Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *
16  *      This program is free software; you can redistribute it and/or modify
17  *      it under the terms of the GNU General Public License version 2,
18  *      as published by the Free Software Foundation.
19  */
20
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/ptrace.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/security.h>
28 #include <linux/xattr.h>
29 #include <linux/capability.h>
30 #include <linux/unistd.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/slab.h>
34 #include <linux/pagemap.h>
35 #include <linux/swap.h>
36 #include <linux/smp_lock.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscalls.h>
39 #include <linux/file.h>
40 #include <linux/namei.h>
41 #include <linux/mount.h>
42 #include <linux/ext2_fs.h>
43 #include <linux/proc_fs.h>
44 #include <linux/kd.h>
45 #include <linux/netfilter_ipv4.h>
46 #include <linux/netfilter_ipv6.h>
47 #include <linux/tty.h>
48 #include <net/icmp.h>
49 #include <net/ip.h>             /* for sysctl_local_port_range[] */
50 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
51 #include <asm/uaccess.h>
52 #include <asm/semaphore.h>
53 #include <asm/ioctls.h>
54 #include <linux/bitops.h>
55 #include <linux/interrupt.h>
56 #include <linux/netdevice.h>    /* for network interface checks */
57 #include <linux/netlink.h>
58 #include <linux/tcp.h>
59 #include <linux/udp.h>
60 #include <linux/quota.h>
61 #include <linux/un.h>           /* for Unix socket types */
62 #include <net/af_unix.h>        /* for Unix socket types */
63 #include <linux/parser.h>
64 #include <linux/nfs_mount.h>
65 #include <net/ipv6.h>
66 #include <linux/hugetlb.h>
67 #include <linux/personality.h>
68 #include <linux/sysctl.h>
69 #include <linux/audit.h>
70 #include <linux/string.h>
71 #include <linux/selinux.h>
72
73 #include "avc.h"
74 #include "objsec.h"
75 #include "netif.h"
76 #include "xfrm.h"
77
78 #define XATTR_SELINUX_SUFFIX "selinux"
79 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
80
81 extern unsigned int policydb_loaded_version;
82 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
83 extern int selinux_compat_net;
84
85 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
86 int selinux_enforcing = 0;
87
88 static int __init enforcing_setup(char *str)
89 {
90         selinux_enforcing = simple_strtol(str,NULL,0);
91         return 1;
92 }
93 __setup("enforcing=", enforcing_setup);
94 #endif
95
96 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
97 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
98
99 static int __init selinux_enabled_setup(char *str)
100 {
101         selinux_enabled = simple_strtol(str, NULL, 0);
102         return 1;
103 }
104 __setup("selinux=", selinux_enabled_setup);
105 #else
106 int selinux_enabled = 1;
107 #endif
108
109 /* Original (dummy) security module. */
110 static struct security_operations *original_ops = NULL;
111
112 /* Minimal support for a secondary security module,
113    just to allow the use of the dummy or capability modules.
114    The owlsm module can alternatively be used as a secondary
115    module as long as CONFIG_OWLSM_FD is not enabled. */
116 static struct security_operations *secondary_ops = NULL;
117
118 /* Lists of inode and superblock security structures initialized
119    before the policy was loaded. */
120 static LIST_HEAD(superblock_security_head);
121 static DEFINE_SPINLOCK(sb_security_lock);
122
123 static kmem_cache_t *sel_inode_cache;
124
125 /* Return security context for a given sid or just the context 
126    length if the buffer is null or length is 0 */
127 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
128 {
129         char *context;
130         unsigned len;
131         int rc;
132
133         rc = security_sid_to_context(sid, &context, &len);
134         if (rc)
135                 return rc;
136
137         if (!buffer || !size)
138                 goto getsecurity_exit;
139
140         if (size < len) {
141                 len = -ERANGE;
142                 goto getsecurity_exit;
143         }
144         memcpy(buffer, context, len);
145
146 getsecurity_exit:
147         kfree(context);
148         return len;
149 }
150
151 /* Allocate and free functions for each kind of security blob. */
152
153 static int task_alloc_security(struct task_struct *task)
154 {
155         struct task_security_struct *tsec;
156
157         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
158         if (!tsec)
159                 return -ENOMEM;
160
161         tsec->task = task;
162         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
163         task->security = tsec;
164
165         return 0;
166 }
167
168 static void task_free_security(struct task_struct *task)
169 {
170         struct task_security_struct *tsec = task->security;
171         task->security = NULL;
172         kfree(tsec);
173 }
174
175 static int inode_alloc_security(struct inode *inode)
176 {
177         struct task_security_struct *tsec = current->security;
178         struct inode_security_struct *isec;
179
180         isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
181         if (!isec)
182                 return -ENOMEM;
183
184         memset(isec, 0, sizeof(*isec));
185         init_MUTEX(&isec->sem);
186         INIT_LIST_HEAD(&isec->list);
187         isec->inode = inode;
188         isec->sid = SECINITSID_UNLABELED;
189         isec->sclass = SECCLASS_FILE;
190         isec->task_sid = tsec->sid;
191         inode->i_security = isec;
192
193         return 0;
194 }
195
196 static void inode_free_security(struct inode *inode)
197 {
198         struct inode_security_struct *isec = inode->i_security;
199         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
200
201         spin_lock(&sbsec->isec_lock);
202         if (!list_empty(&isec->list))
203                 list_del_init(&isec->list);
204         spin_unlock(&sbsec->isec_lock);
205
206         inode->i_security = NULL;
207         kmem_cache_free(sel_inode_cache, isec);
208 }
209
210 static int file_alloc_security(struct file *file)
211 {
212         struct task_security_struct *tsec = current->security;
213         struct file_security_struct *fsec;
214
215         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
216         if (!fsec)
217                 return -ENOMEM;
218
219         fsec->file = file;
220         fsec->sid = tsec->sid;
221         fsec->fown_sid = tsec->sid;
222         file->f_security = fsec;
223
224         return 0;
225 }
226
227 static void file_free_security(struct file *file)
228 {
229         struct file_security_struct *fsec = file->f_security;
230         file->f_security = NULL;
231         kfree(fsec);
232 }
233
234 static int superblock_alloc_security(struct super_block *sb)
235 {
236         struct superblock_security_struct *sbsec;
237
238         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
239         if (!sbsec)
240                 return -ENOMEM;
241
242         init_MUTEX(&sbsec->sem);
243         INIT_LIST_HEAD(&sbsec->list);
244         INIT_LIST_HEAD(&sbsec->isec_head);
245         spin_lock_init(&sbsec->isec_lock);
246         sbsec->sb = sb;
247         sbsec->sid = SECINITSID_UNLABELED;
248         sbsec->def_sid = SECINITSID_FILE;
249         sb->s_security = sbsec;
250
251         return 0;
252 }
253
254 static void superblock_free_security(struct super_block *sb)
255 {
256         struct superblock_security_struct *sbsec = sb->s_security;
257
258         spin_lock(&sb_security_lock);
259         if (!list_empty(&sbsec->list))
260                 list_del_init(&sbsec->list);
261         spin_unlock(&sb_security_lock);
262
263         sb->s_security = NULL;
264         kfree(sbsec);
265 }
266
267 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
268 {
269         struct sk_security_struct *ssec;
270
271         if (family != PF_UNIX)
272                 return 0;
273
274         ssec = kzalloc(sizeof(*ssec), priority);
275         if (!ssec)
276                 return -ENOMEM;
277
278         ssec->sk = sk;
279         ssec->peer_sid = SECINITSID_UNLABELED;
280         sk->sk_security = ssec;
281
282         return 0;
283 }
284
285 static void sk_free_security(struct sock *sk)
286 {
287         struct sk_security_struct *ssec = sk->sk_security;
288
289         if (sk->sk_family != PF_UNIX)
290                 return;
291
292         sk->sk_security = NULL;
293         kfree(ssec);
294 }
295
296 /* The security server must be initialized before
297    any labeling or access decisions can be provided. */
298 extern int ss_initialized;
299
300 /* The file system's label must be initialized prior to use. */
301
302 static char *labeling_behaviors[6] = {
303         "uses xattr",
304         "uses transition SIDs",
305         "uses task SIDs",
306         "uses genfs_contexts",
307         "not configured for labeling",
308         "uses mountpoint labeling",
309 };
310
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
312
313 static inline int inode_doinit(struct inode *inode)
314 {
315         return inode_doinit_with_dentry(inode, NULL);
316 }
317
318 enum {
319         Opt_context = 1,
320         Opt_fscontext = 2,
321         Opt_defcontext = 4,
322 };
323
324 static match_table_t tokens = {
325         {Opt_context, "context=%s"},
326         {Opt_fscontext, "fscontext=%s"},
327         {Opt_defcontext, "defcontext=%s"},
328 };
329
330 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
331
332 static int try_context_mount(struct super_block *sb, void *data)
333 {
334         char *context = NULL, *defcontext = NULL;
335         const char *name;
336         u32 sid;
337         int alloc = 0, rc = 0, seen = 0;
338         struct task_security_struct *tsec = current->security;
339         struct superblock_security_struct *sbsec = sb->s_security;
340
341         if (!data)
342                 goto out;
343
344         name = sb->s_type->name;
345
346         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
347
348                 /* NFS we understand. */
349                 if (!strcmp(name, "nfs")) {
350                         struct nfs_mount_data *d = data;
351
352                         if (d->version <  NFS_MOUNT_VERSION)
353                                 goto out;
354
355                         if (d->context[0]) {
356                                 context = d->context;
357                                 seen |= Opt_context;
358                         }
359                 } else
360                         goto out;
361
362         } else {
363                 /* Standard string-based options. */
364                 char *p, *options = data;
365
366                 while ((p = strsep(&options, ",")) != NULL) {
367                         int token;
368                         substring_t args[MAX_OPT_ARGS];
369
370                         if (!*p)
371                                 continue;
372
373                         token = match_token(p, tokens, args);
374
375                         switch (token) {
376                         case Opt_context:
377                                 if (seen) {
378                                         rc = -EINVAL;
379                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
380                                         goto out_free;
381                                 }
382                                 context = match_strdup(&args[0]);
383                                 if (!context) {
384                                         rc = -ENOMEM;
385                                         goto out_free;
386                                 }
387                                 if (!alloc)
388                                         alloc = 1;
389                                 seen |= Opt_context;
390                                 break;
391
392                         case Opt_fscontext:
393                                 if (seen & (Opt_context|Opt_fscontext)) {
394                                         rc = -EINVAL;
395                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
396                                         goto out_free;
397                                 }
398                                 context = match_strdup(&args[0]);
399                                 if (!context) {
400                                         rc = -ENOMEM;
401                                         goto out_free;
402                                 }
403                                 if (!alloc)
404                                         alloc = 1;
405                                 seen |= Opt_fscontext;
406                                 break;
407
408                         case Opt_defcontext:
409                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
410                                         rc = -EINVAL;
411                                         printk(KERN_WARNING "SELinux:  "
412                                                "defcontext option is invalid "
413                                                "for this filesystem type\n");
414                                         goto out_free;
415                                 }
416                                 if (seen & (Opt_context|Opt_defcontext)) {
417                                         rc = -EINVAL;
418                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
419                                         goto out_free;
420                                 }
421                                 defcontext = match_strdup(&args[0]);
422                                 if (!defcontext) {
423                                         rc = -ENOMEM;
424                                         goto out_free;
425                                 }
426                                 if (!alloc)
427                                         alloc = 1;
428                                 seen |= Opt_defcontext;
429                                 break;
430
431                         default:
432                                 rc = -EINVAL;
433                                 printk(KERN_WARNING "SELinux:  unknown mount "
434                                        "option\n");
435                                 goto out_free;
436
437                         }
438                 }
439         }
440
441         if (!seen)
442                 goto out;
443
444         if (context) {
445                 rc = security_context_to_sid(context, strlen(context), &sid);
446                 if (rc) {
447                         printk(KERN_WARNING "SELinux: security_context_to_sid"
448                                "(%s) failed for (dev %s, type %s) errno=%d\n",
449                                context, sb->s_id, name, rc);
450                         goto out_free;
451                 }
452
453                 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
454                                   FILESYSTEM__RELABELFROM, NULL);
455                 if (rc)
456                         goto out_free;
457
458                 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
459                                   FILESYSTEM__RELABELTO, NULL);
460                 if (rc)
461                         goto out_free;
462
463                 sbsec->sid = sid;
464
465                 if (seen & Opt_context)
466                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
467         }
468
469         if (defcontext) {
470                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
471                 if (rc) {
472                         printk(KERN_WARNING "SELinux: security_context_to_sid"
473                                "(%s) failed for (dev %s, type %s) errno=%d\n",
474                                defcontext, sb->s_id, name, rc);
475                         goto out_free;
476                 }
477
478                 if (sid == sbsec->def_sid)
479                         goto out_free;
480
481                 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
482                                   FILESYSTEM__RELABELFROM, NULL);
483                 if (rc)
484                         goto out_free;
485
486                 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
487                                   FILESYSTEM__ASSOCIATE, NULL);
488                 if (rc)
489                         goto out_free;
490
491                 sbsec->def_sid = sid;
492         }
493
494 out_free:
495         if (alloc) {
496                 kfree(context);
497                 kfree(defcontext);
498         }
499 out:
500         return rc;
501 }
502
503 static int superblock_doinit(struct super_block *sb, void *data)
504 {
505         struct superblock_security_struct *sbsec = sb->s_security;
506         struct dentry *root = sb->s_root;
507         struct inode *inode = root->d_inode;
508         int rc = 0;
509
510         down(&sbsec->sem);
511         if (sbsec->initialized)
512                 goto out;
513
514         if (!ss_initialized) {
515                 /* Defer initialization until selinux_complete_init,
516                    after the initial policy is loaded and the security
517                    server is ready to handle calls. */
518                 spin_lock(&sb_security_lock);
519                 if (list_empty(&sbsec->list))
520                         list_add(&sbsec->list, &superblock_security_head);
521                 spin_unlock(&sb_security_lock);
522                 goto out;
523         }
524
525         /* Determine the labeling behavior to use for this filesystem type. */
526         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
527         if (rc) {
528                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
529                        __FUNCTION__, sb->s_type->name, rc);
530                 goto out;
531         }
532
533         rc = try_context_mount(sb, data);
534         if (rc)
535                 goto out;
536
537         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
538                 /* Make sure that the xattr handler exists and that no
539                    error other than -ENODATA is returned by getxattr on
540                    the root directory.  -ENODATA is ok, as this may be
541                    the first boot of the SELinux kernel before we have
542                    assigned xattr values to the filesystem. */
543                 if (!inode->i_op->getxattr) {
544                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
545                                "xattr support\n", sb->s_id, sb->s_type->name);
546                         rc = -EOPNOTSUPP;
547                         goto out;
548                 }
549                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
550                 if (rc < 0 && rc != -ENODATA) {
551                         if (rc == -EOPNOTSUPP)
552                                 printk(KERN_WARNING "SELinux: (dev %s, type "
553                                        "%s) has no security xattr handler\n",
554                                        sb->s_id, sb->s_type->name);
555                         else
556                                 printk(KERN_WARNING "SELinux: (dev %s, type "
557                                        "%s) getxattr errno %d\n", sb->s_id,
558                                        sb->s_type->name, -rc);
559                         goto out;
560                 }
561         }
562
563         if (strcmp(sb->s_type->name, "proc") == 0)
564                 sbsec->proc = 1;
565
566         sbsec->initialized = 1;
567
568         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
569                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
570                        sb->s_id, sb->s_type->name);
571         }
572         else {
573                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
574                        sb->s_id, sb->s_type->name,
575                        labeling_behaviors[sbsec->behavior-1]);
576         }
577
578         /* Initialize the root inode. */
579         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
580
581         /* Initialize any other inodes associated with the superblock, e.g.
582            inodes created prior to initial policy load or inodes created
583            during get_sb by a pseudo filesystem that directly
584            populates itself. */
585         spin_lock(&sbsec->isec_lock);
586 next_inode:
587         if (!list_empty(&sbsec->isec_head)) {
588                 struct inode_security_struct *isec =
589                                 list_entry(sbsec->isec_head.next,
590                                            struct inode_security_struct, list);
591                 struct inode *inode = isec->inode;
592                 spin_unlock(&sbsec->isec_lock);
593                 inode = igrab(inode);
594                 if (inode) {
595                         if (!IS_PRIVATE (inode))
596                                 inode_doinit(inode);
597                         iput(inode);
598                 }
599                 spin_lock(&sbsec->isec_lock);
600                 list_del_init(&isec->list);
601                 goto next_inode;
602         }
603         spin_unlock(&sbsec->isec_lock);
604 out:
605         up(&sbsec->sem);
606         return rc;
607 }
608
609 static inline u16 inode_mode_to_security_class(umode_t mode)
610 {
611         switch (mode & S_IFMT) {
612         case S_IFSOCK:
613                 return SECCLASS_SOCK_FILE;
614         case S_IFLNK:
615                 return SECCLASS_LNK_FILE;
616         case S_IFREG:
617                 return SECCLASS_FILE;
618         case S_IFBLK:
619                 return SECCLASS_BLK_FILE;
620         case S_IFDIR:
621                 return SECCLASS_DIR;
622         case S_IFCHR:
623                 return SECCLASS_CHR_FILE;
624         case S_IFIFO:
625                 return SECCLASS_FIFO_FILE;
626
627         }
628
629         return SECCLASS_FILE;
630 }
631
632 static inline int default_protocol_stream(int protocol)
633 {
634         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
635 }
636
637 static inline int default_protocol_dgram(int protocol)
638 {
639         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
640 }
641
642 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
643 {
644         switch (family) {
645         case PF_UNIX:
646                 switch (type) {
647                 case SOCK_STREAM:
648                 case SOCK_SEQPACKET:
649                         return SECCLASS_UNIX_STREAM_SOCKET;
650                 case SOCK_DGRAM:
651                         return SECCLASS_UNIX_DGRAM_SOCKET;
652                 }
653                 break;
654         case PF_INET:
655         case PF_INET6:
656                 switch (type) {
657                 case SOCK_STREAM:
658                         if (default_protocol_stream(protocol))
659                                 return SECCLASS_TCP_SOCKET;
660                         else
661                                 return SECCLASS_RAWIP_SOCKET;
662                 case SOCK_DGRAM:
663                         if (default_protocol_dgram(protocol))
664                                 return SECCLASS_UDP_SOCKET;
665                         else
666                                 return SECCLASS_RAWIP_SOCKET;
667                 default:
668                         return SECCLASS_RAWIP_SOCKET;
669                 }
670                 break;
671         case PF_NETLINK:
672                 switch (protocol) {
673                 case NETLINK_ROUTE:
674                         return SECCLASS_NETLINK_ROUTE_SOCKET;
675                 case NETLINK_FIREWALL:
676                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
677                 case NETLINK_INET_DIAG:
678                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
679                 case NETLINK_NFLOG:
680                         return SECCLASS_NETLINK_NFLOG_SOCKET;
681                 case NETLINK_XFRM:
682                         return SECCLASS_NETLINK_XFRM_SOCKET;
683                 case NETLINK_SELINUX:
684                         return SECCLASS_NETLINK_SELINUX_SOCKET;
685                 case NETLINK_AUDIT:
686                         return SECCLASS_NETLINK_AUDIT_SOCKET;
687                 case NETLINK_IP6_FW:
688                         return SECCLASS_NETLINK_IP6FW_SOCKET;
689                 case NETLINK_DNRTMSG:
690                         return SECCLASS_NETLINK_DNRT_SOCKET;
691                 case NETLINK_KOBJECT_UEVENT:
692                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
693                 default:
694                         return SECCLASS_NETLINK_SOCKET;
695                 }
696         case PF_PACKET:
697                 return SECCLASS_PACKET_SOCKET;
698         case PF_KEY:
699                 return SECCLASS_KEY_SOCKET;
700         case PF_APPLETALK:
701                 return SECCLASS_APPLETALK_SOCKET;
702         }
703
704         return SECCLASS_SOCKET;
705 }
706
707 #ifdef CONFIG_PROC_FS
708 static int selinux_proc_get_sid(struct proc_dir_entry *de,
709                                 u16 tclass,
710                                 u32 *sid)
711 {
712         int buflen, rc;
713         char *buffer, *path, *end;
714
715         buffer = (char*)__get_free_page(GFP_KERNEL);
716         if (!buffer)
717                 return -ENOMEM;
718
719         buflen = PAGE_SIZE;
720         end = buffer+buflen;
721         *--end = '\0';
722         buflen--;
723         path = end-1;
724         *path = '/';
725         while (de && de != de->parent) {
726                 buflen -= de->namelen + 1;
727                 if (buflen < 0)
728                         break;
729                 end -= de->namelen;
730                 memcpy(end, de->name, de->namelen);
731                 *--end = '/';
732                 path = end;
733                 de = de->parent;
734         }
735         rc = security_genfs_sid("proc", path, tclass, sid);
736         free_page((unsigned long)buffer);
737         return rc;
738 }
739 #else
740 static int selinux_proc_get_sid(struct proc_dir_entry *de,
741                                 u16 tclass,
742                                 u32 *sid)
743 {
744         return -EINVAL;
745 }
746 #endif
747
748 /* The inode's security attributes must be initialized before first use. */
749 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
750 {
751         struct superblock_security_struct *sbsec = NULL;
752         struct inode_security_struct *isec = inode->i_security;
753         u32 sid;
754         struct dentry *dentry;
755 #define INITCONTEXTLEN 255
756         char *context = NULL;
757         unsigned len = 0;
758         int rc = 0;
759         int hold_sem = 0;
760
761         if (isec->initialized)
762                 goto out;
763
764         down(&isec->sem);
765         hold_sem = 1;
766         if (isec->initialized)
767                 goto out;
768
769         sbsec = inode->i_sb->s_security;
770         if (!sbsec->initialized) {
771                 /* Defer initialization until selinux_complete_init,
772                    after the initial policy is loaded and the security
773                    server is ready to handle calls. */
774                 spin_lock(&sbsec->isec_lock);
775                 if (list_empty(&isec->list))
776                         list_add(&isec->list, &sbsec->isec_head);
777                 spin_unlock(&sbsec->isec_lock);
778                 goto out;
779         }
780
781         switch (sbsec->behavior) {
782         case SECURITY_FS_USE_XATTR:
783                 if (!inode->i_op->getxattr) {
784                         isec->sid = sbsec->def_sid;
785                         break;
786                 }
787
788                 /* Need a dentry, since the xattr API requires one.
789                    Life would be simpler if we could just pass the inode. */
790                 if (opt_dentry) {
791                         /* Called from d_instantiate or d_splice_alias. */
792                         dentry = dget(opt_dentry);
793                 } else {
794                         /* Called from selinux_complete_init, try to find a dentry. */
795                         dentry = d_find_alias(inode);
796                 }
797                 if (!dentry) {
798                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
799                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
800                                inode->i_ino);
801                         goto out;
802                 }
803
804                 len = INITCONTEXTLEN;
805                 context = kmalloc(len, GFP_KERNEL);
806                 if (!context) {
807                         rc = -ENOMEM;
808                         dput(dentry);
809                         goto out;
810                 }
811                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
812                                            context, len);
813                 if (rc == -ERANGE) {
814                         /* Need a larger buffer.  Query for the right size. */
815                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
816                                                    NULL, 0);
817                         if (rc < 0) {
818                                 dput(dentry);
819                                 goto out;
820                         }
821                         kfree(context);
822                         len = rc;
823                         context = kmalloc(len, GFP_KERNEL);
824                         if (!context) {
825                                 rc = -ENOMEM;
826                                 dput(dentry);
827                                 goto out;
828                         }
829                         rc = inode->i_op->getxattr(dentry,
830                                                    XATTR_NAME_SELINUX,
831                                                    context, len);
832                 }
833                 dput(dentry);
834                 if (rc < 0) {
835                         if (rc != -ENODATA) {
836                                 printk(KERN_WARNING "%s:  getxattr returned "
837                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
838                                        -rc, inode->i_sb->s_id, inode->i_ino);
839                                 kfree(context);
840                                 goto out;
841                         }
842                         /* Map ENODATA to the default file SID */
843                         sid = sbsec->def_sid;
844                         rc = 0;
845                 } else {
846                         rc = security_context_to_sid_default(context, rc, &sid,
847                                                              sbsec->def_sid);
848                         if (rc) {
849                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
850                                        "returned %d for dev=%s ino=%ld\n",
851                                        __FUNCTION__, context, -rc,
852                                        inode->i_sb->s_id, inode->i_ino);
853                                 kfree(context);
854                                 /* Leave with the unlabeled SID */
855                                 rc = 0;
856                                 break;
857                         }
858                 }
859                 kfree(context);
860                 isec->sid = sid;
861                 break;
862         case SECURITY_FS_USE_TASK:
863                 isec->sid = isec->task_sid;
864                 break;
865         case SECURITY_FS_USE_TRANS:
866                 /* Default to the fs SID. */
867                 isec->sid = sbsec->sid;
868
869                 /* Try to obtain a transition SID. */
870                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
871                 rc = security_transition_sid(isec->task_sid,
872                                              sbsec->sid,
873                                              isec->sclass,
874                                              &sid);
875                 if (rc)
876                         goto out;
877                 isec->sid = sid;
878                 break;
879         default:
880                 /* Default to the fs SID. */
881                 isec->sid = sbsec->sid;
882
883                 if (sbsec->proc) {
884                         struct proc_inode *proci = PROC_I(inode);
885                         if (proci->pde) {
886                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
887                                 rc = selinux_proc_get_sid(proci->pde,
888                                                           isec->sclass,
889                                                           &sid);
890                                 if (rc)
891                                         goto out;
892                                 isec->sid = sid;
893                         }
894                 }
895                 break;
896         }
897
898         isec->initialized = 1;
899
900 out:
901         if (isec->sclass == SECCLASS_FILE)
902                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
903
904         if (hold_sem)
905                 up(&isec->sem);
906         return rc;
907 }
908
909 /* Convert a Linux signal to an access vector. */
910 static inline u32 signal_to_av(int sig)
911 {
912         u32 perm = 0;
913
914         switch (sig) {
915         case SIGCHLD:
916                 /* Commonly granted from child to parent. */
917                 perm = PROCESS__SIGCHLD;
918                 break;
919         case SIGKILL:
920                 /* Cannot be caught or ignored */
921                 perm = PROCESS__SIGKILL;
922                 break;
923         case SIGSTOP:
924                 /* Cannot be caught or ignored */
925                 perm = PROCESS__SIGSTOP;
926                 break;
927         default:
928                 /* All other signals. */
929                 perm = PROCESS__SIGNAL;
930                 break;
931         }
932
933         return perm;
934 }
935
936 /* Check permission betweeen a pair of tasks, e.g. signal checks,
937    fork check, ptrace check, etc. */
938 static int task_has_perm(struct task_struct *tsk1,
939                          struct task_struct *tsk2,
940                          u32 perms)
941 {
942         struct task_security_struct *tsec1, *tsec2;
943
944         tsec1 = tsk1->security;
945         tsec2 = tsk2->security;
946         return avc_has_perm(tsec1->sid, tsec2->sid,
947                             SECCLASS_PROCESS, perms, NULL);
948 }
949
950 /* Check whether a task is allowed to use a capability. */
951 static int task_has_capability(struct task_struct *tsk,
952                                int cap)
953 {
954         struct task_security_struct *tsec;
955         struct avc_audit_data ad;
956
957         tsec = tsk->security;
958
959         AVC_AUDIT_DATA_INIT(&ad,CAP);
960         ad.tsk = tsk;
961         ad.u.cap = cap;
962
963         return avc_has_perm(tsec->sid, tsec->sid,
964                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
965 }
966
967 /* Check whether a task is allowed to use a system operation. */
968 static int task_has_system(struct task_struct *tsk,
969                            u32 perms)
970 {
971         struct task_security_struct *tsec;
972
973         tsec = tsk->security;
974
975         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
976                             SECCLASS_SYSTEM, perms, NULL);
977 }
978
979 /* Check whether a task has a particular permission to an inode.
980    The 'adp' parameter is optional and allows other audit
981    data to be passed (e.g. the dentry). */
982 static int inode_has_perm(struct task_struct *tsk,
983                           struct inode *inode,
984                           u32 perms,
985                           struct avc_audit_data *adp)
986 {
987         struct task_security_struct *tsec;
988         struct inode_security_struct *isec;
989         struct avc_audit_data ad;
990
991         tsec = tsk->security;
992         isec = inode->i_security;
993
994         if (!adp) {
995                 adp = &ad;
996                 AVC_AUDIT_DATA_INIT(&ad, FS);
997                 ad.u.fs.inode = inode;
998         }
999
1000         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1001 }
1002
1003 /* Same as inode_has_perm, but pass explicit audit data containing
1004    the dentry to help the auditing code to more easily generate the
1005    pathname if needed. */
1006 static inline int dentry_has_perm(struct task_struct *tsk,
1007                                   struct vfsmount *mnt,
1008                                   struct dentry *dentry,
1009                                   u32 av)
1010 {
1011         struct inode *inode = dentry->d_inode;
1012         struct avc_audit_data ad;
1013         AVC_AUDIT_DATA_INIT(&ad,FS);
1014         ad.u.fs.mnt = mnt;
1015         ad.u.fs.dentry = dentry;
1016         return inode_has_perm(tsk, inode, av, &ad);
1017 }
1018
1019 /* Check whether a task can use an open file descriptor to
1020    access an inode in a given way.  Check access to the
1021    descriptor itself, and then use dentry_has_perm to
1022    check a particular permission to the file.
1023    Access to the descriptor is implicitly granted if it
1024    has the same SID as the process.  If av is zero, then
1025    access to the file is not checked, e.g. for cases
1026    where only the descriptor is affected like seek. */
1027 static int file_has_perm(struct task_struct *tsk,
1028                                 struct file *file,
1029                                 u32 av)
1030 {
1031         struct task_security_struct *tsec = tsk->security;
1032         struct file_security_struct *fsec = file->f_security;
1033         struct vfsmount *mnt = file->f_vfsmnt;
1034         struct dentry *dentry = file->f_dentry;
1035         struct inode *inode = dentry->d_inode;
1036         struct avc_audit_data ad;
1037         int rc;
1038
1039         AVC_AUDIT_DATA_INIT(&ad, FS);
1040         ad.u.fs.mnt = mnt;
1041         ad.u.fs.dentry = dentry;
1042
1043         if (tsec->sid != fsec->sid) {
1044                 rc = avc_has_perm(tsec->sid, fsec->sid,
1045                                   SECCLASS_FD,
1046                                   FD__USE,
1047                                   &ad);
1048                 if (rc)
1049                         return rc;
1050         }
1051
1052         /* av is zero if only checking access to the descriptor. */
1053         if (av)
1054                 return inode_has_perm(tsk, inode, av, &ad);
1055
1056         return 0;
1057 }
1058
1059 /* Check whether a task can create a file. */
1060 static int may_create(struct inode *dir,
1061                       struct dentry *dentry,
1062                       u16 tclass)
1063 {
1064         struct task_security_struct *tsec;
1065         struct inode_security_struct *dsec;
1066         struct superblock_security_struct *sbsec;
1067         u32 newsid;
1068         struct avc_audit_data ad;
1069         int rc;
1070
1071         tsec = current->security;
1072         dsec = dir->i_security;
1073         sbsec = dir->i_sb->s_security;
1074
1075         AVC_AUDIT_DATA_INIT(&ad, FS);
1076         ad.u.fs.dentry = dentry;
1077
1078         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1079                           DIR__ADD_NAME | DIR__SEARCH,
1080                           &ad);
1081         if (rc)
1082                 return rc;
1083
1084         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1085                 newsid = tsec->create_sid;
1086         } else {
1087                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1088                                              &newsid);
1089                 if (rc)
1090                         return rc;
1091         }
1092
1093         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1094         if (rc)
1095                 return rc;
1096
1097         return avc_has_perm(newsid, sbsec->sid,
1098                             SECCLASS_FILESYSTEM,
1099                             FILESYSTEM__ASSOCIATE, &ad);
1100 }
1101
1102 /* Check whether a task can create a key. */
1103 static int may_create_key(u32 ksid,
1104                           struct task_struct *ctx)
1105 {
1106         struct task_security_struct *tsec;
1107
1108         tsec = ctx->security;
1109
1110         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1111 }
1112
1113 #define MAY_LINK   0
1114 #define MAY_UNLINK 1
1115 #define MAY_RMDIR  2
1116
1117 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1118 static int may_link(struct inode *dir,
1119                     struct dentry *dentry,
1120                     int kind)
1121
1122 {
1123         struct task_security_struct *tsec;
1124         struct inode_security_struct *dsec, *isec;
1125         struct avc_audit_data ad;
1126         u32 av;
1127         int rc;
1128
1129         tsec = current->security;
1130         dsec = dir->i_security;
1131         isec = dentry->d_inode->i_security;
1132
1133         AVC_AUDIT_DATA_INIT(&ad, FS);
1134         ad.u.fs.dentry = dentry;
1135
1136         av = DIR__SEARCH;
1137         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1138         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1139         if (rc)
1140                 return rc;
1141
1142         switch (kind) {
1143         case MAY_LINK:
1144                 av = FILE__LINK;
1145                 break;
1146         case MAY_UNLINK:
1147                 av = FILE__UNLINK;
1148                 break;
1149         case MAY_RMDIR:
1150                 av = DIR__RMDIR;
1151                 break;
1152         default:
1153                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1154                 return 0;
1155         }
1156
1157         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1158         return rc;
1159 }
1160
1161 static inline int may_rename(struct inode *old_dir,
1162                              struct dentry *old_dentry,
1163                              struct inode *new_dir,
1164                              struct dentry *new_dentry)
1165 {
1166         struct task_security_struct *tsec;
1167         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1168         struct avc_audit_data ad;
1169         u32 av;
1170         int old_is_dir, new_is_dir;
1171         int rc;
1172
1173         tsec = current->security;
1174         old_dsec = old_dir->i_security;
1175         old_isec = old_dentry->d_inode->i_security;
1176         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1177         new_dsec = new_dir->i_security;
1178
1179         AVC_AUDIT_DATA_INIT(&ad, FS);
1180
1181         ad.u.fs.dentry = old_dentry;
1182         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1183                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1184         if (rc)
1185                 return rc;
1186         rc = avc_has_perm(tsec->sid, old_isec->sid,
1187                           old_isec->sclass, FILE__RENAME, &ad);
1188         if (rc)
1189                 return rc;
1190         if (old_is_dir && new_dir != old_dir) {
1191                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1192                                   old_isec->sclass, DIR__REPARENT, &ad);
1193                 if (rc)
1194                         return rc;
1195         }
1196
1197         ad.u.fs.dentry = new_dentry;
1198         av = DIR__ADD_NAME | DIR__SEARCH;
1199         if (new_dentry->d_inode)
1200                 av |= DIR__REMOVE_NAME;
1201         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1202         if (rc)
1203                 return rc;
1204         if (new_dentry->d_inode) {
1205                 new_isec = new_dentry->d_inode->i_security;
1206                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1207                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1208                                   new_isec->sclass,
1209                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1210                 if (rc)
1211                         return rc;
1212         }
1213
1214         return 0;
1215 }
1216
1217 /* Check whether a task can perform a filesystem operation. */
1218 static int superblock_has_perm(struct task_struct *tsk,
1219                                struct super_block *sb,
1220                                u32 perms,
1221                                struct avc_audit_data *ad)
1222 {
1223         struct task_security_struct *tsec;
1224         struct superblock_security_struct *sbsec;
1225
1226         tsec = tsk->security;
1227         sbsec = sb->s_security;
1228         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1229                             perms, ad);
1230 }
1231
1232 /* Convert a Linux mode and permission mask to an access vector. */
1233 static inline u32 file_mask_to_av(int mode, int mask)
1234 {
1235         u32 av = 0;
1236
1237         if ((mode & S_IFMT) != S_IFDIR) {
1238                 if (mask & MAY_EXEC)
1239                         av |= FILE__EXECUTE;
1240                 if (mask & MAY_READ)
1241                         av |= FILE__READ;
1242
1243                 if (mask & MAY_APPEND)
1244                         av |= FILE__APPEND;
1245                 else if (mask & MAY_WRITE)
1246                         av |= FILE__WRITE;
1247
1248         } else {
1249                 if (mask & MAY_EXEC)
1250                         av |= DIR__SEARCH;
1251                 if (mask & MAY_WRITE)
1252                         av |= DIR__WRITE;
1253                 if (mask & MAY_READ)
1254                         av |= DIR__READ;
1255         }
1256
1257         return av;
1258 }
1259
1260 /* Convert a Linux file to an access vector. */
1261 static inline u32 file_to_av(struct file *file)
1262 {
1263         u32 av = 0;
1264
1265         if (file->f_mode & FMODE_READ)
1266                 av |= FILE__READ;
1267         if (file->f_mode & FMODE_WRITE) {
1268                 if (file->f_flags & O_APPEND)
1269                         av |= FILE__APPEND;
1270                 else
1271                         av |= FILE__WRITE;
1272         }
1273
1274         return av;
1275 }
1276
1277 /* Set an inode's SID to a specified value. */
1278 static int inode_security_set_sid(struct inode *inode, u32 sid)
1279 {
1280         struct inode_security_struct *isec = inode->i_security;
1281         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1282
1283         if (!sbsec->initialized) {
1284                 /* Defer initialization to selinux_complete_init. */
1285                 return 0;
1286         }
1287
1288         down(&isec->sem);
1289         isec->sclass = inode_mode_to_security_class(inode->i_mode);
1290         isec->sid = sid;
1291         isec->initialized = 1;
1292         up(&isec->sem);
1293         return 0;
1294 }
1295
1296 /* Hook functions begin here. */
1297
1298 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1299 {
1300         struct task_security_struct *psec = parent->security;
1301         struct task_security_struct *csec = child->security;
1302         int rc;
1303
1304         rc = secondary_ops->ptrace(parent,child);
1305         if (rc)
1306                 return rc;
1307
1308         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1309         /* Save the SID of the tracing process for later use in apply_creds. */
1310         if (!(child->ptrace & PT_PTRACED) && !rc)
1311                 csec->ptrace_sid = psec->sid;
1312         return rc;
1313 }
1314
1315 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1316                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1317 {
1318         int error;
1319
1320         error = task_has_perm(current, target, PROCESS__GETCAP);
1321         if (error)
1322                 return error;
1323
1324         return secondary_ops->capget(target, effective, inheritable, permitted);
1325 }
1326
1327 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1328                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1329 {
1330         int error;
1331
1332         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1333         if (error)
1334                 return error;
1335
1336         return task_has_perm(current, target, PROCESS__SETCAP);
1337 }
1338
1339 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1340                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1341 {
1342         secondary_ops->capset_set(target, effective, inheritable, permitted);
1343 }
1344
1345 static int selinux_capable(struct task_struct *tsk, int cap)
1346 {
1347         int rc;
1348
1349         rc = secondary_ops->capable(tsk, cap);
1350         if (rc)
1351                 return rc;
1352
1353         return task_has_capability(tsk,cap);
1354 }
1355
1356 static int selinux_sysctl(ctl_table *table, int op)
1357 {
1358         int error = 0;
1359         u32 av;
1360         struct task_security_struct *tsec;
1361         u32 tsid;
1362         int rc;
1363
1364         rc = secondary_ops->sysctl(table, op);
1365         if (rc)
1366                 return rc;
1367
1368         tsec = current->security;
1369
1370         rc = selinux_proc_get_sid(table->de, (op == 001) ?
1371                                   SECCLASS_DIR : SECCLASS_FILE, &tsid);
1372         if (rc) {
1373                 /* Default to the well-defined sysctl SID. */
1374                 tsid = SECINITSID_SYSCTL;
1375         }
1376
1377         /* The op values are "defined" in sysctl.c, thereby creating
1378          * a bad coupling between this module and sysctl.c */
1379         if(op == 001) {
1380                 error = avc_has_perm(tsec->sid, tsid,
1381                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1382         } else {
1383                 av = 0;
1384                 if (op & 004)
1385                         av |= FILE__READ;
1386                 if (op & 002)
1387                         av |= FILE__WRITE;
1388                 if (av)
1389                         error = avc_has_perm(tsec->sid, tsid,
1390                                              SECCLASS_FILE, av, NULL);
1391         }
1392
1393         return error;
1394 }
1395
1396 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1397 {
1398         int rc = 0;
1399
1400         if (!sb)
1401                 return 0;
1402
1403         switch (cmds) {
1404                 case Q_SYNC:
1405                 case Q_QUOTAON:
1406                 case Q_QUOTAOFF:
1407                 case Q_SETINFO:
1408                 case Q_SETQUOTA:
1409                         rc = superblock_has_perm(current,
1410                                                  sb,
1411                                                  FILESYSTEM__QUOTAMOD, NULL);
1412                         break;
1413                 case Q_GETFMT:
1414                 case Q_GETINFO:
1415                 case Q_GETQUOTA:
1416                         rc = superblock_has_perm(current,
1417                                                  sb,
1418                                                  FILESYSTEM__QUOTAGET, NULL);
1419                         break;
1420                 default:
1421                         rc = 0;  /* let the kernel handle invalid cmds */
1422                         break;
1423         }
1424         return rc;
1425 }
1426
1427 static int selinux_quota_on(struct dentry *dentry)
1428 {
1429         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1430 }
1431
1432 static int selinux_syslog(int type)
1433 {
1434         int rc;
1435
1436         rc = secondary_ops->syslog(type);
1437         if (rc)
1438                 return rc;
1439
1440         switch (type) {
1441                 case 3:         /* Read last kernel messages */
1442                 case 10:        /* Return size of the log buffer */
1443                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1444                         break;
1445                 case 6:         /* Disable logging to console */
1446                 case 7:         /* Enable logging to console */
1447                 case 8:         /* Set level of messages printed to console */
1448                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1449                         break;
1450                 case 0:         /* Close log */
1451                 case 1:         /* Open log */
1452                 case 2:         /* Read from log */
1453                 case 4:         /* Read/clear last kernel messages */
1454                 case 5:         /* Clear ring buffer */
1455                 default:
1456                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1457                         break;
1458         }
1459         return rc;
1460 }
1461
1462 /*
1463  * Check that a process has enough memory to allocate a new virtual
1464  * mapping. 0 means there is enough memory for the allocation to
1465  * succeed and -ENOMEM implies there is not.
1466  *
1467  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1468  * if the capability is granted, but __vm_enough_memory requires 1 if
1469  * the capability is granted.
1470  *
1471  * Do not audit the selinux permission check, as this is applied to all
1472  * processes that allocate mappings.
1473  */
1474 static int selinux_vm_enough_memory(long pages)
1475 {
1476         int rc, cap_sys_admin = 0;
1477         struct task_security_struct *tsec = current->security;
1478
1479         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1480         if (rc == 0)
1481                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1482                                         SECCLASS_CAPABILITY,
1483                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1484                                         NULL);
1485
1486         if (rc == 0)
1487                 cap_sys_admin = 1;
1488
1489         return __vm_enough_memory(pages, cap_sys_admin);
1490 }
1491
1492 /* binprm security operations */
1493
1494 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1495 {
1496         struct bprm_security_struct *bsec;
1497
1498         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1499         if (!bsec)
1500                 return -ENOMEM;
1501
1502         bsec->bprm = bprm;
1503         bsec->sid = SECINITSID_UNLABELED;
1504         bsec->set = 0;
1505
1506         bprm->security = bsec;
1507         return 0;
1508 }
1509
1510 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1511 {
1512         struct task_security_struct *tsec;
1513         struct inode *inode = bprm->file->f_dentry->d_inode;
1514         struct inode_security_struct *isec;
1515         struct bprm_security_struct *bsec;
1516         u32 newsid;
1517         struct avc_audit_data ad;
1518         int rc;
1519
1520         rc = secondary_ops->bprm_set_security(bprm);
1521         if (rc)
1522                 return rc;
1523
1524         bsec = bprm->security;
1525
1526         if (bsec->set)
1527                 return 0;
1528
1529         tsec = current->security;
1530         isec = inode->i_security;
1531
1532         /* Default to the current task SID. */
1533         bsec->sid = tsec->sid;
1534
1535         /* Reset fs, key, and sock SIDs on execve. */
1536         tsec->create_sid = 0;
1537         tsec->keycreate_sid = 0;
1538         tsec->sockcreate_sid = 0;
1539
1540         if (tsec->exec_sid) {
1541                 newsid = tsec->exec_sid;
1542                 /* Reset exec SID on execve. */
1543                 tsec->exec_sid = 0;
1544         } else {
1545                 /* Check for a default transition on this program. */
1546                 rc = security_transition_sid(tsec->sid, isec->sid,
1547                                              SECCLASS_PROCESS, &newsid);
1548                 if (rc)
1549                         return rc;
1550         }
1551
1552         AVC_AUDIT_DATA_INIT(&ad, FS);
1553         ad.u.fs.mnt = bprm->file->f_vfsmnt;
1554         ad.u.fs.dentry = bprm->file->f_dentry;
1555
1556         if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1557                 newsid = tsec->sid;
1558
1559         if (tsec->sid == newsid) {
1560                 rc = avc_has_perm(tsec->sid, isec->sid,
1561                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1562                 if (rc)
1563                         return rc;
1564         } else {
1565                 /* Check permissions for the transition. */
1566                 rc = avc_has_perm(tsec->sid, newsid,
1567                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1568                 if (rc)
1569                         return rc;
1570
1571                 rc = avc_has_perm(newsid, isec->sid,
1572                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1573                 if (rc)
1574                         return rc;
1575
1576                 /* Clear any possibly unsafe personality bits on exec: */
1577                 current->personality &= ~PER_CLEAR_ON_SETID;
1578
1579                 /* Set the security field to the new SID. */
1580                 bsec->sid = newsid;
1581         }
1582
1583         bsec->set = 1;
1584         return 0;
1585 }
1586
1587 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1588 {
1589         return secondary_ops->bprm_check_security(bprm);
1590 }
1591
1592
1593 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1594 {
1595         struct task_security_struct *tsec = current->security;
1596         int atsecure = 0;
1597
1598         if (tsec->osid != tsec->sid) {
1599                 /* Enable secure mode for SIDs transitions unless
1600                    the noatsecure permission is granted between
1601                    the two SIDs, i.e. ahp returns 0. */
1602                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1603                                          SECCLASS_PROCESS,
1604                                          PROCESS__NOATSECURE, NULL);
1605         }
1606
1607         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1608 }
1609
1610 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1611 {
1612         kfree(bprm->security);
1613         bprm->security = NULL;
1614 }
1615
1616 extern struct vfsmount *selinuxfs_mount;
1617 extern struct dentry *selinux_null;
1618
1619 /* Derived from fs/exec.c:flush_old_files. */
1620 static inline void flush_unauthorized_files(struct files_struct * files)
1621 {
1622         struct avc_audit_data ad;
1623         struct file *file, *devnull = NULL;
1624         struct tty_struct *tty = current->signal->tty;
1625         struct fdtable *fdt;
1626         long j = -1;
1627
1628         if (tty) {
1629                 file_list_lock();
1630                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1631                 if (file) {
1632                         /* Revalidate access to controlling tty.
1633                            Use inode_has_perm on the tty inode directly rather
1634                            than using file_has_perm, as this particular open
1635                            file may belong to another process and we are only
1636                            interested in the inode-based check here. */
1637                         struct inode *inode = file->f_dentry->d_inode;
1638                         if (inode_has_perm(current, inode,
1639                                            FILE__READ | FILE__WRITE, NULL)) {
1640                                 /* Reset controlling tty. */
1641                                 current->signal->tty = NULL;
1642                                 current->signal->tty_old_pgrp = 0;
1643                         }
1644                 }
1645                 file_list_unlock();
1646         }
1647
1648         /* Revalidate access to inherited open files. */
1649
1650         AVC_AUDIT_DATA_INIT(&ad,FS);
1651
1652         spin_lock(&files->file_lock);
1653         for (;;) {
1654                 unsigned long set, i;
1655                 int fd;
1656
1657                 j++;
1658                 i = j * __NFDBITS;
1659                 fdt = files_fdtable(files);
1660                 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1661                         break;
1662                 set = fdt->open_fds->fds_bits[j];
1663                 if (!set)
1664                         continue;
1665                 spin_unlock(&files->file_lock);
1666                 for ( ; set ; i++,set >>= 1) {
1667                         if (set & 1) {
1668                                 file = fget(i);
1669                                 if (!file)
1670                                         continue;
1671                                 if (file_has_perm(current,
1672                                                   file,
1673                                                   file_to_av(file))) {
1674                                         sys_close(i);
1675                                         fd = get_unused_fd();
1676                                         if (fd != i) {
1677                                                 if (fd >= 0)
1678                                                         put_unused_fd(fd);
1679                                                 fput(file);
1680                                                 continue;
1681                                         }
1682                                         if (devnull) {
1683                                                 get_file(devnull);
1684                                         } else {
1685                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1686                                                 if (!devnull) {
1687                                                         put_unused_fd(fd);
1688                                                         fput(file);
1689                                                         continue;
1690                                                 }
1691                                         }
1692                                         fd_install(fd, devnull);
1693                                 }
1694                                 fput(file);
1695                         }
1696                 }
1697                 spin_lock(&files->file_lock);
1698
1699         }
1700         spin_unlock(&files->file_lock);
1701 }
1702
1703 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1704 {
1705         struct task_security_struct *tsec;
1706         struct bprm_security_struct *bsec;
1707         u32 sid;
1708         int rc;
1709
1710         secondary_ops->bprm_apply_creds(bprm, unsafe);
1711
1712         tsec = current->security;
1713
1714         bsec = bprm->security;
1715         sid = bsec->sid;
1716
1717         tsec->osid = tsec->sid;
1718         bsec->unsafe = 0;
1719         if (tsec->sid != sid) {
1720                 /* Check for shared state.  If not ok, leave SID
1721                    unchanged and kill. */
1722                 if (unsafe & LSM_UNSAFE_SHARE) {
1723                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1724                                         PROCESS__SHARE, NULL);
1725                         if (rc) {
1726                                 bsec->unsafe = 1;
1727                                 return;
1728                         }
1729                 }
1730
1731                 /* Check for ptracing, and update the task SID if ok.
1732                    Otherwise, leave SID unchanged and kill. */
1733                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1734                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1735                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1736                                           NULL);
1737                         if (rc) {
1738                                 bsec->unsafe = 1;
1739                                 return;
1740                         }
1741                 }
1742                 tsec->sid = sid;
1743         }
1744 }
1745
1746 /*
1747  * called after apply_creds without the task lock held
1748  */
1749 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1750 {
1751         struct task_security_struct *tsec;
1752         struct rlimit *rlim, *initrlim;
1753         struct itimerval itimer;
1754         struct bprm_security_struct *bsec;
1755         int rc, i;
1756
1757         tsec = current->security;
1758         bsec = bprm->security;
1759
1760         if (bsec->unsafe) {
1761                 force_sig_specific(SIGKILL, current);
1762                 return;
1763         }
1764         if (tsec->osid == tsec->sid)
1765                 return;
1766
1767         /* Close files for which the new task SID is not authorized. */
1768         flush_unauthorized_files(current->files);
1769
1770         /* Check whether the new SID can inherit signal state
1771            from the old SID.  If not, clear itimers to avoid
1772            subsequent signal generation and flush and unblock
1773            signals. This must occur _after_ the task SID has
1774           been updated so that any kill done after the flush
1775           will be checked against the new SID. */
1776         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1777                           PROCESS__SIGINH, NULL);
1778         if (rc) {
1779                 memset(&itimer, 0, sizeof itimer);
1780                 for (i = 0; i < 3; i++)
1781                         do_setitimer(i, &itimer, NULL);
1782                 flush_signals(current);
1783                 spin_lock_irq(&current->sighand->siglock);
1784                 flush_signal_handlers(current, 1);
1785                 sigemptyset(&current->blocked);
1786                 recalc_sigpending();
1787                 spin_unlock_irq(&current->sighand->siglock);
1788         }
1789
1790         /* Check whether the new SID can inherit resource limits
1791            from the old SID.  If not, reset all soft limits to
1792            the lower of the current task's hard limit and the init
1793            task's soft limit.  Note that the setting of hard limits
1794            (even to lower them) can be controlled by the setrlimit
1795            check. The inclusion of the init task's soft limit into
1796            the computation is to avoid resetting soft limits higher
1797            than the default soft limit for cases where the default
1798            is lower than the hard limit, e.g. RLIMIT_CORE or
1799            RLIMIT_STACK.*/
1800         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1801                           PROCESS__RLIMITINH, NULL);
1802         if (rc) {
1803                 for (i = 0; i < RLIM_NLIMITS; i++) {
1804                         rlim = current->signal->rlim + i;
1805                         initrlim = init_task.signal->rlim+i;
1806                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1807                 }
1808                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1809                         /*
1810                          * This will cause RLIMIT_CPU calculations
1811                          * to be refigured.
1812                          */
1813                         current->it_prof_expires = jiffies_to_cputime(1);
1814                 }
1815         }
1816
1817         /* Wake up the parent if it is waiting so that it can
1818            recheck wait permission to the new task SID. */
1819         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1820 }
1821
1822 /* superblock security operations */
1823
1824 static int selinux_sb_alloc_security(struct super_block *sb)
1825 {
1826         return superblock_alloc_security(sb);
1827 }
1828
1829 static void selinux_sb_free_security(struct super_block *sb)
1830 {
1831         superblock_free_security(sb);
1832 }
1833
1834 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1835 {
1836         if (plen > olen)
1837                 return 0;
1838
1839         return !memcmp(prefix, option, plen);
1840 }
1841
1842 static inline int selinux_option(char *option, int len)
1843 {
1844         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1845                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1846                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len));
1847 }
1848
1849 static inline void take_option(char **to, char *from, int *first, int len)
1850 {
1851         if (!*first) {
1852                 **to = ',';
1853                 *to += 1;
1854         }
1855         else
1856                 *first = 0;
1857         memcpy(*to, from, len);
1858         *to += len;
1859 }
1860
1861 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1862 {
1863         int fnosec, fsec, rc = 0;
1864         char *in_save, *in_curr, *in_end;
1865         char *sec_curr, *nosec_save, *nosec;
1866
1867         in_curr = orig;
1868         sec_curr = copy;
1869
1870         /* Binary mount data: just copy */
1871         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1872                 copy_page(sec_curr, in_curr);
1873                 goto out;
1874         }
1875
1876         nosec = (char *)get_zeroed_page(GFP_KERNEL);
1877         if (!nosec) {
1878                 rc = -ENOMEM;
1879                 goto out;
1880         }
1881
1882         nosec_save = nosec;
1883         fnosec = fsec = 1;
1884         in_save = in_end = orig;
1885
1886         do {
1887                 if (*in_end == ',' || *in_end == '\0') {
1888                         int len = in_end - in_curr;
1889
1890                         if (selinux_option(in_curr, len))
1891                                 take_option(&sec_curr, in_curr, &fsec, len);
1892                         else
1893                                 take_option(&nosec, in_curr, &fnosec, len);
1894
1895                         in_curr = in_end + 1;
1896                 }
1897         } while (*in_end++);
1898
1899         strcpy(in_save, nosec_save);
1900         free_page((unsigned long)nosec_save);
1901 out:
1902         return rc;
1903 }
1904
1905 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1906 {
1907         struct avc_audit_data ad;
1908         int rc;
1909
1910         rc = superblock_doinit(sb, data);
1911         if (rc)
1912                 return rc;
1913
1914         AVC_AUDIT_DATA_INIT(&ad,FS);
1915         ad.u.fs.dentry = sb->s_root;
1916         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
1917 }
1918
1919 static int selinux_sb_statfs(struct dentry *dentry)
1920 {
1921         struct avc_audit_data ad;
1922
1923         AVC_AUDIT_DATA_INIT(&ad,FS);
1924         ad.u.fs.dentry = dentry->d_sb->s_root;
1925         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
1926 }
1927
1928 static int selinux_mount(char * dev_name,
1929                          struct nameidata *nd,
1930                          char * type,
1931                          unsigned long flags,
1932                          void * data)
1933 {
1934         int rc;
1935
1936         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
1937         if (rc)
1938                 return rc;
1939
1940         if (flags & MS_REMOUNT)
1941                 return superblock_has_perm(current, nd->mnt->mnt_sb,
1942                                            FILESYSTEM__REMOUNT, NULL);
1943         else
1944                 return dentry_has_perm(current, nd->mnt, nd->dentry,
1945                                        FILE__MOUNTON);
1946 }
1947
1948 static int selinux_umount(struct vfsmount *mnt, int flags)
1949 {
1950         int rc;
1951
1952         rc = secondary_ops->sb_umount(mnt, flags);
1953         if (rc)
1954                 return rc;
1955
1956         return superblock_has_perm(current,mnt->mnt_sb,
1957                                    FILESYSTEM__UNMOUNT,NULL);
1958 }
1959
1960 /* inode security operations */
1961
1962 static int selinux_inode_alloc_security(struct inode *inode)
1963 {
1964         return inode_alloc_security(inode);
1965 }
1966
1967 static void selinux_inode_free_security(struct inode *inode)
1968 {
1969         inode_free_security(inode);
1970 }
1971
1972 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
1973                                        char **name, void **value,
1974                                        size_t *len)
1975 {
1976         struct task_security_struct *tsec;
1977         struct inode_security_struct *dsec;
1978         struct superblock_security_struct *sbsec;
1979         u32 newsid, clen;
1980         int rc;
1981         char *namep = NULL, *context;
1982
1983         tsec = current->security;
1984         dsec = dir->i_security;
1985         sbsec = dir->i_sb->s_security;
1986
1987         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1988                 newsid = tsec->create_sid;
1989         } else {
1990                 rc = security_transition_sid(tsec->sid, dsec->sid,
1991                                              inode_mode_to_security_class(inode->i_mode),
1992                                              &newsid);
1993                 if (rc) {
1994                         printk(KERN_WARNING "%s:  "
1995                                "security_transition_sid failed, rc=%d (dev=%s "
1996                                "ino=%ld)\n",
1997                                __FUNCTION__,
1998                                -rc, inode->i_sb->s_id, inode->i_ino);
1999                         return rc;
2000                 }
2001         }
2002
2003         inode_security_set_sid(inode, newsid);
2004
2005         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2006                 return -EOPNOTSUPP;
2007
2008         if (name) {
2009                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2010                 if (!namep)
2011                         return -ENOMEM;
2012                 *name = namep;
2013         }
2014
2015         if (value && len) {
2016                 rc = security_sid_to_context(newsid, &context, &clen);
2017                 if (rc) {
2018                         kfree(namep);
2019                         return rc;
2020                 }
2021                 *value = context;
2022                 *len = clen;
2023         }
2024
2025         return 0;
2026 }
2027
2028 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2029 {
2030         return may_create(dir, dentry, SECCLASS_FILE);
2031 }
2032
2033 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2034 {
2035         int rc;
2036
2037         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2038         if (rc)
2039                 return rc;
2040         return may_link(dir, old_dentry, MAY_LINK);
2041 }
2042
2043 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2044 {
2045         int rc;
2046
2047         rc = secondary_ops->inode_unlink(dir, dentry);
2048         if (rc)
2049                 return rc;
2050         return may_link(dir, dentry, MAY_UNLINK);
2051 }
2052
2053 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2054 {
2055         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2056 }
2057
2058 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2059 {
2060         return may_create(dir, dentry, SECCLASS_DIR);
2061 }
2062
2063 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2064 {
2065         return may_link(dir, dentry, MAY_RMDIR);
2066 }
2067
2068 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2069 {
2070         int rc;
2071
2072         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2073         if (rc)
2074                 return rc;
2075
2076         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2077 }
2078
2079 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2080                                 struct inode *new_inode, struct dentry *new_dentry)
2081 {
2082         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2083 }
2084
2085 static int selinux_inode_readlink(struct dentry *dentry)
2086 {
2087         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2088 }
2089
2090 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2091 {
2092         int rc;
2093
2094         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2095         if (rc)
2096                 return rc;
2097         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2098 }
2099
2100 static int selinux_inode_permission(struct inode *inode, int mask,
2101                                     struct nameidata *nd)
2102 {
2103         int rc;
2104
2105         rc = secondary_ops->inode_permission(inode, mask, nd);
2106         if (rc)
2107                 return rc;
2108
2109         if (!mask) {
2110                 /* No permission to check.  Existence test. */
2111                 return 0;
2112         }
2113
2114         return inode_has_perm(current, inode,
2115                                file_mask_to_av(inode->i_mode, mask), NULL);
2116 }
2117
2118 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2119 {
2120         int rc;
2121
2122         rc = secondary_ops->inode_setattr(dentry, iattr);
2123         if (rc)
2124                 return rc;
2125
2126         if (iattr->ia_valid & ATTR_FORCE)
2127                 return 0;
2128
2129         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2130                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2131                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2132
2133         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2134 }
2135
2136 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2137 {
2138         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2139 }
2140
2141 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2142 {
2143         struct task_security_struct *tsec = current->security;
2144         struct inode *inode = dentry->d_inode;
2145         struct inode_security_struct *isec = inode->i_security;
2146         struct superblock_security_struct *sbsec;
2147         struct avc_audit_data ad;
2148         u32 newsid;
2149         int rc = 0;
2150
2151         if (strcmp(name, XATTR_NAME_SELINUX)) {
2152                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2153                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2154                     !capable(CAP_SYS_ADMIN)) {
2155                         /* A different attribute in the security namespace.
2156                            Restrict to administrator. */
2157                         return -EPERM;
2158                 }
2159
2160                 /* Not an attribute we recognize, so just check the
2161                    ordinary setattr permission. */
2162                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2163         }
2164
2165         sbsec = inode->i_sb->s_security;
2166         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2167                 return -EOPNOTSUPP;
2168
2169         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2170                 return -EPERM;
2171
2172         AVC_AUDIT_DATA_INIT(&ad,FS);
2173         ad.u.fs.dentry = dentry;
2174
2175         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2176                           FILE__RELABELFROM, &ad);
2177         if (rc)
2178                 return rc;
2179
2180         rc = security_context_to_sid(value, size, &newsid);
2181         if (rc)
2182                 return rc;
2183
2184         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2185                           FILE__RELABELTO, &ad);
2186         if (rc)
2187                 return rc;
2188
2189         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2190                                           isec->sclass);
2191         if (rc)
2192                 return rc;
2193
2194         return avc_has_perm(newsid,
2195                             sbsec->sid,
2196                             SECCLASS_FILESYSTEM,
2197                             FILESYSTEM__ASSOCIATE,
2198                             &ad);
2199 }
2200
2201 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2202                                         void *value, size_t size, int flags)
2203 {
2204         struct inode *inode = dentry->d_inode;
2205         struct inode_security_struct *isec = inode->i_security;
2206         u32 newsid;
2207         int rc;
2208
2209         if (strcmp(name, XATTR_NAME_SELINUX)) {
2210                 /* Not an attribute we recognize, so nothing to do. */
2211                 return;
2212         }
2213
2214         rc = security_context_to_sid(value, size, &newsid);
2215         if (rc) {
2216                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2217                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2218                 return;
2219         }
2220
2221         isec->sid = newsid;
2222         return;
2223 }
2224
2225 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2226 {
2227         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2228 }
2229
2230 static int selinux_inode_listxattr (struct dentry *dentry)
2231 {
2232         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2233 }
2234
2235 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2236 {
2237         if (strcmp(name, XATTR_NAME_SELINUX)) {
2238                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2239                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2240                     !capable(CAP_SYS_ADMIN)) {
2241                         /* A different attribute in the security namespace.
2242                            Restrict to administrator. */
2243                         return -EPERM;
2244                 }
2245
2246                 /* Not an attribute we recognize, so just check the
2247                    ordinary setattr permission. Might want a separate
2248                    permission for removexattr. */
2249                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2250         }
2251
2252         /* No one is allowed to remove a SELinux security label.
2253            You can change the label, but all data must be labeled. */
2254         return -EACCES;
2255 }
2256
2257 static const char *selinux_inode_xattr_getsuffix(void)
2258 {
2259       return XATTR_SELINUX_SUFFIX;
2260 }
2261
2262 /*
2263  * Copy the in-core inode security context value to the user.  If the
2264  * getxattr() prior to this succeeded, check to see if we need to
2265  * canonicalize the value to be finally returned to the user.
2266  *
2267  * Permission check is handled by selinux_inode_getxattr hook.
2268  */
2269 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2270 {
2271         struct inode_security_struct *isec = inode->i_security;
2272
2273         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2274                 return -EOPNOTSUPP;
2275
2276         return selinux_getsecurity(isec->sid, buffer, size);
2277 }
2278
2279 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2280                                      const void *value, size_t size, int flags)
2281 {
2282         struct inode_security_struct *isec = inode->i_security;
2283         u32 newsid;
2284         int rc;
2285
2286         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2287                 return -EOPNOTSUPP;
2288
2289         if (!value || !size)
2290                 return -EACCES;
2291
2292         rc = security_context_to_sid((void*)value, size, &newsid);
2293         if (rc)
2294                 return rc;
2295
2296         isec->sid = newsid;
2297         return 0;
2298 }
2299
2300 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2301 {
2302         const int len = sizeof(XATTR_NAME_SELINUX);
2303         if (buffer && len <= buffer_size)
2304                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2305         return len;
2306 }
2307
2308 /* file security operations */
2309
2310 static int selinux_file_permission(struct file *file, int mask)
2311 {
2312         struct inode *inode = file->f_dentry->d_inode;
2313
2314         if (!mask) {
2315                 /* No permission to check.  Existence test. */
2316                 return 0;
2317         }
2318
2319         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2320         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2321                 mask |= MAY_APPEND;
2322
2323         return file_has_perm(current, file,
2324                              file_mask_to_av(inode->i_mode, mask));
2325 }
2326
2327 static int selinux_file_alloc_security(struct file *file)
2328 {
2329         return file_alloc_security(file);
2330 }
2331
2332 static void selinux_file_free_security(struct file *file)
2333 {
2334         file_free_security(file);
2335 }
2336
2337 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2338                               unsigned long arg)
2339 {
2340         int error = 0;
2341
2342         switch (cmd) {
2343                 case FIONREAD:
2344                 /* fall through */
2345                 case FIBMAP:
2346                 /* fall through */
2347                 case FIGETBSZ:
2348                 /* fall through */
2349                 case EXT2_IOC_GETFLAGS:
2350                 /* fall through */
2351                 case EXT2_IOC_GETVERSION:
2352                         error = file_has_perm(current, file, FILE__GETATTR);
2353                         break;
2354
2355                 case EXT2_IOC_SETFLAGS:
2356                 /* fall through */
2357                 case EXT2_IOC_SETVERSION:
2358                         error = file_has_perm(current, file, FILE__SETATTR);
2359                         break;
2360
2361                 /* sys_ioctl() checks */
2362                 case FIONBIO:
2363                 /* fall through */
2364                 case FIOASYNC:
2365                         error = file_has_perm(current, file, 0);
2366                         break;
2367
2368                 case KDSKBENT:
2369                 case KDSKBSENT:
2370                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2371                         break;
2372
2373                 /* default case assumes that the command will go
2374                  * to the file's ioctl() function.
2375                  */
2376                 default:
2377                         error = file_has_perm(current, file, FILE__IOCTL);
2378
2379         }
2380         return error;
2381 }
2382
2383 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2384 {
2385 #ifndef CONFIG_PPC32
2386         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2387                 /*
2388                  * We are making executable an anonymous mapping or a
2389                  * private file mapping that will also be writable.
2390                  * This has an additional check.
2391                  */
2392                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2393                 if (rc)
2394                         return rc;
2395         }
2396 #endif
2397
2398         if (file) {
2399                 /* read access is always possible with a mapping */
2400                 u32 av = FILE__READ;
2401
2402                 /* write access only matters if the mapping is shared */
2403                 if (shared && (prot & PROT_WRITE))
2404                         av |= FILE__WRITE;
2405
2406                 if (prot & PROT_EXEC)
2407                         av |= FILE__EXECUTE;
2408
2409                 return file_has_perm(current, file, av);
2410         }
2411         return 0;
2412 }
2413
2414 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2415                              unsigned long prot, unsigned long flags)
2416 {
2417         int rc;
2418
2419         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2420         if (rc)
2421                 return rc;
2422
2423         if (selinux_checkreqprot)
2424                 prot = reqprot;
2425
2426         return file_map_prot_check(file, prot,
2427                                    (flags & MAP_TYPE) == MAP_SHARED);
2428 }
2429
2430 static int selinux_file_mprotect(struct vm_area_struct *vma,
2431                                  unsigned long reqprot,
2432                                  unsigned long prot)
2433 {
2434         int rc;
2435
2436         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2437         if (rc)
2438                 return rc;
2439
2440         if (selinux_checkreqprot)
2441                 prot = reqprot;
2442
2443 #ifndef CONFIG_PPC32
2444         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2445                 rc = 0;
2446                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2447                     vma->vm_end <= vma->vm_mm->brk) {
2448                         rc = task_has_perm(current, current,
2449                                            PROCESS__EXECHEAP);
2450                 } else if (!vma->vm_file &&
2451                            vma->vm_start <= vma->vm_mm->start_stack &&
2452                            vma->vm_end >= vma->vm_mm->start_stack) {
2453                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2454                 } else if (vma->vm_file && vma->anon_vma) {
2455                         /*
2456                          * We are making executable a file mapping that has
2457                          * had some COW done. Since pages might have been
2458                          * written, check ability to execute the possibly
2459                          * modified content.  This typically should only
2460                          * occur for text relocations.
2461                          */
2462                         rc = file_has_perm(current, vma->vm_file,
2463                                            FILE__EXECMOD);
2464                 }
2465                 if (rc)
2466                         return rc;
2467         }
2468 #endif
2469
2470         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2471 }
2472
2473 static int selinux_file_lock(struct file *file, unsigned int cmd)
2474 {
2475         return file_has_perm(current, file, FILE__LOCK);
2476 }
2477
2478 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2479                               unsigned long arg)
2480 {
2481         int err = 0;
2482
2483         switch (cmd) {
2484                 case F_SETFL:
2485                         if (!file->f_dentry || !file->f_dentry->d_inode) {
2486                                 err = -EINVAL;
2487                                 break;
2488                         }
2489
2490                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2491                                 err = file_has_perm(current, file,FILE__WRITE);
2492                                 break;
2493                         }
2494                         /* fall through */
2495                 case F_SETOWN:
2496                 case F_SETSIG:
2497                 case F_GETFL:
2498                 case F_GETOWN:
2499                 case F_GETSIG:
2500                         /* Just check FD__USE permission */
2501                         err = file_has_perm(current, file, 0);
2502                         break;
2503                 case F_GETLK:
2504                 case F_SETLK:
2505                 case F_SETLKW:
2506 #if BITS_PER_LONG == 32
2507                 case F_GETLK64:
2508                 case F_SETLK64:
2509                 case F_SETLKW64:
2510 #endif
2511                         if (!file->f_dentry || !file->f_dentry->d_inode) {
2512                                 err = -EINVAL;
2513                                 break;
2514                         }
2515                         err = file_has_perm(current, file, FILE__LOCK);
2516                         break;
2517         }
2518
2519         return err;
2520 }
2521
2522 static int selinux_file_set_fowner(struct file *file)
2523 {
2524         struct task_security_struct *tsec;
2525         struct file_security_struct *fsec;
2526
2527         tsec = current->security;
2528         fsec = file->f_security;
2529         fsec->fown_sid = tsec->sid;
2530
2531         return 0;
2532 }
2533
2534 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2535                                        struct fown_struct *fown, int signum)
2536 {
2537         struct file *file;
2538         u32 perm;
2539         struct task_security_struct *tsec;
2540         struct file_security_struct *fsec;
2541
2542         /* struct fown_struct is never outside the context of a struct file */
2543         file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2544
2545         tsec = tsk->security;
2546         fsec = file->f_security;
2547
2548         if (!signum)
2549                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2550         else
2551                 perm = signal_to_av(signum);
2552
2553         return avc_has_perm(fsec->fown_sid, tsec->sid,
2554                             SECCLASS_PROCESS, perm, NULL);
2555 }
2556
2557 static int selinux_file_receive(struct file *file)
2558 {
2559         return file_has_perm(current, file, file_to_av(file));
2560 }
2561
2562 /* task security operations */
2563
2564 static int selinux_task_create(unsigned long clone_flags)
2565 {
2566         int rc;
2567
2568         rc = secondary_ops->task_create(clone_flags);
2569         if (rc)
2570                 return rc;
2571
2572         return task_has_perm(current, current, PROCESS__FORK);
2573 }
2574
2575 static int selinux_task_alloc_security(struct task_struct *tsk)
2576 {
2577         struct task_security_struct *tsec1, *tsec2;
2578         int rc;
2579
2580         tsec1 = current->security;
2581
2582         rc = task_alloc_security(tsk);
2583         if (rc)
2584                 return rc;
2585         tsec2 = tsk->security;
2586
2587         tsec2->osid = tsec1->osid;
2588         tsec2->sid = tsec1->sid;
2589
2590         /* Retain the exec, fs, key, and sock SIDs across fork */
2591         tsec2->exec_sid = tsec1->exec_sid;
2592         tsec2->create_sid = tsec1->create_sid;
2593         tsec2->keycreate_sid = tsec1->keycreate_sid;
2594         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2595
2596         /* Retain ptracer SID across fork, if any.
2597            This will be reset by the ptrace hook upon any
2598            subsequent ptrace_attach operations. */
2599         tsec2->ptrace_sid = tsec1->ptrace_sid;
2600
2601         return 0;
2602 }
2603
2604 static void selinux_task_free_security(struct task_struct *tsk)
2605 {
2606         task_free_security(tsk);
2607 }
2608
2609 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2610 {
2611         /* Since setuid only affects the current process, and
2612            since the SELinux controls are not based on the Linux
2613            identity attributes, SELinux does not need to control
2614            this operation.  However, SELinux does control the use
2615            of the CAP_SETUID and CAP_SETGID capabilities using the
2616            capable hook. */
2617         return 0;
2618 }
2619
2620 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2621 {
2622         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2623 }
2624
2625 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2626 {
2627         /* See the comment for setuid above. */
2628         return 0;
2629 }
2630
2631 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2632 {
2633         return task_has_perm(current, p, PROCESS__SETPGID);
2634 }
2635
2636 static int selinux_task_getpgid(struct task_struct *p)
2637 {
2638         return task_has_perm(current, p, PROCESS__GETPGID);
2639 }
2640
2641 static int selinux_task_getsid(struct task_struct *p)
2642 {
2643         return task_has_perm(current, p, PROCESS__GETSESSION);
2644 }
2645
2646 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2647 {
2648         selinux_get_task_sid(p, secid);
2649 }
2650
2651 static int selinux_task_setgroups(struct group_info *group_info)
2652 {
2653         /* See the comment for setuid above. */
2654         return 0;
2655 }
2656
2657 static int selinux_task_setnice(struct task_struct *p, int nice)
2658 {
2659         int rc;
2660
2661         rc = secondary_ops->task_setnice(p, nice);
2662         if (rc)
2663                 return rc;
2664
2665         return task_has_perm(current,p, PROCESS__SETSCHED);
2666 }
2667
2668 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2669 {
2670         return task_has_perm(current, p, PROCESS__SETSCHED);
2671 }
2672
2673 static int selinux_task_getioprio(struct task_struct *p)
2674 {
2675         return task_has_perm(current, p, PROCESS__GETSCHED);
2676 }
2677
2678 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2679 {
2680         struct rlimit *old_rlim = current->signal->rlim + resource;
2681         int rc;
2682
2683         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2684         if (rc)
2685                 return rc;
2686
2687         /* Control the ability to change the hard limit (whether
2688            lowering or raising it), so that the hard limit can
2689            later be used as a safe reset point for the soft limit
2690            upon context transitions. See selinux_bprm_apply_creds. */
2691         if (old_rlim->rlim_max != new_rlim->rlim_max)
2692                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2693
2694         return 0;
2695 }
2696
2697 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2698 {
2699         return task_has_perm(current, p, PROCESS__SETSCHED);
2700 }
2701
2702 static int selinux_task_getscheduler(struct task_struct *p)
2703 {
2704         return task_has_perm(current, p, PROCESS__GETSCHED);
2705 }
2706
2707 static int selinux_task_movememory(struct task_struct *p)
2708 {
2709         return task_has_perm(current, p, PROCESS__SETSCHED);
2710 }
2711
2712 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2713                                 int sig, u32 secid)
2714 {
2715         u32 perm;
2716         int rc;
2717         struct task_security_struct *tsec;
2718
2719         rc = secondary_ops->task_kill(p, info, sig, secid);
2720         if (rc)
2721                 return rc;
2722
2723         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2724                 return 0;
2725
2726         if (!sig)
2727                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2728         else
2729                 perm = signal_to_av(sig);
2730         tsec = p->security;
2731         if (secid)
2732                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2733         else
2734                 rc = task_has_perm(current, p, perm);
2735         return rc;
2736 }
2737
2738 static int selinux_task_prctl(int option,
2739                               unsigned long arg2,
2740                               unsigned long arg3,
2741                               unsigned long arg4,
2742                               unsigned long arg5)
2743 {
2744         /* The current prctl operations do not appear to require
2745            any SELinux controls since they merely observe or modify
2746            the state of the current process. */
2747         return 0;
2748 }
2749
2750 static int selinux_task_wait(struct task_struct *p)
2751 {
2752         u32 perm;
2753
2754         perm = signal_to_av(p->exit_signal);
2755
2756         return task_has_perm(p, current, perm);
2757 }
2758
2759 static void selinux_task_reparent_to_init(struct task_struct *p)
2760 {
2761         struct task_security_struct *tsec;
2762
2763         secondary_ops->task_reparent_to_init(p);
2764
2765         tsec = p->security;
2766         tsec->osid = tsec->sid;
2767         tsec->sid = SECINITSID_KERNEL;
2768         return;
2769 }
2770
2771 static void selinux_task_to_inode(struct task_struct *p,
2772                                   struct inode *inode)
2773 {
2774         struct task_security_struct *tsec = p->security;
2775         struct inode_security_struct *isec = inode->i_security;
2776
2777         isec->sid = tsec->sid;
2778         isec->initialized = 1;
2779         return;
2780 }
2781
2782 /* Returns error only if unable to parse addresses */
2783 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2784 {
2785         int offset, ihlen, ret = -EINVAL;
2786         struct iphdr _iph, *ih;
2787
2788         offset = skb->nh.raw - skb->data;
2789         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2790         if (ih == NULL)
2791                 goto out;
2792
2793         ihlen = ih->ihl * 4;
2794         if (ihlen < sizeof(_iph))
2795                 goto out;
2796
2797         ad->u.net.v4info.saddr = ih->saddr;
2798         ad->u.net.v4info.daddr = ih->daddr;
2799         ret = 0;
2800
2801         switch (ih->protocol) {
2802         case IPPROTO_TCP: {
2803                 struct tcphdr _tcph, *th;
2804
2805                 if (ntohs(ih->frag_off) & IP_OFFSET)
2806                         break;
2807
2808                 offset += ihlen;
2809                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2810                 if (th == NULL)
2811                         break;
2812
2813                 ad->u.net.sport = th->source;
2814                 ad->u.net.dport = th->dest;
2815                 break;
2816         }
2817         
2818         case IPPROTO_UDP: {
2819                 struct udphdr _udph, *uh;
2820                 
2821                 if (ntohs(ih->frag_off) & IP_OFFSET)
2822                         break;
2823                         
2824                 offset += ihlen;
2825                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2826                 if (uh == NULL)
2827                         break;  
2828
2829                 ad->u.net.sport = uh->source;
2830                 ad->u.net.dport = uh->dest;
2831                 break;
2832         }
2833
2834         default:
2835                 break;
2836         }
2837 out:
2838         return ret;
2839 }
2840
2841 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2842
2843 /* Returns error only if unable to parse addresses */
2844 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2845 {
2846         u8 nexthdr;
2847         int ret = -EINVAL, offset;
2848         struct ipv6hdr _ipv6h, *ip6;
2849
2850         offset = skb->nh.raw - skb->data;
2851         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2852         if (ip6 == NULL)
2853                 goto out;
2854
2855         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2856         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2857         ret = 0;
2858
2859         nexthdr = ip6->nexthdr;
2860         offset += sizeof(_ipv6h);
2861         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2862         if (offset < 0)
2863                 goto out;
2864
2865         switch (nexthdr) {
2866         case IPPROTO_TCP: {
2867                 struct tcphdr _tcph, *th;
2868
2869                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2870                 if (th == NULL)
2871                         break;
2872
2873                 ad->u.net.sport = th->source;
2874                 ad->u.net.dport = th->dest;
2875                 break;
2876         }
2877
2878         case IPPROTO_UDP: {
2879                 struct udphdr _udph, *uh;
2880
2881                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2882                 if (uh == NULL)
2883                         break;
2884
2885                 ad->u.net.sport = uh->source;
2886                 ad->u.net.dport = uh->dest;
2887                 break;
2888         }
2889
2890         /* includes fragments */
2891         default:
2892                 break;
2893         }
2894 out:
2895         return ret;
2896 }
2897
2898 #endif /* IPV6 */
2899
2900 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2901                              char **addrp, int *len, int src)
2902 {
2903         int ret = 0;
2904
2905         switch (ad->u.net.family) {
2906         case PF_INET:
2907                 ret = selinux_parse_skb_ipv4(skb, ad);
2908                 if (ret || !addrp)
2909                         break;
2910                 *len = 4;
2911                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
2912                                         &ad->u.net.v4info.daddr);
2913                 break;
2914
2915 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2916         case PF_INET6:
2917                 ret = selinux_parse_skb_ipv6(skb, ad);
2918                 if (ret || !addrp)
2919                         break;
2920                 *len = 16;
2921                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
2922                                         &ad->u.net.v6info.daddr);
2923                 break;
2924 #endif  /* IPV6 */
2925         default:
2926                 break;
2927         }
2928
2929         return ret;
2930 }
2931
2932 /* socket security operations */
2933 static int socket_has_perm(struct task_struct *task, struct socket *sock,
2934                            u32 perms)
2935 {
2936         struct inode_security_struct *isec;
2937         struct task_security_struct *tsec;
2938         struct avc_audit_data ad;
2939         int err = 0;
2940
2941         tsec = task->security;
2942         isec = SOCK_INODE(sock)->i_security;
2943
2944         if (isec->sid == SECINITSID_KERNEL)
2945                 goto out;
2946
2947         AVC_AUDIT_DATA_INIT(&ad,NET);
2948         ad.u.net.sk = sock->sk;
2949         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
2950
2951 out:
2952         return err;
2953 }
2954
2955 static int selinux_socket_create(int family, int type,
2956                                  int protocol, int kern)
2957 {
2958         int err = 0;
2959         struct task_security_struct *tsec;
2960         u32 newsid;
2961
2962         if (kern)
2963                 goto out;
2964
2965         tsec = current->security;
2966         newsid = tsec->sockcreate_sid ? : tsec->sid;
2967         err = avc_has_perm(tsec->sid, newsid,
2968                            socket_type_to_security_class(family, type,
2969                            protocol), SOCKET__CREATE, NULL);
2970
2971 out:
2972         return err;
2973 }
2974
2975 static void selinux_socket_post_create(struct socket *sock, int family,
2976                                        int type, int protocol, int kern)
2977 {
2978         struct inode_security_struct *isec;
2979         struct task_security_struct *tsec;
2980         u32 newsid;
2981
2982         isec = SOCK_INODE(sock)->i_security;
2983
2984         tsec = current->security;
2985         newsid = tsec->sockcreate_sid ? : tsec->sid;
2986         isec->sclass = socket_type_to_security_class(family, type, protocol);
2987         isec->sid = kern ? SECINITSID_KERNEL : newsid;
2988         isec->initialized = 1;
2989
2990         return;
2991 }
2992
2993 /* Range of port numbers used to automatically bind.
2994    Need to determine whether we should perform a name_bind
2995    permission check between the socket and the port number. */
2996 #define ip_local_port_range_0 sysctl_local_port_range[0]
2997 #define ip_local_port_range_1 sysctl_local_port_range[1]
2998
2999 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3000 {
3001         u16 family;
3002         int err;
3003
3004         err = socket_has_perm(current, sock, SOCKET__BIND);
3005         if (err)
3006                 goto out;
3007
3008         /*
3009          * If PF_INET or PF_INET6, check name_bind permission for the port.
3010          * Multiple address binding for SCTP is not supported yet: we just
3011          * check the first address now.
3012          */
3013         family = sock->sk->sk_family;
3014         if (family == PF_INET || family == PF_INET6) {
3015                 char *addrp;
3016                 struct inode_security_struct *isec;
3017                 struct task_security_struct *tsec;
3018                 struct avc_audit_data ad;
3019                 struct sockaddr_in *addr4 = NULL;
3020                 struct sockaddr_in6 *addr6 = NULL;
3021                 unsigned short snum;
3022                 struct sock *sk = sock->sk;
3023                 u32 sid, node_perm, addrlen;
3024
3025                 tsec = current->security;
3026                 isec = SOCK_INODE(sock)->i_security;
3027
3028                 if (family == PF_INET) {
3029                         addr4 = (struct sockaddr_in *)address;
3030                         snum = ntohs(addr4->sin_port);
3031                         addrlen = sizeof(addr4->sin_addr.s_addr);
3032                         addrp = (char *)&addr4->sin_addr.s_addr;
3033                 } else {
3034                         addr6 = (struct sockaddr_in6 *)address;
3035                         snum = ntohs(addr6->sin6_port);
3036                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3037                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3038                 }
3039
3040                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3041                            snum > ip_local_port_range_1)) {
3042                         err = security_port_sid(sk->sk_family, sk->sk_type,
3043                                                 sk->sk_protocol, snum, &sid);
3044                         if (err)
3045                                 goto out;
3046                         AVC_AUDIT_DATA_INIT(&ad,NET);
3047                         ad.u.net.sport = htons(snum);
3048                         ad.u.net.family = family;
3049                         err = avc_has_perm(isec->sid, sid,
3050                                            isec->sclass,
3051                                            SOCKET__NAME_BIND, &ad);
3052                         if (err)
3053                                 goto out;
3054                 }
3055                 
3056                 switch(isec->sclass) {
3057                 case SECCLASS_TCP_SOCKET:
3058                         node_perm = TCP_SOCKET__NODE_BIND;
3059                         break;
3060                         
3061                 case SECCLASS_UDP_SOCKET:
3062                         node_perm = UDP_SOCKET__NODE_BIND;
3063                         break;
3064                         
3065                 default:
3066                         node_perm = RAWIP_SOCKET__NODE_BIND;
3067                         break;
3068                 }
3069                 
3070                 err = security_node_sid(family, addrp, addrlen, &sid);
3071                 if (err)
3072                         goto out;
3073                 
3074                 AVC_AUDIT_DATA_INIT(&ad,NET);
3075                 ad.u.net.sport = htons(snum);
3076                 ad.u.net.family = family;
3077
3078                 if (family == PF_INET)
3079                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3080                 else
3081                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3082
3083                 err = avc_has_perm(isec->sid, sid,
3084                                    isec->sclass, node_perm, &ad);
3085                 if (err)
3086                         goto out;
3087         }
3088 out:
3089         return err;
3090 }
3091
3092 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3093 {
3094         struct inode_security_struct *isec;
3095         int err;
3096
3097         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3098         if (err)
3099                 return err;
3100
3101         /*
3102          * If a TCP socket, check name_connect permission for the port.
3103          */
3104         isec = SOCK_INODE(sock)->i_security;
3105         if (isec->sclass == SECCLASS_TCP_SOCKET) {
3106                 struct sock *sk = sock->sk;
3107                 struct avc_audit_data ad;
3108                 struct sockaddr_in *addr4 = NULL;
3109                 struct sockaddr_in6 *addr6 = NULL;
3110                 unsigned short snum;
3111                 u32 sid;
3112
3113                 if (sk->sk_family == PF_INET) {
3114                         addr4 = (struct sockaddr_in *)address;
3115                         if (addrlen < sizeof(struct sockaddr_in))
3116                                 return -EINVAL;
3117                         snum = ntohs(addr4->sin_port);
3118                 } else {
3119                         addr6 = (struct sockaddr_in6 *)address;
3120                         if (addrlen < SIN6_LEN_RFC2133)
3121                                 return -EINVAL;
3122                         snum = ntohs(addr6->sin6_port);
3123                 }
3124
3125                 err = security_port_sid(sk->sk_family, sk->sk_type,
3126                                         sk->sk_protocol, snum, &sid);
3127                 if (err)
3128                         goto out;
3129
3130                 AVC_AUDIT_DATA_INIT(&ad,NET);
3131                 ad.u.net.dport = htons(snum);
3132                 ad.u.net.family = sk->sk_family;
3133                 err = avc_has_perm(isec->sid, sid, isec->sclass,
3134                                    TCP_SOCKET__NAME_CONNECT, &ad);
3135                 if (err)
3136                         goto out;
3137         }
3138
3139 out:
3140         return err;
3141 }
3142
3143 static int selinux_socket_listen(struct socket *sock, int backlog)
3144 {
3145         return socket_has_perm(current, sock, SOCKET__LISTEN);
3146 }
3147
3148 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3149 {
3150         int err;
3151         struct inode_security_struct *isec;
3152         struct inode_security_struct *newisec;
3153
3154         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3155         if (err)
3156                 return err;
3157
3158         newisec = SOCK_INODE(newsock)->i_security;
3159
3160         isec = SOCK_INODE(sock)->i_security;
3161         newisec->sclass = isec->sclass;
3162         newisec->sid = isec->sid;
3163         newisec->initialized = 1;
3164
3165         return 0;
3166 }
3167
3168 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3169                                   int size)
3170 {
3171         return socket_has_perm(current, sock, SOCKET__WRITE);
3172 }
3173
3174 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3175                                   int size, int flags)
3176 {
3177         return socket_has_perm(current, sock, SOCKET__READ);
3178 }
3179
3180 static int selinux_socket_getsockname(struct socket *sock)
3181 {
3182         return socket_has_perm(current, sock, SOCKET__GETATTR);
3183 }
3184
3185 static int selinux_socket_getpeername(struct socket *sock)
3186 {
3187         return socket_has_perm(current, sock, SOCKET__GETATTR);
3188 }
3189
3190 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3191 {
3192         return socket_has_perm(current, sock, SOCKET__SETOPT);
3193 }
3194
3195 static int selinux_socket_getsockopt(struct socket *sock, int level,
3196                                      int optname)
3197 {
3198         return socket_has_perm(current, sock, SOCKET__GETOPT);
3199 }
3200
3201 static int selinux_socket_shutdown(struct socket *sock, int how)
3202 {
3203         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3204 }
3205
3206 static int selinux_socket_unix_stream_connect(struct socket *sock,
3207                                               struct socket *other,
3208                                               struct sock *newsk)
3209 {
3210         struct sk_security_struct *ssec;
3211         struct inode_security_struct *isec;
3212         struct inode_security_struct *other_isec;
3213         struct avc_audit_data ad;
3214         int err;
3215
3216         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3217         if (err)
3218                 return err;
3219
3220         isec = SOCK_INODE(sock)->i_security;
3221         other_isec = SOCK_INODE(other)->i_security;
3222
3223         AVC_AUDIT_DATA_INIT(&ad,NET);
3224         ad.u.net.sk = other->sk;
3225
3226         err = avc_has_perm(isec->sid, other_isec->sid,
3227                            isec->sclass,
3228                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3229         if (err)
3230                 return err;
3231
3232         /* connecting socket */
3233         ssec = sock->sk->sk_security;
3234         ssec->peer_sid = other_isec->sid;
3235         
3236         /* server child socket */
3237         ssec = newsk->sk_security;
3238         ssec->peer_sid = isec->sid;
3239         
3240         return 0;
3241 }
3242
3243 static int selinux_socket_unix_may_send(struct socket *sock,
3244                                         struct socket *other)
3245 {
3246         struct inode_security_struct *isec;
3247         struct inode_security_struct *other_isec;
3248         struct avc_audit_data ad;
3249         int err;
3250
3251         isec = SOCK_INODE(sock)->i_security;
3252         other_isec = SOCK_INODE(other)->i_security;
3253
3254         AVC_AUDIT_DATA_INIT(&ad,NET);
3255         ad.u.net.sk = other->sk;
3256
3257         err = avc_has_perm(isec->sid, other_isec->sid,
3258                            isec->sclass, SOCKET__SENDTO, &ad);
3259         if (err)
3260                 return err;
3261
3262         return 0;
3263 }
3264
3265 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3266                 struct avc_audit_data *ad, u32 sock_sid, u16 sock_class,
3267                 u16 family, char *addrp, int len)
3268 {
3269         int err = 0;
3270         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3271
3272         if (!skb->dev)
3273                 goto out;
3274
3275         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3276         if (err)
3277                 goto out;
3278
3279         switch (sock_class) {
3280         case SECCLASS_UDP_SOCKET:
3281                 netif_perm = NETIF__UDP_RECV;
3282                 node_perm = NODE__UDP_RECV;
3283                 recv_perm = UDP_SOCKET__RECV_MSG;
3284                 break;
3285         
3286         case SECCLASS_TCP_SOCKET:
3287                 netif_perm = NETIF__TCP_RECV;
3288                 node_perm = NODE__TCP_RECV;
3289                 recv_perm = TCP_SOCKET__RECV_MSG;
3290                 break;
3291         
3292         default:
3293                 netif_perm = NETIF__RAWIP_RECV;
3294                 node_perm = NODE__RAWIP_RECV;
3295                 break;
3296         }
3297
3298         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3299         if (err)
3300                 goto out;
3301         
3302         err = security_node_sid(family, addrp, len, &node_sid);
3303         if (err)
3304                 goto out;
3305         
3306         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3307         if (err)
3308                 goto out;
3309
3310         if (recv_perm) {
3311                 u32 port_sid;
3312
3313                 err = security_port_sid(sk->sk_family, sk->sk_type,
3314                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3315                                         &port_sid);
3316                 if (err)
3317                         goto out;
3318
3319                 err = avc_has_perm(sock_sid, port_sid,
3320                                    sock_class, recv_perm, ad);
3321         }
3322
3323 out:
3324         return err;
3325 }
3326
3327 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3328 {
3329         u16 family;
3330         u16 sock_class = 0;
3331         char *addrp;
3332         int len, err = 0;
3333         u32 sock_sid = 0;
3334         struct socket *sock;
3335         struct avc_audit_data ad;
3336
3337         family = sk->sk_family;
3338         if (family != PF_INET && family != PF_INET6)
3339                 goto out;
3340
3341         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3342         if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3343                 family = PF_INET;
3344
3345         read_lock_bh(&sk->sk_callback_lock);
3346         sock = sk->sk_socket;
3347         if (sock) {
3348                 struct inode *inode;
3349                 inode = SOCK_INODE(sock);
3350                 if (inode) {
3351                         struct inode_security_struct *isec;
3352                         isec = inode->i_security;
3353                         sock_sid = isec->sid;
3354                         sock_class = isec->sclass;
3355                 }
3356         }
3357         read_unlock_bh(&sk->sk_callback_lock);
3358         if (!sock_sid)
3359                 goto out;
3360
3361         AVC_AUDIT_DATA_INIT(&ad, NET);
3362         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3363         ad.u.net.family = family;
3364
3365         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3366         if (err)
3367                 goto out;
3368
3369         if (selinux_compat_net)
3370                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, sock_sid,
3371                                                   sock_class, family,
3372                                                   addrp, len);
3373         else
3374                 err = avc_has_perm(sock_sid, skb->secmark, SECCLASS_PACKET,
3375                                    PACKET__RECV, &ad);
3376         if (err)
3377                 goto out;
3378
3379         err = selinux_xfrm_sock_rcv_skb(sock_sid, skb);
3380 out:    
3381         return err;
3382 }
3383
3384 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3385                                             int __user *optlen, unsigned len)
3386 {
3387         int err = 0;
3388         char *scontext;
3389         u32 scontext_len;
3390         struct sk_security_struct *ssec;
3391         struct inode_security_struct *isec;
3392         u32 peer_sid = 0;
3393
3394         isec = SOCK_INODE(sock)->i_security;
3395
3396         /* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3397         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3398                 ssec = sock->sk->sk_security;
3399                 peer_sid = ssec->peer_sid;
3400         }
3401         else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3402                 peer_sid = selinux_socket_getpeer_stream(sock->sk);
3403
3404                 if (peer_sid == SECSID_NULL) {
3405                         err = -ENOPROTOOPT;
3406                         goto out;
3407                 }
3408         }
3409         else {
3410                 err = -ENOPROTOOPT;
3411                 goto out;
3412         }
3413
3414         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3415
3416         if (err)
3417                 goto out;
3418
3419         if (scontext_len > len) {
3420                 err = -ERANGE;
3421                 goto out_len;
3422         }
3423
3424         if (copy_to_user(optval, scontext, scontext_len))
3425                 err = -EFAULT;
3426
3427 out_len:
3428         if (put_user(scontext_len, optlen))
3429                 err = -EFAULT;
3430
3431         kfree(scontext);
3432 out:    
3433         return err;
3434 }
3435
3436 static int selinux_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, u32 *seclen)
3437 {
3438         int err = 0;
3439         u32 peer_sid;
3440
3441         if (skb->sk->sk_family == PF_UNIX)
3442                 selinux_get_inode_sid(SOCK_INODE(skb->sk->sk_socket),
3443                                       &peer_sid);
3444         else
3445                 peer_sid = selinux_socket_getpeer_dgram(skb);
3446
3447         if (peer_sid == SECSID_NULL)
3448                 return -EINVAL;
3449
3450         err = security_sid_to_context(peer_sid, secdata, seclen);
3451         if (err)
3452                 return err;
3453
3454         return 0;
3455 }
3456
3457 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3458 {
3459         return sk_alloc_security(sk, family, priority);
3460 }
3461
3462 static void selinux_sk_free_security(struct sock *sk)
3463 {
3464         sk_free_security(sk);
3465 }
3466
3467 static unsigned int selinux_sk_getsid_security(struct sock *sk, struct flowi *fl, u8 dir)
3468 {
3469         struct inode_security_struct *isec;
3470         u32 sock_sid = SECINITSID_ANY_SOCKET;
3471
3472         if (!sk)
3473                 return selinux_no_sk_sid(fl);
3474
3475         read_lock_bh(&sk->sk_callback_lock);
3476         isec = get_sock_isec(sk);
3477
3478         if (isec)
3479                 sock_sid = isec->sid;
3480
3481         read_unlock_bh(&sk->sk_callback_lock);
3482         return sock_sid;
3483 }
3484
3485 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3486 {
3487         int err = 0;
3488         u32 perm;
3489         struct nlmsghdr *nlh;
3490         struct socket *sock = sk->sk_socket;
3491         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3492         
3493         if (skb->len < NLMSG_SPACE(0)) {
3494                 err = -EINVAL;
3495                 goto out;
3496         }
3497         nlh = (struct nlmsghdr *)skb->data;
3498         
3499         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3500         if (err) {
3501                 if (err == -EINVAL) {
3502                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3503                                   "SELinux:  unrecognized netlink message"
3504                                   " type=%hu for sclass=%hu\n",
3505                                   nlh->nlmsg_type, isec->sclass);
3506                         if (!selinux_enforcing)
3507                                 err = 0;
3508                 }
3509
3510                 /* Ignore */
3511                 if (err == -ENOENT)
3512                         err = 0;
3513                 goto out;
3514         }
3515
3516         err = socket_has_perm(current, sock, perm);
3517 out:
3518         return err;
3519 }
3520
3521 #ifdef CONFIG_NETFILTER
3522
3523 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3524                                             struct inode_security_struct *isec,
3525                                             struct avc_audit_data *ad,
3526                                             u16 family, char *addrp, int len)
3527 {
3528         int err;
3529         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3530         
3531         err = sel_netif_sids(dev, &if_sid, NULL);
3532         if (err)
3533                 goto out;
3534
3535         switch (isec->sclass) {
3536         case SECCLASS_UDP_SOCKET:
3537                 netif_perm = NETIF__UDP_SEND;
3538                 node_perm = NODE__UDP_SEND;
3539                 send_perm = UDP_SOCKET__SEND_MSG;
3540                 break;
3541         
3542         case SECCLASS_TCP_SOCKET:
3543                 netif_perm = NETIF__TCP_SEND;
3544                 node_perm = NODE__TCP_SEND;
3545                 send_perm = TCP_SOCKET__SEND_MSG;
3546                 break;
3547         
3548         default:
3549                 netif_perm = NETIF__RAWIP_SEND;
3550                 node_perm = NODE__RAWIP_SEND;
3551                 break;
3552         }
3553
3554         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3555         if (err)
3556                 goto out;
3557                 
3558         err = security_node_sid(family, addrp, len, &node_sid);
3559         if (err)
3560                 goto out;
3561         
3562         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3563         if (err)
3564                 goto out;
3565
3566         if (send_perm) {
3567                 u32 port_sid;
3568                 
3569                 err = security_port_sid(sk->sk_family,
3570                                         sk->sk_type,
3571                                         sk->sk_protocol,
3572                                         ntohs(ad->u.net.dport),
3573                                         &port_sid);
3574                 if (err)
3575                         goto out;
3576
3577                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3578                                    send_perm, ad);
3579         }
3580 out:
3581         return err;
3582 }
3583
3584 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3585                                               struct sk_buff **pskb,
3586                                               const struct net_device *in,
3587                                               const struct net_device *out,
3588                                               int (*okfn)(struct sk_buff *),
3589                                               u16 family)
3590 {
3591         char *addrp;
3592         int len, err = 0;
3593         struct sock *sk;
3594         struct socket *sock;
3595         struct inode *inode;
3596         struct sk_buff *skb = *pskb;
3597         struct inode_security_struct *isec;
3598         struct avc_audit_data ad;
3599         struct net_device *dev = (struct net_device *)out;
3600
3601         sk = skb->sk;
3602         if (!sk)
3603                 goto out;
3604
3605         sock = sk->sk_socket;
3606         if (!sock)
3607                 goto out;
3608
3609         inode = SOCK_INODE(sock);
3610         if (!inode)
3611                 goto out;
3612
3613         isec = inode->i_security;
3614
3615         AVC_AUDIT_DATA_INIT(&ad, NET);
3616         ad.u.net.netif = dev->name;
3617         ad.u.net.family = family;
3618
3619         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0);
3620         if (err)
3621                 goto out;
3622
3623         if (selinux_compat_net)
3624                 err = selinux_ip_postroute_last_compat(sk, dev, isec, &ad,
3625                                                        family, addrp, len);
3626         else
3627                 err = avc_has_perm(isec->sid, skb->secmark, SECCLASS_PACKET,
3628                                    PACKET__SEND, &ad);
3629
3630         if (err)
3631                 goto out;
3632
3633         err = selinux_xfrm_postroute_last(isec->sid, skb);
3634 out:
3635         return err ? NF_DROP : NF_ACCEPT;
3636 }
3637
3638 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3639                                                 struct sk_buff **pskb,
3640                                                 const struct net_device *in,
3641                                                 const struct net_device *out,
3642                                                 int (*okfn)(struct sk_buff *))
3643 {
3644         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3645 }
3646
3647 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3648
3649 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3650                                                 struct sk_buff **pskb,
3651                                                 const struct net_device *in,
3652                                                 const struct net_device *out,
3653                                                 int (*okfn)(struct sk_buff *))
3654 {
3655         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3656 }
3657
3658 #endif  /* IPV6 */
3659
3660 #endif  /* CONFIG_NETFILTER */
3661
3662 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3663 {
3664         int err;
3665
3666         err = secondary_ops->netlink_send(sk, skb);
3667         if (err)
3668                 return err;
3669
3670         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3671                 err = selinux_nlmsg_perm(sk, skb);
3672
3673         return err;
3674 }
3675
3676 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3677 {
3678         int err;
3679         struct avc_audit_data ad;
3680
3681         err = secondary_ops->netlink_recv(skb, capability);
3682         if (err)
3683                 return err;
3684
3685         AVC_AUDIT_DATA_INIT(&ad, CAP);
3686         ad.u.cap = capability;
3687
3688         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3689                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3690 }
3691
3692 static int ipc_alloc_security(struct task_struct *task,
3693                               struct kern_ipc_perm *perm,
3694                               u16 sclass)
3695 {
3696         struct task_security_struct *tsec = task->security;
3697         struct ipc_security_struct *isec;
3698
3699         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3700         if (!isec)
3701                 return -ENOMEM;
3702
3703         isec->sclass = sclass;
3704         isec->ipc_perm = perm;
3705         isec->sid = tsec->sid;
3706         perm->security = isec;
3707
3708         return 0;
3709 }
3710
3711 static void ipc_free_security(struct kern_ipc_perm *perm)
3712 {
3713         struct ipc_security_struct *isec = perm->security;
3714         perm->security = NULL;
3715         kfree(isec);
3716 }
3717
3718 static int msg_msg_alloc_security(struct msg_msg *msg)
3719 {
3720         struct msg_security_struct *msec;
3721
3722         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3723         if (!msec)
3724                 return -ENOMEM;
3725
3726         msec->msg = msg;
3727         msec->sid = SECINITSID_UNLABELED;
3728         msg->security = msec;
3729
3730         return 0;
3731 }
3732
3733 static void msg_msg_free_security(struct msg_msg *msg)
3734 {
3735         struct msg_security_struct *msec = msg->security;
3736
3737         msg->security = NULL;
3738         kfree(msec);
3739 }
3740
3741 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3742                         u32 perms)
3743 {
3744         struct task_security_struct *tsec;
3745         struct ipc_security_struct *isec;
3746         struct avc_audit_data ad;
3747
3748         tsec = current->security;
3749         isec = ipc_perms->security;
3750
3751         AVC_AUDIT_DATA_INIT(&ad, IPC);
3752         ad.u.ipc_id = ipc_perms->key;
3753
3754         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3755 }
3756
3757 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3758 {
3759         return msg_msg_alloc_security(msg);
3760 }
3761
3762 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3763 {
3764         msg_msg_free_security(msg);
3765 }
3766
3767 /* message queue security operations */
3768 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3769 {
3770         struct task_security_struct *tsec;
3771         struct ipc_security_struct *isec;
3772         struct avc_audit_data ad;
3773         int rc;
3774
3775         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3776         if (rc)
3777                 return rc;
3778
3779         tsec = current->security;
3780         isec = msq->q_perm.security;
3781
3782         AVC_AUDIT_DATA_INIT(&ad, IPC);
3783         ad.u.ipc_id = msq->q_perm.key;
3784
3785         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3786                           MSGQ__CREATE, &ad);
3787         if (rc) {
3788                 ipc_free_security(&msq->q_perm);
3789                 return rc;
3790         }
3791         return 0;
3792 }
3793
3794 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3795 {
3796         ipc_free_security(&msq->q_perm);
3797 }
3798
3799 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3800 {
3801         struct task_security_struct *tsec;
3802         struct ipc_security_struct *isec;
3803         struct avc_audit_data ad;
3804
3805         tsec = current->security;
3806         isec = msq->q_perm.security;
3807
3808         AVC_AUDIT_DATA_INIT(&ad, IPC);
3809         ad.u.ipc_id = msq->q_perm.key;
3810
3811         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3812                             MSGQ__ASSOCIATE, &ad);
3813 }
3814
3815 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3816 {
3817         int err;
3818         int perms;
3819
3820         switch(cmd) {
3821         case IPC_INFO:
3822         case MSG_INFO:
3823                 /* No specific object, just general system-wide information. */
3824                 return task_has_system(current, SYSTEM__IPC_INFO);
3825         case IPC_STAT:
3826         case MSG_STAT:
3827                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
3828                 break;
3829         case IPC_SET:
3830                 perms = MSGQ__SETATTR;
3831                 break;
3832         case IPC_RMID:
3833                 perms = MSGQ__DESTROY;
3834                 break;
3835         default:
3836                 return 0;
3837         }
3838
3839         err = ipc_has_perm(&msq->q_perm, perms);
3840         return err;
3841 }
3842
3843 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
3844 {
3845         struct task_security_struct *tsec;
3846         struct ipc_security_struct *isec;
3847         struct msg_security_struct *msec;
3848         struct avc_audit_data ad;
3849         int rc;
3850
3851         tsec = current->security;
3852         isec = msq->q_perm.security;
3853         msec = msg->security;
3854
3855         /*
3856          * First time through, need to assign label to the message
3857          */
3858         if (msec->sid == SECINITSID_UNLABELED) {
3859                 /*
3860                  * Compute new sid based on current process and
3861                  * message queue this message will be stored in
3862                  */
3863                 rc = security_transition_sid(tsec->sid,
3864                                              isec->sid,
3865                                              SECCLASS_MSG,
3866                                              &msec->sid);
3867                 if (rc)
3868                         return rc;
3869         }
3870
3871         AVC_AUDIT_DATA_INIT(&ad, IPC);
3872         ad.u.ipc_id = msq->q_perm.key;
3873
3874         /* Can this process write to the queue? */
3875         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3876                           MSGQ__WRITE, &ad);
3877         if (!rc)
3878                 /* Can this process send the message */
3879                 rc = avc_has_perm(tsec->sid, msec->sid,
3880                                   SECCLASS_MSG, MSG__SEND, &ad);
3881         if (!rc)
3882                 /* Can the message be put in the queue? */
3883                 rc = avc_has_perm(msec->sid, isec->sid,
3884                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
3885
3886         return rc;
3887 }
3888
3889 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
3890                                     struct task_struct *target,
3891                                     long type, int mode)
3892 {
3893         struct task_security_struct *tsec;
3894         struct ipc_security_struct *isec;
3895         struct msg_security_struct *msec;
3896         struct avc_audit_data ad;
3897         int rc;
3898
3899         tsec = target->security;
3900         isec = msq->q_perm.security;
3901         msec = msg->security;
3902
3903         AVC_AUDIT_DATA_INIT(&ad, IPC);
3904         ad.u.ipc_id = msq->q_perm.key;
3905
3906         rc = avc_has_perm(tsec->sid, isec->sid,
3907                           SECCLASS_MSGQ, MSGQ__READ, &ad);
3908         if (!rc)
3909                 rc = avc_has_perm(tsec->sid, msec->sid,
3910                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
3911         return rc;
3912 }
3913
3914 /* Shared Memory security operations */
3915 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
3916 {
3917         struct task_security_struct *tsec;
3918         struct ipc_security_struct *isec;
3919         struct avc_audit_data ad;
3920         int rc;
3921
3922         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
3923         if (rc)
3924                 return rc;
3925
3926         tsec = current->security;
3927         isec = shp->shm_perm.security;
3928
3929         AVC_AUDIT_DATA_INIT(&ad, IPC);
3930         ad.u.ipc_id = shp->shm_perm.key;
3931
3932         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3933                           SHM__CREATE, &ad);
3934         if (rc) {
3935                 ipc_free_security(&shp->shm_perm);
3936                 return rc;
3937         }
3938         return 0;
3939 }
3940
3941 static void selinux_shm_free_security(struct shmid_kernel *shp)
3942 {
3943         ipc_free_security(&shp->shm_perm);
3944 }
3945
3946 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
3947 {
3948         struct task_security_struct *tsec;
3949         struct ipc_security_struct *isec;
3950         struct avc_audit_data ad;
3951
3952         tsec = current->security;
3953         isec = shp->shm_perm.security;
3954
3955         AVC_AUDIT_DATA_INIT(&ad, IPC);
3956         ad.u.ipc_id = shp->shm_perm.key;
3957
3958         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3959                             SHM__ASSOCIATE, &ad);
3960 }
3961
3962 /* Note, at this point, shp is locked down */
3963 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
3964 {
3965         int perms;
3966         int err;
3967
3968         switch(cmd) {
3969         case IPC_INFO:
3970         case SHM_INFO:
3971                 /* No specific object, just general system-wide information. */
3972                 return task_has_system(current, SYSTEM__IPC_INFO);
3973         case IPC_STAT:
3974         case SHM_STAT:
3975                 perms = SHM__GETATTR | SHM__ASSOCIATE;
3976                 break;
3977         case IPC_SET:
3978                 perms = SHM__SETATTR;
3979                 break;
3980         case SHM_LOCK:
3981         case SHM_UNLOCK:
3982                 perms = SHM__LOCK;
3983                 break;
3984         case IPC_RMID:
3985                 perms = SHM__DESTROY;
3986                 break;
3987         default:
3988                 return 0;
3989         }
3990
3991         err = ipc_has_perm(&shp->shm_perm, perms);
3992         return err;
3993 }
3994
3995 static int selinux_shm_shmat(struct shmid_kernel *shp,
3996                              char __user *shmaddr, int shmflg)
3997 {
3998         u32 perms;
3999         int rc;
4000
4001         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4002         if (rc)
4003                 return rc;
4004
4005         if (shmflg & SHM_RDONLY)
4006                 perms = SHM__READ;
4007         else
4008                 perms = SHM__READ | SHM__WRITE;
4009
4010         return ipc_has_perm(&shp->shm_perm, perms);
4011 }
4012
4013 /* Semaphore security operations */
4014 static int selinux_sem_alloc_security(struct sem_array *sma)
4015 {
4016         struct task_security_struct *tsec;
4017         struct ipc_security_struct *isec;
4018         struct avc_audit_data ad;
4019         int rc;
4020
4021         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4022         if (rc)
4023                 return rc;
4024
4025         tsec = current->security;
4026         isec = sma->sem_perm.security;
4027
4028         AVC_AUDIT_DATA_INIT(&ad, IPC);
4029         ad.u.ipc_id = sma->sem_perm.key;
4030
4031         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4032                           SEM__CREATE, &ad);
4033         if (rc) {
4034                 ipc_free_security(&sma->sem_perm);
4035                 return rc;
4036         }
4037         return 0;
4038 }
4039
4040 static void selinux_sem_free_security(struct sem_array *sma)
4041 {
4042         ipc_free_security(&sma->sem_perm);
4043 }
4044
4045 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4046 {
4047         struct task_security_struct *tsec;
4048         struct ipc_security_struct *isec;
4049         struct avc_audit_data ad;
4050
4051         tsec = current->security;
4052         isec = sma->sem_perm.security;
4053
4054         AVC_AUDIT_DATA_INIT(&ad, IPC);
4055         ad.u.ipc_id = sma->sem_perm.key;
4056
4057         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4058                             SEM__ASSOCIATE, &ad);
4059 }
4060
4061 /* Note, at this point, sma is locked down */
4062 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4063 {
4064         int err;
4065         u32 perms;
4066
4067         switch(cmd) {
4068         case IPC_INFO:
4069         case SEM_INFO:
4070                 /* No specific object, just general system-wide information. */
4071                 return task_has_system(current, SYSTEM__IPC_INFO);
4072         case GETPID:
4073         case GETNCNT:
4074         case GETZCNT:
4075                 perms = SEM__GETATTR;
4076                 break;
4077         case GETVAL:
4078         case GETALL:
4079                 perms = SEM__READ;
4080                 break;
4081         case SETVAL:
4082         case SETALL:
4083                 perms = SEM__WRITE;
4084                 break;
4085         case IPC_RMID:
4086                 perms = SEM__DESTROY;
4087                 break;
4088         case IPC_SET:
4089                 perms = SEM__SETATTR;
4090                 break;
4091         case IPC_STAT:
4092         case SEM_STAT:
4093                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4094                 break;
4095         default:
4096                 return 0;
4097         }
4098
4099         err = ipc_has_perm(&sma->sem_perm, perms);
4100         return err;
4101 }
4102
4103 static int selinux_sem_semop(struct sem_array *sma,
4104                              struct sembuf *sops, unsigned nsops, int alter)
4105 {
4106         u32 perms;
4107
4108         if (alter)
4109                 perms = SEM__READ | SEM__WRITE;
4110         else
4111                 perms = SEM__READ;
4112
4113         return ipc_has_perm(&sma->sem_perm, perms);
4114 }
4115
4116 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4117 {
4118         u32 av = 0;
4119
4120         av = 0;
4121         if (flag & S_IRUGO)
4122                 av |= IPC__UNIX_READ;
4123         if (flag & S_IWUGO)
4124                 av |= IPC__UNIX_WRITE;
4125
4126         if (av == 0)
4127                 return 0;
4128
4129         return ipc_has_perm(ipcp, av);
4130 }
4131
4132 /* module stacking operations */
4133 static int selinux_register_security (const char *name, struct security_operations *ops)
4134 {
4135         if (secondary_ops != original_ops) {
4136                 printk(KERN_INFO "%s:  There is already a secondary security "
4137                        "module registered.\n", __FUNCTION__);
4138                 return -EINVAL;
4139         }
4140
4141         secondary_ops = ops;
4142
4143         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4144                __FUNCTION__,
4145                name);
4146
4147         return 0;
4148 }
4149
4150 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4151 {
4152         if (ops != secondary_ops) {
4153                 printk (KERN_INFO "%s:  trying to unregister a security module "
4154                         "that is not registered.\n", __FUNCTION__);
4155                 return -EINVAL;
4156         }
4157
4158         secondary_ops = original_ops;
4159
4160         return 0;
4161 }
4162
4163 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4164 {
4165         if (inode)
4166                 inode_doinit_with_dentry(inode, dentry);
4167 }
4168
4169 static int selinux_getprocattr(struct task_struct *p,
4170                                char *name, void *value, size_t size)
4171 {
4172         struct task_security_struct *tsec;
4173         u32 sid;
4174         int error;
4175
4176         if (current != p) {
4177                 error = task_has_perm(current, p, PROCESS__GETATTR);
4178                 if (error)
4179                         return error;
4180         }
4181
4182         tsec = p->security;
4183
4184         if (!strcmp(name, "current"))
4185                 sid = tsec->sid;
4186         else if (!strcmp(name, "prev"))
4187                 sid = tsec->osid;
4188         else if (!strcmp(name, "exec"))
4189                 sid = tsec->exec_sid;
4190         else if (!strcmp(name, "fscreate"))
4191                 sid = tsec->create_sid;
4192         else if (!strcmp(name, "keycreate"))
4193                 sid = tsec->keycreate_sid;
4194         else if (!strcmp(name, "sockcreate"))
4195                 sid = tsec->sockcreate_sid;
4196         else
4197                 return -EINVAL;
4198
4199         if (!sid)
4200                 return 0;
4201
4202         return selinux_getsecurity(sid, value, size);
4203 }
4204
4205 static int selinux_setprocattr(struct task_struct *p,
4206                                char *name, void *value, size_t size)
4207 {
4208         struct task_security_struct *tsec;
4209         u32 sid = 0;
4210         int error;
4211         char *str = value;
4212
4213         if (current != p) {
4214                 /* SELinux only allows a process to change its own
4215                    security attributes. */
4216                 return -EACCES;
4217         }
4218
4219         /*
4220          * Basic control over ability to set these attributes at all.
4221          * current == p, but we'll pass them separately in case the
4222          * above restriction is ever removed.
4223          */
4224         if (!strcmp(name, "exec"))
4225                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4226         else if (!strcmp(name, "fscreate"))
4227                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4228         else if (!strcmp(name, "keycreate"))
4229                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4230         else if (!strcmp(name, "sockcreate"))
4231                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4232         else if (!strcmp(name, "current"))
4233                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4234         else
4235                 error = -EINVAL;
4236         if (error)
4237                 return error;
4238
4239         /* Obtain a SID for the context, if one was specified. */
4240         if (size && str[1] && str[1] != '\n') {
4241                 if (str[size-1] == '\n') {
4242                         str[size-1] = 0;
4243                         size--;
4244                 }
4245                 error = security_context_to_sid(value, size, &sid);
4246                 if (error)
4247                         return error;
4248         }
4249
4250         /* Permission checking based on the specified context is
4251            performed during the actual operation (execve,
4252            open/mkdir/...), when we know the full context of the
4253            operation.  See selinux_bprm_set_security for the execve
4254            checks and may_create for the file creation checks. The
4255            operation will then fail if the context is not permitted. */
4256         tsec = p->security;
4257         if (!strcmp(name, "exec"))
4258                 tsec->exec_sid = sid;
4259         else if (!strcmp(name, "fscreate"))
4260                 tsec->create_sid = sid;
4261         else if (!strcmp(name, "keycreate")) {
4262                 error = may_create_key(sid, p);
4263                 if (error)
4264                         return error;
4265                 tsec->keycreate_sid = sid;
4266         } else if (!strcmp(name, "sockcreate"))
4267                 tsec->sockcreate_sid = sid;
4268         else if (!strcmp(name, "current")) {
4269                 struct av_decision avd;
4270
4271                 if (sid == 0)
4272                         return -EINVAL;
4273
4274                 /* Only allow single threaded processes to change context */
4275                 if (atomic_read(&p->mm->mm_users) != 1) {
4276                         struct task_struct *g, *t;
4277                         struct mm_struct *mm = p->mm;
4278                         read_lock(&tasklist_lock);
4279                         do_each_thread(g, t)
4280                                 if (t->mm == mm && t != p) {
4281                                         read_unlock(&tasklist_lock);
4282                                         return -EPERM;
4283                                 }
4284                         while_each_thread(g, t);
4285                         read_unlock(&tasklist_lock);
4286                 }
4287
4288                 /* Check permissions for the transition. */
4289                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4290                                      PROCESS__DYNTRANSITION, NULL);
4291                 if (error)
4292                         return error;
4293
4294                 /* Check for ptracing, and update the task SID if ok.
4295                    Otherwise, leave SID unchanged and fail. */
4296                 task_lock(p);
4297                 if (p->ptrace & PT_PTRACED) {
4298                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4299                                                      SECCLASS_PROCESS,
4300                                                      PROCESS__PTRACE, &avd);
4301                         if (!error)
4302                                 tsec->sid = sid;
4303                         task_unlock(p);
4304                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4305                                   PROCESS__PTRACE, &avd, error, NULL);
4306                         if (error)
4307                                 return error;
4308                 } else {
4309                         tsec->sid = sid;
4310                         task_unlock(p);
4311                 }
4312         }
4313         else
4314                 return -EINVAL;
4315
4316         return size;
4317 }
4318
4319 #ifdef CONFIG_KEYS
4320
4321 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4322                              unsigned long flags)
4323 {
4324         struct task_security_struct *tsec = tsk->security;
4325         struct key_security_struct *ksec;
4326
4327         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4328         if (!ksec)
4329                 return -ENOMEM;
4330
4331         ksec->obj = k;
4332         if (tsec->keycreate_sid)
4333                 ksec->sid = tsec->keycreate_sid;
4334         else
4335                 ksec->sid = tsec->sid;
4336         k->security = ksec;
4337
4338         return 0;
4339 }
4340
4341 static void selinux_key_free(struct key *k)
4342 {
4343         struct key_security_struct *ksec = k->security;
4344
4345         k->security = NULL;
4346         kfree(ksec);
4347 }
4348
4349 static int selinux_key_permission(key_ref_t key_ref,
4350                             struct task_struct *ctx,
4351                             key_perm_t perm)
4352 {
4353         struct key *key;
4354         struct task_security_struct *tsec;
4355         struct key_security_struct *ksec;
4356
4357         key = key_ref_to_ptr(key_ref);
4358
4359         tsec = ctx->security;
4360         ksec = key->security;
4361
4362         /* if no specific permissions are requested, we skip the
4363            permission check. No serious, additional covert channels
4364            appear to be created. */
4365         if (perm == 0)
4366                 return 0;
4367
4368         return avc_has_perm(tsec->sid, ksec->sid,
4369                             SECCLASS_KEY, perm, NULL);
4370 }
4371
4372 #endif
4373
4374 static struct security_operations selinux_ops = {
4375         .ptrace =                       selinux_ptrace,
4376         .capget =                       selinux_capget,
4377         .capset_check =                 selinux_capset_check,
4378         .capset_set =                   selinux_capset_set,
4379         .sysctl =                       selinux_sysctl,
4380         .capable =                      selinux_capable,
4381         .quotactl =                     selinux_quotactl,
4382         .quota_on =                     selinux_quota_on,
4383         .syslog =                       selinux_syslog,
4384         .vm_enough_memory =             selinux_vm_enough_memory,
4385
4386         .netlink_send =                 selinux_netlink_send,
4387         .netlink_recv =                 selinux_netlink_recv,
4388
4389         .bprm_alloc_security =          selinux_bprm_alloc_security,
4390         .bprm_free_security =           selinux_bprm_free_security,
4391         .bprm_apply_creds =             selinux_bprm_apply_creds,
4392         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4393         .bprm_set_security =            selinux_bprm_set_security,
4394         .bprm_check_security =          selinux_bprm_check_security,
4395         .bprm_secureexec =              selinux_bprm_secureexec,
4396
4397         .sb_alloc_security =            selinux_sb_alloc_security,
4398         .sb_free_security =             selinux_sb_free_security,
4399         .sb_copy_data =                 selinux_sb_copy_data,
4400         .sb_kern_mount =                selinux_sb_kern_mount,
4401         .sb_statfs =                    selinux_sb_statfs,
4402         .sb_mount =                     selinux_mount,
4403         .sb_umount =                    selinux_umount,
4404
4405         .inode_alloc_security =         selinux_inode_alloc_security,
4406         .inode_free_security =          selinux_inode_free_security,
4407         .inode_init_security =          selinux_inode_init_security,
4408         .inode_create =                 selinux_inode_create,
4409         .inode_link =                   selinux_inode_link,
4410         .inode_unlink =                 selinux_inode_unlink,
4411         .inode_symlink =                selinux_inode_symlink,
4412         .inode_mkdir =                  selinux_inode_mkdir,
4413         .inode_rmdir =                  selinux_inode_rmdir,
4414         .inode_mknod =                  selinux_inode_mknod,
4415         .inode_rename =                 selinux_inode_rename,
4416         .inode_readlink =               selinux_inode_readlink,
4417         .inode_follow_link =            selinux_inode_follow_link,
4418         .inode_permission =             selinux_inode_permission,
4419         .inode_setattr =                selinux_inode_setattr,
4420         .inode_getattr =                selinux_inode_getattr,
4421         .inode_setxattr =               selinux_inode_setxattr,
4422         .inode_post_setxattr =          selinux_inode_post_setxattr,
4423         .inode_getxattr =               selinux_inode_getxattr,
4424         .inode_listxattr =              selinux_inode_listxattr,
4425         .inode_removexattr =            selinux_inode_removexattr,
4426         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4427         .inode_getsecurity =            selinux_inode_getsecurity,
4428         .inode_setsecurity =            selinux_inode_setsecurity,
4429         .inode_listsecurity =           selinux_inode_listsecurity,
4430
4431         .file_permission =              selinux_file_permission,
4432         .file_alloc_security =          selinux_file_alloc_security,
4433         .file_free_security =           selinux_file_free_security,
4434         .file_ioctl =                   selinux_file_ioctl,
4435         .file_mmap =                    selinux_file_mmap,
4436         .file_mprotect =                selinux_file_mprotect,
4437         .file_lock =                    selinux_file_lock,
4438         .file_fcntl =                   selinux_file_fcntl,
4439         .file_set_fowner =              selinux_file_set_fowner,
4440         .file_send_sigiotask =          selinux_file_send_sigiotask,
4441         .file_receive =                 selinux_file_receive,
4442
4443         .task_create =                  selinux_task_create,
4444         .task_alloc_security =          selinux_task_alloc_security,
4445         .task_free_security =           selinux_task_free_security,
4446         .task_setuid =                  selinux_task_setuid,
4447         .task_post_setuid =             selinux_task_post_setuid,
4448         .task_setgid =                  selinux_task_setgid,
4449         .task_setpgid =                 selinux_task_setpgid,
4450         .task_getpgid =                 selinux_task_getpgid,
4451         .task_getsid =                  selinux_task_getsid,
4452         .task_getsecid =                selinux_task_getsecid,
4453         .task_setgroups =               selinux_task_setgroups,
4454         .task_setnice =                 selinux_task_setnice,
4455         .task_setioprio =               selinux_task_setioprio,
4456         .task_getioprio =               selinux_task_getioprio,
4457         .task_setrlimit =               selinux_task_setrlimit,
4458         .task_setscheduler =            selinux_task_setscheduler,
4459         .task_getscheduler =            selinux_task_getscheduler,
4460         .task_movememory =              selinux_task_movememory,
4461         .task_kill =                    selinux_task_kill,
4462         .task_wait =                    selinux_task_wait,
4463         .task_prctl =                   selinux_task_prctl,
4464         .task_reparent_to_init =        selinux_task_reparent_to_init,
4465         .task_to_inode =                selinux_task_to_inode,
4466
4467         .ipc_permission =               selinux_ipc_permission,
4468
4469         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4470         .msg_msg_free_security =        selinux_msg_msg_free_security,
4471
4472         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4473         .msg_queue_free_security =      selinux_msg_queue_free_security,
4474         .msg_queue_associate =          selinux_msg_queue_associate,
4475         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4476         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4477         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4478
4479         .shm_alloc_security =           selinux_shm_alloc_security,
4480         .shm_free_security =            selinux_shm_free_security,
4481         .shm_associate =                selinux_shm_associate,
4482         .shm_shmctl =                   selinux_shm_shmctl,
4483         .shm_shmat =                    selinux_shm_shmat,
4484
4485         .sem_alloc_security =           selinux_sem_alloc_security,
4486         .sem_free_security =            selinux_sem_free_security,
4487         .sem_associate =                selinux_sem_associate,
4488         .sem_semctl =                   selinux_sem_semctl,
4489         .sem_semop =                    selinux_sem_semop,
4490
4491         .register_security =            selinux_register_security,
4492         .unregister_security =          selinux_unregister_security,
4493
4494         .d_instantiate =                selinux_d_instantiate,
4495
4496         .getprocattr =                  selinux_getprocattr,
4497         .setprocattr =                  selinux_setprocattr,
4498
4499         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4500         .unix_may_send =                selinux_socket_unix_may_send,
4501
4502         .socket_create =                selinux_socket_create,
4503         .socket_post_create =           selinux_socket_post_create,
4504         .socket_bind =                  selinux_socket_bind,
4505         .socket_connect =               selinux_socket_connect,
4506         .socket_listen =                selinux_socket_listen,
4507         .socket_accept =                selinux_socket_accept,
4508         .socket_sendmsg =               selinux_socket_sendmsg,
4509         .socket_recvmsg =               selinux_socket_recvmsg,
4510         .socket_getsockname =           selinux_socket_getsockname,
4511         .socket_getpeername =           selinux_socket_getpeername,
4512         .socket_getsockopt =            selinux_socket_getsockopt,
4513         .socket_setsockopt =            selinux_socket_setsockopt,
4514         .socket_shutdown =              selinux_socket_shutdown,
4515         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4516         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4517         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4518         .sk_alloc_security =            selinux_sk_alloc_security,
4519         .sk_free_security =             selinux_sk_free_security,
4520         .sk_getsid =                    selinux_sk_getsid_security,
4521
4522 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4523         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4524         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4525         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4526         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4527         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4528         .xfrm_state_free_security =     selinux_xfrm_state_free,
4529         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4530         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4531 #endif
4532
4533 #ifdef CONFIG_KEYS
4534         .key_alloc =                    selinux_key_alloc,
4535         .key_free =                     selinux_key_free,
4536         .key_permission =               selinux_key_permission,
4537 #endif
4538 };
4539
4540 static __init int selinux_init(void)
4541 {
4542         struct task_security_struct *tsec;
4543
4544         if (!selinux_enabled) {
4545                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4546                 return 0;
4547         }
4548
4549         printk(KERN_INFO "SELinux:  Initializing.\n");
4550
4551         /* Set the security state for the initial task. */
4552         if (task_alloc_security(current))
4553                 panic("SELinux:  Failed to initialize initial task.\n");
4554         tsec = current->security;
4555         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4556
4557         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4558                                             sizeof(struct inode_security_struct),
4559                                             0, SLAB_PANIC, NULL, NULL);
4560         avc_init();
4561
4562         original_ops = secondary_ops = security_ops;
4563         if (!secondary_ops)
4564                 panic ("SELinux: No initial security operations\n");
4565         if (register_security (&selinux_ops))
4566                 panic("SELinux: Unable to register with kernel.\n");
4567
4568         if (selinux_enforcing) {
4569                 printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4570         } else {
4571                 printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4572         }
4573
4574 #ifdef CONFIG_KEYS
4575         /* Add security information to initial keyrings */
4576         selinux_key_alloc(&root_user_keyring, current,
4577                           KEY_ALLOC_NOT_IN_QUOTA);
4578         selinux_key_alloc(&root_session_keyring, current,
4579                           KEY_ALLOC_NOT_IN_QUOTA);
4580 #endif
4581
4582         return 0;
4583 }
4584
4585 void selinux_complete_init(void)
4586 {
4587         printk(KERN_INFO "SELinux:  Completing initialization.\n");
4588
4589         /* Set up any superblocks initialized prior to the policy load. */
4590         printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4591         spin_lock(&sb_lock);
4592         spin_lock(&sb_security_lock);
4593 next_sb:
4594         if (!list_empty(&superblock_security_head)) {
4595                 struct superblock_security_struct *sbsec =
4596                                 list_entry(superblock_security_head.next,
4597                                            struct superblock_security_struct,
4598                                            list);
4599                 struct super_block *sb = sbsec->sb;
4600                 sb->s_count++;
4601                 spin_unlock(&sb_security_lock);
4602                 spin_unlock(&sb_lock);
4603                 down_read(&sb->s_umount);
4604                 if (sb->s_root)
4605                         superblock_doinit(sb, NULL);
4606                 drop_super(sb);
4607                 spin_lock(&sb_lock);
4608                 spin_lock(&sb_security_lock);
4609                 list_del_init(&sbsec->list);
4610                 goto next_sb;
4611         }
4612         spin_unlock(&sb_security_lock);
4613         spin_unlock(&sb_lock);
4614 }
4615
4616 /* SELinux requires early initialization in order to label
4617    all processes and objects when they are created. */
4618 security_initcall(selinux_init);
4619
4620 #if defined(CONFIG_NETFILTER)
4621
4622 static struct nf_hook_ops selinux_ipv4_op = {
4623         .hook =         selinux_ipv4_postroute_last,
4624         .owner =        THIS_MODULE,
4625         .pf =           PF_INET,
4626         .hooknum =      NF_IP_POST_ROUTING,
4627         .priority =     NF_IP_PRI_SELINUX_LAST,
4628 };
4629
4630 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4631
4632 static struct nf_hook_ops selinux_ipv6_op = {
4633         .hook =         selinux_ipv6_postroute_last,
4634         .owner =        THIS_MODULE,
4635         .pf =           PF_INET6,
4636         .hooknum =      NF_IP6_POST_ROUTING,
4637         .priority =     NF_IP6_PRI_SELINUX_LAST,
4638 };
4639
4640 #endif  /* IPV6 */
4641
4642 static int __init selinux_nf_ip_init(void)
4643 {
4644         int err = 0;
4645
4646         if (!selinux_enabled)
4647                 goto out;
4648                 
4649         printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4650         
4651         err = nf_register_hook(&selinux_ipv4_op);
4652         if (err)
4653                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4654
4655 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4656
4657         err = nf_register_hook(&selinux_ipv6_op);
4658         if (err)
4659                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4660
4661 #endif  /* IPV6 */
4662
4663 out:
4664         return err;
4665 }
4666
4667 __initcall(selinux_nf_ip_init);
4668
4669 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4670 static void selinux_nf_ip_exit(void)
4671 {
4672         printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4673
4674         nf_unregister_hook(&selinux_ipv4_op);
4675 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4676         nf_unregister_hook(&selinux_ipv6_op);
4677 #endif  /* IPV6 */
4678 }
4679 #endif
4680
4681 #else /* CONFIG_NETFILTER */
4682
4683 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4684 #define selinux_nf_ip_exit()
4685 #endif
4686
4687 #endif /* CONFIG_NETFILTER */
4688
4689 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4690 int selinux_disable(void)
4691 {
4692         extern void exit_sel_fs(void);
4693         static int selinux_disabled = 0;
4694
4695         if (ss_initialized) {
4696                 /* Not permitted after initial policy load. */
4697                 return -EINVAL;
4698         }
4699
4700         if (selinux_disabled) {
4701                 /* Only do this once. */
4702                 return -EINVAL;
4703         }
4704
4705         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4706
4707         selinux_disabled = 1;
4708         selinux_enabled = 0;
4709
4710         /* Reset security_ops to the secondary module, dummy or capability. */
4711         security_ops = secondary_ops;
4712
4713         /* Unregister netfilter hooks. */
4714         selinux_nf_ip_exit();
4715
4716         /* Unregister selinuxfs. */
4717         exit_sel_fs();
4718
4719         return 0;
4720 }
4721 #endif
4722
4723