Implement file posix capabilities
[safe/jmp/linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
19  *
20  *      This program is free software; you can redistribute it and/or modify
21  *      it under the terms of the GNU General Public License version 2,
22  *      as published by the Free Software Foundation.
23  */
24
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/security.h>
31 #include <linux/xattr.h>
32 #include <linux/capability.h>
33 #include <linux/unistd.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/slab.h>
37 #include <linux/pagemap.h>
38 #include <linux/swap.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88 extern struct security_operations *security_ops;
89
90 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
91 int selinux_enforcing = 0;
92
93 static int __init enforcing_setup(char *str)
94 {
95         selinux_enforcing = simple_strtol(str,NULL,0);
96         return 1;
97 }
98 __setup("enforcing=", enforcing_setup);
99 #endif
100
101 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
102 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
103
104 static int __init selinux_enabled_setup(char *str)
105 {
106         selinux_enabled = simple_strtol(str, NULL, 0);
107         return 1;
108 }
109 __setup("selinux=", selinux_enabled_setup);
110 #else
111 int selinux_enabled = 1;
112 #endif
113
114 /* Original (dummy) security module. */
115 static struct security_operations *original_ops = NULL;
116
117 /* Minimal support for a secondary security module,
118    just to allow the use of the dummy or capability modules.
119    The owlsm module can alternatively be used as a secondary
120    module as long as CONFIG_OWLSM_FD is not enabled. */
121 static struct security_operations *secondary_ops = NULL;
122
123 /* Lists of inode and superblock security structures initialized
124    before the policy was loaded. */
125 static LIST_HEAD(superblock_security_head);
126 static DEFINE_SPINLOCK(sb_security_lock);
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /* Return security context for a given sid or just the context 
131    length if the buffer is null or length is 0 */
132 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
133 {
134         char *context;
135         unsigned len;
136         int rc;
137
138         rc = security_sid_to_context(sid, &context, &len);
139         if (rc)
140                 return rc;
141
142         if (!buffer || !size)
143                 goto getsecurity_exit;
144
145         if (size < len) {
146                 len = -ERANGE;
147                 goto getsecurity_exit;
148         }
149         memcpy(buffer, context, len);
150
151 getsecurity_exit:
152         kfree(context);
153         return len;
154 }
155
156 /* Allocate and free functions for each kind of security blob. */
157
158 static int task_alloc_security(struct task_struct *task)
159 {
160         struct task_security_struct *tsec;
161
162         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
163         if (!tsec)
164                 return -ENOMEM;
165
166         tsec->task = task;
167         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
168         task->security = tsec;
169
170         return 0;
171 }
172
173 static void task_free_security(struct task_struct *task)
174 {
175         struct task_security_struct *tsec = task->security;
176         task->security = NULL;
177         kfree(tsec);
178 }
179
180 static int inode_alloc_security(struct inode *inode)
181 {
182         struct task_security_struct *tsec = current->security;
183         struct inode_security_struct *isec;
184
185         isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
186         if (!isec)
187                 return -ENOMEM;
188
189         mutex_init(&isec->lock);
190         INIT_LIST_HEAD(&isec->list);
191         isec->inode = inode;
192         isec->sid = SECINITSID_UNLABELED;
193         isec->sclass = SECCLASS_FILE;
194         isec->task_sid = tsec->sid;
195         inode->i_security = isec;
196
197         return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec = inode->i_security;
203         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205         spin_lock(&sbsec->isec_lock);
206         if (!list_empty(&isec->list))
207                 list_del_init(&isec->list);
208         spin_unlock(&sbsec->isec_lock);
209
210         inode->i_security = NULL;
211         kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216         struct task_security_struct *tsec = current->security;
217         struct file_security_struct *fsec;
218
219         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220         if (!fsec)
221                 return -ENOMEM;
222
223         fsec->file = file;
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->sk = sk;
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_init(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_error = -1,
322         Opt_context = 1,
323         Opt_fscontext = 2,
324         Opt_defcontext = 4,
325         Opt_rootcontext = 8,
326 };
327
328 static match_table_t tokens = {
329         {Opt_context, "context=%s"},
330         {Opt_fscontext, "fscontext=%s"},
331         {Opt_defcontext, "defcontext=%s"},
332         {Opt_rootcontext, "rootcontext=%s"},
333         {Opt_error, NULL},
334 };
335
336 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
337
338 static int may_context_mount_sb_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         struct task_security_struct *tsec)
341 {
342         int rc;
343
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__RELABELTO, NULL);
351         return rc;
352 }
353
354 static int may_context_mount_inode_relabel(u32 sid,
355                         struct superblock_security_struct *sbsec,
356                         struct task_security_struct *tsec)
357 {
358         int rc;
359         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
360                           FILESYSTEM__RELABELFROM, NULL);
361         if (rc)
362                 return rc;
363
364         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
365                           FILESYSTEM__ASSOCIATE, NULL);
366         return rc;
367 }
368
369 static int try_context_mount(struct super_block *sb, void *data)
370 {
371         char *context = NULL, *defcontext = NULL;
372         char *fscontext = NULL, *rootcontext = NULL;
373         const char *name;
374         u32 sid;
375         int alloc = 0, rc = 0, seen = 0;
376         struct task_security_struct *tsec = current->security;
377         struct superblock_security_struct *sbsec = sb->s_security;
378
379         if (!data)
380                 goto out;
381
382         name = sb->s_type->name;
383
384         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
385
386                 /* NFS we understand. */
387                 if (!strcmp(name, "nfs")) {
388                         struct nfs_mount_data *d = data;
389
390                         if (d->version <  NFS_MOUNT_VERSION)
391                                 goto out;
392
393                         if (d->context[0]) {
394                                 context = d->context;
395                                 seen |= Opt_context;
396                         }
397                 } else
398                         goto out;
399
400         } else {
401                 /* Standard string-based options. */
402                 char *p, *options = data;
403
404                 while ((p = strsep(&options, "|")) != NULL) {
405                         int token;
406                         substring_t args[MAX_OPT_ARGS];
407
408                         if (!*p)
409                                 continue;
410
411                         token = match_token(p, tokens, args);
412
413                         switch (token) {
414                         case Opt_context:
415                                 if (seen & (Opt_context|Opt_defcontext)) {
416                                         rc = -EINVAL;
417                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
418                                         goto out_free;
419                                 }
420                                 context = match_strdup(&args[0]);
421                                 if (!context) {
422                                         rc = -ENOMEM;
423                                         goto out_free;
424                                 }
425                                 if (!alloc)
426                                         alloc = 1;
427                                 seen |= Opt_context;
428                                 break;
429
430                         case Opt_fscontext:
431                                 if (seen & Opt_fscontext) {
432                                         rc = -EINVAL;
433                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
434                                         goto out_free;
435                                 }
436                                 fscontext = match_strdup(&args[0]);
437                                 if (!fscontext) {
438                                         rc = -ENOMEM;
439                                         goto out_free;
440                                 }
441                                 if (!alloc)
442                                         alloc = 1;
443                                 seen |= Opt_fscontext;
444                                 break;
445
446                         case Opt_rootcontext:
447                                 if (seen & Opt_rootcontext) {
448                                         rc = -EINVAL;
449                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
450                                         goto out_free;
451                                 }
452                                 rootcontext = match_strdup(&args[0]);
453                                 if (!rootcontext) {
454                                         rc = -ENOMEM;
455                                         goto out_free;
456                                 }
457                                 if (!alloc)
458                                         alloc = 1;
459                                 seen |= Opt_rootcontext;
460                                 break;
461
462                         case Opt_defcontext:
463                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
464                                         rc = -EINVAL;
465                                         printk(KERN_WARNING "SELinux:  "
466                                                "defcontext option is invalid "
467                                                "for this filesystem type\n");
468                                         goto out_free;
469                                 }
470                                 if (seen & (Opt_context|Opt_defcontext)) {
471                                         rc = -EINVAL;
472                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
473                                         goto out_free;
474                                 }
475                                 defcontext = match_strdup(&args[0]);
476                                 if (!defcontext) {
477                                         rc = -ENOMEM;
478                                         goto out_free;
479                                 }
480                                 if (!alloc)
481                                         alloc = 1;
482                                 seen |= Opt_defcontext;
483                                 break;
484
485                         default:
486                                 rc = -EINVAL;
487                                 printk(KERN_WARNING "SELinux:  unknown mount "
488                                        "option\n");
489                                 goto out_free;
490
491                         }
492                 }
493         }
494
495         if (!seen)
496                 goto out;
497
498         /* sets the context of the superblock for the fs being mounted. */
499         if (fscontext) {
500                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
501                 if (rc) {
502                         printk(KERN_WARNING "SELinux: security_context_to_sid"
503                                "(%s) failed for (dev %s, type %s) errno=%d\n",
504                                fscontext, sb->s_id, name, rc);
505                         goto out_free;
506                 }
507
508                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
509                 if (rc)
510                         goto out_free;
511
512                 sbsec->sid = sid;
513         }
514
515         /*
516          * Switch to using mount point labeling behavior.
517          * sets the label used on all file below the mountpoint, and will set
518          * the superblock context if not already set.
519          */
520         if (context) {
521                 rc = security_context_to_sid(context, strlen(context), &sid);
522                 if (rc) {
523                         printk(KERN_WARNING "SELinux: security_context_to_sid"
524                                "(%s) failed for (dev %s, type %s) errno=%d\n",
525                                context, sb->s_id, name, rc);
526                         goto out_free;
527                 }
528
529                 if (!fscontext) {
530                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
531                         if (rc)
532                                 goto out_free;
533                         sbsec->sid = sid;
534                 } else {
535                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
536                         if (rc)
537                                 goto out_free;
538                 }
539                 sbsec->mntpoint_sid = sid;
540
541                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
542         }
543
544         if (rootcontext) {
545                 struct inode *inode = sb->s_root->d_inode;
546                 struct inode_security_struct *isec = inode->i_security;
547                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
548                 if (rc) {
549                         printk(KERN_WARNING "SELinux: security_context_to_sid"
550                                "(%s) failed for (dev %s, type %s) errno=%d\n",
551                                rootcontext, sb->s_id, name, rc);
552                         goto out_free;
553                 }
554
555                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
556                 if (rc)
557                         goto out_free;
558
559                 isec->sid = sid;
560                 isec->initialized = 1;
561         }
562
563         if (defcontext) {
564                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
565                 if (rc) {
566                         printk(KERN_WARNING "SELinux: security_context_to_sid"
567                                "(%s) failed for (dev %s, type %s) errno=%d\n",
568                                defcontext, sb->s_id, name, rc);
569                         goto out_free;
570                 }
571
572                 if (sid == sbsec->def_sid)
573                         goto out_free;
574
575                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
576                 if (rc)
577                         goto out_free;
578
579                 sbsec->def_sid = sid;
580         }
581
582 out_free:
583         if (alloc) {
584                 kfree(context);
585                 kfree(defcontext);
586                 kfree(fscontext);
587                 kfree(rootcontext);
588         }
589 out:
590         return rc;
591 }
592
593 static int superblock_doinit(struct super_block *sb, void *data)
594 {
595         struct superblock_security_struct *sbsec = sb->s_security;
596         struct dentry *root = sb->s_root;
597         struct inode *inode = root->d_inode;
598         int rc = 0;
599
600         mutex_lock(&sbsec->lock);
601         if (sbsec->initialized)
602                 goto out;
603
604         if (!ss_initialized) {
605                 /* Defer initialization until selinux_complete_init,
606                    after the initial policy is loaded and the security
607                    server is ready to handle calls. */
608                 spin_lock(&sb_security_lock);
609                 if (list_empty(&sbsec->list))
610                         list_add(&sbsec->list, &superblock_security_head);
611                 spin_unlock(&sb_security_lock);
612                 goto out;
613         }
614
615         /* Determine the labeling behavior to use for this filesystem type. */
616         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
617         if (rc) {
618                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
619                        __FUNCTION__, sb->s_type->name, rc);
620                 goto out;
621         }
622
623         rc = try_context_mount(sb, data);
624         if (rc)
625                 goto out;
626
627         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
628                 /* Make sure that the xattr handler exists and that no
629                    error other than -ENODATA is returned by getxattr on
630                    the root directory.  -ENODATA is ok, as this may be
631                    the first boot of the SELinux kernel before we have
632                    assigned xattr values to the filesystem. */
633                 if (!inode->i_op->getxattr) {
634                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
635                                "xattr support\n", sb->s_id, sb->s_type->name);
636                         rc = -EOPNOTSUPP;
637                         goto out;
638                 }
639                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
640                 if (rc < 0 && rc != -ENODATA) {
641                         if (rc == -EOPNOTSUPP)
642                                 printk(KERN_WARNING "SELinux: (dev %s, type "
643                                        "%s) has no security xattr handler\n",
644                                        sb->s_id, sb->s_type->name);
645                         else
646                                 printk(KERN_WARNING "SELinux: (dev %s, type "
647                                        "%s) getxattr errno %d\n", sb->s_id,
648                                        sb->s_type->name, -rc);
649                         goto out;
650                 }
651         }
652
653         if (strcmp(sb->s_type->name, "proc") == 0)
654                 sbsec->proc = 1;
655
656         sbsec->initialized = 1;
657
658         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
659                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
660                        sb->s_id, sb->s_type->name);
661         }
662         else {
663                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
664                        sb->s_id, sb->s_type->name,
665                        labeling_behaviors[sbsec->behavior-1]);
666         }
667
668         /* Initialize the root inode. */
669         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
670
671         /* Initialize any other inodes associated with the superblock, e.g.
672            inodes created prior to initial policy load or inodes created
673            during get_sb by a pseudo filesystem that directly
674            populates itself. */
675         spin_lock(&sbsec->isec_lock);
676 next_inode:
677         if (!list_empty(&sbsec->isec_head)) {
678                 struct inode_security_struct *isec =
679                                 list_entry(sbsec->isec_head.next,
680                                            struct inode_security_struct, list);
681                 struct inode *inode = isec->inode;
682                 spin_unlock(&sbsec->isec_lock);
683                 inode = igrab(inode);
684                 if (inode) {
685                         if (!IS_PRIVATE (inode))
686                                 inode_doinit(inode);
687                         iput(inode);
688                 }
689                 spin_lock(&sbsec->isec_lock);
690                 list_del_init(&isec->list);
691                 goto next_inode;
692         }
693         spin_unlock(&sbsec->isec_lock);
694 out:
695         mutex_unlock(&sbsec->lock);
696         return rc;
697 }
698
699 static inline u16 inode_mode_to_security_class(umode_t mode)
700 {
701         switch (mode & S_IFMT) {
702         case S_IFSOCK:
703                 return SECCLASS_SOCK_FILE;
704         case S_IFLNK:
705                 return SECCLASS_LNK_FILE;
706         case S_IFREG:
707                 return SECCLASS_FILE;
708         case S_IFBLK:
709                 return SECCLASS_BLK_FILE;
710         case S_IFDIR:
711                 return SECCLASS_DIR;
712         case S_IFCHR:
713                 return SECCLASS_CHR_FILE;
714         case S_IFIFO:
715                 return SECCLASS_FIFO_FILE;
716
717         }
718
719         return SECCLASS_FILE;
720 }
721
722 static inline int default_protocol_stream(int protocol)
723 {
724         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
725 }
726
727 static inline int default_protocol_dgram(int protocol)
728 {
729         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
730 }
731
732 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
733 {
734         switch (family) {
735         case PF_UNIX:
736                 switch (type) {
737                 case SOCK_STREAM:
738                 case SOCK_SEQPACKET:
739                         return SECCLASS_UNIX_STREAM_SOCKET;
740                 case SOCK_DGRAM:
741                         return SECCLASS_UNIX_DGRAM_SOCKET;
742                 }
743                 break;
744         case PF_INET:
745         case PF_INET6:
746                 switch (type) {
747                 case SOCK_STREAM:
748                         if (default_protocol_stream(protocol))
749                                 return SECCLASS_TCP_SOCKET;
750                         else
751                                 return SECCLASS_RAWIP_SOCKET;
752                 case SOCK_DGRAM:
753                         if (default_protocol_dgram(protocol))
754                                 return SECCLASS_UDP_SOCKET;
755                         else
756                                 return SECCLASS_RAWIP_SOCKET;
757                 case SOCK_DCCP:
758                         return SECCLASS_DCCP_SOCKET;
759                 default:
760                         return SECCLASS_RAWIP_SOCKET;
761                 }
762                 break;
763         case PF_NETLINK:
764                 switch (protocol) {
765                 case NETLINK_ROUTE:
766                         return SECCLASS_NETLINK_ROUTE_SOCKET;
767                 case NETLINK_FIREWALL:
768                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
769                 case NETLINK_INET_DIAG:
770                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
771                 case NETLINK_NFLOG:
772                         return SECCLASS_NETLINK_NFLOG_SOCKET;
773                 case NETLINK_XFRM:
774                         return SECCLASS_NETLINK_XFRM_SOCKET;
775                 case NETLINK_SELINUX:
776                         return SECCLASS_NETLINK_SELINUX_SOCKET;
777                 case NETLINK_AUDIT:
778                         return SECCLASS_NETLINK_AUDIT_SOCKET;
779                 case NETLINK_IP6_FW:
780                         return SECCLASS_NETLINK_IP6FW_SOCKET;
781                 case NETLINK_DNRTMSG:
782                         return SECCLASS_NETLINK_DNRT_SOCKET;
783                 case NETLINK_KOBJECT_UEVENT:
784                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
785                 default:
786                         return SECCLASS_NETLINK_SOCKET;
787                 }
788         case PF_PACKET:
789                 return SECCLASS_PACKET_SOCKET;
790         case PF_KEY:
791                 return SECCLASS_KEY_SOCKET;
792         case PF_APPLETALK:
793                 return SECCLASS_APPLETALK_SOCKET;
794         }
795
796         return SECCLASS_SOCKET;
797 }
798
799 #ifdef CONFIG_PROC_FS
800 static int selinux_proc_get_sid(struct proc_dir_entry *de,
801                                 u16 tclass,
802                                 u32 *sid)
803 {
804         int buflen, rc;
805         char *buffer, *path, *end;
806
807         buffer = (char*)__get_free_page(GFP_KERNEL);
808         if (!buffer)
809                 return -ENOMEM;
810
811         buflen = PAGE_SIZE;
812         end = buffer+buflen;
813         *--end = '\0';
814         buflen--;
815         path = end-1;
816         *path = '/';
817         while (de && de != de->parent) {
818                 buflen -= de->namelen + 1;
819                 if (buflen < 0)
820                         break;
821                 end -= de->namelen;
822                 memcpy(end, de->name, de->namelen);
823                 *--end = '/';
824                 path = end;
825                 de = de->parent;
826         }
827         rc = security_genfs_sid("proc", path, tclass, sid);
828         free_page((unsigned long)buffer);
829         return rc;
830 }
831 #else
832 static int selinux_proc_get_sid(struct proc_dir_entry *de,
833                                 u16 tclass,
834                                 u32 *sid)
835 {
836         return -EINVAL;
837 }
838 #endif
839
840 /* The inode's security attributes must be initialized before first use. */
841 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
842 {
843         struct superblock_security_struct *sbsec = NULL;
844         struct inode_security_struct *isec = inode->i_security;
845         u32 sid;
846         struct dentry *dentry;
847 #define INITCONTEXTLEN 255
848         char *context = NULL;
849         unsigned len = 0;
850         int rc = 0;
851
852         if (isec->initialized)
853                 goto out;
854
855         mutex_lock(&isec->lock);
856         if (isec->initialized)
857                 goto out_unlock;
858
859         sbsec = inode->i_sb->s_security;
860         if (!sbsec->initialized) {
861                 /* Defer initialization until selinux_complete_init,
862                    after the initial policy is loaded and the security
863                    server is ready to handle calls. */
864                 spin_lock(&sbsec->isec_lock);
865                 if (list_empty(&isec->list))
866                         list_add(&isec->list, &sbsec->isec_head);
867                 spin_unlock(&sbsec->isec_lock);
868                 goto out_unlock;
869         }
870
871         switch (sbsec->behavior) {
872         case SECURITY_FS_USE_XATTR:
873                 if (!inode->i_op->getxattr) {
874                         isec->sid = sbsec->def_sid;
875                         break;
876                 }
877
878                 /* Need a dentry, since the xattr API requires one.
879                    Life would be simpler if we could just pass the inode. */
880                 if (opt_dentry) {
881                         /* Called from d_instantiate or d_splice_alias. */
882                         dentry = dget(opt_dentry);
883                 } else {
884                         /* Called from selinux_complete_init, try to find a dentry. */
885                         dentry = d_find_alias(inode);
886                 }
887                 if (!dentry) {
888                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
889                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
890                                inode->i_ino);
891                         goto out_unlock;
892                 }
893
894                 len = INITCONTEXTLEN;
895                 context = kmalloc(len, GFP_KERNEL);
896                 if (!context) {
897                         rc = -ENOMEM;
898                         dput(dentry);
899                         goto out_unlock;
900                 }
901                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
902                                            context, len);
903                 if (rc == -ERANGE) {
904                         /* Need a larger buffer.  Query for the right size. */
905                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
906                                                    NULL, 0);
907                         if (rc < 0) {
908                                 dput(dentry);
909                                 goto out_unlock;
910                         }
911                         kfree(context);
912                         len = rc;
913                         context = kmalloc(len, GFP_KERNEL);
914                         if (!context) {
915                                 rc = -ENOMEM;
916                                 dput(dentry);
917                                 goto out_unlock;
918                         }
919                         rc = inode->i_op->getxattr(dentry,
920                                                    XATTR_NAME_SELINUX,
921                                                    context, len);
922                 }
923                 dput(dentry);
924                 if (rc < 0) {
925                         if (rc != -ENODATA) {
926                                 printk(KERN_WARNING "%s:  getxattr returned "
927                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
928                                        -rc, inode->i_sb->s_id, inode->i_ino);
929                                 kfree(context);
930                                 goto out_unlock;
931                         }
932                         /* Map ENODATA to the default file SID */
933                         sid = sbsec->def_sid;
934                         rc = 0;
935                 } else {
936                         rc = security_context_to_sid_default(context, rc, &sid,
937                                                              sbsec->def_sid);
938                         if (rc) {
939                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
940                                        "returned %d for dev=%s ino=%ld\n",
941                                        __FUNCTION__, context, -rc,
942                                        inode->i_sb->s_id, inode->i_ino);
943                                 kfree(context);
944                                 /* Leave with the unlabeled SID */
945                                 rc = 0;
946                                 break;
947                         }
948                 }
949                 kfree(context);
950                 isec->sid = sid;
951                 break;
952         case SECURITY_FS_USE_TASK:
953                 isec->sid = isec->task_sid;
954                 break;
955         case SECURITY_FS_USE_TRANS:
956                 /* Default to the fs SID. */
957                 isec->sid = sbsec->sid;
958
959                 /* Try to obtain a transition SID. */
960                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
961                 rc = security_transition_sid(isec->task_sid,
962                                              sbsec->sid,
963                                              isec->sclass,
964                                              &sid);
965                 if (rc)
966                         goto out_unlock;
967                 isec->sid = sid;
968                 break;
969         case SECURITY_FS_USE_MNTPOINT:
970                 isec->sid = sbsec->mntpoint_sid;
971                 break;
972         default:
973                 /* Default to the fs superblock SID. */
974                 isec->sid = sbsec->sid;
975
976                 if (sbsec->proc) {
977                         struct proc_inode *proci = PROC_I(inode);
978                         if (proci->pde) {
979                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
980                                 rc = selinux_proc_get_sid(proci->pde,
981                                                           isec->sclass,
982                                                           &sid);
983                                 if (rc)
984                                         goto out_unlock;
985                                 isec->sid = sid;
986                         }
987                 }
988                 break;
989         }
990
991         isec->initialized = 1;
992
993 out_unlock:
994         mutex_unlock(&isec->lock);
995 out:
996         if (isec->sclass == SECCLASS_FILE)
997                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
998         return rc;
999 }
1000
1001 /* Convert a Linux signal to an access vector. */
1002 static inline u32 signal_to_av(int sig)
1003 {
1004         u32 perm = 0;
1005
1006         switch (sig) {
1007         case SIGCHLD:
1008                 /* Commonly granted from child to parent. */
1009                 perm = PROCESS__SIGCHLD;
1010                 break;
1011         case SIGKILL:
1012                 /* Cannot be caught or ignored */
1013                 perm = PROCESS__SIGKILL;
1014                 break;
1015         case SIGSTOP:
1016                 /* Cannot be caught or ignored */
1017                 perm = PROCESS__SIGSTOP;
1018                 break;
1019         default:
1020                 /* All other signals. */
1021                 perm = PROCESS__SIGNAL;
1022                 break;
1023         }
1024
1025         return perm;
1026 }
1027
1028 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1029    fork check, ptrace check, etc. */
1030 static int task_has_perm(struct task_struct *tsk1,
1031                          struct task_struct *tsk2,
1032                          u32 perms)
1033 {
1034         struct task_security_struct *tsec1, *tsec2;
1035
1036         tsec1 = tsk1->security;
1037         tsec2 = tsk2->security;
1038         return avc_has_perm(tsec1->sid, tsec2->sid,
1039                             SECCLASS_PROCESS, perms, NULL);
1040 }
1041
1042 /* Check whether a task is allowed to use a capability. */
1043 static int task_has_capability(struct task_struct *tsk,
1044                                int cap)
1045 {
1046         struct task_security_struct *tsec;
1047         struct avc_audit_data ad;
1048
1049         tsec = tsk->security;
1050
1051         AVC_AUDIT_DATA_INIT(&ad,CAP);
1052         ad.tsk = tsk;
1053         ad.u.cap = cap;
1054
1055         return avc_has_perm(tsec->sid, tsec->sid,
1056                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1057 }
1058
1059 /* Check whether a task is allowed to use a system operation. */
1060 static int task_has_system(struct task_struct *tsk,
1061                            u32 perms)
1062 {
1063         struct task_security_struct *tsec;
1064
1065         tsec = tsk->security;
1066
1067         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1068                             SECCLASS_SYSTEM, perms, NULL);
1069 }
1070
1071 /* Check whether a task has a particular permission to an inode.
1072    The 'adp' parameter is optional and allows other audit
1073    data to be passed (e.g. the dentry). */
1074 static int inode_has_perm(struct task_struct *tsk,
1075                           struct inode *inode,
1076                           u32 perms,
1077                           struct avc_audit_data *adp)
1078 {
1079         struct task_security_struct *tsec;
1080         struct inode_security_struct *isec;
1081         struct avc_audit_data ad;
1082
1083         if (unlikely (IS_PRIVATE (inode)))
1084                 return 0;
1085
1086         tsec = tsk->security;
1087         isec = inode->i_security;
1088
1089         if (!adp) {
1090                 adp = &ad;
1091                 AVC_AUDIT_DATA_INIT(&ad, FS);
1092                 ad.u.fs.inode = inode;
1093         }
1094
1095         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1096 }
1097
1098 /* Same as inode_has_perm, but pass explicit audit data containing
1099    the dentry to help the auditing code to more easily generate the
1100    pathname if needed. */
1101 static inline int dentry_has_perm(struct task_struct *tsk,
1102                                   struct vfsmount *mnt,
1103                                   struct dentry *dentry,
1104                                   u32 av)
1105 {
1106         struct inode *inode = dentry->d_inode;
1107         struct avc_audit_data ad;
1108         AVC_AUDIT_DATA_INIT(&ad,FS);
1109         ad.u.fs.mnt = mnt;
1110         ad.u.fs.dentry = dentry;
1111         return inode_has_perm(tsk, inode, av, &ad);
1112 }
1113
1114 /* Check whether a task can use an open file descriptor to
1115    access an inode in a given way.  Check access to the
1116    descriptor itself, and then use dentry_has_perm to
1117    check a particular permission to the file.
1118    Access to the descriptor is implicitly granted if it
1119    has the same SID as the process.  If av is zero, then
1120    access to the file is not checked, e.g. for cases
1121    where only the descriptor is affected like seek. */
1122 static int file_has_perm(struct task_struct *tsk,
1123                                 struct file *file,
1124                                 u32 av)
1125 {
1126         struct task_security_struct *tsec = tsk->security;
1127         struct file_security_struct *fsec = file->f_security;
1128         struct vfsmount *mnt = file->f_path.mnt;
1129         struct dentry *dentry = file->f_path.dentry;
1130         struct inode *inode = dentry->d_inode;
1131         struct avc_audit_data ad;
1132         int rc;
1133
1134         AVC_AUDIT_DATA_INIT(&ad, FS);
1135         ad.u.fs.mnt = mnt;
1136         ad.u.fs.dentry = dentry;
1137
1138         if (tsec->sid != fsec->sid) {
1139                 rc = avc_has_perm(tsec->sid, fsec->sid,
1140                                   SECCLASS_FD,
1141                                   FD__USE,
1142                                   &ad);
1143                 if (rc)
1144                         return rc;
1145         }
1146
1147         /* av is zero if only checking access to the descriptor. */
1148         if (av)
1149                 return inode_has_perm(tsk, inode, av, &ad);
1150
1151         return 0;
1152 }
1153
1154 /* Check whether a task can create a file. */
1155 static int may_create(struct inode *dir,
1156                       struct dentry *dentry,
1157                       u16 tclass)
1158 {
1159         struct task_security_struct *tsec;
1160         struct inode_security_struct *dsec;
1161         struct superblock_security_struct *sbsec;
1162         u32 newsid;
1163         struct avc_audit_data ad;
1164         int rc;
1165
1166         tsec = current->security;
1167         dsec = dir->i_security;
1168         sbsec = dir->i_sb->s_security;
1169
1170         AVC_AUDIT_DATA_INIT(&ad, FS);
1171         ad.u.fs.dentry = dentry;
1172
1173         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1174                           DIR__ADD_NAME | DIR__SEARCH,
1175                           &ad);
1176         if (rc)
1177                 return rc;
1178
1179         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1180                 newsid = tsec->create_sid;
1181         } else {
1182                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1183                                              &newsid);
1184                 if (rc)
1185                         return rc;
1186         }
1187
1188         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1189         if (rc)
1190                 return rc;
1191
1192         return avc_has_perm(newsid, sbsec->sid,
1193                             SECCLASS_FILESYSTEM,
1194                             FILESYSTEM__ASSOCIATE, &ad);
1195 }
1196
1197 /* Check whether a task can create a key. */
1198 static int may_create_key(u32 ksid,
1199                           struct task_struct *ctx)
1200 {
1201         struct task_security_struct *tsec;
1202
1203         tsec = ctx->security;
1204
1205         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1206 }
1207
1208 #define MAY_LINK   0
1209 #define MAY_UNLINK 1
1210 #define MAY_RMDIR  2
1211
1212 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1213 static int may_link(struct inode *dir,
1214                     struct dentry *dentry,
1215                     int kind)
1216
1217 {
1218         struct task_security_struct *tsec;
1219         struct inode_security_struct *dsec, *isec;
1220         struct avc_audit_data ad;
1221         u32 av;
1222         int rc;
1223
1224         tsec = current->security;
1225         dsec = dir->i_security;
1226         isec = dentry->d_inode->i_security;
1227
1228         AVC_AUDIT_DATA_INIT(&ad, FS);
1229         ad.u.fs.dentry = dentry;
1230
1231         av = DIR__SEARCH;
1232         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1233         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1234         if (rc)
1235                 return rc;
1236
1237         switch (kind) {
1238         case MAY_LINK:
1239                 av = FILE__LINK;
1240                 break;
1241         case MAY_UNLINK:
1242                 av = FILE__UNLINK;
1243                 break;
1244         case MAY_RMDIR:
1245                 av = DIR__RMDIR;
1246                 break;
1247         default:
1248                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1249                 return 0;
1250         }
1251
1252         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1253         return rc;
1254 }
1255
1256 static inline int may_rename(struct inode *old_dir,
1257                              struct dentry *old_dentry,
1258                              struct inode *new_dir,
1259                              struct dentry *new_dentry)
1260 {
1261         struct task_security_struct *tsec;
1262         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1263         struct avc_audit_data ad;
1264         u32 av;
1265         int old_is_dir, new_is_dir;
1266         int rc;
1267
1268         tsec = current->security;
1269         old_dsec = old_dir->i_security;
1270         old_isec = old_dentry->d_inode->i_security;
1271         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1272         new_dsec = new_dir->i_security;
1273
1274         AVC_AUDIT_DATA_INIT(&ad, FS);
1275
1276         ad.u.fs.dentry = old_dentry;
1277         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1278                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1279         if (rc)
1280                 return rc;
1281         rc = avc_has_perm(tsec->sid, old_isec->sid,
1282                           old_isec->sclass, FILE__RENAME, &ad);
1283         if (rc)
1284                 return rc;
1285         if (old_is_dir && new_dir != old_dir) {
1286                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1287                                   old_isec->sclass, DIR__REPARENT, &ad);
1288                 if (rc)
1289                         return rc;
1290         }
1291
1292         ad.u.fs.dentry = new_dentry;
1293         av = DIR__ADD_NAME | DIR__SEARCH;
1294         if (new_dentry->d_inode)
1295                 av |= DIR__REMOVE_NAME;
1296         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1297         if (rc)
1298                 return rc;
1299         if (new_dentry->d_inode) {
1300                 new_isec = new_dentry->d_inode->i_security;
1301                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1302                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1303                                   new_isec->sclass,
1304                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1305                 if (rc)
1306                         return rc;
1307         }
1308
1309         return 0;
1310 }
1311
1312 /* Check whether a task can perform a filesystem operation. */
1313 static int superblock_has_perm(struct task_struct *tsk,
1314                                struct super_block *sb,
1315                                u32 perms,
1316                                struct avc_audit_data *ad)
1317 {
1318         struct task_security_struct *tsec;
1319         struct superblock_security_struct *sbsec;
1320
1321         tsec = tsk->security;
1322         sbsec = sb->s_security;
1323         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1324                             perms, ad);
1325 }
1326
1327 /* Convert a Linux mode and permission mask to an access vector. */
1328 static inline u32 file_mask_to_av(int mode, int mask)
1329 {
1330         u32 av = 0;
1331
1332         if ((mode & S_IFMT) != S_IFDIR) {
1333                 if (mask & MAY_EXEC)
1334                         av |= FILE__EXECUTE;
1335                 if (mask & MAY_READ)
1336                         av |= FILE__READ;
1337
1338                 if (mask & MAY_APPEND)
1339                         av |= FILE__APPEND;
1340                 else if (mask & MAY_WRITE)
1341                         av |= FILE__WRITE;
1342
1343         } else {
1344                 if (mask & MAY_EXEC)
1345                         av |= DIR__SEARCH;
1346                 if (mask & MAY_WRITE)
1347                         av |= DIR__WRITE;
1348                 if (mask & MAY_READ)
1349                         av |= DIR__READ;
1350         }
1351
1352         return av;
1353 }
1354
1355 /* Convert a Linux file to an access vector. */
1356 static inline u32 file_to_av(struct file *file)
1357 {
1358         u32 av = 0;
1359
1360         if (file->f_mode & FMODE_READ)
1361                 av |= FILE__READ;
1362         if (file->f_mode & FMODE_WRITE) {
1363                 if (file->f_flags & O_APPEND)
1364                         av |= FILE__APPEND;
1365                 else
1366                         av |= FILE__WRITE;
1367         }
1368
1369         return av;
1370 }
1371
1372 /* Hook functions begin here. */
1373
1374 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1375 {
1376         struct task_security_struct *psec = parent->security;
1377         struct task_security_struct *csec = child->security;
1378         int rc;
1379
1380         rc = secondary_ops->ptrace(parent,child);
1381         if (rc)
1382                 return rc;
1383
1384         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1385         /* Save the SID of the tracing process for later use in apply_creds. */
1386         if (!(child->ptrace & PT_PTRACED) && !rc)
1387                 csec->ptrace_sid = psec->sid;
1388         return rc;
1389 }
1390
1391 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1392                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1393 {
1394         int error;
1395
1396         error = task_has_perm(current, target, PROCESS__GETCAP);
1397         if (error)
1398                 return error;
1399
1400         return secondary_ops->capget(target, effective, inheritable, permitted);
1401 }
1402
1403 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1404                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1405 {
1406         int error;
1407
1408         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1409         if (error)
1410                 return error;
1411
1412         return task_has_perm(current, target, PROCESS__SETCAP);
1413 }
1414
1415 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1416                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1417 {
1418         secondary_ops->capset_set(target, effective, inheritable, permitted);
1419 }
1420
1421 static int selinux_capable(struct task_struct *tsk, int cap)
1422 {
1423         int rc;
1424
1425         rc = secondary_ops->capable(tsk, cap);
1426         if (rc)
1427                 return rc;
1428
1429         return task_has_capability(tsk,cap);
1430 }
1431
1432 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1433 {
1434         int buflen, rc;
1435         char *buffer, *path, *end;
1436
1437         rc = -ENOMEM;
1438         buffer = (char*)__get_free_page(GFP_KERNEL);
1439         if (!buffer)
1440                 goto out;
1441
1442         buflen = PAGE_SIZE;
1443         end = buffer+buflen;
1444         *--end = '\0';
1445         buflen--;
1446         path = end-1;
1447         *path = '/';
1448         while (table) {
1449                 const char *name = table->procname;
1450                 size_t namelen = strlen(name);
1451                 buflen -= namelen + 1;
1452                 if (buflen < 0)
1453                         goto out_free;
1454                 end -= namelen;
1455                 memcpy(end, name, namelen);
1456                 *--end = '/';
1457                 path = end;
1458                 table = table->parent;
1459         }
1460         buflen -= 4;
1461         if (buflen < 0)
1462                 goto out_free;
1463         end -= 4;
1464         memcpy(end, "/sys", 4);
1465         path = end;
1466         rc = security_genfs_sid("proc", path, tclass, sid);
1467 out_free:
1468         free_page((unsigned long)buffer);
1469 out:
1470         return rc;
1471 }
1472
1473 static int selinux_sysctl(ctl_table *table, int op)
1474 {
1475         int error = 0;
1476         u32 av;
1477         struct task_security_struct *tsec;
1478         u32 tsid;
1479         int rc;
1480
1481         rc = secondary_ops->sysctl(table, op);
1482         if (rc)
1483                 return rc;
1484
1485         tsec = current->security;
1486
1487         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1488                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1489         if (rc) {
1490                 /* Default to the well-defined sysctl SID. */
1491                 tsid = SECINITSID_SYSCTL;
1492         }
1493
1494         /* The op values are "defined" in sysctl.c, thereby creating
1495          * a bad coupling between this module and sysctl.c */
1496         if(op == 001) {
1497                 error = avc_has_perm(tsec->sid, tsid,
1498                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1499         } else {
1500                 av = 0;
1501                 if (op & 004)
1502                         av |= FILE__READ;
1503                 if (op & 002)
1504                         av |= FILE__WRITE;
1505                 if (av)
1506                         error = avc_has_perm(tsec->sid, tsid,
1507                                              SECCLASS_FILE, av, NULL);
1508         }
1509
1510         return error;
1511 }
1512
1513 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1514 {
1515         int rc = 0;
1516
1517         if (!sb)
1518                 return 0;
1519
1520         switch (cmds) {
1521                 case Q_SYNC:
1522                 case Q_QUOTAON:
1523                 case Q_QUOTAOFF:
1524                 case Q_SETINFO:
1525                 case Q_SETQUOTA:
1526                         rc = superblock_has_perm(current,
1527                                                  sb,
1528                                                  FILESYSTEM__QUOTAMOD, NULL);
1529                         break;
1530                 case Q_GETFMT:
1531                 case Q_GETINFO:
1532                 case Q_GETQUOTA:
1533                         rc = superblock_has_perm(current,
1534                                                  sb,
1535                                                  FILESYSTEM__QUOTAGET, NULL);
1536                         break;
1537                 default:
1538                         rc = 0;  /* let the kernel handle invalid cmds */
1539                         break;
1540         }
1541         return rc;
1542 }
1543
1544 static int selinux_quota_on(struct dentry *dentry)
1545 {
1546         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1547 }
1548
1549 static int selinux_syslog(int type)
1550 {
1551         int rc;
1552
1553         rc = secondary_ops->syslog(type);
1554         if (rc)
1555                 return rc;
1556
1557         switch (type) {
1558                 case 3:         /* Read last kernel messages */
1559                 case 10:        /* Return size of the log buffer */
1560                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1561                         break;
1562                 case 6:         /* Disable logging to console */
1563                 case 7:         /* Enable logging to console */
1564                 case 8:         /* Set level of messages printed to console */
1565                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1566                         break;
1567                 case 0:         /* Close log */
1568                 case 1:         /* Open log */
1569                 case 2:         /* Read from log */
1570                 case 4:         /* Read/clear last kernel messages */
1571                 case 5:         /* Clear ring buffer */
1572                 default:
1573                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1574                         break;
1575         }
1576         return rc;
1577 }
1578
1579 /*
1580  * Check that a process has enough memory to allocate a new virtual
1581  * mapping. 0 means there is enough memory for the allocation to
1582  * succeed and -ENOMEM implies there is not.
1583  *
1584  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1585  * if the capability is granted, but __vm_enough_memory requires 1 if
1586  * the capability is granted.
1587  *
1588  * Do not audit the selinux permission check, as this is applied to all
1589  * processes that allocate mappings.
1590  */
1591 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1592 {
1593         int rc, cap_sys_admin = 0;
1594         struct task_security_struct *tsec = current->security;
1595
1596         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1597         if (rc == 0)
1598                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1599                                           SECCLASS_CAPABILITY,
1600                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1601                                           0,
1602                                           NULL);
1603
1604         if (rc == 0)
1605                 cap_sys_admin = 1;
1606
1607         return __vm_enough_memory(mm, pages, cap_sys_admin);
1608 }
1609
1610 /* binprm security operations */
1611
1612 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1613 {
1614         struct bprm_security_struct *bsec;
1615
1616         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1617         if (!bsec)
1618                 return -ENOMEM;
1619
1620         bsec->bprm = bprm;
1621         bsec->sid = SECINITSID_UNLABELED;
1622         bsec->set = 0;
1623
1624         bprm->security = bsec;
1625         return 0;
1626 }
1627
1628 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1629 {
1630         struct task_security_struct *tsec;
1631         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1632         struct inode_security_struct *isec;
1633         struct bprm_security_struct *bsec;
1634         u32 newsid;
1635         struct avc_audit_data ad;
1636         int rc;
1637
1638         rc = secondary_ops->bprm_set_security(bprm);
1639         if (rc)
1640                 return rc;
1641
1642         bsec = bprm->security;
1643
1644         if (bsec->set)
1645                 return 0;
1646
1647         tsec = current->security;
1648         isec = inode->i_security;
1649
1650         /* Default to the current task SID. */
1651         bsec->sid = tsec->sid;
1652
1653         /* Reset fs, key, and sock SIDs on execve. */
1654         tsec->create_sid = 0;
1655         tsec->keycreate_sid = 0;
1656         tsec->sockcreate_sid = 0;
1657
1658         if (tsec->exec_sid) {
1659                 newsid = tsec->exec_sid;
1660                 /* Reset exec SID on execve. */
1661                 tsec->exec_sid = 0;
1662         } else {
1663                 /* Check for a default transition on this program. */
1664                 rc = security_transition_sid(tsec->sid, isec->sid,
1665                                              SECCLASS_PROCESS, &newsid);
1666                 if (rc)
1667                         return rc;
1668         }
1669
1670         AVC_AUDIT_DATA_INIT(&ad, FS);
1671         ad.u.fs.mnt = bprm->file->f_path.mnt;
1672         ad.u.fs.dentry = bprm->file->f_path.dentry;
1673
1674         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1675                 newsid = tsec->sid;
1676
1677         if (tsec->sid == newsid) {
1678                 rc = avc_has_perm(tsec->sid, isec->sid,
1679                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1680                 if (rc)
1681                         return rc;
1682         } else {
1683                 /* Check permissions for the transition. */
1684                 rc = avc_has_perm(tsec->sid, newsid,
1685                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1686                 if (rc)
1687                         return rc;
1688
1689                 rc = avc_has_perm(newsid, isec->sid,
1690                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1691                 if (rc)
1692                         return rc;
1693
1694                 /* Clear any possibly unsafe personality bits on exec: */
1695                 current->personality &= ~PER_CLEAR_ON_SETID;
1696
1697                 /* Set the security field to the new SID. */
1698                 bsec->sid = newsid;
1699         }
1700
1701         bsec->set = 1;
1702         return 0;
1703 }
1704
1705 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1706 {
1707         return secondary_ops->bprm_check_security(bprm);
1708 }
1709
1710
1711 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1712 {
1713         struct task_security_struct *tsec = current->security;
1714         int atsecure = 0;
1715
1716         if (tsec->osid != tsec->sid) {
1717                 /* Enable secure mode for SIDs transitions unless
1718                    the noatsecure permission is granted between
1719                    the two SIDs, i.e. ahp returns 0. */
1720                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1721                                          SECCLASS_PROCESS,
1722                                          PROCESS__NOATSECURE, NULL);
1723         }
1724
1725         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1726 }
1727
1728 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1729 {
1730         kfree(bprm->security);
1731         bprm->security = NULL;
1732 }
1733
1734 extern struct vfsmount *selinuxfs_mount;
1735 extern struct dentry *selinux_null;
1736
1737 /* Derived from fs/exec.c:flush_old_files. */
1738 static inline void flush_unauthorized_files(struct files_struct * files)
1739 {
1740         struct avc_audit_data ad;
1741         struct file *file, *devnull = NULL;
1742         struct tty_struct *tty;
1743         struct fdtable *fdt;
1744         long j = -1;
1745         int drop_tty = 0;
1746
1747         mutex_lock(&tty_mutex);
1748         tty = get_current_tty();
1749         if (tty) {
1750                 file_list_lock();
1751                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1752                 if (file) {
1753                         /* Revalidate access to controlling tty.
1754                            Use inode_has_perm on the tty inode directly rather
1755                            than using file_has_perm, as this particular open
1756                            file may belong to another process and we are only
1757                            interested in the inode-based check here. */
1758                         struct inode *inode = file->f_path.dentry->d_inode;
1759                         if (inode_has_perm(current, inode,
1760                                            FILE__READ | FILE__WRITE, NULL)) {
1761                                 drop_tty = 1;
1762                         }
1763                 }
1764                 file_list_unlock();
1765         }
1766         mutex_unlock(&tty_mutex);
1767         /* Reset controlling tty. */
1768         if (drop_tty)
1769                 no_tty();
1770
1771         /* Revalidate access to inherited open files. */
1772
1773         AVC_AUDIT_DATA_INIT(&ad,FS);
1774
1775         spin_lock(&files->file_lock);
1776         for (;;) {
1777                 unsigned long set, i;
1778                 int fd;
1779
1780                 j++;
1781                 i = j * __NFDBITS;
1782                 fdt = files_fdtable(files);
1783                 if (i >= fdt->max_fds)
1784                         break;
1785                 set = fdt->open_fds->fds_bits[j];
1786                 if (!set)
1787                         continue;
1788                 spin_unlock(&files->file_lock);
1789                 for ( ; set ; i++,set >>= 1) {
1790                         if (set & 1) {
1791                                 file = fget(i);
1792                                 if (!file)
1793                                         continue;
1794                                 if (file_has_perm(current,
1795                                                   file,
1796                                                   file_to_av(file))) {
1797                                         sys_close(i);
1798                                         fd = get_unused_fd();
1799                                         if (fd != i) {
1800                                                 if (fd >= 0)
1801                                                         put_unused_fd(fd);
1802                                                 fput(file);
1803                                                 continue;
1804                                         }
1805                                         if (devnull) {
1806                                                 get_file(devnull);
1807                                         } else {
1808                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1809                                                 if (IS_ERR(devnull)) {
1810                                                         devnull = NULL;
1811                                                         put_unused_fd(fd);
1812                                                         fput(file);
1813                                                         continue;
1814                                                 }
1815                                         }
1816                                         fd_install(fd, devnull);
1817                                 }
1818                                 fput(file);
1819                         }
1820                 }
1821                 spin_lock(&files->file_lock);
1822
1823         }
1824         spin_unlock(&files->file_lock);
1825 }
1826
1827 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1828 {
1829         struct task_security_struct *tsec;
1830         struct bprm_security_struct *bsec;
1831         u32 sid;
1832         int rc;
1833
1834         secondary_ops->bprm_apply_creds(bprm, unsafe);
1835
1836         tsec = current->security;
1837
1838         bsec = bprm->security;
1839         sid = bsec->sid;
1840
1841         tsec->osid = tsec->sid;
1842         bsec->unsafe = 0;
1843         if (tsec->sid != sid) {
1844                 /* Check for shared state.  If not ok, leave SID
1845                    unchanged and kill. */
1846                 if (unsafe & LSM_UNSAFE_SHARE) {
1847                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1848                                         PROCESS__SHARE, NULL);
1849                         if (rc) {
1850                                 bsec->unsafe = 1;
1851                                 return;
1852                         }
1853                 }
1854
1855                 /* Check for ptracing, and update the task SID if ok.
1856                    Otherwise, leave SID unchanged and kill. */
1857                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1858                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1859                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1860                                           NULL);
1861                         if (rc) {
1862                                 bsec->unsafe = 1;
1863                                 return;
1864                         }
1865                 }
1866                 tsec->sid = sid;
1867         }
1868 }
1869
1870 /*
1871  * called after apply_creds without the task lock held
1872  */
1873 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1874 {
1875         struct task_security_struct *tsec;
1876         struct rlimit *rlim, *initrlim;
1877         struct itimerval itimer;
1878         struct bprm_security_struct *bsec;
1879         int rc, i;
1880
1881         tsec = current->security;
1882         bsec = bprm->security;
1883
1884         if (bsec->unsafe) {
1885                 force_sig_specific(SIGKILL, current);
1886                 return;
1887         }
1888         if (tsec->osid == tsec->sid)
1889                 return;
1890
1891         /* Close files for which the new task SID is not authorized. */
1892         flush_unauthorized_files(current->files);
1893
1894         /* Check whether the new SID can inherit signal state
1895            from the old SID.  If not, clear itimers to avoid
1896            subsequent signal generation and flush and unblock
1897            signals. This must occur _after_ the task SID has
1898           been updated so that any kill done after the flush
1899           will be checked against the new SID. */
1900         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1901                           PROCESS__SIGINH, NULL);
1902         if (rc) {
1903                 memset(&itimer, 0, sizeof itimer);
1904                 for (i = 0; i < 3; i++)
1905                         do_setitimer(i, &itimer, NULL);
1906                 flush_signals(current);
1907                 spin_lock_irq(&current->sighand->siglock);
1908                 flush_signal_handlers(current, 1);
1909                 sigemptyset(&current->blocked);
1910                 recalc_sigpending();
1911                 spin_unlock_irq(&current->sighand->siglock);
1912         }
1913
1914         /* Always clear parent death signal on SID transitions. */
1915         current->pdeath_signal = 0;
1916
1917         /* Check whether the new SID can inherit resource limits
1918            from the old SID.  If not, reset all soft limits to
1919            the lower of the current task's hard limit and the init
1920            task's soft limit.  Note that the setting of hard limits
1921            (even to lower them) can be controlled by the setrlimit
1922            check. The inclusion of the init task's soft limit into
1923            the computation is to avoid resetting soft limits higher
1924            than the default soft limit for cases where the default
1925            is lower than the hard limit, e.g. RLIMIT_CORE or
1926            RLIMIT_STACK.*/
1927         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1928                           PROCESS__RLIMITINH, NULL);
1929         if (rc) {
1930                 for (i = 0; i < RLIM_NLIMITS; i++) {
1931                         rlim = current->signal->rlim + i;
1932                         initrlim = init_task.signal->rlim+i;
1933                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1934                 }
1935                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1936                         /*
1937                          * This will cause RLIMIT_CPU calculations
1938                          * to be refigured.
1939                          */
1940                         current->it_prof_expires = jiffies_to_cputime(1);
1941                 }
1942         }
1943
1944         /* Wake up the parent if it is waiting so that it can
1945            recheck wait permission to the new task SID. */
1946         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1947 }
1948
1949 /* superblock security operations */
1950
1951 static int selinux_sb_alloc_security(struct super_block *sb)
1952 {
1953         return superblock_alloc_security(sb);
1954 }
1955
1956 static void selinux_sb_free_security(struct super_block *sb)
1957 {
1958         superblock_free_security(sb);
1959 }
1960
1961 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1962 {
1963         if (plen > olen)
1964                 return 0;
1965
1966         return !memcmp(prefix, option, plen);
1967 }
1968
1969 static inline int selinux_option(char *option, int len)
1970 {
1971         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1972                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1973                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1974                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1975 }
1976
1977 static inline void take_option(char **to, char *from, int *first, int len)
1978 {
1979         if (!*first) {
1980                 **to = ',';
1981                 *to += 1;
1982         } else
1983                 *first = 0;
1984         memcpy(*to, from, len);
1985         *to += len;
1986 }
1987
1988 static inline void take_selinux_option(char **to, char *from, int *first, 
1989                                        int len)
1990 {
1991         int current_size = 0;
1992
1993         if (!*first) {
1994                 **to = '|';
1995                 *to += 1;
1996         }
1997         else
1998                 *first = 0;
1999
2000         while (current_size < len) {
2001                 if (*from != '"') {
2002                         **to = *from;
2003                         *to += 1;
2004                 }
2005                 from += 1;
2006                 current_size += 1;
2007         }
2008 }
2009
2010 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2011 {
2012         int fnosec, fsec, rc = 0;
2013         char *in_save, *in_curr, *in_end;
2014         char *sec_curr, *nosec_save, *nosec;
2015         int open_quote = 0;
2016
2017         in_curr = orig;
2018         sec_curr = copy;
2019
2020         /* Binary mount data: just copy */
2021         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2022                 copy_page(sec_curr, in_curr);
2023                 goto out;
2024         }
2025
2026         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2027         if (!nosec) {
2028                 rc = -ENOMEM;
2029                 goto out;
2030         }
2031
2032         nosec_save = nosec;
2033         fnosec = fsec = 1;
2034         in_save = in_end = orig;
2035
2036         do {
2037                 if (*in_end == '"')
2038                         open_quote = !open_quote;
2039                 if ((*in_end == ',' && open_quote == 0) ||
2040                                 *in_end == '\0') {
2041                         int len = in_end - in_curr;
2042
2043                         if (selinux_option(in_curr, len))
2044                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2045                         else
2046                                 take_option(&nosec, in_curr, &fnosec, len);
2047
2048                         in_curr = in_end + 1;
2049                 }
2050         } while (*in_end++);
2051
2052         strcpy(in_save, nosec_save);
2053         free_page((unsigned long)nosec_save);
2054 out:
2055         return rc;
2056 }
2057
2058 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2059 {
2060         struct avc_audit_data ad;
2061         int rc;
2062
2063         rc = superblock_doinit(sb, data);
2064         if (rc)
2065                 return rc;
2066
2067         AVC_AUDIT_DATA_INIT(&ad,FS);
2068         ad.u.fs.dentry = sb->s_root;
2069         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2070 }
2071
2072 static int selinux_sb_statfs(struct dentry *dentry)
2073 {
2074         struct avc_audit_data ad;
2075
2076         AVC_AUDIT_DATA_INIT(&ad,FS);
2077         ad.u.fs.dentry = dentry->d_sb->s_root;
2078         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2079 }
2080
2081 static int selinux_mount(char * dev_name,
2082                          struct nameidata *nd,
2083                          char * type,
2084                          unsigned long flags,
2085                          void * data)
2086 {
2087         int rc;
2088
2089         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2090         if (rc)
2091                 return rc;
2092
2093         if (flags & MS_REMOUNT)
2094                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2095                                            FILESYSTEM__REMOUNT, NULL);
2096         else
2097                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2098                                        FILE__MOUNTON);
2099 }
2100
2101 static int selinux_umount(struct vfsmount *mnt, int flags)
2102 {
2103         int rc;
2104
2105         rc = secondary_ops->sb_umount(mnt, flags);
2106         if (rc)
2107                 return rc;
2108
2109         return superblock_has_perm(current,mnt->mnt_sb,
2110                                    FILESYSTEM__UNMOUNT,NULL);
2111 }
2112
2113 /* inode security operations */
2114
2115 static int selinux_inode_alloc_security(struct inode *inode)
2116 {
2117         return inode_alloc_security(inode);
2118 }
2119
2120 static void selinux_inode_free_security(struct inode *inode)
2121 {
2122         inode_free_security(inode);
2123 }
2124
2125 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2126                                        char **name, void **value,
2127                                        size_t *len)
2128 {
2129         struct task_security_struct *tsec;
2130         struct inode_security_struct *dsec;
2131         struct superblock_security_struct *sbsec;
2132         u32 newsid, clen;
2133         int rc;
2134         char *namep = NULL, *context;
2135
2136         tsec = current->security;
2137         dsec = dir->i_security;
2138         sbsec = dir->i_sb->s_security;
2139
2140         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2141                 newsid = tsec->create_sid;
2142         } else {
2143                 rc = security_transition_sid(tsec->sid, dsec->sid,
2144                                              inode_mode_to_security_class(inode->i_mode),
2145                                              &newsid);
2146                 if (rc) {
2147                         printk(KERN_WARNING "%s:  "
2148                                "security_transition_sid failed, rc=%d (dev=%s "
2149                                "ino=%ld)\n",
2150                                __FUNCTION__,
2151                                -rc, inode->i_sb->s_id, inode->i_ino);
2152                         return rc;
2153                 }
2154         }
2155
2156         /* Possibly defer initialization to selinux_complete_init. */
2157         if (sbsec->initialized) {
2158                 struct inode_security_struct *isec = inode->i_security;
2159                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2160                 isec->sid = newsid;
2161                 isec->initialized = 1;
2162         }
2163
2164         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2165                 return -EOPNOTSUPP;
2166
2167         if (name) {
2168                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2169                 if (!namep)
2170                         return -ENOMEM;
2171                 *name = namep;
2172         }
2173
2174         if (value && len) {
2175                 rc = security_sid_to_context(newsid, &context, &clen);
2176                 if (rc) {
2177                         kfree(namep);
2178                         return rc;
2179                 }
2180                 *value = context;
2181                 *len = clen;
2182         }
2183
2184         return 0;
2185 }
2186
2187 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2188 {
2189         return may_create(dir, dentry, SECCLASS_FILE);
2190 }
2191
2192 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2193 {
2194         int rc;
2195
2196         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2197         if (rc)
2198                 return rc;
2199         return may_link(dir, old_dentry, MAY_LINK);
2200 }
2201
2202 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2203 {
2204         int rc;
2205
2206         rc = secondary_ops->inode_unlink(dir, dentry);
2207         if (rc)
2208                 return rc;
2209         return may_link(dir, dentry, MAY_UNLINK);
2210 }
2211
2212 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2213 {
2214         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2215 }
2216
2217 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2218 {
2219         return may_create(dir, dentry, SECCLASS_DIR);
2220 }
2221
2222 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2223 {
2224         return may_link(dir, dentry, MAY_RMDIR);
2225 }
2226
2227 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2228 {
2229         int rc;
2230
2231         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2232         if (rc)
2233                 return rc;
2234
2235         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2236 }
2237
2238 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2239                                 struct inode *new_inode, struct dentry *new_dentry)
2240 {
2241         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2242 }
2243
2244 static int selinux_inode_readlink(struct dentry *dentry)
2245 {
2246         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2247 }
2248
2249 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2250 {
2251         int rc;
2252
2253         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2254         if (rc)
2255                 return rc;
2256         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2257 }
2258
2259 static int selinux_inode_permission(struct inode *inode, int mask,
2260                                     struct nameidata *nd)
2261 {
2262         int rc;
2263
2264         rc = secondary_ops->inode_permission(inode, mask, nd);
2265         if (rc)
2266                 return rc;
2267
2268         if (!mask) {
2269                 /* No permission to check.  Existence test. */
2270                 return 0;
2271         }
2272
2273         return inode_has_perm(current, inode,
2274                                file_mask_to_av(inode->i_mode, mask), NULL);
2275 }
2276
2277 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2278 {
2279         int rc;
2280
2281         rc = secondary_ops->inode_setattr(dentry, iattr);
2282         if (rc)
2283                 return rc;
2284
2285         if (iattr->ia_valid & ATTR_FORCE)
2286                 return 0;
2287
2288         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2289                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2290                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2291
2292         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2293 }
2294
2295 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2296 {
2297         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2298 }
2299
2300 static int selinux_inode_setotherxattr(struct dentry *dentry, char *name)
2301 {
2302         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2303                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2304                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2305                         if (!capable(CAP_SETFCAP))
2306                                 return -EPERM;
2307                 } else if (!capable(CAP_SYS_ADMIN)) {
2308                         /* A different attribute in the security namespace.
2309                            Restrict to administrator. */
2310                         return -EPERM;
2311                 }
2312         }
2313
2314         /* Not an attribute we recognize, so just check the
2315            ordinary setattr permission. */
2316         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2317 }
2318
2319 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2320 {
2321         struct task_security_struct *tsec = current->security;
2322         struct inode *inode = dentry->d_inode;
2323         struct inode_security_struct *isec = inode->i_security;
2324         struct superblock_security_struct *sbsec;
2325         struct avc_audit_data ad;
2326         u32 newsid;
2327         int rc = 0;
2328
2329         if (strcmp(name, XATTR_NAME_SELINUX))
2330                 return selinux_inode_setotherxattr(dentry, name);
2331
2332         sbsec = inode->i_sb->s_security;
2333         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2334                 return -EOPNOTSUPP;
2335
2336         if (!is_owner_or_cap(inode))
2337                 return -EPERM;
2338
2339         AVC_AUDIT_DATA_INIT(&ad,FS);
2340         ad.u.fs.dentry = dentry;
2341
2342         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2343                           FILE__RELABELFROM, &ad);
2344         if (rc)
2345                 return rc;
2346
2347         rc = security_context_to_sid(value, size, &newsid);
2348         if (rc)
2349                 return rc;
2350
2351         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2352                           FILE__RELABELTO, &ad);
2353         if (rc)
2354                 return rc;
2355
2356         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2357                                           isec->sclass);
2358         if (rc)
2359                 return rc;
2360
2361         return avc_has_perm(newsid,
2362                             sbsec->sid,
2363                             SECCLASS_FILESYSTEM,
2364                             FILESYSTEM__ASSOCIATE,
2365                             &ad);
2366 }
2367
2368 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2369                                         void *value, size_t size, int flags)
2370 {
2371         struct inode *inode = dentry->d_inode;
2372         struct inode_security_struct *isec = inode->i_security;
2373         u32 newsid;
2374         int rc;
2375
2376         if (strcmp(name, XATTR_NAME_SELINUX)) {
2377                 /* Not an attribute we recognize, so nothing to do. */
2378                 return;
2379         }
2380
2381         rc = security_context_to_sid(value, size, &newsid);
2382         if (rc) {
2383                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2384                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2385                 return;
2386         }
2387
2388         isec->sid = newsid;
2389         return;
2390 }
2391
2392 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2393 {
2394         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2395 }
2396
2397 static int selinux_inode_listxattr (struct dentry *dentry)
2398 {
2399         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2400 }
2401
2402 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2403 {
2404         if (strcmp(name, XATTR_NAME_SELINUX))
2405                 return selinux_inode_setotherxattr(dentry, name);
2406
2407         /* No one is allowed to remove a SELinux security label.
2408            You can change the label, but all data must be labeled. */
2409         return -EACCES;
2410 }
2411
2412 static const char *selinux_inode_xattr_getsuffix(void)
2413 {
2414       return XATTR_SELINUX_SUFFIX;
2415 }
2416
2417 /*
2418  * Copy the in-core inode security context value to the user.  If the
2419  * getxattr() prior to this succeeded, check to see if we need to
2420  * canonicalize the value to be finally returned to the user.
2421  *
2422  * Permission check is handled by selinux_inode_getxattr hook.
2423  */
2424 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2425 {
2426         struct inode_security_struct *isec = inode->i_security;
2427
2428         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2429                 return -EOPNOTSUPP;
2430
2431         return selinux_getsecurity(isec->sid, buffer, size);
2432 }
2433
2434 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2435                                      const void *value, size_t size, int flags)
2436 {
2437         struct inode_security_struct *isec = inode->i_security;
2438         u32 newsid;
2439         int rc;
2440
2441         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2442                 return -EOPNOTSUPP;
2443
2444         if (!value || !size)
2445                 return -EACCES;
2446
2447         rc = security_context_to_sid((void*)value, size, &newsid);
2448         if (rc)
2449                 return rc;
2450
2451         isec->sid = newsid;
2452         return 0;
2453 }
2454
2455 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2456 {
2457         const int len = sizeof(XATTR_NAME_SELINUX);
2458         if (buffer && len <= buffer_size)
2459                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2460         return len;
2461 }
2462
2463 static int selinux_inode_need_killpriv(struct dentry *dentry)
2464 {
2465         return secondary_ops->inode_need_killpriv(dentry);
2466 }
2467
2468 static int selinux_inode_killpriv(struct dentry *dentry)
2469 {
2470         return secondary_ops->inode_killpriv(dentry);
2471 }
2472
2473 /* file security operations */
2474
2475 static int selinux_revalidate_file_permission(struct file *file, int mask)
2476 {
2477         int rc;
2478         struct inode *inode = file->f_path.dentry->d_inode;
2479
2480         if (!mask) {
2481                 /* No permission to check.  Existence test. */
2482                 return 0;
2483         }
2484
2485         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2486         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2487                 mask |= MAY_APPEND;
2488
2489         rc = file_has_perm(current, file,
2490                            file_mask_to_av(inode->i_mode, mask));
2491         if (rc)
2492                 return rc;
2493
2494         return selinux_netlbl_inode_permission(inode, mask);
2495 }
2496
2497 static int selinux_file_permission(struct file *file, int mask)
2498 {
2499         struct inode *inode = file->f_path.dentry->d_inode;
2500         struct task_security_struct *tsec = current->security;
2501         struct file_security_struct *fsec = file->f_security;
2502         struct inode_security_struct *isec = inode->i_security;
2503
2504         if (!mask) {
2505                 /* No permission to check.  Existence test. */
2506                 return 0;
2507         }
2508
2509         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2510             && fsec->pseqno == avc_policy_seqno())
2511                 return selinux_netlbl_inode_permission(inode, mask);
2512
2513         return selinux_revalidate_file_permission(file, mask);
2514 }
2515
2516 static int selinux_file_alloc_security(struct file *file)
2517 {
2518         return file_alloc_security(file);
2519 }
2520
2521 static void selinux_file_free_security(struct file *file)
2522 {
2523         file_free_security(file);
2524 }
2525
2526 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2527                               unsigned long arg)
2528 {
2529         int error = 0;
2530
2531         switch (cmd) {
2532                 case FIONREAD:
2533                 /* fall through */
2534                 case FIBMAP:
2535                 /* fall through */
2536                 case FIGETBSZ:
2537                 /* fall through */
2538                 case EXT2_IOC_GETFLAGS:
2539                 /* fall through */
2540                 case EXT2_IOC_GETVERSION:
2541                         error = file_has_perm(current, file, FILE__GETATTR);
2542                         break;
2543
2544                 case EXT2_IOC_SETFLAGS:
2545                 /* fall through */
2546                 case EXT2_IOC_SETVERSION:
2547                         error = file_has_perm(current, file, FILE__SETATTR);
2548                         break;
2549
2550                 /* sys_ioctl() checks */
2551                 case FIONBIO:
2552                 /* fall through */
2553                 case FIOASYNC:
2554                         error = file_has_perm(current, file, 0);
2555                         break;
2556
2557                 case KDSKBENT:
2558                 case KDSKBSENT:
2559                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2560                         break;
2561
2562                 /* default case assumes that the command will go
2563                  * to the file's ioctl() function.
2564                  */
2565                 default:
2566                         error = file_has_perm(current, file, FILE__IOCTL);
2567
2568         }
2569         return error;
2570 }
2571
2572 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2573 {
2574 #ifndef CONFIG_PPC32
2575         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2576                 /*
2577                  * We are making executable an anonymous mapping or a
2578                  * private file mapping that will also be writable.
2579                  * This has an additional check.
2580                  */
2581                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2582                 if (rc)
2583                         return rc;
2584         }
2585 #endif
2586
2587         if (file) {
2588                 /* read access is always possible with a mapping */
2589                 u32 av = FILE__READ;
2590
2591                 /* write access only matters if the mapping is shared */
2592                 if (shared && (prot & PROT_WRITE))
2593                         av |= FILE__WRITE;
2594
2595                 if (prot & PROT_EXEC)
2596                         av |= FILE__EXECUTE;
2597
2598                 return file_has_perm(current, file, av);
2599         }
2600         return 0;
2601 }
2602
2603 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2604                              unsigned long prot, unsigned long flags,
2605                              unsigned long addr, unsigned long addr_only)
2606 {
2607         int rc = 0;
2608         u32 sid = ((struct task_security_struct*)(current->security))->sid;
2609
2610         if (addr < mmap_min_addr)
2611                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2612                                   MEMPROTECT__MMAP_ZERO, NULL);
2613         if (rc || addr_only)
2614                 return rc;
2615
2616         if (selinux_checkreqprot)
2617                 prot = reqprot;
2618
2619         return file_map_prot_check(file, prot,
2620                                    (flags & MAP_TYPE) == MAP_SHARED);
2621 }
2622
2623 static int selinux_file_mprotect(struct vm_area_struct *vma,
2624                                  unsigned long reqprot,
2625                                  unsigned long prot)
2626 {
2627         int rc;
2628
2629         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2630         if (rc)
2631                 return rc;
2632
2633         if (selinux_checkreqprot)
2634                 prot = reqprot;
2635
2636 #ifndef CONFIG_PPC32
2637         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2638                 rc = 0;
2639                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2640                     vma->vm_end <= vma->vm_mm->brk) {
2641                         rc = task_has_perm(current, current,
2642                                            PROCESS__EXECHEAP);
2643                 } else if (!vma->vm_file &&
2644                            vma->vm_start <= vma->vm_mm->start_stack &&
2645                            vma->vm_end >= vma->vm_mm->start_stack) {
2646                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2647                 } else if (vma->vm_file && vma->anon_vma) {
2648                         /*
2649                          * We are making executable a file mapping that has
2650                          * had some COW done. Since pages might have been
2651                          * written, check ability to execute the possibly
2652                          * modified content.  This typically should only
2653                          * occur for text relocations.
2654                          */
2655                         rc = file_has_perm(current, vma->vm_file,
2656                                            FILE__EXECMOD);
2657                 }
2658                 if (rc)
2659                         return rc;
2660         }
2661 #endif
2662
2663         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2664 }
2665
2666 static int selinux_file_lock(struct file *file, unsigned int cmd)
2667 {
2668         return file_has_perm(current, file, FILE__LOCK);
2669 }
2670
2671 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2672                               unsigned long arg)
2673 {
2674         int err = 0;
2675
2676         switch (cmd) {
2677                 case F_SETFL:
2678                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2679                                 err = -EINVAL;
2680                                 break;
2681                         }
2682
2683                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2684                                 err = file_has_perm(current, file,FILE__WRITE);
2685                                 break;
2686                         }
2687                         /* fall through */
2688                 case F_SETOWN:
2689                 case F_SETSIG:
2690                 case F_GETFL:
2691                 case F_GETOWN:
2692                 case F_GETSIG:
2693                         /* Just check FD__USE permission */
2694                         err = file_has_perm(current, file, 0);
2695                         break;
2696                 case F_GETLK:
2697                 case F_SETLK:
2698                 case F_SETLKW:
2699 #if BITS_PER_LONG == 32
2700                 case F_GETLK64:
2701                 case F_SETLK64:
2702                 case F_SETLKW64:
2703 #endif
2704                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2705                                 err = -EINVAL;
2706                                 break;
2707                         }
2708                         err = file_has_perm(current, file, FILE__LOCK);
2709                         break;
2710         }
2711
2712         return err;
2713 }
2714
2715 static int selinux_file_set_fowner(struct file *file)
2716 {
2717         struct task_security_struct *tsec;
2718         struct file_security_struct *fsec;
2719
2720         tsec = current->security;
2721         fsec = file->f_security;
2722         fsec->fown_sid = tsec->sid;
2723
2724         return 0;
2725 }
2726
2727 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2728                                        struct fown_struct *fown, int signum)
2729 {
2730         struct file *file;
2731         u32 perm;
2732         struct task_security_struct *tsec;
2733         struct file_security_struct *fsec;
2734
2735         /* struct fown_struct is never outside the context of a struct file */
2736         file = container_of(fown, struct file, f_owner);
2737
2738         tsec = tsk->security;
2739         fsec = file->f_security;
2740
2741         if (!signum)
2742                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2743         else
2744                 perm = signal_to_av(signum);
2745
2746         return avc_has_perm(fsec->fown_sid, tsec->sid,
2747                             SECCLASS_PROCESS, perm, NULL);
2748 }
2749
2750 static int selinux_file_receive(struct file *file)
2751 {
2752         return file_has_perm(current, file, file_to_av(file));
2753 }
2754
2755 static int selinux_dentry_open(struct file *file)
2756 {
2757         struct file_security_struct *fsec;
2758         struct inode *inode;
2759         struct inode_security_struct *isec;
2760         inode = file->f_path.dentry->d_inode;
2761         fsec = file->f_security;
2762         isec = inode->i_security;
2763         /*
2764          * Save inode label and policy sequence number
2765          * at open-time so that selinux_file_permission
2766          * can determine whether revalidation is necessary.
2767          * Task label is already saved in the file security
2768          * struct as its SID.
2769          */
2770         fsec->isid = isec->sid;
2771         fsec->pseqno = avc_policy_seqno();
2772         /*
2773          * Since the inode label or policy seqno may have changed
2774          * between the selinux_inode_permission check and the saving
2775          * of state above, recheck that access is still permitted.
2776          * Otherwise, access might never be revalidated against the
2777          * new inode label or new policy.
2778          * This check is not redundant - do not remove.
2779          */
2780         return inode_has_perm(current, inode, file_to_av(file), NULL);
2781 }
2782
2783 /* task security operations */
2784
2785 static int selinux_task_create(unsigned long clone_flags)
2786 {
2787         int rc;
2788
2789         rc = secondary_ops->task_create(clone_flags);
2790         if (rc)
2791                 return rc;
2792
2793         return task_has_perm(current, current, PROCESS__FORK);
2794 }
2795
2796 static int selinux_task_alloc_security(struct task_struct *tsk)
2797 {
2798         struct task_security_struct *tsec1, *tsec2;
2799         int rc;
2800
2801         tsec1 = current->security;
2802
2803         rc = task_alloc_security(tsk);
2804         if (rc)
2805                 return rc;
2806         tsec2 = tsk->security;
2807
2808         tsec2->osid = tsec1->osid;
2809         tsec2->sid = tsec1->sid;
2810
2811         /* Retain the exec, fs, key, and sock SIDs across fork */
2812         tsec2->exec_sid = tsec1->exec_sid;
2813         tsec2->create_sid = tsec1->create_sid;
2814         tsec2->keycreate_sid = tsec1->keycreate_sid;
2815         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2816
2817         /* Retain ptracer SID across fork, if any.
2818            This will be reset by the ptrace hook upon any
2819            subsequent ptrace_attach operations. */
2820         tsec2->ptrace_sid = tsec1->ptrace_sid;
2821
2822         return 0;
2823 }
2824
2825 static void selinux_task_free_security(struct task_struct *tsk)
2826 {
2827         task_free_security(tsk);
2828 }
2829
2830 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2831 {
2832         /* Since setuid only affects the current process, and
2833            since the SELinux controls are not based on the Linux
2834            identity attributes, SELinux does not need to control
2835            this operation.  However, SELinux does control the use
2836            of the CAP_SETUID and CAP_SETGID capabilities using the
2837            capable hook. */
2838         return 0;
2839 }
2840
2841 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2842 {
2843         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2844 }
2845
2846 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2847 {
2848         /* See the comment for setuid above. */
2849         return 0;
2850 }
2851
2852 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2853 {
2854         return task_has_perm(current, p, PROCESS__SETPGID);
2855 }
2856
2857 static int selinux_task_getpgid(struct task_struct *p)
2858 {
2859         return task_has_perm(current, p, PROCESS__GETPGID);
2860 }
2861
2862 static int selinux_task_getsid(struct task_struct *p)
2863 {
2864         return task_has_perm(current, p, PROCESS__GETSESSION);
2865 }
2866
2867 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2868 {
2869         selinux_get_task_sid(p, secid);
2870 }
2871
2872 static int selinux_task_setgroups(struct group_info *group_info)
2873 {
2874         /* See the comment for setuid above. */
2875         return 0;
2876 }
2877
2878 static int selinux_task_setnice(struct task_struct *p, int nice)
2879 {
2880         int rc;
2881
2882         rc = secondary_ops->task_setnice(p, nice);
2883         if (rc)
2884                 return rc;
2885
2886         return task_has_perm(current,p, PROCESS__SETSCHED);
2887 }
2888
2889 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2890 {
2891         int rc;
2892
2893         rc = secondary_ops->task_setioprio(p, ioprio);
2894         if (rc)
2895                 return rc;
2896
2897         return task_has_perm(current, p, PROCESS__SETSCHED);
2898 }
2899
2900 static int selinux_task_getioprio(struct task_struct *p)
2901 {
2902         return task_has_perm(current, p, PROCESS__GETSCHED);
2903 }
2904
2905 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2906 {
2907         struct rlimit *old_rlim = current->signal->rlim + resource;
2908         int rc;
2909
2910         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2911         if (rc)
2912                 return rc;
2913
2914         /* Control the ability to change the hard limit (whether
2915            lowering or raising it), so that the hard limit can
2916            later be used as a safe reset point for the soft limit
2917            upon context transitions. See selinux_bprm_apply_creds. */
2918         if (old_rlim->rlim_max != new_rlim->rlim_max)
2919                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2920
2921         return 0;
2922 }
2923
2924 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2925 {
2926         int rc;
2927
2928         rc = secondary_ops->task_setscheduler(p, policy, lp);
2929         if (rc)
2930                 return rc;
2931
2932         return task_has_perm(current, p, PROCESS__SETSCHED);
2933 }
2934
2935 static int selinux_task_getscheduler(struct task_struct *p)
2936 {
2937         return task_has_perm(current, p, PROCESS__GETSCHED);
2938 }
2939
2940 static int selinux_task_movememory(struct task_struct *p)
2941 {
2942         return task_has_perm(current, p, PROCESS__SETSCHED);
2943 }
2944
2945 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2946                                 int sig, u32 secid)
2947 {
2948         u32 perm;
2949         int rc;
2950         struct task_security_struct *tsec;
2951
2952         rc = secondary_ops->task_kill(p, info, sig, secid);
2953         if (rc)
2954                 return rc;
2955
2956         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2957                 return 0;
2958
2959         if (!sig)
2960                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2961         else
2962                 perm = signal_to_av(sig);
2963         tsec = p->security;
2964         if (secid)
2965                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2966         else
2967                 rc = task_has_perm(current, p, perm);
2968         return rc;
2969 }
2970
2971 static int selinux_task_prctl(int option,
2972                               unsigned long arg2,
2973                               unsigned long arg3,
2974                               unsigned long arg4,
2975                               unsigned long arg5)
2976 {
2977         /* The current prctl operations do not appear to require
2978            any SELinux controls since they merely observe or modify
2979            the state of the current process. */
2980         return 0;
2981 }
2982
2983 static int selinux_task_wait(struct task_struct *p)
2984 {
2985         u32 perm;
2986
2987         perm = signal_to_av(p->exit_signal);
2988
2989         return task_has_perm(p, current, perm);
2990 }
2991
2992 static void selinux_task_reparent_to_init(struct task_struct *p)
2993 {
2994         struct task_security_struct *tsec;
2995
2996         secondary_ops->task_reparent_to_init(p);
2997
2998         tsec = p->security;
2999         tsec->osid = tsec->sid;
3000         tsec->sid = SECINITSID_KERNEL;
3001         return;
3002 }
3003
3004 static void selinux_task_to_inode(struct task_struct *p,
3005                                   struct inode *inode)
3006 {
3007         struct task_security_struct *tsec = p->security;
3008         struct inode_security_struct *isec = inode->i_security;
3009
3010         isec->sid = tsec->sid;
3011         isec->initialized = 1;
3012         return;
3013 }
3014
3015 /* Returns error only if unable to parse addresses */
3016 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3017                         struct avc_audit_data *ad, u8 *proto)
3018 {
3019         int offset, ihlen, ret = -EINVAL;
3020         struct iphdr _iph, *ih;
3021
3022         offset = skb_network_offset(skb);
3023         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3024         if (ih == NULL)
3025                 goto out;
3026
3027         ihlen = ih->ihl * 4;
3028         if (ihlen < sizeof(_iph))
3029                 goto out;
3030
3031         ad->u.net.v4info.saddr = ih->saddr;
3032         ad->u.net.v4info.daddr = ih->daddr;
3033         ret = 0;
3034
3035         if (proto)
3036                 *proto = ih->protocol;
3037
3038         switch (ih->protocol) {
3039         case IPPROTO_TCP: {
3040                 struct tcphdr _tcph, *th;
3041
3042                 if (ntohs(ih->frag_off) & IP_OFFSET)
3043                         break;
3044
3045                 offset += ihlen;
3046                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3047                 if (th == NULL)
3048                         break;
3049
3050                 ad->u.net.sport = th->source;
3051                 ad->u.net.dport = th->dest;
3052                 break;
3053         }
3054         
3055         case IPPROTO_UDP: {
3056                 struct udphdr _udph, *uh;
3057                 
3058                 if (ntohs(ih->frag_off) & IP_OFFSET)
3059                         break;
3060                         
3061                 offset += ihlen;
3062                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3063                 if (uh == NULL)
3064                         break;  
3065
3066                 ad->u.net.sport = uh->source;
3067                 ad->u.net.dport = uh->dest;
3068                 break;
3069         }
3070
3071         case IPPROTO_DCCP: {
3072                 struct dccp_hdr _dccph, *dh;
3073
3074                 if (ntohs(ih->frag_off) & IP_OFFSET)
3075                         break;
3076
3077                 offset += ihlen;
3078                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3079                 if (dh == NULL)
3080                         break;
3081
3082                 ad->u.net.sport = dh->dccph_sport;
3083                 ad->u.net.dport = dh->dccph_dport;
3084                 break;
3085         }
3086
3087         default:
3088                 break;
3089         }
3090 out:
3091         return ret;
3092 }
3093
3094 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3095
3096 /* Returns error only if unable to parse addresses */
3097 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3098                         struct avc_audit_data *ad, u8 *proto)
3099 {
3100         u8 nexthdr;
3101         int ret = -EINVAL, offset;
3102         struct ipv6hdr _ipv6h, *ip6;
3103
3104         offset = skb_network_offset(skb);
3105         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3106         if (ip6 == NULL)
3107                 goto out;
3108
3109         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3110         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3111         ret = 0;
3112
3113         nexthdr = ip6->nexthdr;
3114         offset += sizeof(_ipv6h);
3115         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3116         if (offset < 0)
3117                 goto out;
3118
3119         if (proto)
3120                 *proto = nexthdr;
3121
3122         switch (nexthdr) {
3123         case IPPROTO_TCP: {
3124                 struct tcphdr _tcph, *th;
3125
3126                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3127                 if (th == NULL)
3128                         break;
3129
3130                 ad->u.net.sport = th->source;
3131                 ad->u.net.dport = th->dest;
3132                 break;
3133         }
3134
3135         case IPPROTO_UDP: {
3136                 struct udphdr _udph, *uh;
3137
3138                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3139                 if (uh == NULL)
3140                         break;
3141
3142                 ad->u.net.sport = uh->source;
3143                 ad->u.net.dport = uh->dest;
3144                 break;
3145         }
3146
3147         case IPPROTO_DCCP: {
3148                 struct dccp_hdr _dccph, *dh;
3149
3150                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3151                 if (dh == NULL)
3152                         break;
3153
3154                 ad->u.net.sport = dh->dccph_sport;
3155                 ad->u.net.dport = dh->dccph_dport;
3156                 break;
3157         }
3158
3159         /* includes fragments */
3160         default:
3161                 break;
3162         }
3163 out:
3164         return ret;
3165 }
3166
3167 #endif /* IPV6 */
3168
3169 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3170                              char **addrp, int *len, int src, u8 *proto)
3171 {
3172         int ret = 0;
3173
3174         switch (ad->u.net.family) {
3175         case PF_INET:
3176                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3177                 if (ret || !addrp)
3178                         break;
3179                 *len = 4;
3180                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3181                                         &ad->u.net.v4info.daddr);
3182                 break;
3183
3184 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3185         case PF_INET6:
3186                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3187                 if (ret || !addrp)
3188                         break;
3189                 *len = 16;
3190                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3191                                         &ad->u.net.v6info.daddr);
3192                 break;
3193 #endif  /* IPV6 */
3194         default:
3195                 break;
3196         }
3197
3198         return ret;
3199 }
3200
3201 /**
3202  * selinux_skb_extlbl_sid - Determine the external label of a packet
3203  * @skb: the packet
3204  * @sid: the packet's SID
3205  *
3206  * Description:
3207  * Check the various different forms of external packet labeling and determine
3208  * the external SID for the packet.  If only one form of external labeling is
3209  * present then it is used, if both labeled IPsec and NetLabel labels are
3210  * present then the SELinux type information is taken from the labeled IPsec
3211  * SA and the MLS sensitivity label information is taken from the NetLabel
3212  * security attributes.  This bit of "magic" is done in the call to
3213  * selinux_netlbl_skbuff_getsid().
3214  *
3215  */
3216 static void selinux_skb_extlbl_sid(struct sk_buff *skb, u32 *sid)
3217 {
3218         u32 xfrm_sid;
3219         u32 nlbl_sid;
3220
3221         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3222         if (selinux_netlbl_skbuff_getsid(skb,
3223                                          (xfrm_sid == SECSID_NULL ?
3224                                           SECINITSID_NETMSG : xfrm_sid),
3225                                          &nlbl_sid) != 0)
3226                 nlbl_sid = SECSID_NULL;
3227         *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid);
3228 }
3229
3230 /* socket security operations */
3231 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3232                            u32 perms)
3233 {
3234         struct inode_security_struct *isec;
3235         struct task_security_struct *tsec;
3236         struct avc_audit_data ad;
3237         int err = 0;
3238
3239         tsec = task->security;
3240         isec = SOCK_INODE(sock)->i_security;
3241
3242         if (isec->sid == SECINITSID_KERNEL)
3243                 goto out;
3244
3245         AVC_AUDIT_DATA_INIT(&ad,NET);
3246         ad.u.net.sk = sock->sk;
3247         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3248
3249 out:
3250         return err;
3251 }
3252
3253 static int selinux_socket_create(int family, int type,
3254                                  int protocol, int kern)
3255 {
3256         int err = 0;
3257         struct task_security_struct *tsec;
3258         u32 newsid;
3259
3260         if (kern)
3261                 goto out;
3262
3263         tsec = current->security;
3264         newsid = tsec->sockcreate_sid ? : tsec->sid;
3265         err = avc_has_perm(tsec->sid, newsid,
3266                            socket_type_to_security_class(family, type,
3267                            protocol), SOCKET__CREATE, NULL);
3268
3269 out:
3270         return err;
3271 }
3272
3273 static int selinux_socket_post_create(struct socket *sock, int family,
3274                                       int type, int protocol, int kern)
3275 {
3276         int err = 0;
3277         struct inode_security_struct *isec;
3278         struct task_security_struct *tsec;
3279         struct sk_security_struct *sksec;
3280         u32 newsid;
3281
3282         isec = SOCK_INODE(sock)->i_security;
3283
3284         tsec = current->security;
3285         newsid = tsec->sockcreate_sid ? : tsec->sid;
3286         isec->sclass = socket_type_to_security_class(family, type, protocol);
3287         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3288         isec->initialized = 1;
3289
3290         if (sock->sk) {
3291                 sksec = sock->sk->sk_security;
3292                 sksec->sid = isec->sid;
3293                 err = selinux_netlbl_socket_post_create(sock);
3294         }
3295
3296         return err;
3297 }
3298
3299 /* Range of port numbers used to automatically bind.
3300    Need to determine whether we should perform a name_bind
3301    permission check between the socket and the port number. */
3302
3303 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3304 {
3305         u16 family;
3306         int err;
3307
3308         err = socket_has_perm(current, sock, SOCKET__BIND);
3309         if (err)
3310                 goto out;
3311
3312         /*
3313          * If PF_INET or PF_INET6, check name_bind permission for the port.
3314          * Multiple address binding for SCTP is not supported yet: we just
3315          * check the first address now.
3316          */
3317         family = sock->sk->sk_family;
3318         if (family == PF_INET || family == PF_INET6) {
3319                 char *addrp;
3320                 struct inode_security_struct *isec;
3321                 struct task_security_struct *tsec;
3322                 struct avc_audit_data ad;
3323                 struct sockaddr_in *addr4 = NULL;
3324                 struct sockaddr_in6 *addr6 = NULL;
3325                 unsigned short snum;
3326                 struct sock *sk = sock->sk;
3327                 u32 sid, node_perm, addrlen;
3328
3329                 tsec = current->security;
3330                 isec = SOCK_INODE(sock)->i_security;
3331
3332                 if (family == PF_INET) {
3333                         addr4 = (struct sockaddr_in *)address;
3334                         snum = ntohs(addr4->sin_port);
3335                         addrlen = sizeof(addr4->sin_addr.s_addr);
3336                         addrp = (char *)&addr4->sin_addr.s_addr;
3337                 } else {
3338                         addr6 = (struct sockaddr_in6 *)address;
3339                         snum = ntohs(addr6->sin6_port);
3340                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3341                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3342                 }
3343
3344                 if (snum) {
3345                         int low, high;
3346
3347                         inet_get_local_port_range(&low, &high);
3348
3349                         if (snum < max(PROT_SOCK, low) || snum > high) {
3350                                 err = security_port_sid(sk->sk_family,
3351                                                         sk->sk_type,
3352                                                         sk->sk_protocol, snum,
3353                                                         &sid);
3354                                 if (err)
3355                                         goto out;
3356                                 AVC_AUDIT_DATA_INIT(&ad,NET);
3357                                 ad.u.net.sport = htons(snum);
3358                                 ad.u.net.family = family;
3359                                 err = avc_has_perm(isec->sid, sid,
3360                                                    isec->sclass,
3361                                                    SOCKET__NAME_BIND, &ad);
3362                                 if (err)
3363                                         goto out;
3364                         }
3365                 }
3366                 
3367                 switch(isec->sclass) {
3368                 case SECCLASS_TCP_SOCKET:
3369                         node_perm = TCP_SOCKET__NODE_BIND;
3370                         break;
3371                         
3372                 case SECCLASS_UDP_SOCKET:
3373                         node_perm = UDP_SOCKET__NODE_BIND;
3374                         break;
3375
3376                 case SECCLASS_DCCP_SOCKET:
3377                         node_perm = DCCP_SOCKET__NODE_BIND;
3378                         break;
3379
3380                 default:
3381                         node_perm = RAWIP_SOCKET__NODE_BIND;
3382                         break;
3383                 }
3384                 
3385                 err = security_node_sid(family, addrp, addrlen, &sid);
3386                 if (err)
3387                         goto out;
3388                 
3389                 AVC_AUDIT_DATA_INIT(&ad,NET);
3390                 ad.u.net.sport = htons(snum);
3391                 ad.u.net.family = family;
3392
3393                 if (family == PF_INET)
3394                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3395                 else
3396                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3397
3398                 err = avc_has_perm(isec->sid, sid,
3399                                    isec->sclass, node_perm, &ad);
3400                 if (err)
3401                         goto out;
3402         }
3403 out:
3404         return err;
3405 }
3406
3407 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3408 {
3409         struct inode_security_struct *isec;
3410         int err;
3411
3412         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3413         if (err)
3414                 return err;
3415
3416         /*
3417          * If a TCP or DCCP socket, check name_connect permission for the port.
3418          */
3419         isec = SOCK_INODE(sock)->i_security;
3420         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3421             isec->sclass == SECCLASS_DCCP_SOCKET) {
3422                 struct sock *sk = sock->sk;
3423                 struct avc_audit_data ad;
3424                 struct sockaddr_in *addr4 = NULL;
3425                 struct sockaddr_in6 *addr6 = NULL;
3426                 unsigned short snum;
3427                 u32 sid, perm;
3428
3429                 if (sk->sk_family == PF_INET) {
3430                         addr4 = (struct sockaddr_in *)address;
3431                         if (addrlen < sizeof(struct sockaddr_in))
3432                                 return -EINVAL;
3433                         snum = ntohs(addr4->sin_port);
3434                 } else {
3435                         addr6 = (struct sockaddr_in6 *)address;
3436                         if (addrlen < SIN6_LEN_RFC2133)
3437                                 return -EINVAL;
3438                         snum = ntohs(addr6->sin6_port);
3439                 }
3440
3441                 err = security_port_sid(sk->sk_family, sk->sk_type,
3442                                         sk->sk_protocol, snum, &sid);
3443                 if (err)
3444                         goto out;
3445
3446                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3447                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3448
3449                 AVC_AUDIT_DATA_INIT(&ad,NET);
3450                 ad.u.net.dport = htons(snum);
3451                 ad.u.net.family = sk->sk_family;
3452                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3453                 if (err)
3454                         goto out;
3455         }
3456
3457 out:
3458         return err;
3459 }
3460
3461 static int selinux_socket_listen(struct socket *sock, int backlog)
3462 {
3463         return socket_has_perm(current, sock, SOCKET__LISTEN);
3464 }
3465
3466 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3467 {
3468         int err;
3469         struct inode_security_struct *isec;
3470         struct inode_security_struct *newisec;
3471
3472         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3473         if (err)
3474                 return err;
3475
3476         newisec = SOCK_INODE(newsock)->i_security;
3477
3478         isec = SOCK_INODE(sock)->i_security;
3479         newisec->sclass = isec->sclass;
3480         newisec->sid = isec->sid;
3481         newisec->initialized = 1;
3482
3483         return 0;
3484 }
3485
3486 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3487                                   int size)
3488 {
3489         int rc;
3490
3491         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3492         if (rc)
3493                 return rc;
3494
3495         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3496 }
3497
3498 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3499                                   int size, int flags)
3500 {
3501         return socket_has_perm(current, sock, SOCKET__READ);
3502 }
3503
3504 static int selinux_socket_getsockname(struct socket *sock)
3505 {
3506         return socket_has_perm(current, sock, SOCKET__GETATTR);
3507 }
3508
3509 static int selinux_socket_getpeername(struct socket *sock)
3510 {
3511         return socket_has_perm(current, sock, SOCKET__GETATTR);
3512 }
3513
3514 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3515 {
3516         int err;
3517
3518         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3519         if (err)
3520                 return err;
3521
3522         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3523 }
3524
3525 static int selinux_socket_getsockopt(struct socket *sock, int level,
3526                                      int optname)
3527 {
3528         return socket_has_perm(current, sock, SOCKET__GETOPT);
3529 }
3530
3531 static int selinux_socket_shutdown(struct socket *sock, int how)
3532 {
3533         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3534 }
3535
3536 static int selinux_socket_unix_stream_connect(struct socket *sock,
3537                                               struct socket *other,
3538                                               struct sock *newsk)
3539 {
3540         struct sk_security_struct *ssec;
3541         struct inode_security_struct *isec;
3542         struct inode_security_struct *other_isec;
3543         struct avc_audit_data ad;
3544         int err;
3545
3546         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3547         if (err)
3548                 return err;
3549
3550         isec = SOCK_INODE(sock)->i_security;
3551         other_isec = SOCK_INODE(other)->i_security;
3552
3553         AVC_AUDIT_DATA_INIT(&ad,NET);
3554         ad.u.net.sk = other->sk;
3555
3556         err = avc_has_perm(isec->sid, other_isec->sid,
3557                            isec->sclass,
3558                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3559         if (err)
3560                 return err;
3561
3562         /* connecting socket */
3563         ssec = sock->sk->sk_security;
3564         ssec->peer_sid = other_isec->sid;
3565         
3566         /* server child socket */
3567         ssec = newsk->sk_security;
3568         ssec->peer_sid = isec->sid;
3569         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3570
3571         return err;
3572 }
3573
3574 static int selinux_socket_unix_may_send(struct socket *sock,
3575                                         struct socket *other)
3576 {
3577         struct inode_security_struct *isec;
3578         struct inode_security_struct *other_isec;
3579         struct avc_audit_data ad;
3580         int err;
3581
3582         isec = SOCK_INODE(sock)->i_security;
3583         other_isec = SOCK_INODE(other)->i_security;
3584
3585         AVC_AUDIT_DATA_INIT(&ad,NET);
3586         ad.u.net.sk = other->sk;
3587
3588         err = avc_has_perm(isec->sid, other_isec->sid,
3589                            isec->sclass, SOCKET__SENDTO, &ad);
3590         if (err)
3591                 return err;
3592
3593         return 0;
3594 }
3595
3596 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3597                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3598 {
3599         int err = 0;
3600         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3601         struct socket *sock;
3602         u16 sock_class = 0;
3603         u32 sock_sid = 0;
3604
3605         read_lock_bh(&sk->sk_callback_lock);
3606         sock = sk->sk_socket;
3607         if (sock) {
3608                 struct inode *inode;
3609                 inode = SOCK_INODE(sock);
3610                 if (inode) {
3611                         struct inode_security_struct *isec;
3612                         isec = inode->i_security;
3613                         sock_sid = isec->sid;
3614                         sock_class = isec->sclass;
3615                 }
3616         }
3617         read_unlock_bh(&sk->sk_callback_lock);
3618         if (!sock_sid)
3619                 goto out;
3620
3621         if (!skb->dev)
3622                 goto out;
3623
3624         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3625         if (err)
3626                 goto out;
3627
3628         switch (sock_class) {
3629         case SECCLASS_UDP_SOCKET:
3630                 netif_perm = NETIF__UDP_RECV;
3631                 node_perm = NODE__UDP_RECV;
3632                 recv_perm = UDP_SOCKET__RECV_MSG;
3633                 break;
3634         
3635         case SECCLASS_TCP_SOCKET:
3636                 netif_perm = NETIF__TCP_RECV;
3637                 node_perm = NODE__TCP_RECV;
3638                 recv_perm = TCP_SOCKET__RECV_MSG;
3639                 break;
3640
3641         case SECCLASS_DCCP_SOCKET:
3642                 netif_perm = NETIF__DCCP_RECV;
3643                 node_perm = NODE__DCCP_RECV;
3644                 recv_perm = DCCP_SOCKET__RECV_MSG;
3645                 break;
3646
3647         default:
3648                 netif_perm = NETIF__RAWIP_RECV;
3649                 node_perm = NODE__RAWIP_RECV;
3650                 break;
3651         }
3652
3653         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3654         if (err)
3655                 goto out;
3656         
3657         err = security_node_sid(family, addrp, len, &node_sid);
3658         if (err)
3659                 goto out;
3660         
3661         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3662         if (err)
3663                 goto out;
3664
3665         if (recv_perm) {
3666                 u32 port_sid;
3667
3668                 err = security_port_sid(sk->sk_family, sk->sk_type,
3669                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3670                                         &port_sid);
3671                 if (err)
3672                         goto out;
3673
3674                 err = avc_has_perm(sock_sid, port_sid,
3675                                    sock_class, recv_perm, ad);
3676         }
3677
3678 out:
3679         return err;
3680 }
3681
3682 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3683 {
3684         u16 family;
3685         char *addrp;
3686         int len, err = 0;
3687         struct avc_audit_data ad;
3688         struct sk_security_struct *sksec = sk->sk_security;
3689
3690         family = sk->sk_family;
3691         if (family != PF_INET && family != PF_INET6)
3692                 goto out;
3693
3694         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3695         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3696                 family = PF_INET;
3697
3698         AVC_AUDIT_DATA_INIT(&ad, NET);
3699         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3700         ad.u.net.family = family;
3701
3702         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3703         if (err)
3704                 goto out;
3705
3706         if (selinux_compat_net)
3707                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3708                                                   addrp, len);
3709         else
3710                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3711                                    PACKET__RECV, &ad);
3712         if (err)
3713                 goto out;
3714
3715         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3716         if (err)
3717                 goto out;
3718
3719         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3720 out:    
3721         return err;
3722 }
3723
3724 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3725                                             int __user *optlen, unsigned len)
3726 {
3727         int err = 0;
3728         char *scontext;
3729         u32 scontext_len;
3730         struct sk_security_struct *ssec;
3731         struct inode_security_struct *isec;
3732         u32 peer_sid = SECSID_NULL;
3733
3734         isec = SOCK_INODE(sock)->i_security;
3735
3736         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3737             isec->sclass == SECCLASS_TCP_SOCKET) {
3738                 ssec = sock->sk->sk_security;
3739                 peer_sid = ssec->peer_sid;
3740         }
3741         if (peer_sid == SECSID_NULL) {
3742                 err = -ENOPROTOOPT;
3743                 goto out;
3744         }
3745
3746         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3747
3748         if (err)
3749                 goto out;
3750
3751         if (scontext_len > len) {
3752                 err = -ERANGE;
3753                 goto out_len;
3754         }
3755
3756         if (copy_to_user(optval, scontext, scontext_len))
3757                 err = -EFAULT;
3758
3759 out_len:
3760         if (put_user(scontext_len, optlen))
3761                 err = -EFAULT;
3762
3763         kfree(scontext);
3764 out:    
3765         return err;
3766 }
3767
3768 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3769 {
3770         u32 peer_secid = SECSID_NULL;
3771         int err = 0;
3772
3773         if (sock && sock->sk->sk_family == PF_UNIX)
3774                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3775         else if (skb)
3776                 selinux_skb_extlbl_sid(skb, &peer_secid);
3777
3778         if (peer_secid == SECSID_NULL)
3779                 err = -EINVAL;
3780         *secid = peer_secid;
3781
3782         return err;
3783 }
3784
3785 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3786 {
3787         return sk_alloc_security(sk, family, priority);
3788 }
3789
3790 static void selinux_sk_free_security(struct sock *sk)
3791 {
3792         sk_free_security(sk);
3793 }
3794
3795 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3796 {
3797         struct sk_security_struct *ssec = sk->sk_security;
3798         struct sk_security_struct *newssec = newsk->sk_security;
3799
3800         newssec->sid = ssec->sid;
3801         newssec->peer_sid = ssec->peer_sid;
3802
3803         selinux_netlbl_sk_security_clone(ssec, newssec);
3804 }
3805
3806 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3807 {
3808         if (!sk)
3809                 *secid = SECINITSID_ANY_SOCKET;
3810         else {
3811                 struct sk_security_struct *sksec = sk->sk_security;
3812
3813                 *secid = sksec->sid;
3814         }
3815 }
3816
3817 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3818 {
3819         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3820         struct sk_security_struct *sksec = sk->sk_security;
3821
3822         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3823             sk->sk_family == PF_UNIX)
3824                 isec->sid = sksec->sid;
3825
3826         selinux_netlbl_sock_graft(sk, parent);
3827 }
3828
3829 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3830                                      struct request_sock *req)
3831 {
3832         struct sk_security_struct *sksec = sk->sk_security;
3833         int err;
3834         u32 newsid;
3835         u32 peersid;
3836
3837         selinux_skb_extlbl_sid(skb, &peersid);
3838         if (peersid == SECSID_NULL) {
3839                 req->secid = sksec->sid;
3840                 req->peer_secid = SECSID_NULL;
3841                 return 0;
3842         }
3843
3844         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3845         if (err)
3846                 return err;
3847
3848         req->secid = newsid;
3849         req->peer_secid = peersid;
3850         return 0;
3851 }
3852
3853 static void selinux_inet_csk_clone(struct sock *newsk,
3854                                    const struct request_sock *req)
3855 {
3856         struct sk_security_struct *newsksec = newsk->sk_security;
3857
3858         newsksec->sid = req->secid;
3859         newsksec->peer_sid = req->peer_secid;
3860         /* NOTE: Ideally, we should also get the isec->sid for the
3861            new socket in sync, but we don't have the isec available yet.
3862            So we will wait until sock_graft to do it, by which
3863            time it will have been created and available. */
3864
3865         /* We don't need to take any sort of lock here as we are the only
3866          * thread with access to newsksec */
3867         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3868 }
3869
3870 static void selinux_inet_conn_established(struct sock *sk,
3871                                 struct sk_buff *skb)
3872 {
3873         struct sk_security_struct *sksec = sk->sk_security;
3874
3875         selinux_skb_extlbl_sid(skb, &sksec->peer_sid);
3876 }
3877
3878 static void selinux_req_classify_flow(const struct request_sock *req,
3879                                       struct flowi *fl)
3880 {
3881         fl->secid = req->secid;
3882 }
3883
3884 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3885 {
3886         int err = 0;
3887         u32 perm;
3888         struct nlmsghdr *nlh;
3889         struct socket *sock = sk->sk_socket;
3890         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3891         
3892         if (skb->len < NLMSG_SPACE(0)) {
3893                 err = -EINVAL;
3894                 goto out;
3895         }
3896         nlh = nlmsg_hdr(skb);
3897         
3898         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3899         if (err) {
3900                 if (err == -EINVAL) {
3901                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3902                                   "SELinux:  unrecognized netlink message"
3903                                   " type=%hu for sclass=%hu\n",
3904                                   nlh->nlmsg_type, isec->sclass);
3905                         if (!selinux_enforcing)
3906                                 err = 0;
3907                 }
3908
3909                 /* Ignore */
3910                 if (err == -ENOENT)
3911                         err = 0;
3912                 goto out;
3913         }
3914
3915         err = socket_has_perm(current, sock, perm);
3916 out:
3917         return err;
3918 }
3919
3920 #ifdef CONFIG_NETFILTER
3921
3922 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3923                                             struct avc_audit_data *ad,
3924                                             u16 family, char *addrp, int len)
3925 {
3926         int err = 0;
3927         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3928         struct socket *sock;
3929         struct inode *inode;
3930         struct inode_security_struct *isec;
3931
3932         sock = sk->sk_socket;
3933         if (!sock)
3934                 goto out;
3935
3936         inode = SOCK_INODE(sock);
3937         if (!inode)
3938                 goto out;
3939
3940         isec = inode->i_security;
3941         
3942         err = sel_netif_sids(dev, &if_sid, NULL);
3943         if (err)
3944                 goto out;
3945
3946         switch (isec->sclass) {
3947         case SECCLASS_UDP_SOCKET:
3948                 netif_perm = NETIF__UDP_SEND;
3949                 node_perm = NODE__UDP_SEND;
3950                 send_perm = UDP_SOCKET__SEND_MSG;
3951                 break;
3952         
3953         case SECCLASS_TCP_SOCKET:
3954                 netif_perm = NETIF__TCP_SEND;
3955                 node_perm = NODE__TCP_SEND;
3956                 send_perm = TCP_SOCKET__SEND_MSG;
3957                 break;
3958
3959         case SECCLASS_DCCP_SOCKET:
3960                 netif_perm = NETIF__DCCP_SEND;
3961                 node_perm = NODE__DCCP_SEND;
3962                 send_perm = DCCP_SOCKET__SEND_MSG;
3963                 break;
3964
3965         default:
3966                 netif_perm = NETIF__RAWIP_SEND;
3967                 node_perm = NODE__RAWIP_SEND;
3968                 break;
3969         }
3970
3971         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3972         if (err)
3973                 goto out;
3974                 
3975         err = security_node_sid(family, addrp, len, &node_sid);
3976         if (err)
3977                 goto out;
3978         
3979         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3980         if (err)
3981                 goto out;
3982
3983         if (send_perm) {
3984                 u32 port_sid;
3985                 
3986                 err = security_port_sid(sk->sk_family,
3987                                         sk->sk_type,
3988                                         sk->sk_protocol,
3989                                         ntohs(ad->u.net.dport),
3990                                         &port_sid);
3991                 if (err)
3992                         goto out;
3993
3994                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3995                                    send_perm, ad);
3996         }
3997 out:
3998         return err;
3999 }
4000
4001 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
4002                                               struct sk_buff *skb,
4003                                               const struct net_device *in,
4004                                               const struct net_device *out,
4005                                               int (*okfn)(struct sk_buff *),
4006                                               u16 family)
4007 {
4008         char *addrp;
4009         int len, err = 0;
4010         struct sock *sk;
4011         struct avc_audit_data ad;
4012         struct net_device *dev = (struct net_device *)out;
4013         struct sk_security_struct *sksec;
4014         u8 proto;
4015
4016         sk = skb->sk;
4017         if (!sk)
4018                 goto out;
4019
4020         sksec = sk->sk_security;
4021
4022         AVC_AUDIT_DATA_INIT(&ad, NET);
4023         ad.u.net.netif = dev->name;
4024         ad.u.net.family = family;
4025
4026         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
4027         if (err)
4028                 goto out;
4029
4030         if (selinux_compat_net)
4031                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
4032                                                        family, addrp, len);
4033         else
4034                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
4035                                    PACKET__SEND, &ad);
4036
4037         if (err)
4038                 goto out;
4039
4040         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
4041 out:
4042         return err ? NF_DROP : NF_ACCEPT;
4043 }
4044
4045 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
4046                                                 struct sk_buff *skb,
4047                                                 const struct net_device *in,
4048                                                 const struct net_device *out,
4049                                                 int (*okfn)(struct sk_buff *))
4050 {
4051         return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET);
4052 }
4053
4054 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4055
4056 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
4057                                                 struct sk_buff *skb,
4058                                                 const struct net_device *in,
4059                                                 const struct net_device *out,
4060                                                 int (*okfn)(struct sk_buff *))
4061 {
4062         return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET6);
4063 }
4064
4065 #endif  /* IPV6 */
4066
4067 #endif  /* CONFIG_NETFILTER */
4068
4069 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4070 {
4071         int err;
4072
4073         err = secondary_ops->netlink_send(sk, skb);
4074         if (err)
4075                 return err;
4076
4077         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4078                 err = selinux_nlmsg_perm(sk, skb);
4079
4080         return err;
4081 }
4082
4083 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4084 {
4085         int err;
4086         struct avc_audit_data ad;
4087
4088         err = secondary_ops->netlink_recv(skb, capability);
4089         if (err)
4090                 return err;
4091
4092         AVC_AUDIT_DATA_INIT(&ad, CAP);
4093         ad.u.cap = capability;
4094
4095         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4096                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4097 }
4098
4099 static int ipc_alloc_security(struct task_struct *task,
4100                               struct kern_ipc_perm *perm,
4101                               u16 sclass)
4102 {
4103         struct task_security_struct *tsec = task->security;
4104         struct ipc_security_struct *isec;
4105
4106         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4107         if (!isec)
4108                 return -ENOMEM;
4109
4110         isec->sclass = sclass;
4111         isec->ipc_perm = perm;
4112         isec->sid = tsec->sid;
4113         perm->security = isec;
4114
4115         return 0;
4116 }
4117
4118 static void ipc_free_security(struct kern_ipc_perm *perm)
4119 {
4120         struct ipc_security_struct *isec = perm->security;
4121         perm->security = NULL;
4122         kfree(isec);
4123 }
4124
4125 static int msg_msg_alloc_security(struct msg_msg *msg)
4126 {
4127         struct msg_security_struct *msec;
4128
4129         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4130         if (!msec)
4131                 return -ENOMEM;
4132
4133         msec->msg = msg;
4134         msec->sid = SECINITSID_UNLABELED;
4135         msg->security = msec;
4136
4137         return 0;
4138 }
4139
4140 static void msg_msg_free_security(struct msg_msg *msg)
4141 {
4142         struct msg_security_struct *msec = msg->security;
4143
4144         msg->security = NULL;
4145         kfree(msec);
4146 }
4147
4148 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4149                         u32 perms)
4150 {
4151         struct task_security_struct *tsec;
4152         struct ipc_security_struct *isec;
4153         struct avc_audit_data ad;
4154
4155         tsec = current->security;
4156         isec = ipc_perms->security;
4157
4158         AVC_AUDIT_DATA_INIT(&ad, IPC);
4159         ad.u.ipc_id = ipc_perms->key;
4160
4161         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4162 }
4163
4164 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4165 {
4166         return msg_msg_alloc_security(msg);
4167 }
4168
4169 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4170 {
4171         msg_msg_free_security(msg);
4172 }
4173
4174 /* message queue security operations */
4175 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4176 {
4177         struct task_security_struct *tsec;
4178         struct ipc_security_struct *isec;
4179         struct avc_audit_data ad;
4180         int rc;
4181
4182         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4183         if (rc)
4184                 return rc;
4185
4186         tsec = current->security;
4187         isec = msq->q_perm.security;
4188
4189         AVC_AUDIT_DATA_INIT(&ad, IPC);
4190         ad.u.ipc_id = msq->q_perm.key;
4191
4192         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4193                           MSGQ__CREATE, &ad);
4194         if (rc) {
4195                 ipc_free_security(&msq->q_perm);
4196                 return rc;
4197         }
4198         return 0;
4199 }
4200
4201 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4202 {
4203         ipc_free_security(&msq->q_perm);
4204 }
4205
4206 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4207 {
4208         struct task_security_struct *tsec;
4209         struct ipc_security_struct *isec;
4210         struct avc_audit_data ad;
4211
4212         tsec = current->security;
4213         isec = msq->q_perm.security;
4214
4215         AVC_AUDIT_DATA_INIT(&ad, IPC);
4216         ad.u.ipc_id = msq->q_perm.key;
4217
4218         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4219                             MSGQ__ASSOCIATE, &ad);
4220 }
4221
4222 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4223 {
4224         int err;
4225         int perms;
4226
4227         switch(cmd) {
4228         case IPC_INFO:
4229         case MSG_INFO:
4230                 /* No specific object, just general system-wide information. */
4231                 return task_has_system(current, SYSTEM__IPC_INFO);
4232         case IPC_STAT:
4233         case MSG_STAT:
4234                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4235                 break;
4236         case IPC_SET:
4237                 perms = MSGQ__SETATTR;
4238                 break;
4239         case IPC_RMID:
4240                 perms = MSGQ__DESTROY;
4241                 break;
4242         default:
4243                 return 0;
4244         }
4245
4246         err = ipc_has_perm(&msq->q_perm, perms);
4247         return err;
4248 }
4249
4250 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4251 {
4252         struct task_security_struct *tsec;
4253         struct ipc_security_struct *isec;
4254         struct msg_security_struct *msec;
4255         struct avc_audit_data ad;
4256         int rc;
4257
4258         tsec = current->security;
4259         isec = msq->q_perm.security;
4260         msec = msg->security;
4261
4262         /*
4263          * First time through, need to assign label to the message
4264          */
4265         if (msec->sid == SECINITSID_UNLABELED) {
4266                 /*
4267                  * Compute new sid based on current process and
4268                  * message queue this message will be stored in
4269                  */
4270                 rc = security_transition_sid(tsec->sid,
4271                                              isec->sid,
4272                                              SECCLASS_MSG,
4273                                              &msec->sid);
4274                 if (rc)
4275                         return rc;
4276         }
4277
4278         AVC_AUDIT_DATA_INIT(&ad, IPC);
4279         ad.u.ipc_id = msq->q_perm.key;
4280
4281         /* Can this process write to the queue? */
4282         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4283                           MSGQ__WRITE, &ad);
4284         if (!rc)
4285                 /* Can this process send the message */
4286                 rc = avc_has_perm(tsec->sid, msec->sid,
4287                                   SECCLASS_MSG, MSG__SEND, &ad);
4288         if (!rc)
4289                 /* Can the message be put in the queue? */
4290                 rc = avc_has_perm(msec->sid, isec->sid,
4291                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4292
4293         return rc;
4294 }
4295
4296 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4297                                     struct task_struct *target,
4298                                     long type, int mode)
4299 {
4300         struct task_security_struct *tsec;
4301         struct ipc_security_struct *isec;
4302         struct msg_security_struct *msec;
4303         struct avc_audit_data ad;
4304         int rc;
4305
4306         tsec = target->security;
4307         isec = msq->q_perm.security;
4308         msec = msg->security;
4309
4310         AVC_AUDIT_DATA_INIT(&ad, IPC);
4311         ad.u.ipc_id = msq->q_perm.key;
4312
4313         rc = avc_has_perm(tsec->sid, isec->sid,
4314                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4315         if (!rc)
4316                 rc = avc_has_perm(tsec->sid, msec->sid,
4317                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4318         return rc;
4319 }
4320
4321 /* Shared Memory security operations */
4322 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4323 {
4324         struct task_security_struct *tsec;
4325         struct ipc_security_struct *isec;
4326         struct avc_audit_data ad;
4327         int rc;
4328
4329         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4330         if (rc)
4331                 return rc;
4332
4333         tsec = current->security;
4334         isec = shp->shm_perm.security;
4335
4336         AVC_AUDIT_DATA_INIT(&ad, IPC);
4337         ad.u.ipc_id = shp->shm_perm.key;
4338
4339         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4340                           SHM__CREATE, &ad);
4341         if (rc) {
4342                 ipc_free_security(&shp->shm_perm);
4343                 return rc;
4344         }
4345         return 0;
4346 }
4347
4348 static void selinux_shm_free_security(struct shmid_kernel *shp)
4349 {
4350         ipc_free_security(&shp->shm_perm);
4351 }
4352
4353 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4354 {
4355         struct task_security_struct *tsec;
4356         struct ipc_security_struct *isec;
4357         struct avc_audit_data ad;
4358
4359         tsec = current->security;
4360         isec = shp->shm_perm.security;
4361
4362         AVC_AUDIT_DATA_INIT(&ad, IPC);
4363         ad.u.ipc_id = shp->shm_perm.key;
4364
4365         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4366                             SHM__ASSOCIATE, &ad);
4367 }
4368
4369 /* Note, at this point, shp is locked down */
4370 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4371 {
4372         int perms;
4373         int err;
4374
4375         switch(cmd) {
4376         case IPC_INFO:
4377         case SHM_INFO:
4378                 /* No specific object, just general system-wide information. */
4379                 return task_has_system(current, SYSTEM__IPC_INFO);
4380         case IPC_STAT:
4381         case SHM_STAT:
4382                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4383                 break;
4384         case IPC_SET:
4385                 perms = SHM__SETATTR;
4386                 break;
4387         case SHM_LOCK:
4388         case SHM_UNLOCK:
4389                 perms = SHM__LOCK;
4390                 break;
4391         case IPC_RMID:
4392                 perms = SHM__DESTROY;
4393                 break;
4394         default:
4395                 return 0;
4396         }
4397
4398         err = ipc_has_perm(&shp->shm_perm, perms);
4399         return err;
4400 }
4401
4402 static int selinux_shm_shmat(struct shmid_kernel *shp,
4403                              char __user *shmaddr, int shmflg)
4404 {
4405         u32 perms;
4406         int rc;
4407
4408         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4409         if (rc)
4410                 return rc;
4411
4412         if (shmflg & SHM_RDONLY)
4413                 perms = SHM__READ;
4414         else
4415                 perms = SHM__READ | SHM__WRITE;
4416
4417         return ipc_has_perm(&shp->shm_perm, perms);
4418 }
4419
4420 /* Semaphore security operations */
4421 static int selinux_sem_alloc_security(struct sem_array *sma)
4422 {
4423         struct task_security_struct *tsec;
4424         struct ipc_security_struct *isec;
4425         struct avc_audit_data ad;
4426         int rc;
4427
4428         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4429         if (rc)
4430                 return rc;
4431
4432         tsec = current->security;
4433         isec = sma->sem_perm.security;
4434
4435         AVC_AUDIT_DATA_INIT(&ad, IPC);
4436         ad.u.ipc_id = sma->sem_perm.key;
4437
4438         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4439                           SEM__CREATE, &ad);
4440         if (rc) {
4441                 ipc_free_security(&sma->sem_perm);
4442                 return rc;
4443         }
4444         return 0;
4445 }
4446
4447 static void selinux_sem_free_security(struct sem_array *sma)
4448 {
4449         ipc_free_security(&sma->sem_perm);
4450 }
4451
4452 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4453 {
4454         struct task_security_struct *tsec;
4455         struct ipc_security_struct *isec;
4456         struct avc_audit_data ad;
4457
4458         tsec = current->security;
4459         isec = sma->sem_perm.security;
4460
4461         AVC_AUDIT_DATA_INIT(&ad, IPC);
4462         ad.u.ipc_id = sma->sem_perm.key;
4463
4464         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4465                             SEM__ASSOCIATE, &ad);
4466 }
4467
4468 /* Note, at this point, sma is locked down */
4469 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4470 {
4471         int err;
4472         u32 perms;
4473
4474         switch(cmd) {
4475         case IPC_INFO:
4476         case SEM_INFO:
4477                 /* No specific object, just general system-wide information. */
4478                 return task_has_system(current, SYSTEM__IPC_INFO);
4479         case GETPID:
4480         case GETNCNT:
4481         case GETZCNT:
4482                 perms = SEM__GETATTR;
4483                 break;
4484         case GETVAL:
4485         case GETALL:
4486                 perms = SEM__READ;
4487                 break;
4488         case SETVAL:
4489         case SETALL:
4490                 perms = SEM__WRITE;
4491                 break;
4492         case IPC_RMID:
4493                 perms = SEM__DESTROY;
4494                 break;
4495         case IPC_SET:
4496                 perms = SEM__SETATTR;
4497                 break;
4498         case IPC_STAT:
4499         case SEM_STAT:
4500                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4501                 break;
4502         default:
4503                 return 0;
4504         }
4505
4506         err = ipc_has_perm(&sma->sem_perm, perms);
4507         return err;
4508 }
4509
4510 static int selinux_sem_semop(struct sem_array *sma,
4511                              struct sembuf *sops, unsigned nsops, int alter)
4512 {
4513         u32 perms;
4514
4515         if (alter)
4516                 perms = SEM__READ | SEM__WRITE;
4517         else
4518                 perms = SEM__READ;
4519
4520         return ipc_has_perm(&sma->sem_perm, perms);
4521 }
4522
4523 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4524 {
4525         u32 av = 0;
4526
4527         av = 0;
4528         if (flag & S_IRUGO)
4529                 av |= IPC__UNIX_READ;
4530         if (flag & S_IWUGO)
4531                 av |= IPC__UNIX_WRITE;
4532
4533         if (av == 0)
4534                 return 0;
4535
4536         return ipc_has_perm(ipcp, av);
4537 }
4538
4539 /* module stacking operations */
4540 static int selinux_register_security (const char *name, struct security_operations *ops)
4541 {
4542         if (secondary_ops != original_ops) {
4543                 printk(KERN_ERR "%s:  There is already a secondary security "
4544                        "module registered.\n", __FUNCTION__);
4545                 return -EINVAL;
4546         }
4547
4548         secondary_ops = ops;
4549
4550         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4551                __FUNCTION__,
4552                name);
4553
4554         return 0;
4555 }
4556
4557 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4558 {
4559         if (ops != secondary_ops) {
4560                 printk(KERN_ERR "%s:  trying to unregister a security module "
4561                         "that is not registered.\n", __FUNCTION__);
4562                 return -EINVAL;
4563         }
4564
4565         secondary_ops = original_ops;
4566
4567         return 0;
4568 }
4569
4570 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4571 {
4572         if (inode)
4573                 inode_doinit_with_dentry(inode, dentry);
4574 }
4575
4576 static int selinux_getprocattr(struct task_struct *p,
4577                                char *name, char **value)
4578 {
4579         struct task_security_struct *tsec;
4580         u32 sid;
4581         int error;
4582         unsigned len;
4583
4584         if (current != p) {
4585                 error = task_has_perm(current, p, PROCESS__GETATTR);
4586                 if (error)
4587                         return error;
4588         }
4589
4590         tsec = p->security;
4591
4592         if (!strcmp(name, "current"))
4593                 sid = tsec->sid;
4594         else if (!strcmp(name, "prev"))
4595                 sid = tsec->osid;
4596         else if (!strcmp(name, "exec"))
4597                 sid = tsec->exec_sid;
4598         else if (!strcmp(name, "fscreate"))
4599                 sid = tsec->create_sid;
4600         else if (!strcmp(name, "keycreate"))
4601                 sid = tsec->keycreate_sid;
4602         else if (!strcmp(name, "sockcreate"))
4603                 sid = tsec->sockcreate_sid;
4604         else
4605                 return -EINVAL;
4606
4607         if (!sid)
4608                 return 0;
4609
4610         error = security_sid_to_context(sid, value, &len);
4611         if (error)
4612                 return error;
4613         return len;
4614 }
4615
4616 static int selinux_setprocattr(struct task_struct *p,
4617                                char *name, void *value, size_t size)
4618 {
4619         struct task_security_struct *tsec;
4620         u32 sid = 0;
4621         int error;
4622         char *str = value;
4623
4624         if (current != p) {
4625                 /* SELinux only allows a process to change its own
4626                    security attributes. */
4627                 return -EACCES;
4628         }
4629
4630         /*
4631          * Basic control over ability to set these attributes at all.
4632          * current == p, but we'll pass them separately in case the
4633          * above restriction is ever removed.
4634          */
4635         if (!strcmp(name, "exec"))
4636                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4637         else if (!strcmp(name, "fscreate"))
4638                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4639         else if (!strcmp(name, "keycreate"))
4640                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4641         else if (!strcmp(name, "sockcreate"))
4642                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4643         else if (!strcmp(name, "current"))
4644                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4645         else
4646                 error = -EINVAL;
4647         if (error)
4648                 return error;
4649
4650         /* Obtain a SID for the context, if one was specified. */
4651         if (size && str[1] && str[1] != '\n') {
4652                 if (str[size-1] == '\n') {
4653                         str[size-1] = 0;
4654                         size--;
4655                 }
4656                 error = security_context_to_sid(value, size, &sid);
4657                 if (error)
4658                         return error;
4659         }
4660
4661         /* Permission checking based on the specified context is
4662            performed during the actual operation (execve,
4663            open/mkdir/...), when we know the full context of the
4664            operation.  See selinux_bprm_set_security for the execve
4665            checks and may_create for the file creation checks. The
4666            operation will then fail if the context is not permitted. */
4667         tsec = p->security;
4668         if (!strcmp(name, "exec"))
4669                 tsec->exec_sid = sid;
4670         else if (!strcmp(name, "fscreate"))
4671                 tsec->create_sid = sid;
4672         else if (!strcmp(name, "keycreate")) {
4673                 error = may_create_key(sid, p);
4674                 if (error)
4675                         return error;
4676                 tsec->keycreate_sid = sid;
4677         } else if (!strcmp(name, "sockcreate"))
4678                 tsec->sockcreate_sid = sid;
4679         else if (!strcmp(name, "current")) {
4680                 struct av_decision avd;
4681
4682                 if (sid == 0)
4683                         return -EINVAL;
4684
4685                 /* Only allow single threaded processes to change context */
4686                 if (atomic_read(&p->mm->mm_users) != 1) {
4687                         struct task_struct *g, *t;
4688                         struct mm_struct *mm = p->mm;
4689                         read_lock(&tasklist_lock);
4690                         do_each_thread(g, t)
4691                                 if (t->mm == mm && t != p) {
4692                                         read_unlock(&tasklist_lock);
4693                                         return -EPERM;
4694                                 }
4695                         while_each_thread(g, t);
4696                         read_unlock(&tasklist_lock);
4697                 }
4698
4699                 /* Check permissions for the transition. */
4700                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4701                                      PROCESS__DYNTRANSITION, NULL);
4702                 if (error)
4703                         return error;
4704
4705                 /* Check for ptracing, and update the task SID if ok.
4706                    Otherwise, leave SID unchanged and fail. */
4707                 task_lock(p);
4708                 if (p->ptrace & PT_PTRACED) {
4709                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4710                                                      SECCLASS_PROCESS,
4711                                                      PROCESS__PTRACE, 0, &avd);
4712                         if (!error)
4713                                 tsec->sid = sid;
4714                         task_unlock(p);
4715                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4716                                   PROCESS__PTRACE, &avd, error, NULL);
4717                         if (error)
4718                                 return error;
4719                 } else {
4720                         tsec->sid = sid;
4721                         task_unlock(p);
4722                 }
4723         }
4724         else
4725                 return -EINVAL;
4726
4727         return size;
4728 }
4729
4730 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4731 {
4732         return security_sid_to_context(secid, secdata, seclen);
4733 }
4734
4735 static void selinux_release_secctx(char *secdata, u32 seclen)
4736 {
4737         kfree(secdata);
4738 }
4739
4740 #ifdef CONFIG_KEYS
4741
4742 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4743                              unsigned long flags)
4744 {
4745         struct task_security_struct *tsec = tsk->security;
4746         struct key_security_struct *ksec;
4747
4748         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4749         if (!ksec)
4750                 return -ENOMEM;
4751
4752         ksec->obj = k;
4753         if (tsec->keycreate_sid)
4754                 ksec->sid = tsec->keycreate_sid;
4755         else
4756                 ksec->sid = tsec->sid;
4757         k->security = ksec;
4758
4759         return 0;
4760 }
4761
4762 static void selinux_key_free(struct key *k)
4763 {
4764         struct key_security_struct *ksec = k->security;
4765
4766         k->security = NULL;
4767         kfree(ksec);
4768 }
4769
4770 static int selinux_key_permission(key_ref_t key_ref,
4771                             struct task_struct *ctx,
4772                             key_perm_t perm)
4773 {
4774         struct key *key;
4775         struct task_security_struct *tsec;
4776         struct key_security_struct *ksec;
4777
4778         key = key_ref_to_ptr(key_ref);
4779
4780         tsec = ctx->security;
4781         ksec = key->security;
4782
4783         /* if no specific permissions are requested, we skip the
4784            permission check. No serious, additional covert channels
4785            appear to be created. */
4786         if (perm == 0)
4787                 return 0;
4788
4789         return avc_has_perm(tsec->sid, ksec->sid,
4790                             SECCLASS_KEY, perm, NULL);
4791 }
4792
4793 #endif
4794
4795 static struct security_operations selinux_ops = {
4796         .ptrace =                       selinux_ptrace,
4797         .capget =                       selinux_capget,
4798         .capset_check =                 selinux_capset_check,
4799         .capset_set =                   selinux_capset_set,
4800         .sysctl =                       selinux_sysctl,
4801         .capable =                      selinux_capable,
4802         .quotactl =                     selinux_quotactl,
4803         .quota_on =                     selinux_quota_on,
4804         .syslog =                       selinux_syslog,
4805         .vm_enough_memory =             selinux_vm_enough_memory,
4806
4807         .netlink_send =                 selinux_netlink_send,
4808         .netlink_recv =                 selinux_netlink_recv,
4809
4810         .bprm_alloc_security =          selinux_bprm_alloc_security,
4811         .bprm_free_security =           selinux_bprm_free_security,
4812         .bprm_apply_creds =             selinux_bprm_apply_creds,
4813         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4814         .bprm_set_security =            selinux_bprm_set_security,
4815         .bprm_check_security =          selinux_bprm_check_security,
4816         .bprm_secureexec =              selinux_bprm_secureexec,
4817
4818         .sb_alloc_security =            selinux_sb_alloc_security,
4819         .sb_free_security =             selinux_sb_free_security,
4820         .sb_copy_data =                 selinux_sb_copy_data,
4821         .sb_kern_mount =                selinux_sb_kern_mount,
4822         .sb_statfs =                    selinux_sb_statfs,
4823         .sb_mount =                     selinux_mount,
4824         .sb_umount =                    selinux_umount,
4825
4826         .inode_alloc_security =         selinux_inode_alloc_security,
4827         .inode_free_security =          selinux_inode_free_security,
4828         .inode_init_security =          selinux_inode_init_security,
4829         .inode_create =                 selinux_inode_create,
4830         .inode_link =                   selinux_inode_link,
4831         .inode_unlink =                 selinux_inode_unlink,
4832         .inode_symlink =                selinux_inode_symlink,
4833         .inode_mkdir =                  selinux_inode_mkdir,
4834         .inode_rmdir =                  selinux_inode_rmdir,
4835         .inode_mknod =                  selinux_inode_mknod,
4836         .inode_rename =                 selinux_inode_rename,
4837         .inode_readlink =               selinux_inode_readlink,
4838         .inode_follow_link =            selinux_inode_follow_link,
4839         .inode_permission =             selinux_inode_permission,
4840         .inode_setattr =                selinux_inode_setattr,
4841         .inode_getattr =                selinux_inode_getattr,
4842         .inode_setxattr =               selinux_inode_setxattr,
4843         .inode_post_setxattr =          selinux_inode_post_setxattr,
4844         .inode_getxattr =               selinux_inode_getxattr,
4845         .inode_listxattr =              selinux_inode_listxattr,
4846         .inode_removexattr =            selinux_inode_removexattr,
4847         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4848         .inode_getsecurity =            selinux_inode_getsecurity,
4849         .inode_setsecurity =            selinux_inode_setsecurity,
4850         .inode_listsecurity =           selinux_inode_listsecurity,
4851         .inode_need_killpriv =          selinux_inode_need_killpriv,
4852         .inode_killpriv =               selinux_inode_killpriv,
4853
4854         .file_permission =              selinux_file_permission,
4855         .file_alloc_security =          selinux_file_alloc_security,
4856         .file_free_security =           selinux_file_free_security,
4857         .file_ioctl =                   selinux_file_ioctl,
4858         .file_mmap =                    selinux_file_mmap,
4859         .file_mprotect =                selinux_file_mprotect,
4860         .file_lock =                    selinux_file_lock,
4861         .file_fcntl =                   selinux_file_fcntl,
4862         .file_set_fowner =              selinux_file_set_fowner,
4863         .file_send_sigiotask =          selinux_file_send_sigiotask,
4864         .file_receive =                 selinux_file_receive,
4865
4866         .dentry_open =                  selinux_dentry_open,
4867
4868         .task_create =                  selinux_task_create,
4869         .task_alloc_security =          selinux_task_alloc_security,
4870         .task_free_security =           selinux_task_free_security,
4871         .task_setuid =                  selinux_task_setuid,
4872         .task_post_setuid =             selinux_task_post_setuid,
4873         .task_setgid =                  selinux_task_setgid,
4874         .task_setpgid =                 selinux_task_setpgid,
4875         .task_getpgid =                 selinux_task_getpgid,
4876         .task_getsid =                  selinux_task_getsid,
4877         .task_getsecid =                selinux_task_getsecid,
4878         .task_setgroups =               selinux_task_setgroups,
4879         .task_setnice =                 selinux_task_setnice,
4880         .task_setioprio =               selinux_task_setioprio,
4881         .task_getioprio =               selinux_task_getioprio,
4882         .task_setrlimit =               selinux_task_setrlimit,
4883         .task_setscheduler =            selinux_task_setscheduler,
4884         .task_getscheduler =            selinux_task_getscheduler,
4885         .task_movememory =              selinux_task_movememory,
4886         .task_kill =                    selinux_task_kill,
4887         .task_wait =                    selinux_task_wait,
4888         .task_prctl =                   selinux_task_prctl,
4889         .task_reparent_to_init =        selinux_task_reparent_to_init,
4890         .task_to_inode =                selinux_task_to_inode,
4891
4892         .ipc_permission =               selinux_ipc_permission,
4893
4894         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4895         .msg_msg_free_security =        selinux_msg_msg_free_security,
4896
4897         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4898         .msg_queue_free_security =      selinux_msg_queue_free_security,
4899         .msg_queue_associate =          selinux_msg_queue_associate,
4900         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4901         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4902         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4903
4904         .shm_alloc_security =           selinux_shm_alloc_security,
4905         .shm_free_security =            selinux_shm_free_security,
4906         .shm_associate =                selinux_shm_associate,
4907         .shm_shmctl =                   selinux_shm_shmctl,
4908         .shm_shmat =                    selinux_shm_shmat,
4909
4910         .sem_alloc_security =           selinux_sem_alloc_security,
4911         .sem_free_security =            selinux_sem_free_security,
4912         .sem_associate =                selinux_sem_associate,
4913         .sem_semctl =                   selinux_sem_semctl,
4914         .sem_semop =                    selinux_sem_semop,
4915
4916         .register_security =            selinux_register_security,
4917         .unregister_security =          selinux_unregister_security,
4918
4919         .d_instantiate =                selinux_d_instantiate,
4920
4921         .getprocattr =                  selinux_getprocattr,
4922         .setprocattr =                  selinux_setprocattr,
4923
4924         .secid_to_secctx =              selinux_secid_to_secctx,
4925         .release_secctx =               selinux_release_secctx,
4926
4927         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4928         .unix_may_send =                selinux_socket_unix_may_send,
4929
4930         .socket_create =                selinux_socket_create,
4931         .socket_post_create =           selinux_socket_post_create,
4932         .socket_bind =                  selinux_socket_bind,
4933         .socket_connect =               selinux_socket_connect,
4934         .socket_listen =                selinux_socket_listen,
4935         .socket_accept =                selinux_socket_accept,
4936         .socket_sendmsg =               selinux_socket_sendmsg,
4937         .socket_recvmsg =               selinux_socket_recvmsg,
4938         .socket_getsockname =           selinux_socket_getsockname,
4939         .socket_getpeername =           selinux_socket_getpeername,
4940         .socket_getsockopt =            selinux_socket_getsockopt,
4941         .socket_setsockopt =            selinux_socket_setsockopt,
4942         .socket_shutdown =              selinux_socket_shutdown,
4943         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4944         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4945         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4946         .sk_alloc_security =            selinux_sk_alloc_security,
4947         .sk_free_security =             selinux_sk_free_security,
4948         .sk_clone_security =            selinux_sk_clone_security,
4949         .sk_getsecid =                  selinux_sk_getsecid,
4950         .sock_graft =                   selinux_sock_graft,
4951         .inet_conn_request =            selinux_inet_conn_request,
4952         .inet_csk_clone =               selinux_inet_csk_clone,
4953         .inet_conn_established =        selinux_inet_conn_established,
4954         .req_classify_flow =            selinux_req_classify_flow,
4955
4956 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4957         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4958         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4959         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4960         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4961         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4962         .xfrm_state_free_security =     selinux_xfrm_state_free,
4963         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4964         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4965         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4966         .xfrm_decode_session =          selinux_xfrm_decode_session,
4967 #endif
4968
4969 #ifdef CONFIG_KEYS
4970         .key_alloc =                    selinux_key_alloc,
4971         .key_free =                     selinux_key_free,
4972         .key_permission =               selinux_key_permission,
4973 #endif
4974 };
4975
4976 static __init int selinux_init(void)
4977 {
4978         struct task_security_struct *tsec;
4979
4980         if (!selinux_enabled) {
4981                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4982                 return 0;
4983         }
4984
4985         printk(KERN_INFO "SELinux:  Initializing.\n");
4986
4987         /* Set the security state for the initial task. */
4988         if (task_alloc_security(current))
4989                 panic("SELinux:  Failed to initialize initial task.\n");
4990         tsec = current->security;
4991         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4992
4993         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4994                                             sizeof(struct inode_security_struct),
4995                                             0, SLAB_PANIC, NULL);
4996         avc_init();
4997
4998         original_ops = secondary_ops = security_ops;
4999         if (!secondary_ops)
5000                 panic ("SELinux: No initial security operations\n");
5001         if (register_security (&selinux_ops))
5002                 panic("SELinux: Unable to register with kernel.\n");
5003
5004         if (selinux_enforcing) {
5005                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5006         } else {
5007                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5008         }
5009
5010 #ifdef CONFIG_KEYS
5011         /* Add security information to initial keyrings */
5012         selinux_key_alloc(&root_user_keyring, current,
5013                           KEY_ALLOC_NOT_IN_QUOTA);
5014         selinux_key_alloc(&root_session_keyring, current,
5015                           KEY_ALLOC_NOT_IN_QUOTA);
5016 #endif
5017
5018         return 0;
5019 }
5020
5021 void selinux_complete_init(void)
5022 {
5023         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5024
5025         /* Set up any superblocks initialized prior to the policy load. */
5026         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5027         spin_lock(&sb_lock);
5028         spin_lock(&sb_security_lock);
5029 next_sb:
5030         if (!list_empty(&superblock_security_head)) {
5031                 struct superblock_security_struct *sbsec =
5032                                 list_entry(superblock_security_head.next,
5033                                            struct superblock_security_struct,
5034                                            list);
5035                 struct super_block *sb = sbsec->sb;
5036                 sb->s_count++;
5037                 spin_unlock(&sb_security_lock);
5038                 spin_unlock(&sb_lock);
5039                 down_read(&sb->s_umount);
5040                 if (sb->s_root)
5041                         superblock_doinit(sb, NULL);
5042                 drop_super(sb);
5043                 spin_lock(&sb_lock);
5044                 spin_lock(&sb_security_lock);
5045                 list_del_init(&sbsec->list);
5046                 goto next_sb;
5047         }
5048         spin_unlock(&sb_security_lock);
5049         spin_unlock(&sb_lock);
5050 }
5051
5052 /* SELinux requires early initialization in order to label
5053    all processes and objects when they are created. */
5054 security_initcall(selinux_init);
5055
5056 #if defined(CONFIG_NETFILTER)
5057
5058 static struct nf_hook_ops selinux_ipv4_op = {
5059         .hook =         selinux_ipv4_postroute_last,
5060         .owner =        THIS_MODULE,
5061         .pf =           PF_INET,
5062         .hooknum =      NF_IP_POST_ROUTING,
5063         .priority =     NF_IP_PRI_SELINUX_LAST,
5064 };
5065
5066 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5067
5068 static struct nf_hook_ops selinux_ipv6_op = {
5069         .hook =         selinux_ipv6_postroute_last,
5070         .owner =        THIS_MODULE,
5071         .pf =           PF_INET6,
5072         .hooknum =      NF_IP6_POST_ROUTING,
5073         .priority =     NF_IP6_PRI_SELINUX_LAST,
5074 };
5075
5076 #endif  /* IPV6 */
5077
5078 static int __init selinux_nf_ip_init(void)
5079 {
5080         int err = 0;
5081
5082         if (!selinux_enabled)
5083                 goto out;
5084
5085         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5086
5087         err = nf_register_hook(&selinux_ipv4_op);
5088         if (err)
5089                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
5090
5091 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5092
5093         err = nf_register_hook(&selinux_ipv6_op);
5094         if (err)
5095                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
5096
5097 #endif  /* IPV6 */
5098
5099 out:
5100         return err;
5101 }
5102
5103 __initcall(selinux_nf_ip_init);
5104
5105 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5106 static void selinux_nf_ip_exit(void)
5107 {
5108         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5109
5110         nf_unregister_hook(&selinux_ipv4_op);
5111 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5112         nf_unregister_hook(&selinux_ipv6_op);
5113 #endif  /* IPV6 */
5114 }
5115 #endif
5116
5117 #else /* CONFIG_NETFILTER */
5118
5119 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5120 #define selinux_nf_ip_exit()
5121 #endif
5122
5123 #endif /* CONFIG_NETFILTER */
5124
5125 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5126 int selinux_disable(void)
5127 {
5128         extern void exit_sel_fs(void);
5129         static int selinux_disabled = 0;
5130
5131         if (ss_initialized) {
5132                 /* Not permitted after initial policy load. */
5133                 return -EINVAL;
5134         }
5135
5136         if (selinux_disabled) {
5137                 /* Only do this once. */
5138                 return -EINVAL;
5139         }
5140
5141         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5142
5143         selinux_disabled = 1;
5144         selinux_enabled = 0;
5145
5146         /* Reset security_ops to the secondary module, dummy or capability. */
5147         security_ops = secondary_ops;
5148
5149         /* Unregister netfilter hooks. */
5150         selinux_nf_ip_exit();
5151
5152         /* Unregister selinuxfs. */
5153         exit_sel_fs();
5154
5155         return 0;
5156 }
5157 #endif
5158
5159