d9538d98736bfd10649a9cdfeb42f6750e0581b7
[safe/jmp/linux-2.6] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time,
93  *      -or there is no default LSM set and the user didn't specify a
94  *       specific LSM and we're the first to ask for registration permission,
95  *      -or the passed LSM is currently loaded.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100         if (!*chosen_lsm)
101                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103                 return 0;
104
105         return 1;
106 }
107
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122         if (verify(ops)) {
123                 printk(KERN_DEBUG "%s could not verify "
124                        "security_operations structure.\n", __func__);
125                 return -EINVAL;
126         }
127
128         if (security_ops != &default_security_ops)
129                 return -EAGAIN;
130
131         security_ops = ops;
132
133         return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140         return security_ops->ptrace_access_check(child, mode);
141 }
142
143 int security_ptrace_traceme(struct task_struct *parent)
144 {
145         return security_ops->ptrace_traceme(parent);
146 }
147
148 int security_capget(struct task_struct *target,
149                      kernel_cap_t *effective,
150                      kernel_cap_t *inheritable,
151                      kernel_cap_t *permitted)
152 {
153         return security_ops->capget(target, effective, inheritable, permitted);
154 }
155
156 int security_capset(struct cred *new, const struct cred *old,
157                     const kernel_cap_t *effective,
158                     const kernel_cap_t *inheritable,
159                     const kernel_cap_t *permitted)
160 {
161         return security_ops->capset(new, old,
162                                     effective, inheritable, permitted);
163 }
164
165 int security_capable(int cap)
166 {
167         return security_ops->capable(current, current_cred(), cap,
168                                      SECURITY_CAP_AUDIT);
169 }
170
171 int security_real_capable(struct task_struct *tsk, int cap)
172 {
173         const struct cred *cred;
174         int ret;
175
176         cred = get_task_cred(tsk);
177         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178         put_cred(cred);
179         return ret;
180 }
181
182 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183 {
184         const struct cred *cred;
185         int ret;
186
187         cred = get_task_cred(tsk);
188         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189         put_cred(cred);
190         return ret;
191 }
192
193 int security_acct(struct file *file)
194 {
195         return security_ops->acct(file);
196 }
197
198 int security_sysctl(struct ctl_table *table, int op)
199 {
200         return security_ops->sysctl(table, op);
201 }
202
203 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
204 {
205         return security_ops->quotactl(cmds, type, id, sb);
206 }
207
208 int security_quota_on(struct dentry *dentry)
209 {
210         return security_ops->quota_on(dentry);
211 }
212
213 int security_syslog(int type, bool from_file)
214 {
215         return security_ops->syslog(type, from_file);
216 }
217
218 int security_settime(struct timespec *ts, struct timezone *tz)
219 {
220         return security_ops->settime(ts, tz);
221 }
222
223 int security_vm_enough_memory(long pages)
224 {
225         WARN_ON(current->mm == NULL);
226         return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
230 {
231         WARN_ON(mm == NULL);
232         return security_ops->vm_enough_memory(mm, pages);
233 }
234
235 int security_vm_enough_memory_kern(long pages)
236 {
237         /* If current->mm is a kernel thread then we will pass NULL,
238            for this specific case that is fine */
239         return security_ops->vm_enough_memory(current->mm, pages);
240 }
241
242 int security_bprm_set_creds(struct linux_binprm *bprm)
243 {
244         return security_ops->bprm_set_creds(bprm);
245 }
246
247 int security_bprm_check(struct linux_binprm *bprm)
248 {
249         int ret;
250
251         ret = security_ops->bprm_check_security(bprm);
252         if (ret)
253                 return ret;
254         return ima_bprm_check(bprm);
255 }
256
257 void security_bprm_committing_creds(struct linux_binprm *bprm)
258 {
259         security_ops->bprm_committing_creds(bprm);
260 }
261
262 void security_bprm_committed_creds(struct linux_binprm *bprm)
263 {
264         security_ops->bprm_committed_creds(bprm);
265 }
266
267 int security_bprm_secureexec(struct linux_binprm *bprm)
268 {
269         return security_ops->bprm_secureexec(bprm);
270 }
271
272 int security_sb_alloc(struct super_block *sb)
273 {
274         return security_ops->sb_alloc_security(sb);
275 }
276
277 void security_sb_free(struct super_block *sb)
278 {
279         security_ops->sb_free_security(sb);
280 }
281
282 int security_sb_copy_data(char *orig, char *copy)
283 {
284         return security_ops->sb_copy_data(orig, copy);
285 }
286 EXPORT_SYMBOL(security_sb_copy_data);
287
288 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
289 {
290         return security_ops->sb_kern_mount(sb, flags, data);
291 }
292
293 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
294 {
295         return security_ops->sb_show_options(m, sb);
296 }
297
298 int security_sb_statfs(struct dentry *dentry)
299 {
300         return security_ops->sb_statfs(dentry);
301 }
302
303 int security_sb_mount(char *dev_name, struct path *path,
304                        char *type, unsigned long flags, void *data)
305 {
306         return security_ops->sb_mount(dev_name, path, type, flags, data);
307 }
308
309 int security_sb_umount(struct vfsmount *mnt, int flags)
310 {
311         return security_ops->sb_umount(mnt, flags);
312 }
313
314 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
315 {
316         security_ops->sb_post_addmount(mnt, mountpoint);
317 }
318
319 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
320 {
321         return security_ops->sb_pivotroot(old_path, new_path);
322 }
323
324 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
325 {
326         security_ops->sb_post_pivotroot(old_path, new_path);
327 }
328
329 int security_sb_set_mnt_opts(struct super_block *sb,
330                                 struct security_mnt_opts *opts)
331 {
332         return security_ops->sb_set_mnt_opts(sb, opts);
333 }
334 EXPORT_SYMBOL(security_sb_set_mnt_opts);
335
336 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
337                                 struct super_block *newsb)
338 {
339         security_ops->sb_clone_mnt_opts(oldsb, newsb);
340 }
341 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
342
343 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
344 {
345         return security_ops->sb_parse_opts_str(options, opts);
346 }
347 EXPORT_SYMBOL(security_sb_parse_opts_str);
348
349 int security_inode_alloc(struct inode *inode)
350 {
351         int ret;
352
353         inode->i_security = NULL;
354         ret =  security_ops->inode_alloc_security(inode);
355         if (ret)
356                 return ret;
357         ret = ima_inode_alloc(inode);
358         if (ret)
359                 security_inode_free(inode);
360         return ret;
361 }
362
363 void security_inode_free(struct inode *inode)
364 {
365         ima_inode_free(inode);
366         security_ops->inode_free_security(inode);
367 }
368
369 int security_inode_init_security(struct inode *inode, struct inode *dir,
370                                   char **name, void **value, size_t *len)
371 {
372         if (unlikely(IS_PRIVATE(inode)))
373                 return -EOPNOTSUPP;
374         return security_ops->inode_init_security(inode, dir, name, value, len);
375 }
376 EXPORT_SYMBOL(security_inode_init_security);
377
378 #ifdef CONFIG_SECURITY_PATH
379 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
380                         unsigned int dev)
381 {
382         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383                 return 0;
384         return security_ops->path_mknod(dir, dentry, mode, dev);
385 }
386 EXPORT_SYMBOL(security_path_mknod);
387
388 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
389 {
390         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391                 return 0;
392         return security_ops->path_mkdir(dir, dentry, mode);
393 }
394
395 int security_path_rmdir(struct path *dir, struct dentry *dentry)
396 {
397         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398                 return 0;
399         return security_ops->path_rmdir(dir, dentry);
400 }
401
402 int security_path_unlink(struct path *dir, struct dentry *dentry)
403 {
404         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
405                 return 0;
406         return security_ops->path_unlink(dir, dentry);
407 }
408
409 int security_path_symlink(struct path *dir, struct dentry *dentry,
410                           const char *old_name)
411 {
412         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
413                 return 0;
414         return security_ops->path_symlink(dir, dentry, old_name);
415 }
416
417 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
418                        struct dentry *new_dentry)
419 {
420         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
421                 return 0;
422         return security_ops->path_link(old_dentry, new_dir, new_dentry);
423 }
424
425 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
426                          struct path *new_dir, struct dentry *new_dentry)
427 {
428         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
429                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
430                 return 0;
431         return security_ops->path_rename(old_dir, old_dentry, new_dir,
432                                          new_dentry);
433 }
434
435 int security_path_truncate(struct path *path, loff_t length,
436                            unsigned int time_attrs)
437 {
438         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
439                 return 0;
440         return security_ops->path_truncate(path, length, time_attrs);
441 }
442
443 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
444                         mode_t mode)
445 {
446         if (unlikely(IS_PRIVATE(dentry->d_inode)))
447                 return 0;
448         return security_ops->path_chmod(dentry, mnt, mode);
449 }
450
451 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
452 {
453         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
454                 return 0;
455         return security_ops->path_chown(path, uid, gid);
456 }
457
458 int security_path_chroot(struct path *path)
459 {
460         return security_ops->path_chroot(path);
461 }
462 #endif
463
464 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
465 {
466         if (unlikely(IS_PRIVATE(dir)))
467                 return 0;
468         return security_ops->inode_create(dir, dentry, mode);
469 }
470 EXPORT_SYMBOL_GPL(security_inode_create);
471
472 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
473                          struct dentry *new_dentry)
474 {
475         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
476                 return 0;
477         return security_ops->inode_link(old_dentry, dir, new_dentry);
478 }
479
480 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
481 {
482         if (unlikely(IS_PRIVATE(dentry->d_inode)))
483                 return 0;
484         return security_ops->inode_unlink(dir, dentry);
485 }
486
487 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
488                             const char *old_name)
489 {
490         if (unlikely(IS_PRIVATE(dir)))
491                 return 0;
492         return security_ops->inode_symlink(dir, dentry, old_name);
493 }
494
495 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
496 {
497         if (unlikely(IS_PRIVATE(dir)))
498                 return 0;
499         return security_ops->inode_mkdir(dir, dentry, mode);
500 }
501 EXPORT_SYMBOL_GPL(security_inode_mkdir);
502
503 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
504 {
505         if (unlikely(IS_PRIVATE(dentry->d_inode)))
506                 return 0;
507         return security_ops->inode_rmdir(dir, dentry);
508 }
509
510 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
511 {
512         if (unlikely(IS_PRIVATE(dir)))
513                 return 0;
514         return security_ops->inode_mknod(dir, dentry, mode, dev);
515 }
516
517 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
518                            struct inode *new_dir, struct dentry *new_dentry)
519 {
520         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
521             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
522                 return 0;
523         return security_ops->inode_rename(old_dir, old_dentry,
524                                            new_dir, new_dentry);
525 }
526
527 int security_inode_readlink(struct dentry *dentry)
528 {
529         if (unlikely(IS_PRIVATE(dentry->d_inode)))
530                 return 0;
531         return security_ops->inode_readlink(dentry);
532 }
533
534 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
535 {
536         if (unlikely(IS_PRIVATE(dentry->d_inode)))
537                 return 0;
538         return security_ops->inode_follow_link(dentry, nd);
539 }
540
541 int security_inode_permission(struct inode *inode, int mask)
542 {
543         if (unlikely(IS_PRIVATE(inode)))
544                 return 0;
545         return security_ops->inode_permission(inode, mask);
546 }
547
548 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
549 {
550         if (unlikely(IS_PRIVATE(dentry->d_inode)))
551                 return 0;
552         return security_ops->inode_setattr(dentry, attr);
553 }
554 EXPORT_SYMBOL_GPL(security_inode_setattr);
555
556 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
557 {
558         if (unlikely(IS_PRIVATE(dentry->d_inode)))
559                 return 0;
560         return security_ops->inode_getattr(mnt, dentry);
561 }
562
563 void security_inode_delete(struct inode *inode)
564 {
565         if (unlikely(IS_PRIVATE(inode)))
566                 return;
567         security_ops->inode_delete(inode);
568 }
569
570 int security_inode_setxattr(struct dentry *dentry, const char *name,
571                             const void *value, size_t size, int flags)
572 {
573         if (unlikely(IS_PRIVATE(dentry->d_inode)))
574                 return 0;
575         return security_ops->inode_setxattr(dentry, name, value, size, flags);
576 }
577
578 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
579                                   const void *value, size_t size, int flags)
580 {
581         if (unlikely(IS_PRIVATE(dentry->d_inode)))
582                 return;
583         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
584 }
585
586 int security_inode_getxattr(struct dentry *dentry, const char *name)
587 {
588         if (unlikely(IS_PRIVATE(dentry->d_inode)))
589                 return 0;
590         return security_ops->inode_getxattr(dentry, name);
591 }
592
593 int security_inode_listxattr(struct dentry *dentry)
594 {
595         if (unlikely(IS_PRIVATE(dentry->d_inode)))
596                 return 0;
597         return security_ops->inode_listxattr(dentry);
598 }
599
600 int security_inode_removexattr(struct dentry *dentry, const char *name)
601 {
602         if (unlikely(IS_PRIVATE(dentry->d_inode)))
603                 return 0;
604         return security_ops->inode_removexattr(dentry, name);
605 }
606
607 int security_inode_need_killpriv(struct dentry *dentry)
608 {
609         return security_ops->inode_need_killpriv(dentry);
610 }
611
612 int security_inode_killpriv(struct dentry *dentry)
613 {
614         return security_ops->inode_killpriv(dentry);
615 }
616
617 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
618 {
619         if (unlikely(IS_PRIVATE(inode)))
620                 return -EOPNOTSUPP;
621         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
622 }
623
624 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
625 {
626         if (unlikely(IS_PRIVATE(inode)))
627                 return -EOPNOTSUPP;
628         return security_ops->inode_setsecurity(inode, name, value, size, flags);
629 }
630
631 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
632 {
633         if (unlikely(IS_PRIVATE(inode)))
634                 return 0;
635         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
636 }
637
638 void security_inode_getsecid(const struct inode *inode, u32 *secid)
639 {
640         security_ops->inode_getsecid(inode, secid);
641 }
642
643 int security_file_permission(struct file *file, int mask)
644 {
645         return security_ops->file_permission(file, mask);
646 }
647
648 int security_file_alloc(struct file *file)
649 {
650         return security_ops->file_alloc_security(file);
651 }
652
653 void security_file_free(struct file *file)
654 {
655         security_ops->file_free_security(file);
656 }
657
658 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
659 {
660         return security_ops->file_ioctl(file, cmd, arg);
661 }
662
663 int security_file_mmap(struct file *file, unsigned long reqprot,
664                         unsigned long prot, unsigned long flags,
665                         unsigned long addr, unsigned long addr_only)
666 {
667         int ret;
668
669         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
670         if (ret)
671                 return ret;
672         return ima_file_mmap(file, prot);
673 }
674
675 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
676                             unsigned long prot)
677 {
678         return security_ops->file_mprotect(vma, reqprot, prot);
679 }
680
681 int security_file_lock(struct file *file, unsigned int cmd)
682 {
683         return security_ops->file_lock(file, cmd);
684 }
685
686 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
687 {
688         return security_ops->file_fcntl(file, cmd, arg);
689 }
690
691 int security_file_set_fowner(struct file *file)
692 {
693         return security_ops->file_set_fowner(file);
694 }
695
696 int security_file_send_sigiotask(struct task_struct *tsk,
697                                   struct fown_struct *fown, int sig)
698 {
699         return security_ops->file_send_sigiotask(tsk, fown, sig);
700 }
701
702 int security_file_receive(struct file *file)
703 {
704         return security_ops->file_receive(file);
705 }
706
707 int security_dentry_open(struct file *file, const struct cred *cred)
708 {
709         return security_ops->dentry_open(file, cred);
710 }
711
712 int security_task_create(unsigned long clone_flags)
713 {
714         return security_ops->task_create(clone_flags);
715 }
716
717 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
718 {
719         return security_ops->cred_alloc_blank(cred, gfp);
720 }
721
722 void security_cred_free(struct cred *cred)
723 {
724         security_ops->cred_free(cred);
725 }
726
727 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
728 {
729         return security_ops->cred_prepare(new, old, gfp);
730 }
731
732 void security_commit_creds(struct cred *new, const struct cred *old)
733 {
734         security_ops->cred_commit(new, old);
735 }
736
737 void security_transfer_creds(struct cred *new, const struct cred *old)
738 {
739         security_ops->cred_transfer(new, old);
740 }
741
742 int security_kernel_act_as(struct cred *new, u32 secid)
743 {
744         return security_ops->kernel_act_as(new, secid);
745 }
746
747 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
748 {
749         return security_ops->kernel_create_files_as(new, inode);
750 }
751
752 int security_kernel_module_request(char *kmod_name)
753 {
754         return security_ops->kernel_module_request(kmod_name);
755 }
756
757 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
758 {
759         return security_ops->task_setuid(id0, id1, id2, flags);
760 }
761
762 int security_task_fix_setuid(struct cred *new, const struct cred *old,
763                              int flags)
764 {
765         return security_ops->task_fix_setuid(new, old, flags);
766 }
767
768 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
769 {
770         return security_ops->task_setgid(id0, id1, id2, flags);
771 }
772
773 int security_task_setpgid(struct task_struct *p, pid_t pgid)
774 {
775         return security_ops->task_setpgid(p, pgid);
776 }
777
778 int security_task_getpgid(struct task_struct *p)
779 {
780         return security_ops->task_getpgid(p);
781 }
782
783 int security_task_getsid(struct task_struct *p)
784 {
785         return security_ops->task_getsid(p);
786 }
787
788 void security_task_getsecid(struct task_struct *p, u32 *secid)
789 {
790         security_ops->task_getsecid(p, secid);
791 }
792 EXPORT_SYMBOL(security_task_getsecid);
793
794 int security_task_setgroups(struct group_info *group_info)
795 {
796         return security_ops->task_setgroups(group_info);
797 }
798
799 int security_task_setnice(struct task_struct *p, int nice)
800 {
801         return security_ops->task_setnice(p, nice);
802 }
803
804 int security_task_setioprio(struct task_struct *p, int ioprio)
805 {
806         return security_ops->task_setioprio(p, ioprio);
807 }
808
809 int security_task_getioprio(struct task_struct *p)
810 {
811         return security_ops->task_getioprio(p);
812 }
813
814 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
815 {
816         return security_ops->task_setrlimit(resource, new_rlim);
817 }
818
819 int security_task_setscheduler(struct task_struct *p,
820                                 int policy, struct sched_param *lp)
821 {
822         return security_ops->task_setscheduler(p, policy, lp);
823 }
824
825 int security_task_getscheduler(struct task_struct *p)
826 {
827         return security_ops->task_getscheduler(p);
828 }
829
830 int security_task_movememory(struct task_struct *p)
831 {
832         return security_ops->task_movememory(p);
833 }
834
835 int security_task_kill(struct task_struct *p, struct siginfo *info,
836                         int sig, u32 secid)
837 {
838         return security_ops->task_kill(p, info, sig, secid);
839 }
840
841 int security_task_wait(struct task_struct *p)
842 {
843         return security_ops->task_wait(p);
844 }
845
846 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
847                          unsigned long arg4, unsigned long arg5)
848 {
849         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
850 }
851
852 void security_task_to_inode(struct task_struct *p, struct inode *inode)
853 {
854         security_ops->task_to_inode(p, inode);
855 }
856
857 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
858 {
859         return security_ops->ipc_permission(ipcp, flag);
860 }
861
862 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
863 {
864         security_ops->ipc_getsecid(ipcp, secid);
865 }
866
867 int security_msg_msg_alloc(struct msg_msg *msg)
868 {
869         return security_ops->msg_msg_alloc_security(msg);
870 }
871
872 void security_msg_msg_free(struct msg_msg *msg)
873 {
874         security_ops->msg_msg_free_security(msg);
875 }
876
877 int security_msg_queue_alloc(struct msg_queue *msq)
878 {
879         return security_ops->msg_queue_alloc_security(msq);
880 }
881
882 void security_msg_queue_free(struct msg_queue *msq)
883 {
884         security_ops->msg_queue_free_security(msq);
885 }
886
887 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
888 {
889         return security_ops->msg_queue_associate(msq, msqflg);
890 }
891
892 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
893 {
894         return security_ops->msg_queue_msgctl(msq, cmd);
895 }
896
897 int security_msg_queue_msgsnd(struct msg_queue *msq,
898                                struct msg_msg *msg, int msqflg)
899 {
900         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
901 }
902
903 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
904                                struct task_struct *target, long type, int mode)
905 {
906         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
907 }
908
909 int security_shm_alloc(struct shmid_kernel *shp)
910 {
911         return security_ops->shm_alloc_security(shp);
912 }
913
914 void security_shm_free(struct shmid_kernel *shp)
915 {
916         security_ops->shm_free_security(shp);
917 }
918
919 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
920 {
921         return security_ops->shm_associate(shp, shmflg);
922 }
923
924 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
925 {
926         return security_ops->shm_shmctl(shp, cmd);
927 }
928
929 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
930 {
931         return security_ops->shm_shmat(shp, shmaddr, shmflg);
932 }
933
934 int security_sem_alloc(struct sem_array *sma)
935 {
936         return security_ops->sem_alloc_security(sma);
937 }
938
939 void security_sem_free(struct sem_array *sma)
940 {
941         security_ops->sem_free_security(sma);
942 }
943
944 int security_sem_associate(struct sem_array *sma, int semflg)
945 {
946         return security_ops->sem_associate(sma, semflg);
947 }
948
949 int security_sem_semctl(struct sem_array *sma, int cmd)
950 {
951         return security_ops->sem_semctl(sma, cmd);
952 }
953
954 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
955                         unsigned nsops, int alter)
956 {
957         return security_ops->sem_semop(sma, sops, nsops, alter);
958 }
959
960 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
961 {
962         if (unlikely(inode && IS_PRIVATE(inode)))
963                 return;
964         security_ops->d_instantiate(dentry, inode);
965 }
966 EXPORT_SYMBOL(security_d_instantiate);
967
968 int security_getprocattr(struct task_struct *p, char *name, char **value)
969 {
970         return security_ops->getprocattr(p, name, value);
971 }
972
973 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
974 {
975         return security_ops->setprocattr(p, name, value, size);
976 }
977
978 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
979 {
980         return security_ops->netlink_send(sk, skb);
981 }
982
983 int security_netlink_recv(struct sk_buff *skb, int cap)
984 {
985         return security_ops->netlink_recv(skb, cap);
986 }
987 EXPORT_SYMBOL(security_netlink_recv);
988
989 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
990 {
991         return security_ops->secid_to_secctx(secid, secdata, seclen);
992 }
993 EXPORT_SYMBOL(security_secid_to_secctx);
994
995 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
996 {
997         return security_ops->secctx_to_secid(secdata, seclen, secid);
998 }
999 EXPORT_SYMBOL(security_secctx_to_secid);
1000
1001 void security_release_secctx(char *secdata, u32 seclen)
1002 {
1003         security_ops->release_secctx(secdata, seclen);
1004 }
1005 EXPORT_SYMBOL(security_release_secctx);
1006
1007 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1008 {
1009         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1010 }
1011 EXPORT_SYMBOL(security_inode_notifysecctx);
1012
1013 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1014 {
1015         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1016 }
1017 EXPORT_SYMBOL(security_inode_setsecctx);
1018
1019 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1020 {
1021         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1022 }
1023 EXPORT_SYMBOL(security_inode_getsecctx);
1024
1025 #ifdef CONFIG_SECURITY_NETWORK
1026
1027 int security_unix_stream_connect(struct socket *sock, struct socket *other,
1028                                  struct sock *newsk)
1029 {
1030         return security_ops->unix_stream_connect(sock, other, newsk);
1031 }
1032 EXPORT_SYMBOL(security_unix_stream_connect);
1033
1034 int security_unix_may_send(struct socket *sock,  struct socket *other)
1035 {
1036         return security_ops->unix_may_send(sock, other);
1037 }
1038 EXPORT_SYMBOL(security_unix_may_send);
1039
1040 int security_socket_create(int family, int type, int protocol, int kern)
1041 {
1042         return security_ops->socket_create(family, type, protocol, kern);
1043 }
1044
1045 int security_socket_post_create(struct socket *sock, int family,
1046                                 int type, int protocol, int kern)
1047 {
1048         return security_ops->socket_post_create(sock, family, type,
1049                                                 protocol, kern);
1050 }
1051
1052 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1053 {
1054         return security_ops->socket_bind(sock, address, addrlen);
1055 }
1056
1057 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1058 {
1059         return security_ops->socket_connect(sock, address, addrlen);
1060 }
1061
1062 int security_socket_listen(struct socket *sock, int backlog)
1063 {
1064         return security_ops->socket_listen(sock, backlog);
1065 }
1066
1067 int security_socket_accept(struct socket *sock, struct socket *newsock)
1068 {
1069         return security_ops->socket_accept(sock, newsock);
1070 }
1071
1072 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1073 {
1074         return security_ops->socket_sendmsg(sock, msg, size);
1075 }
1076
1077 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1078                             int size, int flags)
1079 {
1080         return security_ops->socket_recvmsg(sock, msg, size, flags);
1081 }
1082
1083 int security_socket_getsockname(struct socket *sock)
1084 {
1085         return security_ops->socket_getsockname(sock);
1086 }
1087
1088 int security_socket_getpeername(struct socket *sock)
1089 {
1090         return security_ops->socket_getpeername(sock);
1091 }
1092
1093 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1094 {
1095         return security_ops->socket_getsockopt(sock, level, optname);
1096 }
1097
1098 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1099 {
1100         return security_ops->socket_setsockopt(sock, level, optname);
1101 }
1102
1103 int security_socket_shutdown(struct socket *sock, int how)
1104 {
1105         return security_ops->socket_shutdown(sock, how);
1106 }
1107
1108 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1109 {
1110         return security_ops->socket_sock_rcv_skb(sk, skb);
1111 }
1112 EXPORT_SYMBOL(security_sock_rcv_skb);
1113
1114 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1115                                       int __user *optlen, unsigned len)
1116 {
1117         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1118 }
1119
1120 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1121 {
1122         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1123 }
1124 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1125
1126 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1127 {
1128         return security_ops->sk_alloc_security(sk, family, priority);
1129 }
1130
1131 void security_sk_free(struct sock *sk)
1132 {
1133         security_ops->sk_free_security(sk);
1134 }
1135
1136 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1137 {
1138         security_ops->sk_clone_security(sk, newsk);
1139 }
1140
1141 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1142 {
1143         security_ops->sk_getsecid(sk, &fl->secid);
1144 }
1145 EXPORT_SYMBOL(security_sk_classify_flow);
1146
1147 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1148 {
1149         security_ops->req_classify_flow(req, fl);
1150 }
1151 EXPORT_SYMBOL(security_req_classify_flow);
1152
1153 void security_sock_graft(struct sock *sk, struct socket *parent)
1154 {
1155         security_ops->sock_graft(sk, parent);
1156 }
1157 EXPORT_SYMBOL(security_sock_graft);
1158
1159 int security_inet_conn_request(struct sock *sk,
1160                         struct sk_buff *skb, struct request_sock *req)
1161 {
1162         return security_ops->inet_conn_request(sk, skb, req);
1163 }
1164 EXPORT_SYMBOL(security_inet_conn_request);
1165
1166 void security_inet_csk_clone(struct sock *newsk,
1167                         const struct request_sock *req)
1168 {
1169         security_ops->inet_csk_clone(newsk, req);
1170 }
1171
1172 void security_inet_conn_established(struct sock *sk,
1173                         struct sk_buff *skb)
1174 {
1175         security_ops->inet_conn_established(sk, skb);
1176 }
1177
1178 int security_tun_dev_create(void)
1179 {
1180         return security_ops->tun_dev_create();
1181 }
1182 EXPORT_SYMBOL(security_tun_dev_create);
1183
1184 void security_tun_dev_post_create(struct sock *sk)
1185 {
1186         return security_ops->tun_dev_post_create(sk);
1187 }
1188 EXPORT_SYMBOL(security_tun_dev_post_create);
1189
1190 int security_tun_dev_attach(struct sock *sk)
1191 {
1192         return security_ops->tun_dev_attach(sk);
1193 }
1194 EXPORT_SYMBOL(security_tun_dev_attach);
1195
1196 #endif  /* CONFIG_SECURITY_NETWORK */
1197
1198 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1199
1200 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1201 {
1202         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1203 }
1204 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1205
1206 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1207                               struct xfrm_sec_ctx **new_ctxp)
1208 {
1209         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1210 }
1211
1212 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1213 {
1214         security_ops->xfrm_policy_free_security(ctx);
1215 }
1216 EXPORT_SYMBOL(security_xfrm_policy_free);
1217
1218 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1219 {
1220         return security_ops->xfrm_policy_delete_security(ctx);
1221 }
1222
1223 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1224 {
1225         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1226 }
1227 EXPORT_SYMBOL(security_xfrm_state_alloc);
1228
1229 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1230                                       struct xfrm_sec_ctx *polsec, u32 secid)
1231 {
1232         if (!polsec)
1233                 return 0;
1234         /*
1235          * We want the context to be taken from secid which is usually
1236          * from the sock.
1237          */
1238         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1239 }
1240
1241 int security_xfrm_state_delete(struct xfrm_state *x)
1242 {
1243         return security_ops->xfrm_state_delete_security(x);
1244 }
1245 EXPORT_SYMBOL(security_xfrm_state_delete);
1246
1247 void security_xfrm_state_free(struct xfrm_state *x)
1248 {
1249         security_ops->xfrm_state_free_security(x);
1250 }
1251
1252 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1253 {
1254         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1255 }
1256
1257 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1258                                        struct xfrm_policy *xp, struct flowi *fl)
1259 {
1260         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1261 }
1262
1263 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1264 {
1265         return security_ops->xfrm_decode_session(skb, secid, 1);
1266 }
1267
1268 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1269 {
1270         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1271
1272         BUG_ON(rc);
1273 }
1274 EXPORT_SYMBOL(security_skb_classify_flow);
1275
1276 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1277
1278 #ifdef CONFIG_KEYS
1279
1280 int security_key_alloc(struct key *key, const struct cred *cred,
1281                        unsigned long flags)
1282 {
1283         return security_ops->key_alloc(key, cred, flags);
1284 }
1285
1286 void security_key_free(struct key *key)
1287 {
1288         security_ops->key_free(key);
1289 }
1290
1291 int security_key_permission(key_ref_t key_ref,
1292                             const struct cred *cred, key_perm_t perm)
1293 {
1294         return security_ops->key_permission(key_ref, cred, perm);
1295 }
1296
1297 int security_key_getsecurity(struct key *key, char **_buffer)
1298 {
1299         return security_ops->key_getsecurity(key, _buffer);
1300 }
1301
1302 int security_key_session_to_parent(const struct cred *cred,
1303                                    const struct cred *parent_cred,
1304                                    struct key *key)
1305 {
1306         return security_ops->key_session_to_parent(cred, parent_cred, key);
1307 }
1308
1309 #endif  /* CONFIG_KEYS */
1310
1311 #ifdef CONFIG_AUDIT
1312
1313 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1314 {
1315         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1316 }
1317
1318 int security_audit_rule_known(struct audit_krule *krule)
1319 {
1320         return security_ops->audit_rule_known(krule);
1321 }
1322
1323 void security_audit_rule_free(void *lsmrule)
1324 {
1325         security_ops->audit_rule_free(lsmrule);
1326 }
1327
1328 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1329                               struct audit_context *actx)
1330 {
1331         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1332 }
1333
1334 #endif /* CONFIG_AUDIT */