5b1c034815a814dd8e355aa89aeb8252a51876a1
[safe/jmp/linux-2.6] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20
21 /* things that live in dummy.c */
22 extern struct security_operations dummy_security_ops;
23 extern void security_fixup_ops(struct security_operations *ops);
24
25 struct security_operations *security_ops;       /* Initialized to NULL */
26 unsigned long mmap_min_addr;            /* 0 means no protection */
27
28 static inline int verify(struct security_operations *ops)
29 {
30         /* verify the security_operations structure exists */
31         if (!ops)
32                 return -EINVAL;
33         security_fixup_ops(ops);
34         return 0;
35 }
36
37 static void __init do_security_initcalls(void)
38 {
39         initcall_t *call;
40         call = __security_initcall_start;
41         while (call < __security_initcall_end) {
42                 (*call) ();
43                 call++;
44         }
45 }
46
47 /**
48  * security_init - initializes the security framework
49  *
50  * This should be called early in the kernel initialization sequence.
51  */
52 int __init security_init(void)
53 {
54         printk(KERN_INFO "Security Framework initialized\n");
55
56         if (verify(&dummy_security_ops)) {
57                 printk(KERN_ERR "%s could not verify "
58                        "dummy_security_ops structure.\n", __FUNCTION__);
59                 return -EIO;
60         }
61
62         security_ops = &dummy_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 /**
69  * register_security - registers a security framework with the kernel
70  * @ops: a pointer to the struct security_options that is to be registered
71  *
72  * This function is to allow a security module to register itself with the
73  * kernel security subsystem.  Some rudimentary checking is done on the @ops
74  * value passed to this function.  A call to unregister_security() should be
75  * done to remove this security_options structure from the kernel.
76  *
77  * If there is already a security module registered with the kernel,
78  * an error will be returned.  Otherwise 0 is returned on success.
79  */
80 int register_security(struct security_operations *ops)
81 {
82         if (verify(ops)) {
83                 printk(KERN_DEBUG "%s could not verify "
84                        "security_operations structure.\n", __FUNCTION__);
85                 return -EINVAL;
86         }
87
88         if (security_ops != &dummy_security_ops)
89                 return -EAGAIN;
90
91         security_ops = ops;
92
93         return 0;
94 }
95
96 /**
97  * unregister_security - unregisters a security framework with the kernel
98  * @ops: a pointer to the struct security_options that is to be registered
99  *
100  * This function removes a struct security_operations variable that had
101  * previously been registered with a successful call to register_security().
102  *
103  * If @ops does not match the valued previously passed to register_security()
104  * an error is returned.  Otherwise the default security options is set to the
105  * the dummy_security_ops structure, and 0 is returned.
106  */
107 int unregister_security(struct security_operations *ops)
108 {
109         if (ops != security_ops) {
110                 printk(KERN_INFO "%s: trying to unregister "
111                        "a security_opts structure that is not "
112                        "registered, failing.\n", __FUNCTION__);
113                 return -EINVAL;
114         }
115
116         security_ops = &dummy_security_ops;
117
118         return 0;
119 }
120
121 /**
122  * mod_reg_security - allows security modules to be "stacked"
123  * @name: a pointer to a string with the name of the security_options to be registered
124  * @ops: a pointer to the struct security_options that is to be registered
125  *
126  * This function allows security modules to be stacked if the currently loaded
127  * security module allows this to happen.  It passes the @name and @ops to the
128  * register_security function of the currently loaded security module.
129  *
130  * The return value depends on the currently loaded security module, with 0 as
131  * success.
132  */
133 int mod_reg_security(const char *name, struct security_operations *ops)
134 {
135         if (verify(ops)) {
136                 printk(KERN_INFO "%s could not verify "
137                        "security operations.\n", __FUNCTION__);
138                 return -EINVAL;
139         }
140
141         if (ops == security_ops) {
142                 printk(KERN_INFO "%s security operations "
143                        "already registered.\n", __FUNCTION__);
144                 return -EINVAL;
145         }
146
147         return security_ops->register_security(name, ops);
148 }
149
150 /**
151  * mod_unreg_security - allows a security module registered with mod_reg_security() to be unloaded
152  * @name: a pointer to a string with the name of the security_options to be removed
153  * @ops: a pointer to the struct security_options that is to be removed
154  *
155  * This function allows security modules that have been successfully registered
156  * with a call to mod_reg_security() to be unloaded from the system.
157  * This calls the currently loaded security module's unregister_security() call
158  * with the @name and @ops variables.
159  *
160  * The return value depends on the currently loaded security module, with 0 as
161  * success.
162  */
163 int mod_unreg_security(const char *name, struct security_operations *ops)
164 {
165         if (ops == security_ops) {
166                 printk(KERN_INFO "%s invalid attempt to unregister "
167                        " primary security ops.\n", __FUNCTION__);
168                 return -EINVAL;
169         }
170
171         return security_ops->unregister_security(name, ops);
172 }
173
174 /* Security operations */
175
176 int security_ptrace(struct task_struct *parent, struct task_struct *child)
177 {
178         return security_ops->ptrace(parent, child);
179 }
180
181 int security_capget(struct task_struct *target,
182                      kernel_cap_t *effective,
183                      kernel_cap_t *inheritable,
184                      kernel_cap_t *permitted)
185 {
186         return security_ops->capget(target, effective, inheritable, permitted);
187 }
188
189 int security_capset_check(struct task_struct *target,
190                            kernel_cap_t *effective,
191                            kernel_cap_t *inheritable,
192                            kernel_cap_t *permitted)
193 {
194         return security_ops->capset_check(target, effective, inheritable, permitted);
195 }
196
197 void security_capset_set(struct task_struct *target,
198                           kernel_cap_t *effective,
199                           kernel_cap_t *inheritable,
200                           kernel_cap_t *permitted)
201 {
202         security_ops->capset_set(target, effective, inheritable, permitted);
203 }
204
205 int security_capable(struct task_struct *tsk, int cap)
206 {
207         return security_ops->capable(tsk, cap);
208 }
209
210 int security_acct(struct file *file)
211 {
212         return security_ops->acct(file);
213 }
214
215 int security_sysctl(struct ctl_table *table, int op)
216 {
217         return security_ops->sysctl(table, op);
218 }
219
220 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
221 {
222         return security_ops->quotactl(cmds, type, id, sb);
223 }
224
225 int security_quota_on(struct dentry *dentry)
226 {
227         return security_ops->quota_on(dentry);
228 }
229
230 int security_syslog(int type)
231 {
232         return security_ops->syslog(type);
233 }
234
235 int security_settime(struct timespec *ts, struct timezone *tz)
236 {
237         return security_ops->settime(ts, tz);
238 }
239
240 int security_vm_enough_memory(long pages)
241 {
242         return security_ops->vm_enough_memory(current->mm, pages);
243 }
244
245 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
246 {
247         return security_ops->vm_enough_memory(mm, pages);
248 }
249
250 int security_bprm_alloc(struct linux_binprm *bprm)
251 {
252         return security_ops->bprm_alloc_security(bprm);
253 }
254
255 void security_bprm_free(struct linux_binprm *bprm)
256 {
257         security_ops->bprm_free_security(bprm);
258 }
259
260 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
261 {
262         security_ops->bprm_apply_creds(bprm, unsafe);
263 }
264
265 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
266 {
267         security_ops->bprm_post_apply_creds(bprm);
268 }
269
270 int security_bprm_set(struct linux_binprm *bprm)
271 {
272         return security_ops->bprm_set_security(bprm);
273 }
274
275 int security_bprm_check(struct linux_binprm *bprm)
276 {
277         return security_ops->bprm_check_security(bprm);
278 }
279
280 int security_bprm_secureexec(struct linux_binprm *bprm)
281 {
282         return security_ops->bprm_secureexec(bprm);
283 }
284
285 int security_sb_alloc(struct super_block *sb)
286 {
287         return security_ops->sb_alloc_security(sb);
288 }
289
290 void security_sb_free(struct super_block *sb)
291 {
292         security_ops->sb_free_security(sb);
293 }
294
295 int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
296 {
297         return security_ops->sb_copy_data(type, orig, copy);
298 }
299
300 int security_sb_kern_mount(struct super_block *sb, void *data)
301 {
302         return security_ops->sb_kern_mount(sb, data);
303 }
304
305 int security_sb_statfs(struct dentry *dentry)
306 {
307         return security_ops->sb_statfs(dentry);
308 }
309
310 int security_sb_mount(char *dev_name, struct nameidata *nd,
311                        char *type, unsigned long flags, void *data)
312 {
313         return security_ops->sb_mount(dev_name, nd, type, flags, data);
314 }
315
316 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
317 {
318         return security_ops->sb_check_sb(mnt, nd);
319 }
320
321 int security_sb_umount(struct vfsmount *mnt, int flags)
322 {
323         return security_ops->sb_umount(mnt, flags);
324 }
325
326 void security_sb_umount_close(struct vfsmount *mnt)
327 {
328         security_ops->sb_umount_close(mnt);
329 }
330
331 void security_sb_umount_busy(struct vfsmount *mnt)
332 {
333         security_ops->sb_umount_busy(mnt);
334 }
335
336 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
337 {
338         security_ops->sb_post_remount(mnt, flags, data);
339 }
340
341 void security_sb_post_mountroot(void)
342 {
343         security_ops->sb_post_mountroot();
344 }
345
346 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
347 {
348         security_ops->sb_post_addmount(mnt, mountpoint_nd);
349 }
350
351 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
352 {
353         return security_ops->sb_pivotroot(old_nd, new_nd);
354 }
355
356 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
357 {
358         security_ops->sb_post_pivotroot(old_nd, new_nd);
359 }
360
361 int security_inode_alloc(struct inode *inode)
362 {
363         inode->i_security = NULL;
364         return security_ops->inode_alloc_security(inode);
365 }
366
367 void security_inode_free(struct inode *inode)
368 {
369         security_ops->inode_free_security(inode);
370 }
371
372 int security_inode_init_security(struct inode *inode, struct inode *dir,
373                                   char **name, void **value, size_t *len)
374 {
375         if (unlikely(IS_PRIVATE(inode)))
376                 return -EOPNOTSUPP;
377         return security_ops->inode_init_security(inode, dir, name, value, len);
378 }
379 EXPORT_SYMBOL(security_inode_init_security);
380
381 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
382 {
383         if (unlikely(IS_PRIVATE(dir)))
384                 return 0;
385         return security_ops->inode_create(dir, dentry, mode);
386 }
387
388 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
389                          struct dentry *new_dentry)
390 {
391         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
392                 return 0;
393         return security_ops->inode_link(old_dentry, dir, new_dentry);
394 }
395
396 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
397 {
398         if (unlikely(IS_PRIVATE(dentry->d_inode)))
399                 return 0;
400         return security_ops->inode_unlink(dir, dentry);
401 }
402
403 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
404                             const char *old_name)
405 {
406         if (unlikely(IS_PRIVATE(dir)))
407                 return 0;
408         return security_ops->inode_symlink(dir, dentry, old_name);
409 }
410
411 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
412 {
413         if (unlikely(IS_PRIVATE(dir)))
414                 return 0;
415         return security_ops->inode_mkdir(dir, dentry, mode);
416 }
417
418 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
419 {
420         if (unlikely(IS_PRIVATE(dentry->d_inode)))
421                 return 0;
422         return security_ops->inode_rmdir(dir, dentry);
423 }
424
425 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
426 {
427         if (unlikely(IS_PRIVATE(dir)))
428                 return 0;
429         return security_ops->inode_mknod(dir, dentry, mode, dev);
430 }
431
432 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
433                            struct inode *new_dir, struct dentry *new_dentry)
434 {
435         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
436             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
437                 return 0;
438         return security_ops->inode_rename(old_dir, old_dentry,
439                                            new_dir, new_dentry);
440 }
441
442 int security_inode_readlink(struct dentry *dentry)
443 {
444         if (unlikely(IS_PRIVATE(dentry->d_inode)))
445                 return 0;
446         return security_ops->inode_readlink(dentry);
447 }
448
449 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
450 {
451         if (unlikely(IS_PRIVATE(dentry->d_inode)))
452                 return 0;
453         return security_ops->inode_follow_link(dentry, nd);
454 }
455
456 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
457 {
458         if (unlikely(IS_PRIVATE(inode)))
459                 return 0;
460         return security_ops->inode_permission(inode, mask, nd);
461 }
462
463 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
464 {
465         if (unlikely(IS_PRIVATE(dentry->d_inode)))
466                 return 0;
467         return security_ops->inode_setattr(dentry, attr);
468 }
469
470 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
471 {
472         if (unlikely(IS_PRIVATE(dentry->d_inode)))
473                 return 0;
474         return security_ops->inode_getattr(mnt, dentry);
475 }
476
477 void security_inode_delete(struct inode *inode)
478 {
479         if (unlikely(IS_PRIVATE(inode)))
480                 return;
481         security_ops->inode_delete(inode);
482 }
483
484 int security_inode_setxattr(struct dentry *dentry, char *name,
485                              void *value, size_t size, int flags)
486 {
487         if (unlikely(IS_PRIVATE(dentry->d_inode)))
488                 return 0;
489         return security_ops->inode_setxattr(dentry, name, value, size, flags);
490 }
491
492 void security_inode_post_setxattr(struct dentry *dentry, char *name,
493                                    void *value, size_t size, int flags)
494 {
495         if (unlikely(IS_PRIVATE(dentry->d_inode)))
496                 return;
497         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
498 }
499
500 int security_inode_getxattr(struct dentry *dentry, char *name)
501 {
502         if (unlikely(IS_PRIVATE(dentry->d_inode)))
503                 return 0;
504         return security_ops->inode_getxattr(dentry, name);
505 }
506
507 int security_inode_listxattr(struct dentry *dentry)
508 {
509         if (unlikely(IS_PRIVATE(dentry->d_inode)))
510                 return 0;
511         return security_ops->inode_listxattr(dentry);
512 }
513
514 int security_inode_removexattr(struct dentry *dentry, char *name)
515 {
516         if (unlikely(IS_PRIVATE(dentry->d_inode)))
517                 return 0;
518         return security_ops->inode_removexattr(dentry, name);
519 }
520
521 const char *security_inode_xattr_getsuffix(void)
522 {
523         return security_ops->inode_xattr_getsuffix();
524 }
525
526 int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
527 {
528         if (unlikely(IS_PRIVATE(inode)))
529                 return 0;
530         return security_ops->inode_getsecurity(inode, name, buffer, size, err);
531 }
532
533 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
534 {
535         if (unlikely(IS_PRIVATE(inode)))
536                 return 0;
537         return security_ops->inode_setsecurity(inode, name, value, size, flags);
538 }
539
540 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
541 {
542         if (unlikely(IS_PRIVATE(inode)))
543                 return 0;
544         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
545 }
546
547 int security_file_permission(struct file *file, int mask)
548 {
549         return security_ops->file_permission(file, mask);
550 }
551
552 int security_file_alloc(struct file *file)
553 {
554         return security_ops->file_alloc_security(file);
555 }
556
557 void security_file_free(struct file *file)
558 {
559         security_ops->file_free_security(file);
560 }
561
562 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
563 {
564         return security_ops->file_ioctl(file, cmd, arg);
565 }
566
567 int security_file_mmap(struct file *file, unsigned long reqprot,
568                         unsigned long prot, unsigned long flags,
569                         unsigned long addr, unsigned long addr_only)
570 {
571         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
572 }
573
574 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
575                             unsigned long prot)
576 {
577         return security_ops->file_mprotect(vma, reqprot, prot);
578 }
579
580 int security_file_lock(struct file *file, unsigned int cmd)
581 {
582         return security_ops->file_lock(file, cmd);
583 }
584
585 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
586 {
587         return security_ops->file_fcntl(file, cmd, arg);
588 }
589
590 int security_file_set_fowner(struct file *file)
591 {
592         return security_ops->file_set_fowner(file);
593 }
594
595 int security_file_send_sigiotask(struct task_struct *tsk,
596                                   struct fown_struct *fown, int sig)
597 {
598         return security_ops->file_send_sigiotask(tsk, fown, sig);
599 }
600
601 int security_file_receive(struct file *file)
602 {
603         return security_ops->file_receive(file);
604 }
605
606 int security_dentry_open(struct file *file)
607 {
608         return security_ops->dentry_open(file);
609 }
610
611 int security_task_create(unsigned long clone_flags)
612 {
613         return security_ops->task_create(clone_flags);
614 }
615
616 int security_task_alloc(struct task_struct *p)
617 {
618         return security_ops->task_alloc_security(p);
619 }
620
621 void security_task_free(struct task_struct *p)
622 {
623         security_ops->task_free_security(p);
624 }
625
626 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
627 {
628         return security_ops->task_setuid(id0, id1, id2, flags);
629 }
630
631 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
632                                uid_t old_suid, int flags)
633 {
634         return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
635 }
636
637 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
638 {
639         return security_ops->task_setgid(id0, id1, id2, flags);
640 }
641
642 int security_task_setpgid(struct task_struct *p, pid_t pgid)
643 {
644         return security_ops->task_setpgid(p, pgid);
645 }
646
647 int security_task_getpgid(struct task_struct *p)
648 {
649         return security_ops->task_getpgid(p);
650 }
651
652 int security_task_getsid(struct task_struct *p)
653 {
654         return security_ops->task_getsid(p);
655 }
656
657 void security_task_getsecid(struct task_struct *p, u32 *secid)
658 {
659         security_ops->task_getsecid(p, secid);
660 }
661 EXPORT_SYMBOL(security_task_getsecid);
662
663 int security_task_setgroups(struct group_info *group_info)
664 {
665         return security_ops->task_setgroups(group_info);
666 }
667
668 int security_task_setnice(struct task_struct *p, int nice)
669 {
670         return security_ops->task_setnice(p, nice);
671 }
672
673 int security_task_setioprio(struct task_struct *p, int ioprio)
674 {
675         return security_ops->task_setioprio(p, ioprio);
676 }
677
678 int security_task_getioprio(struct task_struct *p)
679 {
680         return security_ops->task_getioprio(p);
681 }
682
683 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
684 {
685         return security_ops->task_setrlimit(resource, new_rlim);
686 }
687
688 int security_task_setscheduler(struct task_struct *p,
689                                 int policy, struct sched_param *lp)
690 {
691         return security_ops->task_setscheduler(p, policy, lp);
692 }
693
694 int security_task_getscheduler(struct task_struct *p)
695 {
696         return security_ops->task_getscheduler(p);
697 }
698
699 int security_task_movememory(struct task_struct *p)
700 {
701         return security_ops->task_movememory(p);
702 }
703
704 int security_task_kill(struct task_struct *p, struct siginfo *info,
705                         int sig, u32 secid)
706 {
707         return security_ops->task_kill(p, info, sig, secid);
708 }
709
710 int security_task_wait(struct task_struct *p)
711 {
712         return security_ops->task_wait(p);
713 }
714
715 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
716                          unsigned long arg4, unsigned long arg5)
717 {
718         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
719 }
720
721 void security_task_reparent_to_init(struct task_struct *p)
722 {
723         security_ops->task_reparent_to_init(p);
724 }
725
726 void security_task_to_inode(struct task_struct *p, struct inode *inode)
727 {
728         security_ops->task_to_inode(p, inode);
729 }
730
731 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
732 {
733         return security_ops->ipc_permission(ipcp, flag);
734 }
735
736 int security_msg_msg_alloc(struct msg_msg *msg)
737 {
738         return security_ops->msg_msg_alloc_security(msg);
739 }
740
741 void security_msg_msg_free(struct msg_msg *msg)
742 {
743         security_ops->msg_msg_free_security(msg);
744 }
745
746 int security_msg_queue_alloc(struct msg_queue *msq)
747 {
748         return security_ops->msg_queue_alloc_security(msq);
749 }
750
751 void security_msg_queue_free(struct msg_queue *msq)
752 {
753         security_ops->msg_queue_free_security(msq);
754 }
755
756 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
757 {
758         return security_ops->msg_queue_associate(msq, msqflg);
759 }
760
761 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
762 {
763         return security_ops->msg_queue_msgctl(msq, cmd);
764 }
765
766 int security_msg_queue_msgsnd(struct msg_queue *msq,
767                                struct msg_msg *msg, int msqflg)
768 {
769         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
770 }
771
772 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
773                                struct task_struct *target, long type, int mode)
774 {
775         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
776 }
777
778 int security_shm_alloc(struct shmid_kernel *shp)
779 {
780         return security_ops->shm_alloc_security(shp);
781 }
782
783 void security_shm_free(struct shmid_kernel *shp)
784 {
785         security_ops->shm_free_security(shp);
786 }
787
788 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
789 {
790         return security_ops->shm_associate(shp, shmflg);
791 }
792
793 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
794 {
795         return security_ops->shm_shmctl(shp, cmd);
796 }
797
798 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
799 {
800         return security_ops->shm_shmat(shp, shmaddr, shmflg);
801 }
802
803 int security_sem_alloc(struct sem_array *sma)
804 {
805         return security_ops->sem_alloc_security(sma);
806 }
807
808 void security_sem_free(struct sem_array *sma)
809 {
810         security_ops->sem_free_security(sma);
811 }
812
813 int security_sem_associate(struct sem_array *sma, int semflg)
814 {
815         return security_ops->sem_associate(sma, semflg);
816 }
817
818 int security_sem_semctl(struct sem_array *sma, int cmd)
819 {
820         return security_ops->sem_semctl(sma, cmd);
821 }
822
823 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
824                         unsigned nsops, int alter)
825 {
826         return security_ops->sem_semop(sma, sops, nsops, alter);
827 }
828
829 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
830 {
831         if (unlikely(inode && IS_PRIVATE(inode)))
832                 return;
833         security_ops->d_instantiate(dentry, inode);
834 }
835 EXPORT_SYMBOL(security_d_instantiate);
836
837 int security_getprocattr(struct task_struct *p, char *name, char **value)
838 {
839         return security_ops->getprocattr(p, name, value);
840 }
841
842 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
843 {
844         return security_ops->setprocattr(p, name, value, size);
845 }
846
847 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
848 {
849         return security_ops->netlink_send(sk, skb);
850 }
851 EXPORT_SYMBOL(security_netlink_send);
852
853 int security_netlink_recv(struct sk_buff *skb, int cap)
854 {
855         return security_ops->netlink_recv(skb, cap);
856 }
857 EXPORT_SYMBOL(security_netlink_recv);
858
859 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
860 {
861         return security_ops->secid_to_secctx(secid, secdata, seclen);
862 }
863 EXPORT_SYMBOL(security_secid_to_secctx);
864
865 void security_release_secctx(char *secdata, u32 seclen)
866 {
867         return security_ops->release_secctx(secdata, seclen);
868 }
869 EXPORT_SYMBOL(security_release_secctx);
870
871 #ifdef CONFIG_SECURITY_NETWORK
872
873 int security_unix_stream_connect(struct socket *sock, struct socket *other,
874                                  struct sock *newsk)
875 {
876         return security_ops->unix_stream_connect(sock, other, newsk);
877 }
878 EXPORT_SYMBOL(security_unix_stream_connect);
879
880 int security_unix_may_send(struct socket *sock,  struct socket *other)
881 {
882         return security_ops->unix_may_send(sock, other);
883 }
884 EXPORT_SYMBOL(security_unix_may_send);
885
886 int security_socket_create(int family, int type, int protocol, int kern)
887 {
888         return security_ops->socket_create(family, type, protocol, kern);
889 }
890
891 int security_socket_post_create(struct socket *sock, int family,
892                                 int type, int protocol, int kern)
893 {
894         return security_ops->socket_post_create(sock, family, type,
895                                                 protocol, kern);
896 }
897
898 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
899 {
900         return security_ops->socket_bind(sock, address, addrlen);
901 }
902
903 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
904 {
905         return security_ops->socket_connect(sock, address, addrlen);
906 }
907
908 int security_socket_listen(struct socket *sock, int backlog)
909 {
910         return security_ops->socket_listen(sock, backlog);
911 }
912
913 int security_socket_accept(struct socket *sock, struct socket *newsock)
914 {
915         return security_ops->socket_accept(sock, newsock);
916 }
917
918 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
919 {
920         security_ops->socket_post_accept(sock, newsock);
921 }
922
923 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
924 {
925         return security_ops->socket_sendmsg(sock, msg, size);
926 }
927
928 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
929                             int size, int flags)
930 {
931         return security_ops->socket_recvmsg(sock, msg, size, flags);
932 }
933
934 int security_socket_getsockname(struct socket *sock)
935 {
936         return security_ops->socket_getsockname(sock);
937 }
938
939 int security_socket_getpeername(struct socket *sock)
940 {
941         return security_ops->socket_getpeername(sock);
942 }
943
944 int security_socket_getsockopt(struct socket *sock, int level, int optname)
945 {
946         return security_ops->socket_getsockopt(sock, level, optname);
947 }
948
949 int security_socket_setsockopt(struct socket *sock, int level, int optname)
950 {
951         return security_ops->socket_setsockopt(sock, level, optname);
952 }
953
954 int security_socket_shutdown(struct socket *sock, int how)
955 {
956         return security_ops->socket_shutdown(sock, how);
957 }
958
959 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
960 {
961         return security_ops->socket_sock_rcv_skb(sk, skb);
962 }
963 EXPORT_SYMBOL(security_sock_rcv_skb);
964
965 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
966                                       int __user *optlen, unsigned len)
967 {
968         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
969 }
970
971 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
972 {
973         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
974 }
975 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
976
977 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
978 {
979         return security_ops->sk_alloc_security(sk, family, priority);
980 }
981
982 void security_sk_free(struct sock *sk)
983 {
984         return security_ops->sk_free_security(sk);
985 }
986
987 void security_sk_clone(const struct sock *sk, struct sock *newsk)
988 {
989         return security_ops->sk_clone_security(sk, newsk);
990 }
991
992 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
993 {
994         security_ops->sk_getsecid(sk, &fl->secid);
995 }
996 EXPORT_SYMBOL(security_sk_classify_flow);
997
998 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
999 {
1000         security_ops->req_classify_flow(req, fl);
1001 }
1002 EXPORT_SYMBOL(security_req_classify_flow);
1003
1004 void security_sock_graft(struct sock *sk, struct socket *parent)
1005 {
1006         security_ops->sock_graft(sk, parent);
1007 }
1008 EXPORT_SYMBOL(security_sock_graft);
1009
1010 int security_inet_conn_request(struct sock *sk,
1011                         struct sk_buff *skb, struct request_sock *req)
1012 {
1013         return security_ops->inet_conn_request(sk, skb, req);
1014 }
1015 EXPORT_SYMBOL(security_inet_conn_request);
1016
1017 void security_inet_csk_clone(struct sock *newsk,
1018                         const struct request_sock *req)
1019 {
1020         security_ops->inet_csk_clone(newsk, req);
1021 }
1022
1023 void security_inet_conn_established(struct sock *sk,
1024                         struct sk_buff *skb)
1025 {
1026         security_ops->inet_conn_established(sk, skb);
1027 }
1028
1029 #endif  /* CONFIG_SECURITY_NETWORK */
1030
1031 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1032
1033 int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
1034 {
1035         return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
1036 }
1037 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1038
1039 int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
1040 {
1041         return security_ops->xfrm_policy_clone_security(old, new);
1042 }
1043
1044 void security_xfrm_policy_free(struct xfrm_policy *xp)
1045 {
1046         security_ops->xfrm_policy_free_security(xp);
1047 }
1048 EXPORT_SYMBOL(security_xfrm_policy_free);
1049
1050 int security_xfrm_policy_delete(struct xfrm_policy *xp)
1051 {
1052         return security_ops->xfrm_policy_delete_security(xp);
1053 }
1054
1055 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1056 {
1057         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1058 }
1059 EXPORT_SYMBOL(security_xfrm_state_alloc);
1060
1061 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1062                                       struct xfrm_sec_ctx *polsec, u32 secid)
1063 {
1064         if (!polsec)
1065                 return 0;
1066         /*
1067          * We want the context to be taken from secid which is usually
1068          * from the sock.
1069          */
1070         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1071 }
1072
1073 int security_xfrm_state_delete(struct xfrm_state *x)
1074 {
1075         return security_ops->xfrm_state_delete_security(x);
1076 }
1077 EXPORT_SYMBOL(security_xfrm_state_delete);
1078
1079 void security_xfrm_state_free(struct xfrm_state *x)
1080 {
1081         security_ops->xfrm_state_free_security(x);
1082 }
1083
1084 int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1085 {
1086         return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1087 }
1088
1089 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1090                                        struct xfrm_policy *xp, struct flowi *fl)
1091 {
1092         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1093 }
1094
1095 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1096 {
1097         return security_ops->xfrm_decode_session(skb, secid, 1);
1098 }
1099
1100 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1101 {
1102         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1103
1104         BUG_ON(rc);
1105 }
1106 EXPORT_SYMBOL(security_skb_classify_flow);
1107
1108 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1109
1110 #ifdef CONFIG_KEYS
1111
1112 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1113 {
1114         return security_ops->key_alloc(key, tsk, flags);
1115 }
1116
1117 void security_key_free(struct key *key)
1118 {
1119         security_ops->key_free(key);
1120 }
1121
1122 int security_key_permission(key_ref_t key_ref,
1123                             struct task_struct *context, key_perm_t perm)
1124 {
1125         return security_ops->key_permission(key_ref, context, perm);
1126 }
1127
1128 #endif  /* CONFIG_KEYS */