector. */
1320 static inline u32 signal_to_av(int sig)
1321 {
1322         u32 perm = 0;
1323
1324         switch (sig) {
1325         case SIGCHLD:
1326                 /* Commonly granted from child to parent. */
1327                 perm = PROCESS__SIGCHLD;
1328                 break;
1329         case SIGKILL:
1330                 /* Cannot be caught or ignored */
1331                 perm = PROCESS__SIGKILL;
1332                 break;
1333         case SIGSTOP:
1334                 /* Cannot be caught or ignored */
1335                 perm = PROCESS__SIGSTOP;
1336                 break;
1337         default:
1338                 /* All other signals. */
1339                 perm = PROCESS__SIGNAL;
1340                 break;
1341         }
1342
1343         return perm;
1344 }
1345
1346 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1347    fork check, ptrace check, etc. */
1348 static int task_has_perm(struct task_struct *tsk1,
1349                          struct task_struct *tsk2,
1350                          u32 perms)
1351 {
1352         struct task_security_struct *tsec1, *tsec2;
1353
1354         tsec1 = tsk1->security;
1355         tsec2 = tsk2->security;
1356         return avc_has_perm(tsec1->sid, tsec2->sid,
1357                             SECCLASS_PROCESS, perms, NULL);
1358 }
1359
1360 #if CAP_LAST_CAP > 63
1361 #error Fix SELinux to handle capabilities > 63.
1362 #endif
1363
1364 /* Check whether a task is allowed to use a capability. */
1365 static int task_has_capability(struct task_struct *tsk,
1366                                int cap)
1367 {
1368         struct task_security_struct *tsec;
1369         struct avc_audit_data ad;
1370         u16 sclass;
1371         u32 av = CAP_TO_MASK(cap);
1372
1373         tsec = tsk->security;
1374
1375         AVC_AUDIT_DATA_INIT(&ad, CAP);
1376         ad.tsk = tsk;
1377         ad.u.cap = cap;
1378
1379         switch (CAP_TO_INDEX(cap)) {
1380         case 0:
1381                 sclass = SECCLASS_CAPABILITY;
1382                 break;
1383         case 1:
1384                 sclass = SECCLASS_CAPABILITY2;
1385                 break;
1386         default:
1387                 printk(KERN_ERR
1388                        "SELinux:  out of range capability %d\n", cap);
1389                 BUG();
1390         }
1391         return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1392 }
1393
1394 /* Check whether a task is allowed to use a system operation. */
1395 static int task_has_system(struct task_struct *tsk,
1396                            u32 perms)
1397 {
1398         struct task_security_struct *tsec;
1399
1400         tsec = tsk->security;
1401
1402         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1403                             SECCLASS_SYSTEM, perms, NULL);
1404 }
1405
1406 /* Check whether a task has a particular permission to an inode.
1407    The 'adp' parameter is optional and allows other audit
1408    data to be passed (e.g. the dentry). */
1409 static int inode_has_perm(struct task_struct *tsk,
1410                           struct inode *inode,
1411                           u32 perms,
1412                           struct avc_audit_data *adp)
1413 {
1414         struct task_security_struct *tsec;
1415         struct inode_security_struct *isec;
1416         struct avc_audit_data ad;
1417
1418         if (unlikely(IS_PRIVATE(inode)))
1419                 return 0;
1420
1421         tsec = tsk->security;
1422         isec = inode->i_security;
1423
1424         if (!adp) {
1425                 adp = &ad;
1426                 AVC_AUDIT_DATA_INIT(&ad, FS);
1427                 ad.u.fs.inode = inode;
1428         }
1429
1430         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1431 }
1432
1433 /* Same as inode_has_perm, but pass explicit audit data containing
1434    the dentry to help the auditing code to more easily generate the
1435    pathname if needed. */
1436 static inline int dentry_has_perm(struct task_struct *tsk,
1437                                   struct vfsmount *mnt,
1438                                   struct dentry *dentry,
1439                                   u32 av)
1440 {
1441         struct inode *inode = dentry->d_inode;
1442         struct avc_audit_data ad;
1443         AVC_AUDIT_DATA_INIT(&ad, FS);
1444         ad.u.fs.path.mnt = mnt;
1445         ad.u.fs.path.dentry = dentry;
1446         return inode_has_perm(tsk, inode, av, &ad);
1447 }
1448
1449 /* Check whether a task can use an open file descriptor to
1450    access an inode in a given way.  Check access to the
1451    descriptor itself, and then use dentry_has_perm to
1452    check a particular permission to the file.
1453    Access to the descriptor is implicitly granted if it
1454    has the same SID as the process.  If av is zero, then
1455    access to the file is not checked, e.g. for cases
1456    where only the descriptor is affected like seek. */
1457 static int file_has_perm(struct task_struct *tsk,
1458                                 struct file *file,
1459                                 u32 av)
1460 {
1461         struct task_security_struct *tsec = tsk->security;
1462         struct file_security_struct *fsec = file->f_security;
1463         struct inode *inode = file->f_path.dentry->d_inode;
1464         struct avc_audit_data ad;
1465         int rc;
1466
1467         AVC_AUDIT_DATA_INIT(&ad, FS);
1468         ad.u.fs.path = file->f_path;
1469
1470         if (tsec->sid != fsec->sid) {
1471                 rc = avc_has_perm(tsec->sid, fsec->sid,
1472                                   SECCLASS_FD,
1473                                   FD__USE,
1474                                   &ad);
1475                 if (rc)
1476                         return rc;
1477         }
1478
1479         /* av is zero if only checking access to the descriptor. */
1480         if (av)
1481                 return inode_has_perm(tsk, inode, av, &ad);
1482
1483         return 0;
1484 }
1485
1486 /* Check whether a task can create a file. */
1487 static int may_create(struct inode *dir,
1488                       struct dentry *dentry,
1489                       u16 tclass)
1490 {
1491         struct task_security_struct *tsec;
1492         struct inode_security_struct *dsec;
1493         struct superblock_security_struct *sbsec;
1494         u32 newsid;
1495         struct avc_audit_data ad;
1496         int rc;
1497
1498         tsec = current->security;
1499         dsec = dir->i_security;
1500         sbsec = dir->i_sb->s_security;
1501
1502         AVC_AUDIT_DATA_INIT(&ad, FS);
1503         ad.u.fs.path.dentry = dentry;
1504
1505         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1506                           DIR__ADD_NAME | DIR__SEARCH,
1507                           &ad);
1508         if (rc)
1509                 return rc;
1510
1511         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1512                 newsid = tsec->create_sid;
1513         } else {
1514                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1515                                              &newsid);
1516                 if (rc)
1517                         return rc;
1518         }
1519
1520         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1521         if (rc)
1522                 return rc;
1523
1524         return avc_has_perm(newsid, sbsec->sid,
1525                             SECCLASS_FILESYSTEM,
1526                             FILESYSTEM__ASSOCIATE, &ad);
1527 }
1528
1529 /* Check whether a task can create a key. */
1530 static int may_create_key(u32 ksid,
1531                           struct task_struct *ctx)
1532 {
1533         struct task_security_struct *tsec;
1534
1535         tsec = ctx->security;
1536
1537         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1538 }
1539
1540 #define MAY_LINK        0
1541 #define MAY_UNLINK      1
1542 #define MAY_RMDIR       2
1543
1544 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1545 static int may_link(struct inode *dir,
1546                     struct dentry *dentry,
1547                     int kind)
1548
1549 {
1550         struct task_security_struct *tsec;
1551         struct inode_security_struct *dsec, *isec;
1552         struct avc_audit_data ad;
1553         u32 av;
1554         int rc;
1555
1556         tsec = current->security;
1557         dsec = dir->i_security;
1558         isec = dentry->d_inode->i_security;
1559
1560         AVC_AUDIT_DATA_INIT(&ad, FS);
1561         ad.u.fs.path.dentry = dentry;
1562
1563         av = DIR__SEARCH;
1564         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1565         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1566         if (rc)
1567                 return rc;
1568
1569         switch (kind) {
1570         case MAY_LINK:
1571                 av = FILE__LINK;
1572                 break;
1573         case MAY_UNLINK:
1574                 av = FILE__UNLINK;
1575                 break;
1576         case MAY_RMDIR:
1577                 av = DIR__RMDIR;
1578                 break;
1579         default:
1580                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1581                         __func__, kind);
1582                 return 0;
1583         }
1584
1585         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1586         return rc;
1587 }
1588
1589 static inline int may_rename(struct inode *old_dir,
1590                              struct dentry *old_dentry,
1591                              struct inode *new_dir,
1592                              struct dentry *new_dentry)
1593 {
1594         struct task_security_struct *tsec;
1595         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1596         struct avc_audit_data ad;
1597         u32 av;
1598         int old_is_dir, new_is_dir;
1599         int rc;
1600
1601         tsec = current->security;
1602         old_dsec = old_dir->i_security;
1603         old_isec = old_dentry->d_inode->i_security;
1604         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1605         new_dsec = new_dir->i_security;
1606
1607         AVC_AUDIT_DATA_INIT(&ad, FS);
1608
1609         ad.u.fs.path.dentry = old_dentry;
1610         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1611                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1612         if (rc)
1613                 return rc;
1614         rc = avc_has_perm(tsec->sid, old_isec->sid,
1615                           old_isec->sclass, FILE__RENAME, &ad);
1616         if (rc)
1617                 return rc;
1618         if (old_is_dir && new_dir != old_dir) {
1619                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1620                                   old_isec->sclass, DIR__REPARENT, &ad);
1621                 if (rc)
1622                         return rc;
1623         }
1624
1625         ad.u.fs.path.dentry = new_dentry;
1626         av = DIR__ADD_NAME | DIR__SEARCH;
1627         if (new_dentry->d_inode)
1628                 av |= DIR__REMOVE_NAME;
1629         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1630         if (rc)
1631                 return rc;
1632         if (new_dentry->d_inode) {
1633                 new_isec = new_dentry->d_inode->i_security;
1634                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1635                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1636                                   new_isec->sclass,
1637                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1638                 if (rc)
1639                         return rc;
1640         }
1641
1642         return 0;
1643 }
1644
1645 /* Check whether a task can perform a filesystem operation. */
1646 static int superblock_has_perm(struct task_struct *tsk,
1647                                struct super_block *sb,
1648                                u32 perms,
1649                                struct avc_audit_data *ad)
1650 {
1651         struct task_security_struct *tsec;
1652         struct superblock_security_struct *sbsec;
1653
1654         tsec = tsk->security;
1655         sbsec = sb->s_security;
1656         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1657                             perms, ad);
1658 }
1659
1660 /* Convert a Linux mode and permission mask to an access vector. */
1661 static inline u32 file_mask_to_av(int mode, int mask)
1662 {
1663         u32 av = 0;
1664
1665         if ((mode & S_IFMT) != S_IFDIR) {
1666                 if (mask & MAY_EXEC)
1667                         av |= FILE__EXECUTE;
1668                 if (mask & MAY_READ)
1669                         av |= FILE__READ;
1670
1671                 if (mask & MAY_APPEND)
1672                         av |= FILE__APPEND;
1673                 else if (mask & MAY_WRITE)
1674                         av |= FILE__WRITE;
1675
1676         } else {
1677                 if (mask & MAY_EXEC)
1678                         av |= DIR__SEARCH;
1679                 if (mask & MAY_WRITE)
1680                         av |= DIR__WRITE;
1681                 if (mask & MAY_READ)
1682                         av |= DIR__READ;
1683         }
1684
1685         return av;
1686 }
1687
1688 /*
1689  * Convert a file mask to an access vector and include the correct open
1690  * open permission.
1691  */
1692 static inline u32 open_file_mask_to_av(int mode, int mask)
1693 {
1694         u32 av = file_mask_to_av(mode, mask);
1695
1696         if (selinux_policycap_openperm) {
1697                 /*
1698                  * lnk files and socks do not really have an 'open'
1699                  */
1700                 if (S_ISREG(mode))
1701                         av |= FILE__OPEN;
1702                 else if (S_ISCHR(mode))
1703                         av |= CHR_FILE__OPEN;
1704                 else if (S_ISBLK(mode))
1705                         av |= BLK_FILE__OPEN;
1706                 else if (S_ISFIFO(mode))
1707                         av |= FIFO_FILE__OPEN;
1708                 else if (S_ISDIR(mode))
1709                         av |= DIR__OPEN;
1710                 else
1711                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1712                                 "unknown mode:%x\n", __func__, mode);
1713         }
1714         return av;
1715 }
1716
1717 /* Convert a Linux file to an access vector. */
1718 static inline u32 file_to_av(struct file *file)
1719 {
1720         u32 av = 0;
1721
1722         if (file->f_mode & FMODE_READ)
1723                 av |= FILE__READ;
1724         if (file->f_mode & FMODE_WRITE) {
1725                 if (file->f_flags & O_APPEND)
1726                         av |= FILE__APPEND;
1727                 else
1728                         av |= FILE__WRITE;
1729         }
1730         if (!av) {
1731                 /*
1732                  * Special file opened with flags 3 for ioctl-only use.
1733                  */
1734                 av = FILE__IOCTL;
1735         }
1736
1737         return av;
1738 }
1739
1740 /* Hook functions begin here. */
1741
1742 static int selinux_ptrace_may_access(struct task_struct *child,
1743                                      unsigned int mode)
1744 {
1745         int rc;
1746
1747         rc = secondary_ops->ptrace_may_access(child, mode);
1748         if (rc)
1749                 return rc;
1750
1751         if (mode == PTRACE_MODE_READ) {
1752                 struct task_security_struct *tsec = current->security;
1753                 struct task_security_struct *csec = child->security;
1754                 return avc_has_perm(tsec->sid, csec->sid,
1755                                     SECCLASS_FILE, FILE__READ, NULL);
1756         }
1757
1758         return task_has_perm(current, child, PROCESS__PTRACE);
1759 }
1760
1761 static int selinux_ptrace_traceme(struct task_struct *parent)
1762 {
1763         int rc;
1764
1765         rc = secondary_ops->ptrace_traceme(parent);
1766         if (rc)
1767                 return rc;
1768
1769         return task_has_perm(parent, current, PROCESS__PTRACE);
1770 }
1771
1772 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1773                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1774 {
1775         int error;
1776
1777         error = task_has_perm(current, target, PROCESS__GETCAP);
1778         if (error)
1779                 return error;
1780
1781         return secondary_ops->capget(target, effective, inheritable, permitted);
1782 }
1783
1784 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1785                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1786 {
1787         int error;
1788
1789         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1790         if (error)
1791                 return error;
1792
1793         return task_has_perm(current, target, PROCESS__SETCAP);
1794 }
1795
1796 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1797                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1798 {
1799         secondary_ops->capset_set(target, effective, inheritable, permitted);
1800 }
1801
1802 static int selinux_capable(struct task_struct *tsk, int cap)
1803 {
1804         int rc;
1805
1806         rc = secondary_ops->capable(tsk, cap);
1807         if (rc)
1808                 return rc;
1809
1810         return task_has_capability(tsk, cap);
1811 }
1812
1813 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1814 {
1815         int buflen, rc;
1816         char *buffer, *path, *end;
1817
1818         rc = -ENOMEM;
1819         buffer = (char *)__get_free_page(GFP_KERNEL);
1820         if (!buffer)
1821                 goto out;
1822
1823         buflen = PAGE_SIZE;
1824         end = buffer+buflen;
1825         *--end = '\0';
1826         buflen--;
1827         path = end-1;
1828         *path = '/';
1829         while (table) {
1830                 const char *name = table->procname;
1831                 size_t namelen = strlen(name);
1832                 buflen -= namelen + 1;
1833                 if (buflen < 0)
1834                         goto out_free;
1835                 end -= namelen;
1836                 memcpy(end, name, namelen);
1837                 *--end = '/';
1838                 path = end;
1839                 table = table->parent;
1840         }
1841         buflen -= 4;
1842         if (buflen < 0)
1843                 goto out_free;
1844         end -= 4;
1845         memcpy(end, "/sys", 4);
1846         path = end;
1847         rc = security_genfs_sid("proc", path, tclass, sid);
1848 out_free:
1849         free_page((unsigned long)buffer);
1850 out:
1851         return rc;
1852 }
1853
1854 static int selinux_sysctl(ctl_table *table, int op)
1855 {
1856         int error = 0;
1857         u32 av;
1858         struct task_security_struct *tsec;
1859         u32 tsid;
1860         int rc;
1861
1862         rc = secondary_ops->sysctl(table, op);
1863         if (rc)
1864                 return rc;
1865
1866         tsec = current->security;
1867
1868         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1869                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1870         if (rc) {
1871                 /* Default to the well-defined sysctl SID. */
1872                 tsid = SECINITSID_SYSCTL;
1873         }
1874
1875         /* The op values are "defined" in sysctl.c, thereby creating
1876          * a bad coupling between this module and sysctl.c */
1877         if (op == 001) {
1878                 error = avc_has_perm(tsec->sid, tsid,
1879                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1880         } else {
1881                 av = 0;
1882                 if (op & 004)
1883                         av |= FILE__READ;
1884                 if (op & 002)
1885                         av |= FILE__WRITE;
1886                 if (av)
1887                         error = avc_has_perm(tsec->sid, tsid,
1888                                              SECCLASS_FILE, av, NULL);
1889         }
1890
1891         return error;
1892 }
1893
1894 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1895 {
1896         int rc = 0;
1897
1898         if (!sb)
1899                 return 0;
1900
1901         switch (cmds) {
1902         case Q_SYNC:
1903         case Q_QUOTAON:
1904         case Q_QUOTAOFF:
1905         case Q_SETINFO:
1906         case Q_SETQUOTA:
1907                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1908                                          NULL);
1909                 break;
1910         case Q_GETFMT:
1911         case Q_GETINFO:
1912         case Q_GETQUOTA:
1913                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1914                                          NULL);
1915                 break;
1916         default:
1917                 rc = 0;  /* let the kernel handle invalid cmds */
1918                 break;
1919         }
1920         return rc;
1921 }
1922
1923 static int selinux_quota_on(struct dentry *dentry)
1924 {
1925         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1926 }
1927
1928 static int selinux_syslog(int type)
1929 {
1930         int rc;
1931
1932         rc = secondary_ops->syslog(type);
1933         if (rc)
1934                 return rc;
1935
1936         switch (type) {
1937         case 3:         /* Read last kernel messages */
1938         case 10:        /* Return size of the log buffer */
1939                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1940                 break;
1941         case 6:         /* Disable logging to console */
1942         case 7:         /* Enable logging to console */
1943         case 8:         /* Set level of messages printed to console */
1944                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1945                 break;
1946         case 0:         /* Close log */
1947         case 1:         /* Open log */
1948         case 2:         /* Read from log */
1949         case 4:         /* Read/clear last kernel messages */
1950         case 5:         /* Clear ring buffer */
1951         default:
1952                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1953                 break;
1954         }
1955         return rc;
1956 }
1957
1958 /*
1959  * Check that a process has enough memory to allocate a new virtual
1960  * mapping. 0 means there is enough memory for the allocation to
1961  * succeed and -ENOMEM implies there is not.
1962  *
1963  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1964  * if the capability is granted, but __vm_enough_memory requires 1 if
1965  * the capability is granted.
1966  *
1967  * Do not audit the selinux permission check, as this is applied to all
1968  * processes that allocate mappings.
1969  */
1970 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1971 {
1972         int rc, cap_sys_admin = 0;
1973         struct task_security_struct *tsec = current->security;
1974
1975         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1976         if (rc == 0)
1977                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1978                                           SECCLASS_CAPABILITY,
1979                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1980                                           0,
1981                                           NULL);
1982
1983         if (rc == 0)
1984                 cap_sys_admin = 1;
1985
1986         return __vm_enough_memory(mm, pages, cap_sys_admin);
1987 }
1988
1989 /* binprm security operations */
1990
1991 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1992 {
1993         struct bprm_security_struct *bsec;
1994
1995         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1996         if (!bsec)
1997                 return -ENOMEM;
1998
1999         bsec->sid = SECINITSID_UNLABELED;
2000         bsec->set = 0;
2001
2002         bprm->security = bsec;
2003         return 0;
2004 }
2005
2006 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2007 {
2008         struct task_security_struct *tsec;
2009         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2010         struct inode_security_struct *isec;
2011         struct bprm_security_struct *bsec;
2012         u32 newsid;
2013         struct avc_audit_data ad;
2014         int rc;
2015
2016         rc = secondary_ops->bprm_set_security(bprm);
2017         if (rc)
2018                 return rc;
2019
2020         bsec = bprm->security;
2021
2022         if (bsec->set)
2023                 return 0;
2024
2025         tsec = current->security;
2026         isec = inode->i_security;
2027
2028         /* Default to the current task SID. */
2029         bsec->sid = tsec->sid;
2030
2031         /* Reset fs, key, and sock SIDs on execve. */
2032         tsec->create_sid = 0;
2033         tsec->keycreate_sid = 0;
2034         tsec->sockcreate_sid = 0;
2035
2036         if (tsec->exec_sid) {
2037                 newsid = tsec->exec_sid;
2038                 /* Reset exec SID on execve. */
2039                 tsec->exec_sid = 0;
2040         } else {
2041                 /* Check for a default transition on this program. */
2042                 rc = security_transition_sid(tsec->sid, isec->sid,
2043                                              SECCLASS_PROCESS, &newsid);
2044                 if (rc)
2045                         return rc;
2046         }
2047
2048         AVC_AUDIT_DATA_INIT(&ad, FS);
2049         ad.u.fs.path = bprm->file->f_path;
2050
2051         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2052                 newsid = tsec->sid;
2053
2054         if (tsec->sid == newsid) {
2055                 rc = avc_has_perm(tsec->sid, isec->sid,
2056                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2057                 if (rc)
2058                         return rc;
2059         } else {
2060                 /* Check permissions for the transition. */
2061                 rc = avc_has_perm(tsec->sid, newsid,
2062                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2063                 if (rc)
2064                         return rc;
2065
2066                 rc = avc_has_perm(newsid, isec->sid,
2067                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2068                 if (rc)
2069                         return rc;
2070
2071                 /* Clear any possibly unsafe personality bits on exec: */
2072                 current->personality &= ~PER_CLEAR_ON_SETID;
2073
2074                 /* Set the security field to the new SID. */
2075                 bsec->sid = newsid;
2076         }
2077
2078         bsec->set = 1;
2079         return 0;
2080 }
2081
2082 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2083 {
2084         return secondary_ops->bprm_check_security(bprm);
2085 }
2086
2087
2088 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2089 {
2090         struct task_security_struct *tsec = current->security;
2091         int atsecure = 0;
2092
2093         if (tsec->osid != tsec->sid) {
2094                 /* Enable secure mode for SIDs transitions unless
2095                    the noatsecure permission is granted between
2096                    the two SIDs, i.e. ahp returns 0. */
2097                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2098                                          SECCLASS_PROCESS,
2099                                          PROCESS__NOATSECURE, NULL);
2100         }
2101
2102         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2103 }
2104
2105 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2106 {
2107         kfree(bprm->security);
2108         bprm->security = NULL;
2109 }
2110
2111 extern struct vfsmount *selinuxfs_mount;
2112 extern struct dentry *selinux_null;
2113
2114 /* Derived from fs/exec.c:flush_old_files. */
2115 static inline void flush_unauthorized_files(struct files_struct *files)
2116 {
2117         struct avc_audit_data ad;
2118         struct file *file, *devnull = NULL;
2119         struct tty_struct *tty;
2120         struct fdtable *fdt;
2121         long j = -1;
2122         int drop_tty = 0;
2123
2124         mutex_lock(&tty_mutex);
2125         tty = get_current_tty();
2126         if (tty) {
2127                 file_list_lock();
2128                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2129                 if (file) {
2130                         /* Revalidate access to controlling tty.
2131                            Use inode_has_perm on the tty inode directly rather
2132                            than using file_has_perm, as this particular open
2133                            file may belong to another process and we are only
2134                            interested in the inode-based check here. */
2135                         struct inode *inode = file->f_path.dentry->d_inode;
2136                         if (inode_has_perm(current, inode,
2137                                            FILE__READ | FILE__WRITE, NULL)) {
2138                                 drop_tty = 1;
2139                         }
2140                 }
2141                 file_list_unlock();
2142         }
2143         mutex_unlock(&tty_mutex);
2144         /* Reset controlling tty. */
2145         if (drop_tty)
2146                 no_tty();
2147
2148         /* Revalidate access to inherited open files. */
2149
2150         AVC_AUDIT_DATA_INIT(&ad, FS);
2151
2152         spin_lock(&files->file_lock);
2153         for (;;) {
2154                 unsigned long set, i;
2155                 int fd;
2156
2157                 j++;
2158                 i = j * __NFDBITS;
2159                 fdt = files_fdtable(files);
2160                 if (i >= fdt->max_fds)
2161                         break;
2162                 set = fdt->open_fds->fds_bits[j];
2163                 if (!set)
2164                         continue;
2165                 spin_unlock(&files->file_lock);
2166                 for ( ; set ; i++, set >>= 1) {
2167                         if (set & 1) {
2168                                 file = fget(i);
2169                                 if (!file)
2170                                         continue;
2171                                 if (file_has_perm(current,
2172                                                   file,
2173                                                   file_to_av(file))) {
2174                                         sys_close(i);
2175                                         fd = get_unused_fd();
2176                                         if (fd != i) {
2177                                                 if (fd >= 0)
2178                                                         put_unused_fd(fd);
2179                                                 fput(file);
2180                                                 continue;
2181                                         }
2182                                         if (devnull) {
2183                                                 get_file(devnull);
2184                                         } else {
2185                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2186                                                 if (IS_ERR(devnull)) {
2187                                                         devnull = NULL;
2188                                                         put_unused_fd(fd);
2189                                                         fput(file);
2190                                                         continue;
2191                                                 }
2192                                         }
2193                                         fd_install(fd, devnull);
2194                                 }
2195                                 fput(file);
2196                         }
2197                 }
2198                 spin_lock(&files->file_lock);
2199
2200         }
2201         spin_unlock(&files->file_lock);
2202 }
2203
2204 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2205 {
2206         struct task_security_struct *tsec;
2207         struct bprm_security_struct *bsec;
2208         u32 sid;
2209         int rc;
2210
2211         secondary_ops->bprm_apply_creds(bprm, unsafe);
2212
2213         tsec = current->security;
2214
2215         bsec = bprm->security;
2216         sid = bsec->sid;
2217
2218         tsec->osid = tsec->sid;
2219         bsec->unsafe = 0;
2220         if (tsec->sid != sid) {
2221                 /* Check for shared state.  If not ok, leave SID
2222                    unchanged and kill. */
2223                 if (unsafe & LSM_UNSAFE_SHARE) {
2224                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2225                                         PROCESS__SHARE, NULL);
2226                         if (rc) {
2227                                 bsec->unsafe = 1;
2228                                 return;
2229                         }
2230                 }
2231
2232                 /* Check for ptracing, and update the task SID if ok.
2233                    Otherwise, leave SID unchanged and kill. */
2234                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2235                         struct task_struct *tracer;
2236                         struct task_security_struct *sec;
2237                         u32 ptsid = 0;
2238
2239                         rcu_read_lock();
2240                         tracer = tracehook_tracer_task(current);
2241                         if (likely(tracer != NULL)) {
2242                                 sec = tracer->security;
2243                                 ptsid = sec->sid;
2244                         }
2245                         rcu_read_unlock();
2246
2247                         if (ptsid != 0) {
2248                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2249                                                   PROCESS__PTRACE, NULL);
2250                                 if (rc) {
2251                                         bsec->unsafe = 1;
2252                                         return;
2253                                 }
2254                         }
2255                 }
2256                 tsec->sid = sid;
2257         }
2258 }
2259
2260 /*
2261  * called after apply_creds without the task lock held
2262  */
2263 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2264 {
2265         struct task_security_struct *tsec;
2266         struct rlimit *rlim, *initrlim;
2267         struct itimerval itimer;
2268         struct bprm_security_struct *bsec;
2269         int rc, i;
2270
2271         tsec = current->security;
2272         bsec = bprm->security;
2273
2274         if (bsec->unsafe) {
2275                 force_sig_specific(SIGKILL, current);
2276                 return;
2277         }
2278         if (tsec->osid == tsec->sid)
2279                 return;
2280
2281         /* Close files for which the new task SID is not authorized. */
2282         flush_unauthorized_files(current->files);
2283
2284         /* Check whether the new SID can inherit signal state
2285            from the old SID.  If not, clear itimers to avoid
2286            subsequent signal generation and flush and unblock
2287            signals. This must occur _after_ the task SID has
2288           been updated so that any kill done after the flush
2289           will be checked against the new SID. */
2290         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2291                           PROCESS__SIGINH, NULL);
2292         if (rc) {
2293                 memset(&itimer, 0, sizeof itimer);
2294                 for (i = 0; i < 3; i++)
2295                         do_setitimer(i, &itimer, NULL);
2296                 flush_signals(current);
2297                 spin_lock_irq(&current->sighand->siglock);
2298                 flush_signal_handlers(current, 1);
2299                 sigemptyset(&current->blocked);
2300                 recalc_sigpending();
2301                 spin_unlock_irq(&current->sighand->siglock);
2302         }
2303
2304         /* Always clear parent death signal on SID transitions. */
2305         current->pdeath_signal = 0;
2306
2307         /* Check whether the new SID can inherit resource limits
2308            from the old SID.  If not, reset all soft limits to
2309            the lower of the current task's hard limit and the init
2310            task's soft limit.  Note that the setting of hard limits
2311            (even to lower them) can be controlled by the setrlimit
2312            check. The inclusion of the init task's soft limit into
2313            the computation is to avoid resetting soft limits higher
2314            than the default soft limit for cases where the default
2315            is lower than the hard limit, e.g. RLIMIT_CORE or
2316            RLIMIT_STACK.*/
2317         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2318                           PROCESS__RLIMITINH, NULL);
2319         if (rc) {
2320                 for (i = 0; i < RLIM_NLIMITS; i++) {
2321                         rlim = current->signal->rlim + i;
2322                         initrlim = init_task.signal->rlim+i;
2323                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2324                 }
2325                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2326                         /*
2327                          * This will cause RLIMIT_CPU calculations
2328                          * to be refigured.
2329                          */
2330                         current->it_prof_expires = jiffies_to_cputime(1);
2331                 }
2332         }
2333
2334         /* Wake up the parent if it is waiting so that it can
2335            recheck wait permission to the new task SID. */
2336         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2337 }
2338
2339 /* superblock security operations */
2340
2341 static int selinux_sb_alloc_security(struct super_block *sb)
2342 {
2343         return superblock_alloc_security(sb);
2344 }
2345
2346 static void selinux_sb_free_security(struct super_block *sb)
2347 {
2348         superblock_free_security(sb);
2349 }
2350
2351 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2352 {
2353         if (plen > olen)
2354                 return 0;
2355
2356         return !memcmp(prefix, option, plen);
2357 }
2358
2359 static inline int selinux_option(char *option, int len)
2360 {
2361         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2362                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2363                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2364                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2365 }
2366
2367 static inline void take_option(char **to, char *from, int *first, int len)
2368 {
2369         if (!*first) {
2370                 **to = ',';
2371                 *to += 1;
2372         } else
2373                 *first = 0;
2374         memcpy(*to, from, len);
2375         *to += len;
2376 }
2377
2378 static inline void take_selinux_option(char **to, char *from, int *first,
2379                                        int len)
2380 {
2381         int current_size = 0;
2382
2383         if (!*first) {
2384                 **to = '|';
2385                 *to += 1;
2386         } else
2387                 *first = 0;
2388
2389         while (current_size < len) {
2390                 if (*from != '"') {
2391                         **to = *from;
2392                         *to += 1;
2393                 }
2394                 from += 1;
2395                 current_size += 1;
2396         }
2397 }
2398
2399 static int selinux_sb_copy_data(char *orig, char *copy)
2400 {
2401         int fnosec, fsec, rc = 0;
2402         char *in_save, *in_curr, *in_end;
2403         char *sec_curr, *nosec_save, *nosec;
2404         int open_quote = 0;
2405
2406         in_curr = orig;
2407         sec_curr = copy;
2408
2409         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2410         if (!nosec) {
2411                 rc = -ENOMEM;
2412                 goto out;
2413         }
2414
2415         nosec_save = nosec;
2416         fnosec = fsec = 1;
2417         in_save = in_end = orig;
2418
2419         do {
2420                 if (*in_end == '"')
2421                         open_quote = !open_quote;
2422                 if ((*in_end == ',' && open_quote == 0) ||
2423                                 *in_end == '\0') {
2424                         int len = in_end - in_curr;
2425
2426                         if (selinux_option(in_curr, len))
2427                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2428                         else
2429                                 take_option(&nosec, in_curr, &fnosec, len);
2430
2431                         in_curr = in_end + 1;
2432                 }
2433         } while (*in_end++);
2434
2435         strcpy(in_save, nosec_save);
2436         free_page((unsigned long)nosec_save);
2437 out:
2438         return rc;
2439 }
2440
2441 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2442 {
2443         struct avc_audit_data ad;
2444         int rc;
2445
2446         rc = superblock_doinit(sb, data);
2447         if (rc)
2448                 return rc;
2449
2450         AVC_AUDIT_DATA_INIT(&ad, FS);
2451         ad.u.fs.path.dentry = sb->s_root;
2452         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2453 }
2454
2455 static int selinux_sb_statfs(struct dentry *dentry)
2456 {
2457         struct avc_audit_data ad;
2458
2459         AVC_AUDIT_DATA_INIT(&ad, FS);
2460         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2461         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2462 }
2463
2464 static int selinux_mount(char *dev_name,
2465                          struct path *path,
2466                          char *type,
2467                          unsigned long flags,
2468                          void *data)
2469 {
2470         int rc;
2471
2472         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2473         if (rc)
2474                 return rc;
2475
2476         if (flags & MS_REMOUNT)
2477                 return superblock_has_perm(current, path->mnt->mnt_sb,
2478                                            FILESYSTEM__REMOUNT, NULL);
2479         else
2480                 return dentry_has_perm(current, path->mnt, path->dentry,
2481                                        FILE__MOUNTON);
2482 }
2483
2484 static int selinux_umount(struct vfsmount *mnt, int flags)
2485 {
2486         int rc;
2487
2488         rc = secondary_ops->sb_umount(mnt, flags);
2489         if (rc)
2490                 return rc;
2491
2492         return superblock_has_perm(current, mnt->mnt_sb,
2493                                    FILESYSTEM__UNMOUNT, NULL);
2494 }
2495
2496 /* inode security operations */
2497
2498 static int selinux_inode_alloc_security(struct inode *inode)
2499 {
2500         return inode_alloc_security(inode);
2501 }
2502
2503 static void selinux_inode_free_security(struct inode *inode)
2504 {
2505         inode_free_security(inode);
2506 }
2507
2508 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2509                                        char **name, void **value,
2510                                        size_t *len)
2511 {
2512         struct task_security_struct *tsec;
2513         struct inode_security_struct *dsec;
2514         struct superblock_security_struct *sbsec;
2515         u32 newsid, clen;
2516         int rc;
2517         char *namep = NULL, *context;
2518
2519         tsec = current->security;
2520         dsec = dir->i_security;
2521         sbsec = dir->i_sb->s_security;
2522
2523         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2524                 newsid = tsec->create_sid;
2525         } else {
2526                 rc = security_transition_sid(tsec->sid, dsec->sid,
2527                                              inode_mode_to_security_class(inode->i_mode),
2528                                              &newsid);
2529                 if (rc) {
2530                         printk(KERN_WARNING "%s:  "
2531                                "security_transition_sid failed, rc=%d (dev=%s "
2532                                "ino=%ld)\n",
2533                                __func__,
2534                                -rc, inode->i_sb->s_id, inode->i_ino);
2535                         return rc;
2536                 }
2537         }
2538
2539         /* Possibly defer initialization to selinux_complete_init. */
2540         if (sbsec->initialized) {
2541                 struct inode_security_struct *isec = inode->i_security;
2542                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2543                 isec->sid = newsid;
2544                 isec->initialized = 1;
2545         }
2546
2547         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2548                 return -EOPNOTSUPP;
2549
2550         if (name) {
2551                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2552                 if (!namep)
2553                         return -ENOMEM;
2554                 *name = namep;
2555         }
2556
2557         if (value && len) {
2558                 rc = security_sid_to_context_force(newsid, &context, &clen);
2559                 if (rc) {
2560                         kfree(namep);
2561                         return rc;
2562                 }
2563                 *value = context;
2564                 *len = clen;
2565         }
2566
2567         return 0;
2568 }
2569
2570 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2571 {
2572         return may_create(dir, dentry, SECCLASS_FILE);
2573 }
2574
2575 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2576 {
2577         int rc;
2578
2579         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2580         if (rc)
2581                 return rc;
2582         return may_link(dir, old_dentry, MAY_LINK);
2583 }
2584
2585 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2586 {
2587         int rc;
2588
2589         rc = secondary_ops->inode_unlink(dir, dentry);
2590         if (rc)
2591                 return rc;
2592         return may_link(dir, dentry, MAY_UNLINK);
2593 }
2594
2595 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2596 {
2597         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2598 }
2599
2600 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2601 {
2602         return may_create(dir, dentry, SECCLASS_DIR);
2603 }
2604
2605 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2606 {
2607         return may_link(dir, dentry, MAY_RMDIR);
2608 }
2609
2610 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2611 {
2612         int rc;
2613
2614         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2615         if (rc)
2616                 return rc;
2617
2618         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2619 }
2620
2621 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2622                                 struct inode *new_inode, struct dentry *new_dentry)
2623 {
2624         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2625 }
2626
2627 static int selinux_inode_readlink(struct dentry *dentry)
2628 {
2629         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2630 }
2631
2632 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2633 {
2634         int rc;
2635
2636         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2637         if (rc)
2638                 return rc;
2639         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2640 }
2641
2642 static int selinux_inode_permission(struct inode *inode, int mask)
2643 {
2644         int rc;
2645
2646         rc = secondary_ops->inode_permission(inode, mask);
2647         if (rc)
2648                 return rc;
2649
2650         if (!mask) {
2651                 /* No permission to check.  Existence test. */
2652                 return 0;
2653         }
2654
2655         return inode_has_perm(current, inode,
2656                                open_file_mask_to_av(inode->i_mode, mask), NULL);
2657 }
2658
2659 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2660 {
2661         int rc;
2662
2663         rc = secondary_ops->inode_setattr(dentry, iattr);
2664         if (rc)
2665                 return rc;
2666
2667         if (iattr->ia_valid & ATTR_FORCE)
2668                 return 0;
2669
2670         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2671                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2672                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2673
2674         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2675 }
2676
2677 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2678 {
2679         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2680 }
2681
2682 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2683 {
2684         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2685                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2686                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2687                         if (!capable(CAP_SETFCAP))
2688                                 return -EPERM;
2689                 } else if (!capable(CAP_SYS_ADMIN)) {
2690                         /* A different attribute in the security namespace.
2691                            Restrict to administrator. */
2692                         return -EPERM;
2693                 }
2694         }
2695
2696         /* Not an attribute we recognize, so just check the
2697            ordinary setattr permission. */
2698         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2699 }
2700
2701 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2702                                   const void *value, size_t size, int flags)
2703 {
2704         struct task_security_struct *tsec = current->security;
2705         struct inode *inode = dentry->d_inode;
2706         struct inode_security_struct *isec = inode->i_security;
2707         struct superblock_security_struct *sbsec;
2708         struct avc_audit_data ad;
2709         u32 newsid;
2710         int rc = 0;
2711
2712         if (strcmp(name, XATTR_NAME_SELINUX))
2713                 return selinux_inode_setotherxattr(dentry, name);
2714
2715         sbsec = inode->i_sb->s_security;
2716         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2717                 return -EOPNOTSUPP;
2718
2719         if (!is_owner_or_cap(inode))
2720                 return -EPERM;
2721
2722         AVC_AUDIT_DATA_INIT(&ad, FS);
2723         ad.u.fs.path.dentry = dentry;
2724
2725         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2726                           FILE__RELABELFROM, &ad);
2727         if (rc)
2728                 return rc;
2729
2730         rc = security_context_to_sid(value, size, &newsid);
2731         if (rc == -EINVAL) {
2732                 if (!capable(CAP_MAC_ADMIN))
2733                         return rc;
2734                 rc = security_context_to_sid_force(value, size, &newsid);
2735         }
2736         if (rc)
2737                 return rc;
2738
2739         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2740                           FILE__RELABELTO, &ad);
2741         if (rc)
2742                 return rc;
2743
2744         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2745                                           isec->sclass);
2746         if (rc)
2747                 return rc;
2748
2749         return avc_has_perm(newsid,
2750                             sbsec->sid,
2751                             SECCLASS_FILESYSTEM,
2752                             FILESYSTEM__ASSOCIATE,
2753                             &ad);
2754 }
2755
2756 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2757                                         const void *value, size_t size,
2758                                         int flags)
2759 {
2760         struct inode *inode = dentry->d_inode;
2761         struct inode_security_struct *isec = inode->i_security;
2762         u32 newsid;
2763         int rc;
2764
2765         if (strcmp(name, XATTR_NAME_SELINUX)) {
2766                 /* Not an attribute we recognize, so nothing to do. */
2767                 return;
2768         }
2769
2770         rc = security_context_to_sid_force(value, size, &newsid);
2771         if (rc) {
2772                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2773                        "for (%s, %lu), rc=%d\n",
2774                        inode->i_sb->s_id, inode->i_ino, -rc);
2775                 return;
2776         }
2777
2778         isec->sid = newsid;
2779         return;
2780 }
2781
2782 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2783 {
2784         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2785 }
2786
2787 static int selinux_inode_listxattr(struct dentry *dentry)
2788 {
2789         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2790 }
2791
2792 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2793 {
2794         if (strcmp(name, XATTR_NAME_SELINUX))
2795                 return selinux_inode_setotherxattr(dentry, name);
2796
2797         /* No one is allowed to remove a SELinux security label.
2798            You can change the label, but all data must be labeled. */
2799         return -EACCES;
2800 }
2801
2802 /*
2803  * Copy the inode security context value to the user.
2804  *
2805  * Permission check is handled by selinux_inode_getxattr hook.
2806  */
2807 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2808 {
2809         u32 size;
2810         int error;
2811         char *context = NULL;
2812         struct task_security_struct *tsec = current->security;
2813         struct inode_security_struct *isec = inode->i_security;
2814
2815         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2816                 return -EOPNOTSUPP;
2817
2818         /*
2819          * If the caller has CAP_MAC_ADMIN, then get the raw context
2820          * value even if it is not defined by current policy; otherwise,
2821          * use the in-core value under current policy.
2822          * Use the non-auditing forms of the permission checks since
2823          * getxattr may be called by unprivileged processes commonly
2824          * and lack of permission just means that we fall back to the
2825          * in-core context value, not a denial.
2826          */
2827         error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2828         if (!error)
2829                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2830                                              SECCLASS_CAPABILITY2,
2831                                              CAPABILITY2__MAC_ADMIN,
2832                                              0,
2833                                              NULL);
2834         if (!error)
2835                 error = security_sid_to_context_force(isec->sid, &context,
2836                                                       &size);
2837         else
2838                 error = security_sid_to_context(isec->sid, &context, &size);
2839         if (error)
2840                 return error;
2841         error = size;
2842         if (alloc) {
2843                 *buffer = context;
2844                 goto out_nofree;
2845         }
2846         kfree(context);
2847 out_nofree:
2848         return error;
2849 }
2850
2851 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2852                                      const void *value, size_t size, int flags)
2853 {
2854         struct inode_security_struct *isec = inode->i_security;
2855         u32 newsid;
2856         int rc;
2857
2858         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2859                 return -EOPNOTSUPP;
2860
2861         if (!value || !size)
2862                 return -EACCES;
2863
2864         rc = security_context_to_sid((void *)value, size, &newsid);
2865         if (rc)
2866                 return rc;
2867
2868         isec->sid = newsid;
2869         return 0;
2870 }
2871
2872 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2873 {
2874         const int len = sizeof(XATTR_NAME_SELINUX);
2875         if (buffer && len <= buffer_size)
2876                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2877         return len;
2878 }
2879
2880 static int selinux_inode_need_killpriv(struct dentry *dentry)
2881 {
2882         return secondary_ops->inode_need_killpriv(dentry);
2883 }
2884
2885 static int selinux_inode_killpriv(struct dentry *dentry)
2886 {
2887         return secondary_ops->inode_killpriv(dentry);
2888 }
2889
2890 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2891 {
2892         struct inode_security_struct *isec = inode->i_security;
2893         *secid = isec->sid;
2894 }
2895
2896 /* file security operations */
2897
2898 static int selinux_revalidate_file_permission(struct file *file, int mask)
2899 {
2900         int rc;
2901         struct inode *inode = file->f_path.dentry->d_inode;
2902
2903         if (!mask) {
2904                 /* No permission to check.  Existence test. */
2905                 return 0;
2906         }
2907
2908         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2909         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2910                 mask |= MAY_APPEND;
2911
2912         rc = file_has_perm(current, file,
2913                            file_mask_to_av(inode->i_mode, mask));
2914         if (rc)
2915                 return rc;
2916
2917         return selinux_netlbl_inode_permission(inode, mask);
2918 }
2919
2920 static int selinux_file_permission(struct file *file, int mask)
2921 {
2922         struct inode *inode = file->f_path.dentry->d_inode;
2923         struct task_security_struct *tsec = current->security;
2924         struct file_security_struct *fsec = file->f_security;
2925         struct inode_security_struct *isec = inode->i_security;
2926
2927         if (!mask) {
2928                 /* No permission to check.  Existence test. */
2929                 return 0;
2930         }
2931
2932         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2933             && fsec->pseqno == avc_policy_seqno())
2934                 return selinux_netlbl_inode_permission(inode, mask);
2935
2936         return selinux_revalidate_file_permission(file, mask);
2937 }
2938
2939 static int selinux_file_alloc_security(struct file *file)
2940 {
2941         return file_alloc_security(file);
2942 }
2943
2944 static void selinux_file_free_security(struct file *file)
2945 {
2946         file_free_security(file);
2947 }
2948
2949 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2950                               unsigned long arg)
2951 {
2952         u32 av = 0;
2953
2954         if (_IOC_DIR(cmd) & _IOC_WRITE)
2955                 av |= FILE__WRITE;
2956         if (_IOC_DIR(cmd) & _IOC_READ)
2957                 av |= FILE__READ;
2958         if (!av)
2959                 av = FILE__IOCTL;
2960
2961         return file_has_perm(current, file, av);
2962 }
2963
2964 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2965 {
2966 #ifndef CONFIG_PPC32
2967         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2968                 /*
2969                  * We are making executable an anonymous mapping or a
2970                  * private file mapping that will also be writable.
2971                  * This has an additional check.
2972                  */
2973                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2974                 if (rc)
2975                         return rc;
2976         }
2977 #endif
2978
2979         if (file) {
2980                 /* read access is always possible with a mapping */
2981                 u32 av = FILE__READ;
2982
2983                 /* write access only matters if the mapping is shared */
2984                 if (shared && (prot & PROT_WRITE))
2985                         av |= FILE__WRITE;
2986
2987                 if (prot & PROT_EXEC)
2988                         av |= FILE__EXECUTE;
2989
2990                 return file_has_perm(current, file, av);
2991         }
2992         return 0;
2993 }
2994
2995 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2996                              unsigned long prot, unsigned long flags,
2997                              unsigned long addr, unsigned long addr_only)
2998 {
2999         int rc = 0;
3000         u32 sid = ((struct task_security_struct *)(current->security))->sid;
3001
3002         if (addr < mmap_min_addr)
3003                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3004                                   MEMPROTECT__MMAP_ZERO, NULL);
3005         if (rc || addr_only)
3006                 return rc;
3007
3008         if (selinux_checkreqprot)
3009                 prot = reqprot;
3010
3011         return file_map_prot_check(file, prot,
3012                                    (flags & MAP_TYPE) == MAP_SHARED);
3013 }
3014
3015 static int selinux_file_mprotect(struct vm_area_struct *vma,
3016                                  unsigned long reqprot,
3017                                  unsigned long prot)
3018 {
3019         int rc;
3020
3021         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3022         if (rc)
3023                 return rc;
3024
3025         if (selinux_checkreqprot)
3026                 prot = reqprot;
3027
3028 #ifndef CONFIG_PPC32
3029         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3030                 rc = 0;
3031                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3032                     vma->vm_end <= vma->vm_mm->brk) {
3033                         rc = task_has_perm(current, current,
3034                                            PROCESS__EXECHEAP);
3035                 } else if (!vma->vm_file &&
3036                            vma->vm_start <= vma->vm_mm->start_stack &&
3037                            vma->vm_end >= vma->vm_mm->start_stack) {
3038                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3039                 } else if (vma->vm_file && vma->anon_vma) {
3040                         /*
3041                          * We are making executable a file mapping that has
3042                          * had some COW done. Since pages might have been
3043                          * written, check ability to execute the possibly
3044                          * modified content.  This typically should only
3045                          * occur for text relocations.
3046                          */
3047                         rc = file_has_perm(current, vma->vm_file,
3048                                            FILE__EXECMOD);
3049                 }
3050                 if (rc)
3051                         return rc;
3052         }
3053 #endif
3054
3055         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3056 }
3057
3058 static int selinux_file_lock(struct file *file, unsigned int cmd)
3059 {
3060         return file_has_perm(current, file, FILE__LOCK);
3061 }
3062
3063 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3064                               unsigned long arg)
3065 {
3066         int err = 0;
3067
3068         switch (cmd) {
3069         case F_SETFL:
3070                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3071                         err = -EINVAL;
3072                         break;
3073                 }
3074
3075                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3076                         err = file_has_perm(current, file, FILE__WRITE);
3077                         break;
3078                 }
3079                 /* fall through */
3080         case F_SETOWN:
3081         case F_SETSIG:
3082         case F_GETFL:
3083         case F_GETOWN:
3084         case F_GETSIG:
3085                 /* Just check FD__USE permission */
3086                 err = file_has_perm(current, file, 0);
3087                 break;
3088         case F_GETLK:
3089         case F_SETLK:
3090         case F_SETLKW:
3091 #if BITS_PER_LONG == 32
3092         case F_GETLK64:
3093         case F_SETLK64:
3094         case F_SETLKW64:
3095 #endif
3096                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3097                         err = -EINVAL;
3098                         break;
3099                 }
3100                 err = file_has_perm(current, file, FILE__LOCK);
3101                 break;
3102         }
3103
3104         return err;
3105 }
3106
3107 static int selinux_file_set_fowner(struct file *file)
3108 {
3109         struct task_security_struct *tsec;
3110         struct file_security_struct *fsec;
3111
3112         tsec = current->security;
3113         fsec = file->f_security;
3114         fsec->fown_sid = tsec->sid;
3115
3116         return 0;
3117 }
3118
3119 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3120                                        struct fown_struct *fown, int signum)
3121 {
3122         struct file *file;
3123         u32 perm;
3124         struct task_security_struct *tsec;
3125         struct file_security_struct *fsec;
3126
3127         /* struct fown_struct is never outside the context of a struct file */
3128         file = container_of(fown, struct file, f_owner);
3129
3130         tsec = tsk->security;
3131         fsec = file->f_security;
3132
3133         if (!signum)
3134                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3135         else
3136                 perm = signal_to_av(signum);
3137
3138         return avc_has_perm(fsec->fown_sid, tsec->sid,
3139                             SECCLASS_PROCESS, perm, NULL);
3140 }
3141
3142 static int selinux_file_receive(struct file *file)
3143 {
3144         return file_has_perm(current, file, file_to_av(file));
3145 }
3146
3147 static int selinux_dentry_open(struct file *file)
3148 {
3149         struct file_security_struct *fsec;
3150         struct inode *inode;
3151         struct inode_security_struct *isec;
3152         inode = file->f_path.dentry->d_inode;
3153         fsec = file->f_security;
3154         isec = inode->i_security;
3155         /*
3156          * Save inode label and policy sequence number
3157          * at open-time so that selinux_file_permission
3158          * can determine whether revalidation is necessary.
3159          * Task label is already saved in the file security
3160          * struct as its SID.
3161          */
3162         fsec->isid = isec->sid;
3163         fsec->pseqno = avc_policy_seqno();
3164         /*
3165          * Since the inode label or policy seqno may have changed
3166          * between the selinux_inode_permission check and the saving
3167          * of state above, recheck that access is still permitted.
3168          * Otherwise, access might never be revalidated against the
3169          * new inode label or new policy.
3170          * This check is not redundant - do not remove.
3171          */
3172         return inode_has_perm(current, inode, file_to_av(file), NULL);
3173 }
3174
3175 /* task security operations */
3176
3177 static int selinux_task_create(unsigned long clone_flags)
3178 {
3179         int rc;
3180
3181         rc = secondary_ops->task_create(clone_flags);
3182         if (rc)
3183                 return rc;
3184
3185         return task_has_perm(current, current, PROCESS__FORK);
3186 }
3187
3188 static int selinux_task_alloc_security(struct task_struct *tsk)
3189 {
3190         struct task_security_struct *tsec1, *tsec2;
3191         int rc;
3192
3193         tsec1 = current->security;
3194
3195         rc = task_alloc_security(tsk);
3196         if (rc)
3197                 return rc;
3198         tsec2 = tsk->security;
3199
3200         tsec2->osid = tsec1->osid;
3201         tsec2->sid = tsec1->sid;
3202
3203         /* Retain the exec, fs, key, and sock SIDs across fork */
3204         tsec2->exec_sid = tsec1->exec_sid;
3205         tsec2->create_sid = tsec1->create_sid;
3206         tsec2->keycreate_sid = tsec1->keycreate_sid;
3207         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3208
3209         return 0;
3210 }
3211
3212 static void selinux_task_free_security(struct task_struct *tsk)
3213 {
3214         task_free_security(tsk);
3215 }
3216
3217 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3218 {
3219         /* Since setuid only affects the current process, and
3220            since the SELinux controls are not based on the Linux
3221            identity attributes, SELinux does not need to control
3222            this operation.  However, SELinux does control the use
3223            of the CAP_SETUID and CAP_SETGID capabilities using the
3224            capable hook. */
3225         return 0;
3226 }
3227
3228 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3229 {
3230         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3231 }
3232
3233 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3234 {
3235         /* See the comment for setuid above. */
3236         return 0;
3237 }
3238
3239 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3240 {
3241         return task_has_perm(current, p, PROCESS__SETPGID);
3242 }
3243
3244 static int selinux_task_getpgid(struct task_struct *p)
3245 {
3246         return task_has_perm(current, p, PROCESS__GETPGID);
3247 }
3248
3249 static int selinux_task_getsid(struct task_struct *p)
3250 {
3251         return task_has_perm(current, p, PROCESS__GETSESSION);
3252 }
3253
3254 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3255 {
3256         struct task_security_struct *tsec = p->security;
3257         *secid = tsec->sid;
3258 }
3259
3260 static int selinux_task_setgroups(struct group_info *group_info)
3261 {
3262         /* See the comment for setuid above. */
3263         return 0;
3264 }
3265
3266 static int selinux_task_setnice(struct task_struct *p, int nice)
3267 {
3268         int rc;
3269
3270         rc = secondary_ops->task_setnice(p, nice);
3271         if (rc)
3272                 return rc;
3273
3274         return task_has_perm(current, p, PROCESS__SETSCHED);
3275 }
3276
3277 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3278 {
3279         int rc;
3280
3281         rc = secondary_ops->task_setioprio(p, ioprio);
3282         if (rc)
3283                 return rc;
3284
3285         return task_has_perm(current, p, PROCESS__SETSCHED);
3286 }
3287
3288 static int selinux_task_getioprio(struct task_struct *p)
3289 {
3290         return task_has_perm(current, p, PROCESS__GETSCHED);
3291 }
3292
3293 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3294 {
3295         struct rlimit *old_rlim = current->signal->rlim + resource;
3296         int rc;
3297
3298         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3299         if (rc)
3300                 return rc;
3301
3302         /* Control the ability to change the hard limit (whether
3303            lowering or raising it), so that the hard limit can
3304            later be used as a safe reset point for the soft limit
3305            upon context transitions. See selinux_bprm_apply_creds. */
3306         if (old_rlim->rlim_max != new_rlim->rlim_max)
3307                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3308
3309         return 0;
3310 }
3311
3312 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3313 {
3314         int rc;
3315
3316         rc = secondary_ops->task_setscheduler(p, policy, lp);
3317         if (rc)
3318                 return rc;
3319
3320         return task_has_perm(current, p, PROCESS__SETSCHED);
3321 }
3322
3323 static int selinux_task_getscheduler(struct task_struct *p)
3324 {
3325         return task_has_perm(current, p, PROCESS__GETSCHED);
3326 }
3327
3328 static int selinux_task_movememory(struct task_struct *p)
3329 {
3330         return task_has_perm(current, p, PROCESS__SETSCHED);
3331 }
3332
3333 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3334                                 int sig, u32 secid)
3335 {
3336         u32 perm;
3337         int rc;
3338         struct task_security_struct *tsec;
3339
3340         rc = secondary_ops->task_kill(p, info, sig, secid);
3341         if (rc)
3342                 return rc;
3343
3344         if (!sig)
3345                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3346         else
3347                 perm = signal_to_av(sig);
3348         tsec = p->security;
3349         if (secid)
3350                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3351         else
3352                 rc = task_has_perm(current, p, perm);
3353         return rc;
3354 }
3355
3356 static int selinux_task_prctl(int option,
3357                               unsigned long arg2,
3358                               unsigned long arg3,
3359                               unsigned long arg4,
3360                               unsigned long arg5,
3361                               long *rc_p)
3362 {
3363         /* The current prctl operations do not appear to require
3364            any SELinux controls since they merely observe or modify
3365            the state of the current process. */
3366         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3367 }
3368
3369 static int selinux_task_wait(struct task_struct *p)
3370 {
3371         return task_has_perm(p, current, PROCESS__SIGCHLD);
3372 }
3373
3374 static void selinux_task_reparent_to_init(struct task_struct *p)
3375 {
3376         struct task_security_struct *tsec;
3377
3378         secondary_ops->task_reparent_to_init(p);
3379
3380         tsec = p->security;
3381         tsec->osid = tsec->sid;
3382         tsec->sid = SECINITSID_KERNEL;
3383         return;
3384 }
3385
3386 static void selinux_task_to_inode(struct task_struct *p,
3387                                   struct inode *inode)
3388 {
3389         struct task_security_struct *tsec = p->security;
3390         struct inode_security_struct *isec = inode->i_security;
3391
3392         isec->sid = tsec->sid;
3393         isec->initialized = 1;
3394         return;
3395 }
3396
3397 /* Returns error only if unable to parse addresses */
3398 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3399                         struct avc_audit_data *ad, u8 *proto)
3400 {
3401         int offset, ihlen, ret = -EINVAL;
3402         struct iphdr _iph, *ih;
3403
3404         offset = skb_network_offset(skb);
3405         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3406         if (ih == NULL)
3407                 goto out;
3408
3409         ihlen = ih->ihl * 4;
3410         if (ihlen < sizeof(_iph))
3411                 goto out;
3412
3413         ad->u.net.v4info.saddr = ih->saddr;
3414         ad->u.net.v4info.daddr = ih->daddr;
3415         ret = 0;
3416
3417         if (proto)
3418                 *proto = ih->protocol;
3419
3420         switch (ih->protocol) {
3421         case IPPROTO_TCP: {
3422                 struct tcphdr _tcph, *th;
3423
3424                 if (ntohs(ih->frag_off) & IP_OFFSET)
3425                         break;
3426
3427                 offset += ihlen;
3428                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3429                 if (th == NULL)
3430                         break;
3431
3432                 ad->u.net.sport = th->source;
3433                 ad->u.net.dport = th->dest;
3434                 break;
3435         }
3436
3437         case IPPROTO_UDP: {
3438                 struct udphdr _udph, *uh;
3439
3440                 if (ntohs(ih->frag_off) & IP_OFFSET)
3441                         break;
3442
3443                 offset += ihlen;
3444                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3445                 if (uh == NULL)
3446                         break;
3447
3448                 ad->u.net.sport = uh->source;
3449                 ad->u.net.dport = uh->dest;
3450                 break;
3451         }
3452
3453         case IPPROTO_DCCP: {
3454                 struct dccp_hdr _dccph, *dh;
3455
3456                 if (ntohs(ih->frag_off) & IP_OFFSET)
3457                         break;
3458
3459                 offset += ihlen;
3460                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3461                 if (dh == NULL)
3462                         break;
3463
3464                 ad->u.net.sport = dh->dccph_sport;
3465                 ad->u.net.dport = dh->dccph_dport;
3466                 break;
3467         }
3468
3469         default:
3470                 break;
3471         }
3472 out:
3473         return ret;
3474 }
3475
3476 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3477
3478 /* Returns error only if unable to parse addresses */
3479 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3480                         struct avc_audit_data *ad, u8 *proto)
3481 {
3482         u8 nexthdr;
3483         int ret = -EINVAL, offset;
3484         struct ipv6hdr _ipv6h, *ip6;
3485
3486         offset = skb_network_offset(skb);
3487         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3488         if (ip6 == NULL)
3489                 goto out;
3490
3491         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3492         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3493         ret = 0;
3494
3495         nexthdr = ip6->nexthdr;
3496         offset += sizeof(_ipv6h);
3497         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3498         if (offset < 0)
3499                 goto out;
3500
3501         if (proto)
3502                 *proto = nexthdr;
3503
3504         switch (nexthdr) {
3505         case IPPROTO_TCP: {
3506                 struct tcphdr _tcph, *th;
3507
3508                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3509                 if (th == NULL)
3510                         break;
3511
3512                 ad->u.net.sport = th->source;
3513                 ad->u.net.dport = th->dest;
3514                 break;
3515         }
3516
3517         case IPPROTO_UDP: {
3518                 struct udphdr _udph, *uh;
3519
3520                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3521                 if (uh == NULL)
3522                         break;
3523
3524                 ad->u.net.sport = uh->source;
3525                 ad->u.net.dport = uh->dest;
3526                 break;
3527         }
3528
3529         case IPPROTO_DCCP: {
3530                 struct dccp_hdr _dccph, *dh;
3531
3532                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3533                 if (dh == NULL)
3534                         break;
3535
3536                 ad->u.net.sport = dh->dccph_sport;
3537                 ad->u.net.dport = dh->dccph_dport;
3538                 break;
3539         }
3540
3541         /* includes fragments */
3542         default:
3543                 break;
3544         }
3545 out:
3546         return ret;
3547 }
3548
3549 #endif /* IPV6 */
3550
3551 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3552                              char **addrp, int src, u8 *proto)
3553 {
3554         int ret = 0;
3555
3556         switch (ad->u.net.family) {
3557         case PF_INET:
3558                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3559                 if (ret || !addrp)
3560                         break;
3561                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3562                                         &ad->u.net.v4info.daddr);
3563                 break;
3564
3565 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3566         case PF_INET6:
3567                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3568                 if (ret || !addrp)
3569                         break;
3570                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3571                                         &ad->u.net.v6info.daddr);
3572                 break;
3573 #endif  /* IPV6 */
3574         default:
3575                 break;
3576         }
3577
3578         if (unlikely(ret))
3579                 printk(KERN_WARNING
3580                        "SELinux: failure in selinux_parse_skb(),"
3581                        " unable to parse packet\n");
3582
3583         return ret;
3584 }
3585
3586 /**
3587  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3588  * @skb: the packet
3589  * @family: protocol family
3590  * @sid: the packet's peer label SID
3591  *
3592  * Description:
3593  * Check the various different forms of network peer labeling and determine
3594  * the peer label/SID for the packet; most of the magic actually occurs in
3595  * the security server function security_net_peersid_cmp().  The function
3596  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3597  * or -EACCES if @sid is invalid due to inconsistencies with the different
3598  * peer labels.
3599  *
3600  */
3601 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3602 {
3603         int err;
3604         u32 xfrm_sid;
3605         u32 nlbl_sid;
3606         u32 nlbl_type;
3607
3608         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3609         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3610
3611         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3612         if (unlikely(err)) {
3613                 printk(KERN_WARNING
3614                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3615                        " unable to determine packet's peer label\n");
3616                 return -EACCES;
3617         }
3618
3619         return 0;
3620 }
3621
3622 /* socket security operations */
3623 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3624                            u32 perms)
3625 {
3626         struct inode_security_struct *isec;
3627         struct task_security_struct *tsec;
3628         struct avc_audit_data ad;
3629         int err = 0;
3630
3631         tsec = task->security;
3632         isec = SOCK_INODE(sock)->i_security;
3633
3634         if (isec->sid == SECINITSID_KERNEL)
3635                 goto out;
3636
3637         AVC_AUDIT_DATA_INIT(&ad, NET);
3638         ad.u.net.sk = sock->sk;
3639         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3640
3641 out:
3642         return err;
3643 }
3644
3645 static int selinux_socket_create(int family, int type,
3646                                  int protocol, int kern)
3647 {
3648         int err = 0;
3649         struct task_security_struct *tsec;
3650         u32 newsid;
3651
3652         if (kern)
3653                 goto out;
3654
3655         tsec = current->security;
3656         newsid = tsec->sockcreate_sid ? : tsec->sid;
3657         err = avc_has_perm(tsec->sid, newsid,
3658                            socket_type_to_security_class(family, type,
3659                            protocol), SOCKET__CREATE, NULL);
3660
3661 out:
3662         return err;
3663 }
3664
3665 static int selinux_socket_post_create(struct socket *sock, int family,
3666                                       int type, int protocol, int kern)
3667 {
3668         int err = 0;
3669         struct inode_security_struct *isec;
3670         struct task_security_struct *tsec;
3671         struct sk_security_struct *sksec;
3672         u32 newsid;
3673
3674         isec = SOCK_INODE(sock)->i_security;
3675
3676         tsec = current->security;
3677         newsid = tsec->sockcreate_sid ? : tsec->sid;
3678         isec->sclass = socket_type_to_security_class(family, type, protocol);
3679         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3680         isec->initialized = 1;
3681
3682         if (sock->sk) {
3683                 sksec = sock->sk->sk_security;
3684                 sksec->sid = isec->sid;
3685                 sksec->sclass = isec->sclass;
3686                 err = selinux_netlbl_socket_post_create(sock);
3687         }
3688
3689         return err;
3690 }
3691
3692 /* Range of port numbers used to automatically bind.
3693    Need to determine whether we should perform a name_bind
3694    permission check between the socket and the port number. */
3695
3696 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3697 {
3698         u16 family;
3699         int err;
3700
3701         err = socket_has_perm(current, sock, SOCKET__BIND);
3702         if (err)
3703                 goto out;
3704
3705         /*
3706          * If PF_INET or PF_INET6, check name_bind permission for the port.
3707          * Multiple address binding for SCTP is not supported yet: we just
3708          * check the first address now.
3709          */
3710         family = sock->sk->sk_family;
3711         if (family == PF_INET || family == PF_INET6) {
3712                 char *addrp;
3713                 struct inode_security_struct *isec;
3714                 struct task_security_struct *tsec;
3715                 struct avc_audit_data ad;
3716                 struct sockaddr_in *addr4 = NULL;
3717                 struct sockaddr_in6 *addr6 = NULL;
3718                 unsigned short snum;
3719                 struct sock *sk = sock->sk;
3720                 u32 sid, node_perm;
3721
3722                 tsec = current->security;
3723                 isec = SOCK_INODE(sock)->i_security;
3724
3725                 if (family == PF_INET) {
3726                         addr4 = (struct sockaddr_in *)address;
3727                         snum = ntohs(addr4->sin_port);
3728                         addrp = (char *)&addr4->sin_addr.s_addr;
3729                 } else {
3730                         addr6 = (struct sockaddr_in6 *)address;
3731                         snum = ntohs(addr6->sin6_port);
3732                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3733                 }
3734
3735                 if (snum) {
3736                         int low, high;
3737
3738                         inet_get_local_port_range(&low, &high);
3739
3740                         if (snum < max(PROT_SOCK, low) || snum > high) {
3741                                 err = sel_netport_sid(sk->sk_protocol,
3742                                                       snum, &sid);
3743                                 if (err)
3744                                         goto out;
3745                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3746                                 ad.u.net.sport = htons(snum);
3747                                 ad.u.net.family = family;
3748                                 err = avc_has_perm(isec->sid, sid,
3749                                                    isec->sclass,
3750                                                    SOCKET__NAME_BIND, &ad);
3751                                 if (err)
3752                                         goto out;
3753                         }
3754                 }
3755
3756                 switch (isec->sclass) {
3757                 case SECCLASS_TCP_SOCKET:
3758                         node_perm = TCP_SOCKET__NODE_BIND;
3759                         break;
3760
3761                 case SECCLASS_UDP_SOCKET:
3762                         node_perm = UDP_SOCKET__NODE_BIND;
3763                         break;
3764
3765                 case SECCLASS_DCCP_SOCKET:
3766                         node_perm = DCCP_SOCKET__NODE_BIND;
3767                         break;
3768
3769                 default:
3770                         node_perm = RAWIP_SOCKET__NODE_BIND;
3771                         break;
3772                 }
3773
3774                 err = sel_netnode_sid(addrp, family, &sid);
3775                 if (err)
3776                         goto out;
3777
3778                 AVC_AUDIT_DATA_INIT(&ad, NET);
3779                 ad.u.net.sport = htons(snum);
3780                 ad.u.net.family = family;
3781
3782                 if (family == PF_INET)
3783                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3784                 else
3785                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3786
3787                 err = avc_has_perm(isec->sid, sid,
3788                                    isec->sclass, node_perm, &ad);
3789                 if (err)
3790                         goto out;
3791         }
3792 out:
3793         return err;
3794 }
3795
3796 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3797 {
3798         struct sock *sk = sock->sk;
3799         struct inode_security_struct *isec;
3800         int err;
3801
3802         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3803         if (err)
3804                 return err;
3805
3806         /*
3807          * If a TCP or DCCP socket, check name_connect permission for the port.
3808          */
3809         isec = SOCK_INODE(sock)->i_security;
3810         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3811             isec->sclass == SECCLASS_DCCP_SOCKET) {
3812                 struct avc_audit_data ad;
3813                 struct sockaddr_in *addr4 = NULL;
3814                 struct sockaddr_in6 *addr6 = NULL;
3815                 unsigned short snum;
3816                 u32 sid, perm;
3817
3818                 if (sk->sk_family == PF_INET) {
3819                         addr4 = (struct sockaddr_in *)address;
3820                         if (addrlen < sizeof(struct sockaddr_in))
3821                                 return -EINVAL;
3822                         snum = ntohs(addr4->sin_port);
3823                 } else {
3824                         addr6 = (struct sockaddr_in6 *)address;
3825                         if (addrlen < SIN6_LEN_RFC2133)
3826                                 return -EINVAL;
3827                         snum = ntohs(addr6->sin6_port);
3828                 }
3829
3830                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3831                 if (err)
3832                         goto out;
3833
3834                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3835                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3836
3837                 AVC_AUDIT_DATA_INIT(&ad, NET);
3838                 ad.u.net.dport = htons(snum);
3839                 ad.u.net.family = sk->sk_family;
3840                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3841                 if (err)
3842                         goto out;
3843         }
3844
3845         err = selinux_netlbl_socket_connect(sk, address);
3846
3847 out:
3848         return err;
3849 }
3850
3851 static int selinux_socket_listen(struct socket *sock, int backlog)
3852 {
3853         return socket_has_perm(current, sock, SOCKET__LISTEN);
3854 }
3855
3856 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3857 {
3858         int err;
3859         struct inode_security_struct *isec;
3860         struct inode_security_struct *newisec;
3861
3862         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3863         if (err)
3864                 return err;
3865
3866         newisec = SOCK_INODE(newsock)->i_security;
3867
3868         isec = SOCK_INODE(sock)->i_security;
3869         newisec->sclass = isec->sclass;
3870         newisec->sid = isec->sid;
3871         newisec->initialized = 1;
3872
3873         return 0;
3874 }
3875
3876 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3877                                   int size)
3878 {
3879         int rc;
3880
3881         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3882         if (rc)
3883                 return rc;
3884
3885         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3886 }
3887
3888 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3889                                   int size, int flags)
3890 {
3891         return socket_has_perm(current, sock, SOCKET__READ);
3892 }
3893
3894 static int selinux_socket_getsockname(struct socket *sock)
3895 {
3896         return socket_has_perm(current, sock, SOCKET__GETATTR);
3897 }
3898
3899 static int selinux_socket_getpeername(struct socket *sock)
3900 {
3901         return socket_has_perm(current, sock, SOCKET__GETATTR);
3902 }
3903
3904 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3905 {
3906         int err;
3907
3908         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3909         if (err)
3910                 return err;
3911
3912         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3913 }
3914
3915 static int selinux_socket_getsockopt(struct socket *sock, int level,
3916                                      int optname)
3917 {
3918         return socket_has_perm(current, sock, SOCKET__GETOPT);
3919 }
3920
3921 static int selinux_socket_shutdown(struct socket *sock, int how)
3922 {
3923         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3924 }
3925
3926 static int selinux_socket_unix_stream_connect(struct socket *sock,
3927                                               struct socket *other,
3928                                               struct sock *newsk)
3929 {
3930         struct sk_security_struct *ssec;
3931         struct inode_security_struct *isec;
3932         struct inode_security_struct *other_isec;
3933         struct avc_audit_data ad;
3934         int err;
3935
3936         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3937         if (err)
3938                 return err;
3939
3940         isec = SOCK_INODE(sock)->i_security;
3941         other_isec = SOCK_INODE(other)->i_security;
3942
3943         AVC_AUDIT_DATA_INIT(&ad, NET);
3944         ad.u.net.sk = other->sk;
3945
3946         err = avc_has_perm(isec->sid, other_isec->sid,
3947                            isec->sclass,
3948                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3949         if (err)
3950                 return err;
3951
3952         /* connecting socket */
3953         ssec = sock->sk->sk_security;
3954         ssec->peer_sid = other_isec->sid;
3955
3956         /* server child socket */
3957         ssec = newsk->sk_security;
3958         ssec->peer_sid = isec->sid;
3959         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3960
3961         return err;
3962 }
3963
3964 static int selinux_socket_unix_may_send(struct socket *sock,
3965                                         struct socket *other)
3966 {
3967         struct inode_security_struct *isec;
3968         struct inode_security_struct *other_isec;
3969         struct avc_audit_data ad;
3970         int err;
3971
3972         isec = SOCK_INODE(sock)->i_security;
3973         other_isec = SOCK_INODE(other)->i_security;
3974
3975         AVC_AUDIT_DATA_INIT(&ad, NET);
3976         ad.u.net.sk = other->sk;
3977
3978         err = avc_has_perm(isec->sid, other_isec->sid,
3979                            isec->sclass, SOCKET__SENDTO, &ad);
3980         if (err)
3981                 return err;
3982
3983         return 0;
3984 }
3985
3986 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3987                                     u32 peer_sid,
3988                                     struct avc_audit_data *ad)
3989 {
3990         int err;
3991         u32 if_sid;
3992         u32 node_sid;
3993
3994         err = sel_netif_sid(ifindex, &if_sid);
3995         if (err)
3996                 return err;
3997         err = avc_has_perm(peer_sid, if_sid,
3998                            SECCLASS_NETIF, NETIF__INGRESS, ad);
3999         if (err)
4000                 return err;
4001
4002         err = sel_netnode_sid(addrp, family, &node_sid);
4003         if (err)
4004                 return err;
4005         return avc_has_perm(peer_sid, node_sid,
4006                             SECCLASS_NODE, NODE__RECVFROM, ad);
4007 }
4008
4009 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4010                                                 struct sk_buff *skb,
4011                                                 struct avc_audit_data *ad,
4012                                                 u16 family,
4013                                                 char *addrp)
4014 {
4015         int err;
4016         struct sk_security_struct *sksec = sk->sk_security;
4017         u16 sk_class;
4018         u32 netif_perm, node_perm, recv_perm;
4019         u32 port_sid, node_sid, if_sid, sk_sid;
4020
4021         sk_sid = sksec->sid;
4022         sk_class = sksec->sclass;
4023
4024         switch (sk_class) {
4025         case SECCLASS_UDP_SOCKET:
4026                 netif_perm = NETIF__UDP_RECV;
4027                 node_perm = NODE__UDP_RECV;
4028                 recv_perm = UDP_SOCKET__RECV_MSG;
4029                 break;
4030         case SECCLASS_TCP_SOCKET:
4031                 netif_perm = NETIF__TCP_RECV;
4032                 node_perm = NODE__TCP_RECV;
4033                 recv_perm = TCP_SOCKET__RECV_MSG;
4034                 break;
4035         case SECCLASS_DCCP_SOCKET:
4036                 netif_perm = NETIF__DCCP_RECV;
4037                 node_perm = NODE__DCCP_RECV;
4038                 recv_perm = DCCP_SOCKET__RECV_MSG;
4039                 break;
4040         default:
4041                 netif_perm = NETIF__RAWIP_RECV;
4042                 node_perm = NODE__RAWIP_RECV;
4043                 recv_perm = 0;
4044                 break;
4045         }
4046
4047         err = sel_netif_sid(skb->iif, &if_sid);
4048         if (err)
4049                 return err;
4050         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4051         if (err)
4052                 return err;
4053
4054         err = sel_netnode_sid(addrp, family, &node_sid);
4055         if (err)
4056                 return err;
4057         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4058         if (err)
4059                 return err;
4060
4061         if (!recv_perm)
4062                 return 0;
4063         err = sel_netport_sid(sk->sk_protocol,
4064                               ntohs(ad->u.net.sport), &port_sid);
4065         if (unlikely(err)) {
4066                 printk(KERN_WARNING
4067                        "SELinux: failure in"
4068                        " selinux_sock_rcv_skb_iptables_compat(),"
4069                        " network port label not found\n");
4070                 return err;
4071         }
4072         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4073 }
4074
4075 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4076                                        u16 family)
4077 {
4078         int err;
4079         struct sk_security_struct *sksec = sk->sk_security;
4080         u32 peer_sid;
4081         u32 sk_sid = sksec->sid;
4082         struct avc_audit_data ad;
4083         char *addrp;
4084
4085         AVC_AUDIT_DATA_INIT(&ad, NET);
4086         ad.u.net.netif = skb->iif;
4087         ad.u.net.family = family;
4088         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4089         if (err)
4090                 return err;
4091
4092         if (selinux_compat_net)
4093                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4094                                                            family, addrp);
4095         else
4096                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4097                                    PACKET__RECV, &ad);
4098         if (err)
4099                 return err;
4100
4101         if (selinux_policycap_netpeer) {
4102                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4103                 if (err)
4104                         return err;
4105                 err = avc_has_perm(sk_sid, peer_sid,
4106                                    SECCLASS_PEER, PEER__RECV, &ad);
4107                 if (err)
4108                         selinux_netlbl_err(skb, err, 0);
4109         } else {
4110                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4111                 if (err)
4112                         return err;
4113                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4114         }
4115
4116         return err;
4117 }
4118
4119 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4120 {
4121         int err;
4122         struct sk_security_struct *sksec = sk->sk_security;
4123         u16 family = sk->sk_family;
4124         u32 sk_sid = sksec->sid;
4125         struct avc_audit_data ad;
4126         char *addrp;
4127         u8 secmark_active;
4128         u8 peerlbl_active;
4129
4130         if (family != PF_INET && family != PF_INET6)
4131                 return 0;
4132
4133         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4134         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4135                 family = PF_INET;
4136
4137         /* If any sort of compatibility mode is enabled then handoff processing
4138          * to the selinux_sock_rcv_skb_compat() function to deal with the
4139          * special handling.  We do this in an attempt to keep this function
4140          * as fast and as clean as possible. */
4141         if (selinux_compat_net || !selinux_policycap_netpeer)
4142                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4143
4144         secmark_active = selinux_secmark_enabled();
4145         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4146         if (!secmark_active && !peerlbl_active)
4147                 return 0;
4148
4149         AVC_AUDIT_DATA_INIT(&ad, NET);
4150         ad.u.net.netif = skb->iif;
4151         ad.u.net.family = family;
4152         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4153         if (err)
4154                 return err;
4155
4156         if (peerlbl_active) {
4157                 u32 peer_sid;
4158
4159                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4160                 if (err)
4161                         return err;
4162                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4163                                                peer_sid, &ad);
4164                 if (err) {
4165                         selinux_netlbl_err(skb, err, 0);
4166                         return err;
4167                 }
4168                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4169                                    PEER__RECV, &ad);
4170                 if (err)
4171                         selinux_netlbl_err(skb, err, 0);
4172         }
4173
4174         if (secmark_active) {
4175                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4176                                    PACKET__RECV, &ad);
4177                 if (err)
4178                         return err;
4179         }
4180
4181         return err;
4182 }
4183
4184 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4185                                             int __user *optlen, unsigned len)
4186 {
4187         int err = 0;
4188         char *scontext;
4189         u32 scontext_len;
4190         struct sk_security_struct *ssec;
4191         struct inode_security_struct *isec;
4192         u32 peer_sid = SECSID_NULL;
4193
4194         isec = SOCK_INODE(sock)->i_security;
4195
4196         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4197             isec->sclass == SECCLASS_TCP_SOCKET) {
4198                 ssec = sock->sk->sk_security;
4199                 peer_sid = ssec->peer_sid;
4200         }
4201         if (peer_sid == SECSID_NULL) {
4202                 err = -ENOPROTOOPT;
4203                 goto out;
4204         }
4205
4206         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4207
4208         if (err)
4209                 goto out;
4210
4211         if (scontext_len > len) {
4212                 err = -ERANGE;
4213                 goto out_len;
4214         }
4215
4216         if (copy_to_user(optval, scontext, scontext_len))
4217                 err = -EFAULT;
4218
4219 out_len:
4220         if (put_user(scontext_len, optlen))
4221                 err = -EFAULT;
4222
4223         kfree(scontext);
4224 out:
4225         return err;
4226 }
4227
4228 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4229 {
4230         u32 peer_secid = SECSID_NULL;
4231         u16 family;
4232
4233         if (skb && skb->protocol == htons(ETH_P_IP))
4234                 family = PF_INET;
4235         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4236                 family = PF_INET6;
4237         else if (sock)
4238                 family = sock->sk->sk_family;
4239         else
4240                 goto out;
4241
4242         if (sock && family == PF_UNIX)
4243                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4244         else if (skb)
4245                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4246
4247 out:
4248         *secid = peer_secid;
4249         if (peer_secid == SECSID_NULL)
4250                 return -EINVAL;
4251         return 0;
4252 }
4253
4254 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4255 {
4256         return sk_alloc_security(sk, family, priority);
4257 }
4258
4259 static void selinux_sk_free_security(struct sock *sk)
4260 {
4261         sk_free_security(sk);
4262 }
4263
4264 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4265 {
4266         struct sk_security_struct *ssec = sk->sk_security;
4267         struct sk_security_struct *newssec = newsk->sk_security;
4268
4269         newssec->sid = ssec->sid;
4270         newssec->peer_sid = ssec->peer_sid;
4271         newssec->sclass = ssec->sclass;
4272
4273         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4274 }
4275
4276 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4277 {
4278         if (!sk)
4279                 *secid = SECINITSID_ANY_SOCKET;
4280         else {
4281                 struct sk_security_struct *sksec = sk->sk_security;
4282
4283                 *secid = sksec->sid;
4284         }
4285 }
4286
4287 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4288 {
4289         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4290         struct sk_security_struct *sksec = sk->sk_security;
4291
4292         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4293             sk->sk_family == PF_UNIX)
4294                 isec->sid = sksec->sid;
4295         sksec->sclass = isec->sclass;
4296 }
4297
4298 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4299                                      struct request_sock *req)
4300 {
4301         struct sk_security_struct *sksec = sk->sk_security;
4302         int err;
4303         u16 family = sk->sk_family;
4304         u32 newsid;
4305         u32 peersid;
4306
4307         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4308         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4309                 family = PF_INET;
4310
4311         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4312         if (err)
4313                 return err;
4314         if (peersid == SECSID_NULL) {
4315                 req->secid = sksec->sid;
4316                 req->peer_secid = SECSID_NULL;
4317                 return 0;
4318         }
4319
4320         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4321         if (err)
4322                 return err;
4323
4324         req->secid = newsid;
4325         req->peer_secid = peersid;
4326         return 0;
4327 }
4328
4329 static void selinux_inet_csk_clone(struct sock *newsk,
4330                                    const struct request_sock *req)
4331 {
4332         struct sk_security_struct *newsksec = newsk->sk_security;
4333
4334         newsksec->sid = req->secid;
4335         newsksec->peer_sid = req->peer_secid;
4336         /* NOTE: Ideally, we should also get the isec->sid for the
4337            new socket in sync, but we don't have the isec available yet.
4338            So we will wait until sock_graft to do it, by which
4339            time it will have been created and available. */
4340
4341         /* We don't need to take any sort of lock here as we are the only
4342          * thread with access to newsksec */
4343         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4344 }
4345
4346 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4347 {
4348         u16 family = sk->sk_family;
4349         struct sk_security_struct *sksec = sk->sk_security;
4350
4351         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4352         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4353                 family = PF_INET;
4354
4355         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4356
4357         selinux_netlbl_inet_conn_established(sk, family);
4358 }
4359
4360 static void selinux_req_classify_flow(const struct request_sock *req,
4361                                       struct flowi *fl)
4362 {
4363         fl->secid = req->secid;
4364 }
4365
4366 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4367 {
4368         int err = 0;
4369         u32 perm;
4370         struct nlmsghdr *nlh;
4371         struct socket *sock = sk->sk_socket;
4372         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4373
4374         if (skb->len < NLMSG_SPACE(0)) {
4375                 err = -EINVAL;
4376                 goto out;
4377         }
4378         nlh = nlmsg_hdr(skb);
4379
4380         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4381         if (err) {
4382                 if (err == -EINVAL) {
4383                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4384                                   "SELinux:  unrecognized netlink message"
4385                                   " type=%hu for sclass=%hu\n",
4386                                   nlh->nlmsg_type, isec->sclass);
4387                         if (!selinux_enforcing)
4388                                 err = 0;
4389                 }
4390
4391                 /* Ignore */
4392                 if (err == -ENOENT)
4393                         err = 0;
4394                 goto out;
4395         }
4396
4397         err = socket_has_perm(current, sock, perm);
4398 out:
4399         return err;
4400 }
4401
4402 #ifdef CONFIG_NETFILTER
4403
4404 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4405                                        u16 family)
4406 {
4407         int err;
4408         char *addrp;
4409         u32 peer_sid;
4410         struct avc_audit_data ad;
4411         u8 secmark_active;
4412         u8 netlbl_active;
4413         u8 peerlbl_active;
4414
4415         if (!selinux_policycap_netpeer)
4416                 return NF_ACCEPT;
4417
4418         secmark_active = selinux_secmark_enabled();
4419         netlbl_active = netlbl_enabled();
4420         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4421         if (!secmark_active && !peerlbl_active)
4422                 return NF_ACCEPT;
4423
4424         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4425                 return NF_DROP;
4426
4427         AVC_AUDIT_DATA_INIT(&ad, NET);
4428         ad.u.net.netif = ifindex;
4429         ad.u.net.family = family;
4430         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4431                 return NF_DROP;
4432
4433         if (peerlbl_active) {
4434                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4435                                                peer_sid, &ad);
4436                 if (err) {
4437                         selinux_netlbl_err(skb, err, 1);
4438                         return NF_DROP;
4439                 }
4440         }
4441
4442         if (secmark_active)
4443                 if (avc_has_perm(peer_sid, skb->secmark,
4444                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4445                         return NF_DROP;
4446
4447         if (netlbl_active)
4448                 /* we do this in the FORWARD path and not the POST_ROUTING
4449                  * path because we want to make sure we apply the necessary
4450                  * labeling before IPsec is applied so we can leverage AH
4451                  * protection */
4452                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4453                         return NF_DROP;
4454
4455         return NF_ACCEPT;
4456 }
4457
4458 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4459                                          struct sk_buff *skb,
4460                                          const struct net_device *in,
4461                                          const struct net_device *out,
4462                                          int (*okfn)(struct sk_buff *))
4463 {
4464         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4465 }
4466
4467 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4468 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4469                                          struct sk_buff *skb,
4470                                          const struct net_device *in,
4471                                          const struct net_device *out,
4472                                          int (*okfn)(struct sk_buff *))
4473 {
4474         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4475 }
4476 #endif  /* IPV6 */
4477
4478 static unsigned int selinux_ip_output(struct sk_buff *skb,
4479                                       u16 family)
4480 {
4481         u32 sid;
4482
4483         if (!netlbl_enabled())
4484                 return NF_ACCEPT;
4485
4486         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4487          * because we want to make sure we apply the necessary labeling
4488          * before IPsec is applied so we can leverage AH protection */
4489         if (skb->sk) {
4490                 struct sk_security_struct *sksec = skb->sk->sk_security;
4491                 sid = sksec->sid;
4492         } else
4493                 sid = SECINITSID_KERNEL;
4494         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4495                 return NF_DROP;
4496
4497         return NF_ACCEPT;
4498 }
4499
4500 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4501                                         struct sk_buff *skb,
4502                                         const struct net_device *in,
4503                                         const struct net_device *out,
4504                                         int (*okfn)(struct sk_buff *))
4505 {
4506         return selinux_ip_output(skb, PF_INET);
4507 }
4508
4509 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4510                                                 int ifindex,
4511                                                 struct avc_audit_data *ad,
4512                                                 u16 family, char *addrp)
4513 {
4514         int err;
4515         struct sk_security_struct *sksec = sk->sk_security;
4516         u16 sk_class;
4517         u32 netif_perm, node_perm, send_perm;
4518         u32 port_sid, node_sid, if_sid, sk_sid;
4519
4520         sk_sid = sksec->sid;
4521         sk_class = sksec->sclass;
4522
4523         switch (sk_class) {
4524         case SECCLASS_UDP_SOCKET:
4525                 netif_perm = NETIF__UDP_SEND;
4526                 node_perm = NODE__UDP_SEND;
4527                 send_perm = UDP_SOCKET__SEND_MSG;
4528                 break;
4529         case SECCLASS_TCP_SOCKET:
4530                 netif_perm = NETIF__TCP_SEND;
4531                 node_perm = NODE__TCP_SEND;
4532                 send_perm = TCP_SOCKET__SEND_MSG;
4533                 break;
4534         case SECCLASS_DCCP_SOCKET:
4535                 netif_perm = NETIF__DCCP_SEND;
4536                 node_perm = NODE__DCCP_SEND;
4537                 send_perm = DCCP_SOCKET__SEND_MSG;
4538                 break;
4539         default:
4540                 netif_perm = NETIF__RAWIP_SEND;
4541                 node_perm = NODE__RAWIP_SEND;
4542                 send_perm = 0;
4543                 break;
4544         }
4545
4546         err = sel_netif_sid(ifindex, &if_sid);
4547         if (err)
4548                 return err;
4549         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4550                 return err;
4551
4552         err = sel_netnode_sid(addrp, family, &node_sid);
4553         if (err)
4554                 return err;
4555         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4556         if (err)
4557                 return err;
4558
4559         if (send_perm != 0)
4560                 return 0;
4561
4562         err = sel_netport_sid(sk->sk_protocol,
4563                               ntohs(ad->u.net.dport), &port_sid);
4564         if (unlikely(err)) {
4565                 printk(KERN_WARNING
4566                        "SELinux: failure in"
4567                        " selinux_ip_postroute_iptables_compat(),"
4568                        " network port label not found\n");
4569                 return err;
4570         }
4571         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4572 }
4573
4574 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4575                                                 int ifindex,
4576                                                 u16 family)
4577 {
4578         struct sock *sk = skb->sk;
4579         struct sk_security_struct *sksec;
4580         struct avc_audit_data ad;
4581         char *addrp;
4582         u8 proto;
4583
4584         if (sk == NULL)
4585                 return NF_ACCEPT;
4586         sksec = sk->sk_security;
4587
4588         AVC_AUDIT_DATA_INIT(&ad, NET);
4589         ad.u.net.netif = ifindex;
4590         ad.u.net.family = family;
4591         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4592                 return NF_DROP;
4593
4594         if (selinux_compat_net) {
4595                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4596                                                          &ad, family, addrp))
4597                         return NF_DROP;
4598         } else {
4599                 if (avc_has_perm(sksec->sid, skb->secmark,
4600                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4601                         return NF_DROP;
4602         }
4603
4604         if (selinux_policycap_netpeer)
4605                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4606                         return NF_DROP;
4607
4608         return NF_ACCEPT;
4609 }
4610
4611 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4612                                          u16 family)
4613 {
4614         u32 secmark_perm;
4615         u32 peer_sid;
4616         struct sock *sk;
4617         struct avc_audit_data ad;
4618         char *addrp;
4619         u8 secmark_active;
4620         u8 peerlbl_active;
4621
4622         /* If any sort of compatibility mode is enabled then handoff processing
4623          * to the selinux_ip_postroute_compat() function to deal with the
4624          * special handling.  We do this in an attempt to keep this function
4625          * as fast and as clean as possible. */
4626         if (selinux_compat_net || !selinux_policycap_netpeer)
4627                 return selinux_ip_postroute_compat(skb, ifindex, family);
4628
4629         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4630          * packet transformation so allow the packet to pass without any checks
4631          * since we'll have another chance to perform access control checks
4632          * when the packet is on it's final way out.
4633          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4634          *       is NULL, in this case go ahead and apply access control. */
4635         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4636                 return NF_ACCEPT;
4637
4638         secmark_active = selinux_secmark_enabled();
4639         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4640         if (!secmark_active && !peerlbl_active)
4641                 return NF_ACCEPT;
4642
4643         /* if the packet is being forwarded then get the peer label from the
4644          * packet itself; otherwise check to see if it is from a local
4645          * application or the kernel, if from an application get the peer label
4646          * from the sending socket, otherwise use the kernel's sid */
4647         sk = skb->sk;
4648         if (sk == NULL) {
4649                 switch (family) {
4650                 case PF_INET:
4651                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4652                                 secmark_perm = PACKET__FORWARD_OUT;
4653                         else
4654                                 secmark_perm = PACKET__SEND;
4655                         break;
4656                 case PF_INET6:
4657                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4658                                 secmark_perm = PACKET__FORWARD_OUT;
4659                         else
4660                                 secmark_perm = PACKET__SEND;
4661                         break;
4662                 default:
4663                         return NF_DROP;
4664                 }
4665                 if (secmark_perm == PACKET__FORWARD_OUT) {
4666                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4667                                 return NF_DROP;
4668                 } else
4669                         peer_sid = SECINITSID_KERNEL;
4670         } else {
4671                 struct sk_security_struct *sksec = sk->sk_security;
4672                 peer_sid = sksec->sid;
4673                 secmark_perm = PACKET__SEND;
4674         }
4675
4676         AVC_AUDIT_DATA_INIT(&ad, NET);
4677         ad.u.net.netif = ifindex;
4678         ad.u.net.family = family;
4679         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4680                 return NF_DROP;
4681
4682         if (secmark_active)
4683                 if (avc_has_perm(peer_sid, skb->secmark,
4684                                  SECCLASS_PACKET, secmark_perm, &ad))
4685                         return NF_DROP;
4686
4687         if (peerlbl_active) {
4688                 u32 if_sid;
4689                 u32 node_sid;
4690
4691                 if (sel_netif_sid(ifindex, &if_sid))
4692                         return NF_DROP;
4693                 if (avc_has_perm(peer_sid, if_sid,
4694                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4695                         return NF_DROP;
4696
4697                 if (sel_netnode_sid(addrp, family, &node_sid))
4698                         return NF_DROP;
4699                 if (avc_has_perm(peer_sid, node_sid,
4700                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4701                         return NF_DROP;
4702         }
4703
4704         return NF_ACCEPT;
4705 }
4706
4707 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4708                                            struct sk_buff *skb,
4709                                            const struct net_device *in,
4710                                            const struct net_device *out,
4711                                            int (*okfn)(struct sk_buff *))
4712 {
4713         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4714 }
4715
4716 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4717 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4718                                            struct sk_buff *skb,
4719                                            const struct net_device *in,
4720                                            const struct net_device *out,
4721                                            int (*okfn)(struct sk_buff *))
4722 {
4723         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4724 }
4725 #endif  /* IPV6 */
4726
4727 #endif  /* CONFIG_NETFILTER */
4728
4729 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4730 {
4731         int err;
4732
4733         err = secondary_ops->netlink_send(sk, skb);
4734         if (err)
4735                 return err;
4736
4737         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4738                 err = selinux_nlmsg_perm(sk, skb);
4739
4740         return err;
4741 }
4742
4743 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4744 {
4745         int err;
4746         struct avc_audit_data ad;
4747
4748         err = secondary_ops->netlink_recv(skb, capability);
4749         if (err)
4750                 return err;
4751
4752         AVC_AUDIT_DATA_INIT(&ad, CAP);
4753         ad.u.cap = capability;
4754
4755         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4756                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4757 }
4758
4759 static int ipc_alloc_security(struct task_struct *task,
4760                               struct kern_ipc_perm *perm,
4761                               u16 sclass)
4762 {
4763         struct task_security_struct *tsec = task->security;
4764         struct ipc_security_struct *isec;
4765
4766         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4767         if (!isec)
4768                 return -ENOMEM;
4769
4770         isec->sclass = sclass;
4771         isec->sid = tsec->sid;
4772         perm->security = isec;
4773
4774         return 0;
4775 }
4776
4777 static void ipc_free_security(struct kern_ipc_perm *perm)
4778 {
4779         struct ipc_security_struct *isec = perm->security;
4780         perm->security = NULL;
4781         kfree(isec);
4782 }
4783
4784 static int msg_msg_alloc_security(struct msg_msg *msg)
4785 {
4786         struct msg_security_struct *msec;
4787
4788         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4789         if (!msec)
4790                 return -ENOMEM;
4791
4792         msec->sid = SECINITSID_UNLABELED;
4793         msg->security = msec;
4794
4795         return 0;
4796 }
4797
4798 static void msg_msg_free_security(struct msg_msg *msg)
4799 {
4800         struct msg_security_struct *msec = msg->security;
4801
4802         msg->security = NULL;
4803         kfree(msec);
4804 }
4805
4806 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4807                         u32 perms)
4808 {
4809         struct task_security_struct *tsec;
4810         struct ipc_security_struct *isec;
4811         struct avc_audit_data ad;
4812
4813         tsec = current->security;
4814         isec = ipc_perms->security;
4815
4816         AVC_AUDIT_DATA_INIT(&ad, IPC);
4817         ad.u.ipc_id = ipc_perms->key;
4818
4819         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4820 }
4821
4822 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4823 {
4824         return msg_msg_alloc_security(msg);
4825 }
4826
4827 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4828 {
4829         msg_msg_free_security(msg);
4830 }
4831
4832 /* message queue security operations */
4833 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4834 {
4835         struct task_security_struct *tsec;
4836         struct ipc_security_struct *isec;
4837         struct avc_audit_data ad;
4838         int rc;
4839
4840         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4841         if (rc)
4842                 return rc;
4843
4844         tsec = current->security;
4845         isec = msq->q_perm.security;
4846
4847         AVC_AUDIT_DATA_INIT(&ad, IPC);
4848         ad.u.ipc_id = msq->q_perm.key;
4849
4850         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4851                           MSGQ__CREATE, &ad);
4852         if (rc) {
4853                 ipc_free_security(&msq->q_perm);
4854                 return rc;
4855         }
4856         return 0;
4857 }
4858
4859 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4860 {
4861         ipc_free_security(&msq->q_perm);
4862 }
4863
4864 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4865 {
4866         struct task_security_struct *tsec;
4867         struct ipc_security_struct *isec;
4868         struct avc_audit_data ad;
4869
4870         tsec = current->security;
4871         isec = msq->q_perm.security;
4872
4873         AVC_AUDIT_DATA_INIT(&ad, IPC);
4874         ad.u.ipc_id = msq->q_perm.key;
4875
4876         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4877                             MSGQ__ASSOCIATE, &ad);
4878 }
4879
4880 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4881 {
4882         int err;
4883         int perms;
4884
4885         switch (cmd) {
4886         case IPC_INFO:
4887         case MSG_INFO:
4888                 /* No specific object, just general system-wide information. */
4889                 return task_has_system(current, SYSTEM__IPC_INFO);
4890         case IPC_STAT:
4891         case MSG_STAT:
4892                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4893                 break;
4894         case IPC_SET:
4895                 perms = MSGQ__SETATTR;
4896                 break;
4897         case IPC_RMID:
4898                 perms = MSGQ__DESTROY;
4899                 break;
4900         default:
4901                 return 0;
4902         }
4903
4904         err = ipc_has_perm(&msq->q_perm, perms);
4905         return err;
4906 }
4907
4908 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4909 {
4910         struct task_security_struct *tsec;
4911         struct ipc_security_struct *isec;
4912         struct msg_security_struct *msec;
4913         struct avc_audit_data ad;
4914         int rc;
4915
4916         tsec = current->security;
4917         isec = msq->q_perm.security;
4918         msec = msg->security;
4919
4920         /*
4921          * First time through, need to assign label to the message
4922          */
4923         if (msec->sid == SECINITSID_UNLABELED) {
4924                 /*
4925                  * Compute new sid based on current process and
4926                  * message queue this message will be stored in
4927                  */
4928                 rc = security_transition_sid(tsec->sid,
4929                                              isec->sid,
4930                                              SECCLASS_MSG,
4931                                              &msec->sid);
4932                 if (rc)
4933                         return rc;
4934         }
4935
4936         AVC_AUDIT_DATA_INIT(&ad, IPC);
4937         ad.u.ipc_id = msq->q_perm.key;
4938
4939         /* Can this process write to the queue? */
4940         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4941                           MSGQ__WRITE, &ad);
4942         if (!rc)
4943                 /* Can this process send the message */
4944                 rc = avc_has_perm(tsec->sid, msec->sid,
4945                                   SECCLASS_MSG, MSG__SEND, &ad);
4946         if (!rc)
4947                 /* Can the message be put in the queue? */
4948                 rc = avc_has_perm(msec->sid, isec->sid,
4949                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4950
4951         return rc;
4952 }
4953
4954 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4955                                     struct task_struct *target,
4956                                     long type, int mode)
4957 {
4958         struct task_security_struct *tsec;
4959         struct ipc_security_struct *isec;
4960         struct msg_security_struct *msec;
4961         struct avc_audit_data ad;
4962         int rc;
4963
4964         tsec = target->security;
4965         isec = msq->q_perm.security;
4966         msec = msg->security;
4967
4968         AVC_AUDIT_DATA_INIT(&ad, IPC);
4969         ad.u.ipc_id = msq->q_perm.key;
4970
4971         rc = avc_has_perm(tsec->sid, isec->sid,
4972                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4973         if (!rc)
4974                 rc = avc_has_perm(tsec->sid, msec->sid,
4975                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4976         return rc;
4977 }
4978
4979 /* Shared Memory security operations */
4980 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4981 {
4982         struct task_security_struct *tsec;
4983         struct ipc_security_struct *isec;
4984         struct avc_audit_data ad;
4985         int rc;
4986
4987         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4988         if (rc)
4989                 return rc;
4990
4991         tsec = current->security;
4992         isec = shp->shm_perm.security;
4993
4994         AVC_AUDIT_DATA_INIT(&ad, IPC);
4995         ad.u.ipc_id = shp->shm_perm.key;
4996
4997         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4998                           SHM__CREATE, &ad);
4999         if (rc) {
5000                 ipc_free_security(&shp->shm_perm);
5001                 return rc;
5002         }
5003         return 0;
5004 }
5005
5006 static void selinux_shm_free_security(struct shmid_kernel *shp)
5007 {
5008         ipc_free_security(&shp->shm_perm);
5009 }
5010
5011 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5012 {
5013         struct task_security_struct *tsec;
5014         struct ipc_security_struct *isec;
5015         struct avc_audit_data ad;
5016
5017         tsec = current->security;
5018         isec = shp->shm_perm.security;
5019
5020         AVC_AUDIT_DATA_INIT(&ad, IPC);
5021         ad.u.ipc_id = shp->shm_perm.key;
5022
5023         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5024                             SHM__ASSOCIATE, &ad);
5025 }
5026
5027 /* Note, at this point, shp is locked down */
5028 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5029 {
5030         int perms;
5031         int err;
5032
5033         switch (cmd) {
5034         case IPC_INFO:
5035         case SHM_INFO:
5036                 /* No specific object, just general system-wide information. */
5037                 return task_has_system(current, SYSTEM__IPC_INFO);
5038         case IPC_STAT:
5039         case SHM_STAT:
5040                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5041                 break;
5042         case IPC_SET:
5043                 perms = SHM__SETATTR;
5044                 break;
5045         case SHM_LOCK:
5046         case SHM_UNLOCK:
5047                 perms = SHM__LOCK;
5048                 break;
5049         case IPC_RMID:
5050                 perms = SHM__DESTROY;
5051                 break;
5052         default:
5053                 return 0;
5054         }
5055
5056         err = ipc_has_perm(&shp->shm_perm, perms);
5057         return err;
5058 }
5059
5060 static int selinux_shm_shmat(struct shmid_kernel *shp,
5061                              char __user *shmaddr, int shmflg)
5062 {
5063         u32 perms;
5064         int rc;
5065
5066         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5067         if (rc)
5068                 return rc;
5069
5070         if (shmflg & SHM_RDONLY)
5071                 perms = SHM__READ;
5072         else
5073                 perms = SHM__READ | SHM__WRITE;
5074
5075         return ipc_has_perm(&shp->shm_perm, perms);
5076 }
5077
5078 /* Semaphore security operations */
5079 static int selinux_sem_alloc_security(struct sem_array *sma)
5080 {
5081         struct task_security_struct *tsec;
5082         struct ipc_security_struct *isec;
5083         struct avc_audit_data ad;
5084         int rc;
5085
5086         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5087         if (rc)
5088                 return rc;
5089
5090         tsec = current->security;
5091         isec = sma->sem_perm.security;
5092
5093         AVC_AUDIT_DATA_INIT(&ad, IPC);
5094         ad.u.ipc_id = sma->sem_perm.key;
5095
5096         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5097                           SEM__CREATE, &ad);
5098         if (rc) {
5099                 ipc_free_security(&sma->sem_perm);
5100                 return rc;
5101         }
5102         return 0;
5103 }
5104
5105 static void selinux_sem_free_security(struct sem_array *sma)
5106 {
5107         ipc_free_security(&sma->sem_perm);
5108 }
5109
5110 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5111 {
5112         struct task_security_struct *tsec;
5113         struct ipc_security_struct *isec;
5114         struct avc_audit_data ad;
5115
5116         tsec = current->security;
5117         isec = sma->sem_perm.security;
5118
5119         AVC_AUDIT_DATA_INIT(&ad, IPC);
5120         ad.u.ipc_id = sma->sem_perm.key;
5121
5122         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5123                             SEM__ASSOCIATE, &ad);
5124 }
5125
5126 /* Note, at this point, sma is locked down */
5127 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5128 {
5129         int err;
5130         u32 perms;
5131
5132         switch (cmd) {
5133         case IPC_INFO:
5134         case SEM_INFO:
5135                 /* No specific object, just general system-wide information. */
5136                 return task_has_system(current, SYSTEM__IPC_INFO);
5137         case GETPID:
5138         case GETNCNT:
5139         case GETZCNT:
5140                 perms = SEM__GETATTR;
5141                 break;
5142         case GETVAL:
5143         case GETALL:
5144                 perms = SEM__READ;
5145                 break;
5146         case SETVAL:
5147         case SETALL:
5148                 perms = SEM__WRITE;
5149                 break;
5150         case IPC_RMID:
5151                 perms = SEM__DESTROY;
5152                 break;
5153         case IPC_SET:
5154                 perms = SEM__SETATTR;
5155                 break;
5156         case IPC_STAT:
5157         case SEM_STAT:
5158                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5159                 break;
5160         default:
5161                 return 0;
5162         }
5163
5164         err = ipc_has_perm(&sma->sem_perm, perms);
5165         return err;
5166 }
5167
5168 static int selinux_sem_semop(struct sem_array *sma,
5169                              struct sembuf *sops, unsigned nsops, int alter)
5170 {
5171         u32 perms;
5172
5173         if (alter)
5174                 perms = SEM__READ | SEM__WRITE;
5175         else
5176                 perms = SEM__READ;
5177
5178         return ipc_has_perm(&sma->sem_perm, perms);
5179 }
5180
5181 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5182 {
5183         u32 av = 0;
5184
5185         av = 0;
5186         if (flag & S_IRUGO)
5187                 av |= IPC__UNIX_READ;
5188         if (flag & S_IWUGO)
5189                 av |= IPC__UNIX_WRITE;
5190
5191         if (av == 0)
5192                 return 0;
5193
5194         return ipc_has_perm(ipcp, av);
5195 }
5196
5197 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5198 {
5199         struct ipc_security_struct *isec = ipcp->security;
5200         *secid = isec->sid;
5201 }
5202
5203 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5204 {
5205         if (inode)
5206                 inode_doinit_with_dentry(inode, dentry);
5207 }
5208
5209 static int selinux_getprocattr(struct task_struct *p,
5210                                char *name, char **value)
5211 {
5212         struct task_security_struct *tsec;
5213         u32 sid;
5214         int error;
5215         unsigned len;
5216
5217         if (current != p) {
5218                 error = task_has_perm(current, p, PROCESS__GETATTR);
5219                 if (error)
5220                         return error;
5221         }
5222
5223         tsec = p->security;
5224
5225         if (!strcmp(name, "current"))
5226                 sid = tsec->sid;
5227         else if (!strcmp(name, "prev"))
5228                 sid = tsec->osid;
5229         else if (!strcmp(name, "exec"))
5230                 sid = tsec->exec_sid;
5231         else if (!strcmp(name, "fscreate"))
5232                 sid = tsec->create_sid;
5233         else if (!strcmp(name, "keycreate"))
5234                 sid = tsec->keycreate_sid;
5235         else if (!strcmp(name, "sockcreate"))
5236                 sid = tsec->sockcreate_sid;
5237         else
5238                 return -EINVAL;
5239
5240         if (!sid)
5241                 return 0;
5242
5243         error = security_sid_to_context(sid, value, &len);
5244         if (error)
5245                 return error;
5246         return len;
5247 }
5248
5249 static int selinux_setprocattr(struct task_struct *p,
5250                                char *name, void *value, size_t size)
5251 {
5252         struct task_security_struct *tsec;
5253         struct task_struct *tracer;
5254         u32 sid = 0;
5255         int error;
5256         char *str = value;
5257
5258         if (current != p) {
5259                 /* SELinux only allows a process to change its own
5260                    security attributes. */
5261                 return -EACCES;
5262         }
5263
5264         /*
5265          * Basic control over ability to set these attributes at all.
5266          * current == p, but we'll pass them separately in case the
5267          * above restriction is ever removed.
5268          */
5269         if (!strcmp(name, "exec"))
5270                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5271         else if (!strcmp(name, "fscreate"))
5272                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5273         else if (!strcmp(name, "keycreate"))
5274                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5275         else if (!strcmp(name, "sockcreate"))
5276                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5277         else if (!strcmp(name, "current"))
5278                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5279         else
5280                 error = -EINVAL;
5281         if (error)
5282                 return error;
5283
5284         /* Obtain a SID for the context, if one was specified. */
5285         if (size && str[1] && str[1] != '\n') {
5286                 if (str[size-1] == '\n') {
5287                         str[size-1] = 0;
5288                         size--;
5289                 }
5290                 error = security_context_to_sid(value, size, &sid);
5291                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5292                         if (!capable(CAP_MAC_ADMIN))
5293                                 return error;
5294                         error = security_context_to_sid_force(value, size,
5295                                                               &sid);
5296                 }
5297                 if (error)
5298                         return error;
5299         }
5300
5301         /* Permission checking based on the specified context is
5302            performed during the actual operation (execve,
5303            open/mkdir/...), when we know the full context of the
5304            operation.  See selinux_bprm_set_security for the execve
5305            checks and may_create for the file creation checks. The
5306            operation will then fail if the context is not permitted. */
5307         tsec = p->security;
5308         if (!strcmp(name, "exec"))
5309                 tsec->exec_sid = sid;
5310         else if (!strcmp(name, "fscreate"))
5311                 tsec->create_sid = sid;
5312         else if (!strcmp(name, "keycreate")) {
5313                 error = may_create_key(sid, p);
5314                 if (error)
5315                         return error;
5316                 tsec->keycreate_sid = sid;
5317         } else if (!strcmp(name, "sockcreate"))
5318                 tsec->sockcreate_sid = sid;
5319         else if (!strcmp(name, "current")) {
5320                 struct av_decision avd;
5321
5322                 if (sid == 0)
5323                         return -EINVAL;
5324
5325                 /* Only allow single threaded processes to change context */
5326                 if (atomic_read(&p->mm->mm_users) != 1) {
5327                         struct task_struct *g, *t;
5328                         struct mm_struct *mm = p->mm;
5329                         read_lock(&tasklist_lock);
5330                         do_each_thread(g, t) {
5331                                 if (t->mm == mm && t != p) {
5332                                         read_unlock(&tasklist_lock);
5333                                         return -EPERM;
5334                                 }
5335                         } while_each_thread(g, t);
5336                         read_unlock(&tasklist_lock);
5337                 }
5338
5339                 /* Check permissions for the transition. */
5340                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5341                                      PROCESS__DYNTRANSITION, NULL);
5342                 if (error)
5343                         return error;
5344
5345                 /* Check for ptracing, and update the task SID if ok.
5346                    Otherwise, leave SID unchanged and fail. */
5347                 task_lock(p);
5348                 rcu_read_lock();
5349                 tracer = tracehook_tracer_task(p);
5350                 if (tracer != NULL) {
5351                         struct task_security_struct *ptsec = tracer->security;
5352                         u32 ptsid = ptsec->sid;
5353                         rcu_read_unlock();
5354                         error = avc_has_perm_noaudit(ptsid, sid,
5355                                                      SECCLASS_PROCESS,
5356                                                      PROCESS__PTRACE, 0, &avd);
5357                         if (!error)
5358                                 tsec->sid = sid;
5359                         task_unlock(p);
5360                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5361                                   PROCESS__PTRACE, &avd, error, NULL);
5362                         if (error)
5363                                 return error;
5364                 } else {
5365                         rcu_read_unlock();
5366                         tsec->sid = sid;
5367                         task_unlock(p);
5368                 }
5369         } else
5370                 return -EINVAL;
5371
5372         return size;
5373 }
5374
5375 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5376 {
5377         return security_sid_to_context(secid, secdata, seclen);
5378 }
5379
5380 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5381 {
5382         return security_context_to_sid(secdata, seclen, secid);
5383 }
5384
5385 static void selinux_release_secctx(char *secdata, u32 seclen)
5386 {
5387         kfree(secdata);
5388 }
5389
5390 #ifdef CONFIG_KEYS
5391
5392 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5393                              unsigned long flags)
5394 {
5395         struct task_security_struct *tsec = tsk->security;
5396         struct key_security_struct *ksec;
5397
5398         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5399         if (!ksec)
5400                 return -ENOMEM;
5401
5402         if (tsec->keycreate_sid)
5403                 ksec->sid = tsec->keycreate_sid;
5404         else
5405                 ksec->sid = tsec->sid;
5406         k->security = ksec;
5407
5408         return 0;
5409 }
5410
5411 static void selinux_key_free(struct key *k)
5412 {
5413         struct key_security_struct *ksec = k->security;
5414
5415         k->security = NULL;
5416         kfree(ksec);
5417 }
5418
5419 static int selinux_key_permission(key_ref_t key_ref,
5420                             struct task_struct *ctx,
5421                             key_perm_t perm)
5422 {
5423         struct key *key;
5424         struct task_security_struct *tsec;
5425         struct key_security_struct *ksec;
5426
5427         key = key_ref_to_ptr(key_ref);
5428
5429         tsec = ctx->security;
5430         ksec = key->security;
5431
5432         /* if no specific permissions are requested, we skip the
5433            permission check. No serious, additional covert channels
5434            appear to be created. */
5435         if (perm == 0)
5436                 return 0;
5437
5438         return avc_has_perm(tsec->sid, ksec->sid,
5439                             SECCLASS_KEY, perm, NULL);
5440 }
5441
5442 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5443 {
5444         struct key_security_struct *ksec = key->security;
5445         char *context = NULL;
5446         unsigned len;
5447         int rc;
5448
5449         rc = security_sid_to_context(ksec->sid, &context, &len);
5450         if (!rc)
5451                 rc = len;
5452         *_buffer = context;
5453         return rc;
5454 }
5455
5456 #endif
5457
5458 static struct security_operations selinux_ops = {
5459         .name =                         "selinux",
5460
5461         .ptrace_may_access =            selinux_ptrace_may_access,
5462         .ptrace_traceme =               selinux_ptrace_traceme,
5463         .capget =                       selinux_capget,
5464         .capset_check =                 selinux_capset_check,
5465         .capset_set =                   selinux_capset_set,
5466         .sysctl =                       selinux_sysctl,
5467         .capable =                      selinux_capable,
5468         .quotactl =                     selinux_quotactl,
5469         .quota_on =                     selinux_quota_on,
5470         .syslog =                       selinux_syslog,
5471         .vm_enough_memory =             selinux_vm_enough_memory,
5472
5473         .netlink_send =                 selinux_netlink_send,
5474         .netlink_recv =                 selinux_netlink_recv,
5475
5476         .bprm_alloc_security =          selinux_bprm_alloc_security,
5477         .bprm_free_security =           selinux_bprm_free_security,
5478         .bprm_apply_creds =             selinux_bprm_apply_creds,
5479         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5480         .bprm_set_security =            selinux_bprm_set_security,
5481         .bprm_check_security =          selinux_bprm_check_security,
5482         .bprm_secureexec =              selinux_bprm_secureexec,
5483
5484         .sb_alloc_security =            selinux_sb_alloc_security,
5485         .sb_free_security =             selinux_sb_free_security,
5486         .sb_copy_data =                 selinux_sb_copy_data,
5487         .sb_kern_mount =                selinux_sb_kern_mount,
5488         .sb_show_options =              selinux_sb_show_options,
5489         .sb_statfs =                    selinux_sb_statfs,
5490         .sb_mount =                     selinux_mount,
5491         .sb_umount =                    selinux_umount,
5492         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5493         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5494         .sb_parse_opts_str =            selinux_parse_opts_str,
5495
5496
5497         .inode_alloc_security =         selinux_inode_alloc_security,
5498         .inode_free_security =          selinux_inode_free_security,
5499         .inode_init_security =          selinux_inode_init_security,
5500         .inode_create =                 selinux_inode_create,
5501         .inode_link =                   selinux_inode_link,
5502         .inode_unlink =                 selinux_inode_unlink,
5503         .inode_symlink =                selinux_inode_symlink,
5504         .inode_mkdir =                  selinux_inode_mkdir,
5505         .inode_rmdir =                  selinux_inode_rmdir,
5506         .inode_mknod =                  selinux_inode_mknod,
5507         .inode_rename =                 selinux_inode_rename,
5508         .inode_readlink =               selinux_inode_readlink,
5509         .inode_follow_link =            selinux_inode_follow_link,
5510         .inode_permission =             selinux_inode_permission,
5511         .inode_setattr =                selinux_inode_setattr,
5512         .inode_getattr =                selinux_inode_getattr,
5513         .inode_setxattr =               selinux_inode_setxattr,
5514         .inode_post_setxattr =          selinux_inode_post_setxattr,
5515         .inode_getxattr =               selinux_inode_getxattr,
5516         .inode_listxattr =              selinux_inode_listxattr,
5517         .inode_removexattr =            selinux_inode_removexattr,
5518         .inode_getsecurity =            selinux_inode_getsecurity,
5519         .inode_setsecurity =            selinux_inode_setsecurity,
5520         .inode_listsecurity =           selinux_inode_listsecurity,
5521         .inode_need_killpriv =          selinux_inode_need_killpriv,
5522         .inode_killpriv =               selinux_inode_killpriv,
5523         .inode_getsecid =               selinux_inode_getsecid,
5524
5525         .file_permission =              selinux_file_permission,
5526         .file_alloc_security =          selinux_file_alloc_security,
5527         .file_free_security =           selinux_file_free_security,
5528         .file_ioctl =                   selinux_file_ioctl,
5529         .file_mmap =                    selinux_file_mmap,
5530         .file_mprotect =                selinux_file_mprotect,
5531         .file_lock =                    selinux_file_lock,
5532         .file_fcntl =                   selinux_file_fcntl,
5533         .file_set_fowner =              selinux_file_set_fowner,
5534         .file_send_sigiotask =          selinux_file_send_sigiotask,
5535         .file_receive =                 selinux_file_receive,
5536
5537         .dentry_open =                  selinux_dentry_open,
5538
5539         .task_create =                  selinux_task_create,
5540         .task_alloc_security =          selinux_task_alloc_security,
5541         .task_free_security =           selinux_task_free_security,
5542         .task_setuid =                  selinux_task_setuid,
5543         .task_post_setuid =             selinux_task_post_setuid,
5544         .task_setgid =                  selinux_task_setgid,
5545         .task_setpgid =                 selinux_task_setpgid,
5546         .task_getpgid =                 selinux_task_getpgid,
5547         .task_getsid =                  selinux_task_getsid,
5548         .task_getsecid =                selinux_task_getsecid,
5549         .task_setgroups =               selinux_task_setgroups,
5550         .task_setnice =                 selinux_task_setnice,
5551         .task_setioprio =               selinux_task_setioprio,
5552         .task_getioprio =               selinux_task_getioprio,
5553         .task_setrlimit =               selinux_task_setrlimit,
5554         .task_setscheduler =            selinux_task_setscheduler,
5555         .task_getscheduler =            selinux_task_getscheduler,
5556         .task_movememory =              selinux_task_movememory,
5557         .task_kill =                    selinux_task_kill,
5558         .task_wait =                    selinux_task_wait,
5559         .task_prctl =                   selinux_task_prctl,
5560         .task_reparent_to_init =        selinux_task_reparent_to_init,
5561         .task_to_inode =                selinux_task_to_inode,
5562
5563         .ipc_permission =               selinux_ipc_permission,
5564         .ipc_getsecid =                 selinux_ipc_getsecid,
5565
5566         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5567         .msg_msg_free_security =        selinux_msg_msg_free_security,
5568
5569         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5570         .msg_queue_free_security =      selinux_msg_queue_free_security,
5571         .msg_queue_associate =          selinux_msg_queue_associate,
5572         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5573         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5574         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5575
5576         .shm_alloc_security =           selinux_shm_alloc_security,
5577         .shm_free_security =            selinux_shm_free_security,
5578         .shm_associate =                selinux_shm_associate,
5579         .shm_shmctl =                   selinux_shm_shmctl,
5580         .shm_shmat =                    selinux_shm_shmat,
5581
5582         .sem_alloc_security =           selinux_sem_alloc_security,
5583         .sem_free_security =            selinux_sem_free_security,
5584         .sem_associate =                selinux_sem_associate,
5585         .sem_semctl =                   selinux_sem_semctl,
5586         .sem_semop =                    selinux_sem_semop,
5587
5588         .d_instantiate =                selinux_d_instantiate,
5589
5590         .getprocattr =                  selinux_getprocattr,
5591         .setprocattr =                  selinux_setprocattr,
5592
5593         .secid_to_secctx =              selinux_secid_to_secctx,
5594         .secctx_to_secid =              selinux_secctx_to_secid,
5595         .release_secctx =               selinux_release_secctx,
5596
5597         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5598         .unix_may_send =                selinux_socket_unix_may_send,
5599
5600         .socket_create =                selinux_socket_create,
5601         .socket_post_create =           selinux_socket_post_create,
5602         .socket_bind =                  selinux_socket_bind,
5603         .socket_connect =               selinux_socket_connect,
5604         .socket_listen =                selinux_socket_listen,
5605         .socket_accept =                selinux_socket_accept,
5606         .socket_sendmsg =               selinux_socket_sendmsg,
5607         .socket_recvmsg =               selinux_socket_recvmsg,
5608         .socket_getsockname =           selinux_socket_getsockname,
5609         .socket_getpeername =           selinux_socket_getpeername,
5610         .socket_getsockopt =            selinux_socket_getsockopt,
5611         .socket_setsockopt =            selinux_socket_setsockopt,
5612         .socket_shutdown =              selinux_socket_shutdown,
5613         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5614         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5615         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5616         .sk_alloc_security =            selinux_sk_alloc_security,
5617         .sk_free_security =             selinux_sk_free_security,
5618         .sk_clone_security =            selinux_sk_clone_security,
5619         .sk_getsecid =                  selinux_sk_getsecid,
5620         .sock_graft =                   selinux_sock_graft,
5621         .inet_conn_request =            selinux_inet_conn_request,
5622         .inet_csk_clone =               selinux_inet_csk_clone,
5623         .inet_conn_established =        selinux_inet_conn_established,
5624         .req_classify_flow =            selinux_req_classify_flow,
5625
5626 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5627         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5628         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5629         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5630         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5631         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5632         .xfrm_state_free_security =     selinux_xfrm_state_free,
5633         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5634         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5635         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5636         .xfrm_decode_session =          selinux_xfrm_decode_session,
5637 #endif
5638
5639 #ifdef CONFIG_KEYS
5640         .key_alloc =                    selinux_key_alloc,
5641         .key_free =                     selinux_key_free,
5642         .key_permission =               selinux_key_permission,
5643         .key_getsecurity =              selinux_key_getsecurity,
5644 #endif
5645
5646 #ifdef CONFIG_AUDIT
5647         .audit_rule_init =              selinux_audit_rule_init,
5648         .audit_rule_known =             selinux_audit_rule_known,
5649         .audit_rule_match =             selinux_audit_rule_match,
5650         .audit_rule_free =              selinux_audit_rule_free,
5651 #endif
5652 };
5653
5654 static __init int selinux_init(void)
5655 {
5656         struct task_security_struct *tsec;
5657
5658         if (!security_module_enable(&selinux_ops)) {
5659                 selinux_enabled = 0;
5660                 return 0;
5661         }
5662
5663         if (!selinux_enabled) {
5664                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5665                 return 0;
5666         }
5667
5668         printk(KERN_INFO "SELinux:  Initializing.\n");
5669
5670         /* Set the security state for the initial task. */
5671         if (task_alloc_security(current))
5672                 panic("SELinux:  Failed to initialize initial task.\n");
5673         tsec = current->security;
5674         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5675
5676         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5677                                             sizeof(struct inode_security_struct),
5678                                             0, SLAB_PANIC, NULL);
5679         avc_init();
5680
5681         secondary_ops = security_ops;
5682         if (!secondary_ops)
5683                 panic("SELinux: No initial security operations\n");
5684         if (register_security(&selinux_ops))
5685                 panic("SELinux: Unable to register with kernel.\n");
5686
5687         if (selinux_enforcing)
5688                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5689         else
5690                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5691
5692         return 0;
5693 }
5694
5695 void selinux_complete_init(void)
5696 {
5697         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5698
5699         /* Set up any superblocks initialized prior to the policy load. */
5700         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5701         spin_lock(&sb_lock);
5702         spin_lock(&sb_security_lock);
5703 next_sb:
5704         if (!list_empty(&superblock_security_head)) {
5705                 struct superblock_security_struct *sbsec =
5706                                 list_entry(superblock_security_head.next,
5707                                            struct superblock_security_struct,
5708                                            list);
5709                 struct super_block *sb = sbsec->sb;
5710                 sb->s_count++;
5711                 spin_unlock(&sb_security_lock);
5712                 spin_unlock(&sb_lock);
5713                 down_read(&sb->s_umount);
5714                 if (sb->s_root)
5715                         superblock_doinit(sb, NULL);
5716                 drop_super(sb);
5717                 spin_lock(&sb_lock);
5718                 spin_lock(&sb_security_lock);
5719                 list_del_init(&sbsec->list);
5720                 goto next_sb;
5721         }
5722         spin_unlock(&sb_security_lock);
5723         spin_unlock(&sb_lock);
5724 }
5725
5726 /* SELinux requires early initialization in order to label
5727    all processes and objects when they are created. */
5728 security_initcall(selinux_init);
5729
5730 #if defined(CONFIG_NETFILTER)
5731
5732 static struct nf_hook_ops selinux_ipv4_ops[] = {
5733         {
5734                 .hook =         selinux_ipv4_postroute,
5735                 .owner =        THIS_MODULE,
5736                 .pf =           PF_INET,
5737                 .hooknum =      NF_INET_POST_ROUTING,
5738                 .priority =     NF_IP_PRI_SELINUX_LAST,
5739         },
5740         {
5741                 .hook =         selinux_ipv4_forward,
5742                 .owner =        THIS_MODULE,
5743                 .pf =           PF_INET,
5744                 .hooknum =      NF_INET_FORWARD,
5745                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5746         },
5747         {
5748                 .hook =         selinux_ipv4_output,
5749                 .owner =        THIS_MODULE,
5750                 .pf =           PF_INET,
5751                 .hooknum =      NF_INET_LOCAL_OUT,
5752                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5753         }
5754 };
5755
5756 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5757
5758 static struct nf_hook_ops selinux_ipv6_ops[] = {
5759         {
5760                 .hook =         selinux_ipv6_postroute,
5761                 .owner =        THIS_MODULE,
5762                 .pf =           PF_INET6,
5763                 .hooknum =      NF_INET_POST_ROUTING,
5764                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5765         },
5766         {
5767                 .hook =         selinux_ipv6_forward,
5768                 .owner =        THIS_MODULE,
5769                 .pf =           PF_INET6,
5770                 .hooknum =      NF_INET_FORWARD,
5771                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5772         }
5773 };
5774
5775 #endif  /* IPV6 */
5776
5777 static int __init selinux_nf_ip_init(void)
5778 {
5779         int err = 0;
5780
5781         if (!selinux_enabled)
5782                 goto out;
5783
5784         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5785
5786         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5787         if (err)
5788                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5789
5790 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5791         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5792         if (err)
5793                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5794 #endif  /* IPV6 */
5795
5796 out:
5797         return err;
5798 }
5799
5800 __initcall(selinux_nf_ip_init);
5801
5802 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5803 static void selinux_nf_ip_exit(void)
5804 {
5805         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5806
5807         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5808 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5809         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5810 #endif  /* IPV6 */
5811 }
5812 #endif
5813
5814 #else /* CONFIG_NETFILTER */
5815
5816 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5817 #define selinux_nf_ip_exit()
5818 #endif
5819
5820 #endif /* CONFIG_NETFILTER */
5821
5822 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5823 static int selinux_disabled;
5824
5825 int selinux_disable(void)
5826 {
5827         extern void exit_sel_fs(void);
5828
5829         if (ss_initialized) {
5830                 /* Not permitted after initial policy load. */
5831                 return -EINVAL;
5832         }
5833
5834         if (selinux_disabled) {
5835                 /* Only do this once. */
5836                 return -EINVAL;
5837         }
5838
5839         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5840
5841         selinux_disabled = 1;
5842         selinux_enabled = 0;
5843
5844         /* Reset security_ops to the secondary module, dummy or capability. */
5845         security_ops = secondary_ops;
5846
5847         /* Unregister netfilter hooks. */
5848         selinux_nf_ip_exit();
5849
5850         /* Unregister selinuxfs. */
5851         exit_sel_fs();
5852
5853         return 0;
5854 }
5855 #endif