security: remove dead hook sb_post_pivotroot
[safe/jmp/linux-2.6] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time,
93  *      -or there is no default LSM set and the user didn't specify a
94  *       specific LSM and we're the first to ask for registration permission,
95  *      -or the passed LSM is currently loaded.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100         if (!*chosen_lsm)
101                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103                 return 0;
104
105         return 1;
106 }
107
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122         if (verify(ops)) {
123                 printk(KERN_DEBUG "%s could not verify "
124                        "security_operations structure.\n", __func__);
125                 return -EINVAL;
126         }
127
128         if (security_ops != &default_security_ops)
129                 return -EAGAIN;
130
131         security_ops = ops;
132
133         return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140         return security_ops->ptrace_access_check(child, mode);
141 }
142
143 int security_ptrace_traceme(struct task_struct *parent)
144 {
145         return security_ops->ptrace_traceme(parent);
146 }
147
148 int security_capget(struct task_struct *target,
149                      kernel_cap_t *effective,
150                      kernel_cap_t *inheritable,
151                      kernel_cap_t *permitted)
152 {
153         return security_ops->capget(target, effective, inheritable, permitted);
154 }
155
156 int security_capset(struct cred *new, const struct cred *old,
157                     const kernel_cap_t *effective,
158                     const kernel_cap_t *inheritable,
159                     const kernel_cap_t *permitted)
160 {
161         return security_ops->capset(new, old,
162                                     effective, inheritable, permitted);
163 }
164
165 int security_capable(int cap)
166 {
167         return security_ops->capable(current, current_cred(), cap,
168                                      SECURITY_CAP_AUDIT);
169 }
170
171 int security_real_capable(struct task_struct *tsk, int cap)
172 {
173         const struct cred *cred;
174         int ret;
175
176         cred = get_task_cred(tsk);
177         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178         put_cred(cred);
179         return ret;
180 }
181
182 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183 {
184         const struct cred *cred;
185         int ret;
186
187         cred = get_task_cred(tsk);
188         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189         put_cred(cred);
190         return ret;
191 }
192
193 int security_acct(struct file *file)
194 {
195         return security_ops->acct(file);
196 }
197
198 int security_sysctl(struct ctl_table *table, int op)
199 {
200         return security_ops->sysctl(table, op);
201 }
202
203 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
204 {
205         return security_ops->quotactl(cmds, type, id, sb);
206 }
207
208 int security_quota_on(struct dentry *dentry)
209 {
210         return security_ops->quota_on(dentry);
211 }
212
213 int security_syslog(int type, bool from_file)
214 {
215         return security_ops->syslog(type, from_file);
216 }
217
218 int security_settime(struct timespec *ts, struct timezone *tz)
219 {
220         return security_ops->settime(ts, tz);
221 }
222
223 int security_vm_enough_memory(long pages)
224 {
225         WARN_ON(current->mm == NULL);
226         return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
230 {
231         WARN_ON(mm == NULL);
232         return security_ops->vm_enough_memory(mm, pages);
233 }
234
235 int security_vm_enough_memory_kern(long pages)
236 {
237         /* If current->mm is a kernel thread then we will pass NULL,
238            for this specific case that is fine */
239         return security_ops->vm_enough_memory(current->mm, pages);
240 }
241
242 int security_bprm_set_creds(struct linux_binprm *bprm)
243 {
244         return security_ops->bprm_set_creds(bprm);
245 }
246
247 int security_bprm_check(struct linux_binprm *bprm)
248 {
249         int ret;
250
251         ret = security_ops->bprm_check_security(bprm);
252         if (ret)
253                 return ret;
254         return ima_bprm_check(bprm);
255 }
256
257 void security_bprm_committing_creds(struct linux_binprm *bprm)
258 {
259         security_ops->bprm_committing_creds(bprm);
260 }
261
262 void security_bprm_committed_creds(struct linux_binprm *bprm)
263 {
264         security_ops->bprm_committed_creds(bprm);
265 }
266
267 int security_bprm_secureexec(struct linux_binprm *bprm)
268 {
269         return security_ops->bprm_secureexec(bprm);
270 }
271
272 int security_sb_alloc(struct super_block *sb)
273 {
274         return security_ops->sb_alloc_security(sb);
275 }
276
277 void security_sb_free(struct super_block *sb)
278 {
279         security_ops->sb_free_security(sb);
280 }
281
282 int security_sb_copy_data(char *orig, char *copy)
283 {
284         return security_ops->sb_copy_data(orig, copy);
285 }
286 EXPORT_SYMBOL(security_sb_copy_data);
287
288 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
289 {
290         return security_ops->sb_kern_mount(sb, flags, data);
291 }
292
293 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
294 {
295         return security_ops->sb_show_options(m, sb);
296 }
297
298 int security_sb_statfs(struct dentry *dentry)
299 {
300         return security_ops->sb_statfs(dentry);
301 }
302
303 int security_sb_mount(char *dev_name, struct path *path,
304                        char *type, unsigned long flags, void *data)
305 {
306         return security_ops->sb_mount(dev_name, path, type, flags, data);
307 }
308
309 int security_sb_umount(struct vfsmount *mnt, int flags)
310 {
311         return security_ops->sb_umount(mnt, flags);
312 }
313
314 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
315 {
316         return security_ops->sb_pivotroot(old_path, new_path);
317 }
318
319 int security_sb_set_mnt_opts(struct super_block *sb,
320                                 struct security_mnt_opts *opts)
321 {
322         return security_ops->sb_set_mnt_opts(sb, opts);
323 }
324 EXPORT_SYMBOL(security_sb_set_mnt_opts);
325
326 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
327                                 struct super_block *newsb)
328 {
329         security_ops->sb_clone_mnt_opts(oldsb, newsb);
330 }
331 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
332
333 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
334 {
335         return security_ops->sb_parse_opts_str(options, opts);
336 }
337 EXPORT_SYMBOL(security_sb_parse_opts_str);
338
339 int security_inode_alloc(struct inode *inode)
340 {
341         int ret;
342
343         inode->i_security = NULL;
344         ret =  security_ops->inode_alloc_security(inode);
345         if (ret)
346                 return ret;
347         ret = ima_inode_alloc(inode);
348         if (ret)
349                 security_inode_free(inode);
350         return ret;
351 }
352
353 void security_inode_free(struct inode *inode)
354 {
355         ima_inode_free(inode);
356         security_ops->inode_free_security(inode);
357 }
358
359 int security_inode_init_security(struct inode *inode, struct inode *dir,
360                                   char **name, void **value, size_t *len)
361 {
362         if (unlikely(IS_PRIVATE(inode)))
363                 return -EOPNOTSUPP;
364         return security_ops->inode_init_security(inode, dir, name, value, len);
365 }
366 EXPORT_SYMBOL(security_inode_init_security);
367
368 #ifdef CONFIG_SECURITY_PATH
369 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
370                         unsigned int dev)
371 {
372         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
373                 return 0;
374         return security_ops->path_mknod(dir, dentry, mode, dev);
375 }
376 EXPORT_SYMBOL(security_path_mknod);
377
378 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
379 {
380         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
381                 return 0;
382         return security_ops->path_mkdir(dir, dentry, mode);
383 }
384
385 int security_path_rmdir(struct path *dir, struct dentry *dentry)
386 {
387         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
388                 return 0;
389         return security_ops->path_rmdir(dir, dentry);
390 }
391
392 int security_path_unlink(struct path *dir, struct dentry *dentry)
393 {
394         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
395                 return 0;
396         return security_ops->path_unlink(dir, dentry);
397 }
398
399 int security_path_symlink(struct path *dir, struct dentry *dentry,
400                           const char *old_name)
401 {
402         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403                 return 0;
404         return security_ops->path_symlink(dir, dentry, old_name);
405 }
406
407 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
408                        struct dentry *new_dentry)
409 {
410         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
411                 return 0;
412         return security_ops->path_link(old_dentry, new_dir, new_dentry);
413 }
414
415 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
416                          struct path *new_dir, struct dentry *new_dentry)
417 {
418         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
419                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
420                 return 0;
421         return security_ops->path_rename(old_dir, old_dentry, new_dir,
422                                          new_dentry);
423 }
424
425 int security_path_truncate(struct path *path, loff_t length,
426                            unsigned int time_attrs)
427 {
428         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
429                 return 0;
430         return security_ops->path_truncate(path, length, time_attrs);
431 }
432
433 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
434                         mode_t mode)
435 {
436         if (unlikely(IS_PRIVATE(dentry->d_inode)))
437                 return 0;
438         return security_ops->path_chmod(dentry, mnt, mode);
439 }
440
441 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
442 {
443         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
444                 return 0;
445         return security_ops->path_chown(path, uid, gid);
446 }
447
448 int security_path_chroot(struct path *path)
449 {
450         return security_ops->path_chroot(path);
451 }
452 #endif
453
454 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
455 {
456         if (unlikely(IS_PRIVATE(dir)))
457                 return 0;
458         return security_ops->inode_create(dir, dentry, mode);
459 }
460 EXPORT_SYMBOL_GPL(security_inode_create);
461
462 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
463                          struct dentry *new_dentry)
464 {
465         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
466                 return 0;
467         return security_ops->inode_link(old_dentry, dir, new_dentry);
468 }
469
470 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
471 {
472         if (unlikely(IS_PRIVATE(dentry->d_inode)))
473                 return 0;
474         return security_ops->inode_unlink(dir, dentry);
475 }
476
477 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
478                             const char *old_name)
479 {
480         if (unlikely(IS_PRIVATE(dir)))
481                 return 0;
482         return security_ops->inode_symlink(dir, dentry, old_name);
483 }
484
485 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
486 {
487         if (unlikely(IS_PRIVATE(dir)))
488                 return 0;
489         return security_ops->inode_mkdir(dir, dentry, mode);
490 }
491 EXPORT_SYMBOL_GPL(security_inode_mkdir);
492
493 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
494 {
495         if (unlikely(IS_PRIVATE(dentry->d_inode)))
496                 return 0;
497         return security_ops->inode_rmdir(dir, dentry);
498 }
499
500 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
501 {
502         if (unlikely(IS_PRIVATE(dir)))
503                 return 0;
504         return security_ops->inode_mknod(dir, dentry, mode, dev);
505 }
506
507 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
508                            struct inode *new_dir, struct dentry *new_dentry)
509 {
510         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
511             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
512                 return 0;
513         return security_ops->inode_rename(old_dir, old_dentry,
514                                            new_dir, new_dentry);
515 }
516
517 int security_inode_readlink(struct dentry *dentry)
518 {
519         if (unlikely(IS_PRIVATE(dentry->d_inode)))
520                 return 0;
521         return security_ops->inode_readlink(dentry);
522 }
523
524 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
525 {
526         if (unlikely(IS_PRIVATE(dentry->d_inode)))
527                 return 0;
528         return security_ops->inode_follow_link(dentry, nd);
529 }
530
531 int security_inode_permission(struct inode *inode, int mask)
532 {
533         if (unlikely(IS_PRIVATE(inode)))
534                 return 0;
535         return security_ops->inode_permission(inode, mask);
536 }
537
538 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
539 {
540         if (unlikely(IS_PRIVATE(dentry->d_inode)))
541                 return 0;
542         return security_ops->inode_setattr(dentry, attr);
543 }
544 EXPORT_SYMBOL_GPL(security_inode_setattr);
545
546 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
547 {
548         if (unlikely(IS_PRIVATE(dentry->d_inode)))
549                 return 0;
550         return security_ops->inode_getattr(mnt, dentry);
551 }
552
553 void security_inode_delete(struct inode *inode)
554 {
555         if (unlikely(IS_PRIVATE(inode)))
556                 return;
557         security_ops->inode_delete(inode);
558 }
559
560 int security_inode_setxattr(struct dentry *dentry, const char *name,
561                             const void *value, size_t size, int flags)
562 {
563         if (unlikely(IS_PRIVATE(dentry->d_inode)))
564                 return 0;
565         return security_ops->inode_setxattr(dentry, name, value, size, flags);
566 }
567
568 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
569                                   const void *value, size_t size, int flags)
570 {
571         if (unlikely(IS_PRIVATE(dentry->d_inode)))
572                 return;
573         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
574 }
575
576 int security_inode_getxattr(struct dentry *dentry, const char *name)
577 {
578         if (unlikely(IS_PRIVATE(dentry->d_inode)))
579                 return 0;
580         return security_ops->inode_getxattr(dentry, name);
581 }
582
583 int security_inode_listxattr(struct dentry *dentry)
584 {
585         if (unlikely(IS_PRIVATE(dentry->d_inode)))
586                 return 0;
587         return security_ops->inode_listxattr(dentry);
588 }
589
590 int security_inode_removexattr(struct dentry *dentry, const char *name)
591 {
592         if (unlikely(IS_PRIVATE(dentry->d_inode)))
593                 return 0;
594         return security_ops->inode_removexattr(dentry, name);
595 }
596
597 int security_inode_need_killpriv(struct dentry *dentry)
598 {
599         return security_ops->inode_need_killpriv(dentry);
600 }
601
602 int security_inode_killpriv(struct dentry *dentry)
603 {
604         return security_ops->inode_killpriv(dentry);
605 }
606
607 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
608 {
609         if (unlikely(IS_PRIVATE(inode)))
610                 return -EOPNOTSUPP;
611         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
612 }
613
614 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
615 {
616         if (unlikely(IS_PRIVATE(inode)))
617                 return -EOPNOTSUPP;
618         return security_ops->inode_setsecurity(inode, name, value, size, flags);
619 }
620
621 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
622 {
623         if (unlikely(IS_PRIVATE(inode)))
624                 return 0;
625         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
626 }
627
628 void security_inode_getsecid(const struct inode *inode, u32 *secid)
629 {
630         security_ops->inode_getsecid(inode, secid);
631 }
632
633 int security_file_permission(struct file *file, int mask)
634 {
635         return security_ops->file_permission(file, mask);
636 }
637
638 int security_file_alloc(struct file *file)
639 {
640         return security_ops->file_alloc_security(file);
641 }
642
643 void security_file_free(struct file *file)
644 {
645         security_ops->file_free_security(file);
646 }
647
648 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
649 {
650         return security_ops->file_ioctl(file, cmd, arg);
651 }
652
653 int security_file_mmap(struct file *file, unsigned long reqprot,
654                         unsigned long prot, unsigned long flags,
655                         unsigned long addr, unsigned long addr_only)
656 {
657         int ret;
658
659         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
660         if (ret)
661                 return ret;
662         return ima_file_mmap(file, prot);
663 }
664
665 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
666                             unsigned long prot)
667 {
668         return security_ops->file_mprotect(vma, reqprot, prot);
669 }
670
671 int security_file_lock(struct file *file, unsigned int cmd)
672 {
673         return security_ops->file_lock(file, cmd);
674 }
675
676 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
677 {
678         return security_ops->file_fcntl(file, cmd, arg);
679 }
680
681 int security_file_set_fowner(struct file *file)
682 {
683         return security_ops->file_set_fowner(file);
684 }
685
686 int security_file_send_sigiotask(struct task_struct *tsk,
687                                   struct fown_struct *fown, int sig)
688 {
689         return security_ops->file_send_sigiotask(tsk, fown, sig);
690 }
691
692 int security_file_receive(struct file *file)
693 {
694         return security_ops->file_receive(file);
695 }
696
697 int security_dentry_open(struct file *file, const struct cred *cred)
698 {
699         return security_ops->dentry_open(file, cred);
700 }
701
702 int security_task_create(unsigned long clone_flags)
703 {
704         return security_ops->task_create(clone_flags);
705 }
706
707 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
708 {
709         return security_ops->cred_alloc_blank(cred, gfp);
710 }
711
712 void security_cred_free(struct cred *cred)
713 {
714         security_ops->cred_free(cred);
715 }
716
717 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
718 {
719         return security_ops->cred_prepare(new, old, gfp);
720 }
721
722 void security_commit_creds(struct cred *new, const struct cred *old)
723 {
724         security_ops->cred_commit(new, old);
725 }
726
727 void security_transfer_creds(struct cred *new, const struct cred *old)
728 {
729         security_ops->cred_transfer(new, old);
730 }
731
732 int security_kernel_act_as(struct cred *new, u32 secid)
733 {
734         return security_ops->kernel_act_as(new, secid);
735 }
736
737 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
738 {
739         return security_ops->kernel_create_files_as(new, inode);
740 }
741
742 int security_kernel_module_request(char *kmod_name)
743 {
744         return security_ops->kernel_module_request(kmod_name);
745 }
746
747 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
748 {
749         return security_ops->task_setuid(id0, id1, id2, flags);
750 }
751
752 int security_task_fix_setuid(struct cred *new, const struct cred *old,
753                              int flags)
754 {
755         return security_ops->task_fix_setuid(new, old, flags);
756 }
757
758 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
759 {
760         return security_ops->task_setgid(id0, id1, id2, flags);
761 }
762
763 int security_task_setpgid(struct task_struct *p, pid_t pgid)
764 {
765         return security_ops->task_setpgid(p, pgid);
766 }
767
768 int security_task_getpgid(struct task_struct *p)
769 {
770         return security_ops->task_getpgid(p);
771 }
772
773 int security_task_getsid(struct task_struct *p)
774 {
775         return security_ops->task_getsid(p);
776 }
777
778 void security_task_getsecid(struct task_struct *p, u32 *secid)
779 {
780         security_ops->task_getsecid(p, secid);
781 }
782 EXPORT_SYMBOL(security_task_getsecid);
783
784 int security_task_setgroups(struct group_info *group_info)
785 {
786         return security_ops->task_setgroups(group_info);
787 }
788
789 int security_task_setnice(struct task_struct *p, int nice)
790 {
791         return security_ops->task_setnice(p, nice);
792 }
793
794 int security_task_setioprio(struct task_struct *p, int ioprio)
795 {
796         return security_ops->task_setioprio(p, ioprio);
797 }
798
799 int security_task_getioprio(struct task_struct *p)
800 {
801         return security_ops->task_getioprio(p);
802 }
803
804 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
805 {
806         return security_ops->task_setrlimit(resource, new_rlim);
807 }
808
809 int security_task_setscheduler(struct task_struct *p,
810                                 int policy, struct sched_param *lp)
811 {
812         return security_ops->task_setscheduler(p, policy, lp);
813 }
814
815 int security_task_getscheduler(struct task_struct *p)
816 {
817         return security_ops->task_getscheduler(p);
818 }
819
820 int security_task_movememory(struct task_struct *p)
821 {
822         return security_ops->task_movememory(p);
823 }
824
825 int security_task_kill(struct task_struct *p, struct siginfo *info,
826                         int sig, u32 secid)
827 {
828         return security_ops->task_kill(p, info, sig, secid);
829 }
830
831 int security_task_wait(struct task_struct *p)
832 {
833         return security_ops->task_wait(p);
834 }
835
836 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
837                          unsigned long arg4, unsigned long arg5)
838 {
839         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
840 }
841
842 void security_task_to_inode(struct task_struct *p, struct inode *inode)
843 {
844         security_ops->task_to_inode(p, inode);
845 }
846
847 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
848 {
849         return security_ops->ipc_permission(ipcp, flag);
850 }
851
852 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
853 {
854         security_ops->ipc_getsecid(ipcp, secid);
855 }
856
857 int security_msg_msg_alloc(struct msg_msg *msg)
858 {
859         return security_ops->msg_msg_alloc_security(msg);
860 }
861
862 void security_msg_msg_free(struct msg_msg *msg)
863 {
864         security_ops->msg_msg_free_security(msg);
865 }
866
867 int security_msg_queue_alloc(struct msg_queue *msq)
868 {
869         return security_ops->msg_queue_alloc_security(msq);
870 }
871
872 void security_msg_queue_free(struct msg_queue *msq)
873 {
874         security_ops->msg_queue_free_security(msq);
875 }
876
877 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
878 {
879         return security_ops->msg_queue_associate(msq, msqflg);
880 }
881
882 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
883 {
884         return security_ops->msg_queue_msgctl(msq, cmd);
885 }
886
887 int security_msg_queue_msgsnd(struct msg_queue *msq,
888                                struct msg_msg *msg, int msqflg)
889 {
890         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
891 }
892
893 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
894                                struct task_struct *target, long type, int mode)
895 {
896         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
897 }
898
899 int security_shm_alloc(struct shmid_kernel *shp)
900 {
901         return security_ops->shm_alloc_security(shp);
902 }
903
904 void security_shm_free(struct shmid_kernel *shp)
905 {
906         security_ops->shm_free_security(shp);
907 }
908
909 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
910 {
911         return security_ops->shm_associate(shp, shmflg);
912 }
913
914 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
915 {
916         return security_ops->shm_shmctl(shp, cmd);
917 }
918
919 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
920 {
921         return security_ops->shm_shmat(shp, shmaddr, shmflg);
922 }
923
924 int security_sem_alloc(struct sem_array *sma)
925 {
926         return security_ops->sem_alloc_security(sma);
927 }
928
929 void security_sem_free(struct sem_array *sma)
930 {
931         security_ops->sem_free_security(sma);
932 }
933
934 int security_sem_associate(struct sem_array *sma, int semflg)
935 {
936         return security_ops->sem_associate(sma, semflg);
937 }
938
939 int security_sem_semctl(struct sem_array *sma, int cmd)
940 {
941         return security_ops->sem_semctl(sma, cmd);
942 }
943
944 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
945                         unsigned nsops, int alter)
946 {
947         return security_ops->sem_semop(sma, sops, nsops, alter);
948 }
949
950 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
951 {
952         if (unlikely(inode && IS_PRIVATE(inode)))
953                 return;
954         security_ops->d_instantiate(dentry, inode);
955 }
956 EXPORT_SYMBOL(security_d_instantiate);
957
958 int security_getprocattr(struct task_struct *p, char *name, char **value)
959 {
960         return security_ops->getprocattr(p, name, value);
961 }
962
963 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
964 {
965         return security_ops->setprocattr(p, name, value, size);
966 }
967
968 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
969 {
970         return security_ops->netlink_send(sk, skb);
971 }
972
973 int security_netlink_recv(struct sk_buff *skb, int cap)
974 {
975         return security_ops->netlink_recv(skb, cap);
976 }
977 EXPORT_SYMBOL(security_netlink_recv);
978
979 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
980 {
981         return security_ops->secid_to_secctx(secid, secdata, seclen);
982 }
983 EXPORT_SYMBOL(security_secid_to_secctx);
984
985 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
986 {
987         return security_ops->secctx_to_secid(secdata, seclen, secid);
988 }
989 EXPORT_SYMBOL(security_secctx_to_secid);
990
991 void security_release_secctx(char *secdata, u32 seclen)
992 {
993         security_ops->release_secctx(secdata, seclen);
994 }
995 EXPORT_SYMBOL(security_release_secctx);
996
997 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
998 {
999         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1000 }
1001 EXPORT_SYMBOL(security_inode_notifysecctx);
1002
1003 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1004 {
1005         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1006 }
1007 EXPORT_SYMBOL(security_inode_setsecctx);
1008
1009 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1010 {
1011         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1012 }
1013 EXPORT_SYMBOL(security_inode_getsecctx);
1014
1015 #ifdef CONFIG_SECURITY_NETWORK
1016
1017 int security_unix_stream_connect(struct socket *sock, struct socket *other,
1018                                  struct sock *newsk)
1019 {
1020         return security_ops->unix_stream_connect(sock, other, newsk);
1021 }
1022 EXPORT_SYMBOL(security_unix_stream_connect);
1023
1024 int security_unix_may_send(struct socket *sock,  struct socket *other)
1025 {
1026         return security_ops->unix_may_send(sock, other);
1027 }
1028 EXPORT_SYMBOL(security_unix_may_send);
1029
1030 int security_socket_create(int family, int type, int protocol, int kern)
1031 {
1032         return security_ops->socket_create(family, type, protocol, kern);
1033 }
1034
1035 int security_socket_post_create(struct socket *sock, int family,
1036                                 int type, int protocol, int kern)
1037 {
1038         return security_ops->socket_post_create(sock, family, type,
1039                                                 protocol, kern);
1040 }
1041
1042 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1043 {
1044         return security_ops->socket_bind(sock, address, addrlen);
1045 }
1046
1047 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1048 {
1049         return security_ops->socket_connect(sock, address, addrlen);
1050 }
1051
1052 int security_socket_listen(struct socket *sock, int backlog)
1053 {
1054         return security_ops->socket_listen(sock, backlog);
1055 }
1056
1057 int security_socket_accept(struct socket *sock, struct socket *newsock)
1058 {
1059         return security_ops->socket_accept(sock, newsock);
1060 }
1061
1062 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1063 {
1064         return security_ops->socket_sendmsg(sock, msg, size);
1065 }
1066
1067 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1068                             int size, int flags)
1069 {
1070         return security_ops->socket_recvmsg(sock, msg, size, flags);
1071 }
1072
1073 int security_socket_getsockname(struct socket *sock)
1074 {
1075         return security_ops->socket_getsockname(sock);
1076 }
1077
1078 int security_socket_getpeername(struct socket *sock)
1079 {
1080         return security_ops->socket_getpeername(sock);
1081 }
1082
1083 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1084 {
1085         return security_ops->socket_getsockopt(sock, level, optname);
1086 }
1087
1088 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1089 {
1090         return security_ops->socket_setsockopt(sock, level, optname);
1091 }
1092
1093 int security_socket_shutdown(struct socket *sock, int how)
1094 {
1095         return security_ops->socket_shutdown(sock, how);
1096 }
1097
1098 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1099 {
1100         return security_ops->socket_sock_rcv_skb(sk, skb);
1101 }
1102 EXPORT_SYMBOL(security_sock_rcv_skb);
1103
1104 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1105                                       int __user *optlen, unsigned len)
1106 {
1107         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1108 }
1109
1110 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1111 {
1112         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1113 }
1114 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1115
1116 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1117 {
1118         return security_ops->sk_alloc_security(sk, family, priority);
1119 }
1120
1121 void security_sk_free(struct sock *sk)
1122 {
1123         security_ops->sk_free_security(sk);
1124 }
1125
1126 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1127 {
1128         security_ops->sk_clone_security(sk, newsk);
1129 }
1130
1131 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1132 {
1133         security_ops->sk_getsecid(sk, &fl->secid);
1134 }
1135 EXPORT_SYMBOL(security_sk_classify_flow);
1136
1137 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1138 {
1139         security_ops->req_classify_flow(req, fl);
1140 }
1141 EXPORT_SYMBOL(security_req_classify_flow);
1142
1143 void security_sock_graft(struct sock *sk, struct socket *parent)
1144 {
1145         security_ops->sock_graft(sk, parent);
1146 }
1147 EXPORT_SYMBOL(security_sock_graft);
1148
1149 int security_inet_conn_request(struct sock *sk,
1150                         struct sk_buff *skb, struct request_sock *req)
1151 {
1152         return security_ops->inet_conn_request(sk, skb, req);
1153 }
1154 EXPORT_SYMBOL(security_inet_conn_request);
1155
1156 void security_inet_csk_clone(struct sock *newsk,
1157                         const struct request_sock *req)
1158 {
1159         security_ops->inet_csk_clone(newsk, req);
1160 }
1161
1162 void security_inet_conn_established(struct sock *sk,
1163                         struct sk_buff *skb)
1164 {
1165         security_ops->inet_conn_established(sk, skb);
1166 }
1167
1168 int security_tun_dev_create(void)
1169 {
1170         return security_ops->tun_dev_create();
1171 }
1172 EXPORT_SYMBOL(security_tun_dev_create);
1173
1174 void security_tun_dev_post_create(struct sock *sk)
1175 {
1176         return security_ops->tun_dev_post_create(sk);
1177 }
1178 EXPORT_SYMBOL(security_tun_dev_post_create);
1179
1180 int security_tun_dev_attach(struct sock *sk)
1181 {
1182         return security_ops->tun_dev_attach(sk);
1183 }
1184 EXPORT_SYMBOL(security_tun_dev_attach);
1185
1186 #endif  /* CONFIG_SECURITY_NETWORK */
1187
1188 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1189
1190 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1191 {
1192         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1193 }
1194 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1195
1196 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1197                               struct xfrm_sec_ctx **new_ctxp)
1198 {
1199         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1200 }
1201
1202 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1203 {
1204         security_ops->xfrm_policy_free_security(ctx);
1205 }
1206 EXPORT_SYMBOL(security_xfrm_policy_free);
1207
1208 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1209 {
1210         return security_ops->xfrm_policy_delete_security(ctx);
1211 }
1212
1213 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1214 {
1215         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1216 }
1217 EXPORT_SYMBOL(security_xfrm_state_alloc);
1218
1219 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1220                                       struct xfrm_sec_ctx *polsec, u32 secid)
1221 {
1222         if (!polsec)
1223                 return 0;
1224         /*
1225          * We want the context to be taken from secid which is usually
1226          * from the sock.
1227          */
1228         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1229 }
1230
1231 int security_xfrm_state_delete(struct xfrm_state *x)
1232 {
1233         return security_ops->xfrm_state_delete_security(x);
1234 }
1235 EXPORT_SYMBOL(security_xfrm_state_delete);
1236
1237 void security_xfrm_state_free(struct xfrm_state *x)
1238 {
1239         security_ops->xfrm_state_free_security(x);
1240 }
1241
1242 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1243 {
1244         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1245 }
1246
1247 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1248                                        struct xfrm_policy *xp, struct flowi *fl)
1249 {
1250         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1251 }
1252
1253 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1254 {
1255         return security_ops->xfrm_decode_session(skb, secid, 1);
1256 }
1257
1258 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1259 {
1260         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1261
1262         BUG_ON(rc);
1263 }
1264 EXPORT_SYMBOL(security_skb_classify_flow);
1265
1266 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1267
1268 #ifdef CONFIG_KEYS
1269
1270 int security_key_alloc(struct key *key, const struct cred *cred,
1271                        unsigned long flags)
1272 {
1273         return security_ops->key_alloc(key, cred, flags);
1274 }
1275
1276 void security_key_free(struct key *key)
1277 {
1278         security_ops->key_free(key);
1279 }
1280
1281 int security_key_permission(key_ref_t key_ref,
1282                             const struct cred *cred, key_perm_t perm)
1283 {
1284         return security_ops->key_permission(key_ref, cred, perm);
1285 }
1286
1287 int security_key_getsecurity(struct key *key, char **_buffer)
1288 {
1289         return security_ops->key_getsecurity(key, _buffer);
1290 }
1291
1292 int security_key_session_to_parent(const struct cred *cred,
1293                                    const struct cred *parent_cred,
1294                                    struct key *key)
1295 {
1296         return security_ops->key_session_to_parent(cred, parent_cred, key);
1297 }
1298
1299 #endif  /* CONFIG_KEYS */
1300
1301 #ifdef CONFIG_AUDIT
1302
1303 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1304 {
1305         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1306 }
1307
1308 int security_audit_rule_known(struct audit_krule *krule)
1309 {
1310         return security_ops->audit_rule_known(krule);
1311 }
1312
1313 void security_audit_rule_free(void *lsmrule)
1314 {
1315         security_ops->audit_rule_free(lsmrule);
1316 }
1317
1318 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1319                               struct audit_context *actx)
1320 {
1321         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1322 }
1323
1324 #endif /* CONFIG_AUDIT */