f88119cb2bc2b6b0bbb8d10ffdb1434691958b4a
[safe/jmp/linux-2.6] / security / commoncap.c
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *      This program is free software; you can redistribute it and/or modify
4  *      it under the terms of the GNU General Public License as published by
5  *      the Free Software Foundation; either version 2 of the License, or
6  *      (at your option) any later version.
7  *
8  */
9
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
27 #include <linux/prctl.h>
28 #include <linux/securebits.h>
29
30 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
31 {
32         NETLINK_CB(skb).eff_cap = current->cap_effective;
33         return 0;
34 }
35
36 int cap_netlink_recv(struct sk_buff *skb, int cap)
37 {
38         if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
39                 return -EPERM;
40         return 0;
41 }
42
43 EXPORT_SYMBOL(cap_netlink_recv);
44
45 /*
46  * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
47  * function.  That is, it has the reverse semantics: cap_capable()
48  * returns 0 when a task has a capability, but the kernel's capable()
49  * returns 1 for this case.
50  */
51 int cap_capable (struct task_struct *tsk, int cap)
52 {
53         /* Derived from include/linux/sched.h:capable. */
54         if (cap_raised(tsk->cap_effective, cap))
55                 return 0;
56         return -EPERM;
57 }
58
59 int cap_settime(struct timespec *ts, struct timezone *tz)
60 {
61         if (!capable(CAP_SYS_TIME))
62                 return -EPERM;
63         return 0;
64 }
65
66 int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
67 {
68         /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
69         if (cap_issubset(child->cap_permitted, current->cap_permitted))
70                 return 0;
71         if (capable(CAP_SYS_PTRACE))
72                 return 0;
73         return -EPERM;
74 }
75
76 int cap_ptrace_traceme(struct task_struct *parent)
77 {
78         /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
79         if (cap_issubset(current->cap_permitted, parent->cap_permitted))
80                 return 0;
81         if (has_capability(parent, CAP_SYS_PTRACE))
82                 return 0;
83         return -EPERM;
84 }
85
86 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
87                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
88 {
89         /* Derived from kernel/capability.c:sys_capget. */
90         *effective = target->cap_effective;
91         *inheritable = target->cap_inheritable;
92         *permitted = target->cap_permitted;
93         return 0;
94 }
95
96 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
97
98 static inline int cap_block_setpcap(struct task_struct *target)
99 {
100         /*
101          * No support for remote process capability manipulation with
102          * filesystem capability support.
103          */
104         return (target != current);
105 }
106
107 static inline int cap_inh_is_capped(void)
108 {
109         /*
110          * Return 1 if changes to the inheritable set are limited
111          * to the old permitted set. That is, if the current task
112          * does *not* possess the CAP_SETPCAP capability.
113          */
114         return (cap_capable(current, CAP_SETPCAP) != 0);
115 }
116
117 static inline int cap_limit_ptraced_target(void) { return 1; }
118
119 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
120
121 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
122 static inline int cap_inh_is_capped(void) { return 1; }
123 static inline int cap_limit_ptraced_target(void)
124 {
125         return !capable(CAP_SETPCAP);
126 }
127
128 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
129
130 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
131                       kernel_cap_t *inheritable, kernel_cap_t *permitted)
132 {
133         if (cap_block_setpcap(target)) {
134                 return -EPERM;
135         }
136         if (cap_inh_is_capped()
137             && !cap_issubset(*inheritable,
138                              cap_combine(target->cap_inheritable,
139                                          current->cap_permitted))) {
140                 /* incapable of using this inheritable set */
141                 return -EPERM;
142         }
143         if (!cap_issubset(*inheritable,
144                            cap_combine(target->cap_inheritable,
145                                        current->cap_bset))) {
146                 /* no new pI capabilities outside bounding set */
147                 return -EPERM;
148         }
149
150         /* verify restrictions on target's new Permitted set */
151         if (!cap_issubset (*permitted,
152                            cap_combine (target->cap_permitted,
153                                         current->cap_permitted))) {
154                 return -EPERM;
155         }
156
157         /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
158         if (!cap_issubset (*effective, *permitted)) {
159                 return -EPERM;
160         }
161
162         return 0;
163 }
164
165 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
166                      kernel_cap_t *inheritable, kernel_cap_t *permitted)
167 {
168         target->cap_effective = *effective;
169         target->cap_inheritable = *inheritable;
170         target->cap_permitted = *permitted;
171 }
172
173 static inline void bprm_clear_caps(struct linux_binprm *bprm)
174 {
175         cap_clear(bprm->cap_post_exec_permitted);
176         bprm->cap_effective = false;
177 }
178
179 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
180
181 int cap_inode_need_killpriv(struct dentry *dentry)
182 {
183         struct inode *inode = dentry->d_inode;
184         int error;
185
186         if (!inode->i_op || !inode->i_op->getxattr)
187                return 0;
188
189         error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
190         if (error <= 0)
191                 return 0;
192         return 1;
193 }
194
195 int cap_inode_killpriv(struct dentry *dentry)
196 {
197         struct inode *inode = dentry->d_inode;
198
199         if (!inode->i_op || !inode->i_op->removexattr)
200                return 0;
201
202         return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
203 }
204
205 static inline int cap_from_disk(struct vfs_cap_data *caps,
206                                 struct linux_binprm *bprm, unsigned size)
207 {
208         __u32 magic_etc;
209         unsigned tocopy, i;
210         int ret;
211
212         if (size < sizeof(magic_etc))
213                 return -EINVAL;
214
215         magic_etc = le32_to_cpu(caps->magic_etc);
216
217         switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
218         case VFS_CAP_REVISION_1:
219                 if (size != XATTR_CAPS_SZ_1)
220                         return -EINVAL;
221                 tocopy = VFS_CAP_U32_1;
222                 break;
223         case VFS_CAP_REVISION_2:
224                 if (size != XATTR_CAPS_SZ_2)
225                         return -EINVAL;
226                 tocopy = VFS_CAP_U32_2;
227                 break;
228         default:
229                 return -EINVAL;
230         }
231
232         if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
233                 bprm->cap_effective = true;
234         } else {
235                 bprm->cap_effective = false;
236         }
237
238         ret = 0;
239
240         CAP_FOR_EACH_U32(i) {
241                 __u32 value_cpu;
242
243                 if (i >= tocopy) {
244                         /*
245                          * Legacy capability sets have no upper bits
246                          */
247                         bprm->cap_post_exec_permitted.cap[i] = 0;
248                         continue;
249                 }
250                 /*
251                  * pP' = (X & fP) | (pI & fI)
252                  */
253                 value_cpu = le32_to_cpu(caps->data[i].permitted);
254                 bprm->cap_post_exec_permitted.cap[i] =
255                         (current->cap_bset.cap[i] & value_cpu) |
256                         (current->cap_inheritable.cap[i] &
257                                 le32_to_cpu(caps->data[i].inheritable));
258                 if (value_cpu & ~bprm->cap_post_exec_permitted.cap[i]) {
259                         /*
260                          * insufficient to execute correctly
261                          */
262                         ret = -EPERM;
263                 }
264         }
265
266         /*
267          * For legacy apps, with no internal support for recognizing they
268          * do not have enough capabilities, we return an error if they are
269          * missing some "forced" (aka file-permitted) capabilities.
270          */
271         return bprm->cap_effective ? ret : 0;
272 }
273
274 /* Locate any VFS capabilities: */
275 static int get_file_caps(struct linux_binprm *bprm)
276 {
277         struct dentry *dentry;
278         int rc = 0;
279         struct vfs_cap_data vcaps;
280         struct inode *inode;
281
282         bprm_clear_caps(bprm);
283
284         if (!file_caps_enabled)
285                 return 0;
286
287         if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
288                 return 0;
289
290         dentry = dget(bprm->file->f_dentry);
291         inode = dentry->d_inode;
292         if (!inode->i_op || !inode->i_op->getxattr)
293                 goto out;
294
295         rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
296                                    XATTR_CAPS_SZ);
297         if (rc == -ENODATA || rc == -EOPNOTSUPP) {
298                 /* no data, that's ok */
299                 rc = 0;
300                 goto out;
301         }
302         if (rc < 0)
303                 goto out;
304
305         rc = cap_from_disk(&vcaps, bprm, rc);
306         if (rc == -EINVAL)
307                 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
308                        __func__, rc, bprm->filename);
309
310 out:
311         dput(dentry);
312         if (rc)
313                 bprm_clear_caps(bprm);
314
315         return rc;
316 }
317
318 #else
319 int cap_inode_need_killpriv(struct dentry *dentry)
320 {
321         return 0;
322 }
323
324 int cap_inode_killpriv(struct dentry *dentry)
325 {
326         return 0;
327 }
328
329 static inline int get_file_caps(struct linux_binprm *bprm)
330 {
331         bprm_clear_caps(bprm);
332         return 0;
333 }
334 #endif
335
336 int cap_bprm_set_security (struct linux_binprm *bprm)
337 {
338         int ret;
339
340         ret = get_file_caps(bprm);
341
342         if (!issecure(SECURE_NOROOT)) {
343                 /*
344                  * To support inheritance of root-permissions and suid-root
345                  * executables under compatibility mode, we override the
346                  * capability sets for the file.
347                  *
348                  * If only the real uid is 0, we do not set the effective
349                  * bit.
350                  */
351                 if (bprm->e_uid == 0 || current->uid == 0) {
352                         /* pP' = (cap_bset & ~0) | (pI & ~0) */
353                         bprm->cap_post_exec_permitted = cap_combine(
354                                 current->cap_bset, current->cap_inheritable
355                                 );
356                         bprm->cap_effective = (bprm->e_uid == 0);
357                         ret = 0;
358                 }
359         }
360
361         return ret;
362 }
363
364 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
365 {
366         if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
367             !cap_issubset(bprm->cap_post_exec_permitted,
368                           current->cap_permitted)) {
369                 set_dumpable(current->mm, suid_dumpable);
370                 current->pdeath_signal = 0;
371
372                 if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
373                         if (!capable(CAP_SETUID)) {
374                                 bprm->e_uid = current->uid;
375                                 bprm->e_gid = current->gid;
376                         }
377                         if (cap_limit_ptraced_target()) {
378                                 bprm->cap_post_exec_permitted = cap_intersect(
379                                         bprm->cap_post_exec_permitted,
380                                         current->cap_permitted);
381                         }
382                 }
383         }
384
385         current->suid = current->euid = current->fsuid = bprm->e_uid;
386         current->sgid = current->egid = current->fsgid = bprm->e_gid;
387
388         /* For init, we want to retain the capabilities set
389          * in the init_task struct. Thus we skip the usual
390          * capability rules */
391         if (!is_global_init(current)) {
392                 current->cap_permitted = bprm->cap_post_exec_permitted;
393                 if (bprm->cap_effective)
394                         current->cap_effective = bprm->cap_post_exec_permitted;
395                 else
396                         cap_clear(current->cap_effective);
397         }
398
399         /* AUD: Audit candidate if current->cap_effective is set */
400
401         current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
402 }
403
404 int cap_bprm_secureexec (struct linux_binprm *bprm)
405 {
406         if (current->uid != 0) {
407                 if (bprm->cap_effective)
408                         return 1;
409                 if (!cap_isclear(bprm->cap_post_exec_permitted))
410                         return 1;
411         }
412
413         return (current->euid != current->uid ||
414                 current->egid != current->gid);
415 }
416
417 int cap_inode_setxattr(struct dentry *dentry, const char *name,
418                        const void *value, size_t size, int flags)
419 {
420         if (!strcmp(name, XATTR_NAME_CAPS)) {
421                 if (!capable(CAP_SETFCAP))
422                         return -EPERM;
423                 return 0;
424         } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
425                      sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
426             !capable(CAP_SYS_ADMIN))
427                 return -EPERM;
428         return 0;
429 }
430
431 int cap_inode_removexattr(struct dentry *dentry, const char *name)
432 {
433         if (!strcmp(name, XATTR_NAME_CAPS)) {
434                 if (!capable(CAP_SETFCAP))
435                         return -EPERM;
436                 return 0;
437         } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
438                      sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
439             !capable(CAP_SYS_ADMIN))
440                 return -EPERM;
441         return 0;
442 }
443
444 /* moved from kernel/sys.c. */
445 /* 
446  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
447  * a process after a call to setuid, setreuid, or setresuid.
448  *
449  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
450  *  {r,e,s}uid != 0, the permitted and effective capabilities are
451  *  cleared.
452  *
453  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
454  *  capabilities of the process are cleared.
455  *
456  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
457  *  capabilities are set to the permitted capabilities.
458  *
459  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should 
460  *  never happen.
461  *
462  *  -astor 
463  *
464  * cevans - New behaviour, Oct '99
465  * A process may, via prctl(), elect to keep its capabilities when it
466  * calls setuid() and switches away from uid==0. Both permitted and
467  * effective sets will be retained.
468  * Without this change, it was impossible for a daemon to drop only some
469  * of its privilege. The call to setuid(!=0) would drop all privileges!
470  * Keeping uid 0 is not an option because uid 0 owns too many vital
471  * files..
472  * Thanks to Olaf Kirch and Peter Benie for spotting this.
473  */
474 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
475                                         int old_suid)
476 {
477         if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
478             (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
479             !issecure(SECURE_KEEP_CAPS)) {
480                 cap_clear (current->cap_permitted);
481                 cap_clear (current->cap_effective);
482         }
483         if (old_euid == 0 && current->euid != 0) {
484                 cap_clear (current->cap_effective);
485         }
486         if (old_euid != 0 && current->euid == 0) {
487                 current->cap_effective = current->cap_permitted;
488         }
489 }
490
491 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
492                           int flags)
493 {
494         switch (flags) {
495         case LSM_SETID_RE:
496         case LSM_SETID_ID:
497         case LSM_SETID_RES:
498                 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
499                 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
500                         cap_emulate_setxuid (old_ruid, old_euid, old_suid);
501                 }
502                 break;
503         case LSM_SETID_FS:
504                 {
505                         uid_t old_fsuid = old_ruid;
506
507                         /* Copied from kernel/sys.c:setfsuid. */
508
509                         /*
510                          * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
511                          *          if not, we might be a bit too harsh here.
512                          */
513
514                         if (!issecure (SECURE_NO_SETUID_FIXUP)) {
515                                 if (old_fsuid == 0 && current->fsuid != 0) {
516                                         current->cap_effective =
517                                                 cap_drop_fs_set(
518                                                     current->cap_effective);
519                                 }
520                                 if (old_fsuid != 0 && current->fsuid == 0) {
521                                         current->cap_effective =
522                                                 cap_raise_fs_set(
523                                                     current->cap_effective,
524                                                     current->cap_permitted);
525                                 }
526                         }
527                         break;
528                 }
529         default:
530                 return -EINVAL;
531         }
532
533         return 0;
534 }
535
536 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
537 /*
538  * Rationale: code calling task_setscheduler, task_setioprio, and
539  * task_setnice, assumes that
540  *   . if capable(cap_sys_nice), then those actions should be allowed
541  *   . if not capable(cap_sys_nice), but acting on your own processes,
542  *      then those actions should be allowed
543  * This is insufficient now since you can call code without suid, but
544  * yet with increased caps.
545  * So we check for increased caps on the target process.
546  */
547 static int cap_safe_nice(struct task_struct *p)
548 {
549         if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
550             !capable(CAP_SYS_NICE))
551                 return -EPERM;
552         return 0;
553 }
554
555 int cap_task_setscheduler (struct task_struct *p, int policy,
556                            struct sched_param *lp)
557 {
558         return cap_safe_nice(p);
559 }
560
561 int cap_task_setioprio (struct task_struct *p, int ioprio)
562 {
563         return cap_safe_nice(p);
564 }
565
566 int cap_task_setnice (struct task_struct *p, int nice)
567 {
568         return cap_safe_nice(p);
569 }
570
571 /*
572  * called from kernel/sys.c for prctl(PR_CABSET_DROP)
573  * done without task_capability_lock() because it introduces
574  * no new races - i.e. only another task doing capget() on
575  * this task could get inconsistent info.  There can be no
576  * racing writer bc a task can only change its own caps.
577  */
578 static long cap_prctl_drop(unsigned long cap)
579 {
580         if (!capable(CAP_SETPCAP))
581                 return -EPERM;
582         if (!cap_valid(cap))
583                 return -EINVAL;
584         cap_lower(current->cap_bset, cap);
585         return 0;
586 }
587
588 #else
589 int cap_task_setscheduler (struct task_struct *p, int policy,
590                            struct sched_param *lp)
591 {
592         return 0;
593 }
594 int cap_task_setioprio (struct task_struct *p, int ioprio)
595 {
596         return 0;
597 }
598 int cap_task_setnice (struct task_struct *p, int nice)
599 {
600         return 0;
601 }
602 #endif
603
604 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
605                    unsigned long arg4, unsigned long arg5, long *rc_p)
606 {
607         long error = 0;
608
609         switch (option) {
610         case PR_CAPBSET_READ:
611                 if (!cap_valid(arg2))
612                         error = -EINVAL;
613                 else
614                         error = !!cap_raised(current->cap_bset, arg2);
615                 break;
616 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
617         case PR_CAPBSET_DROP:
618                 error = cap_prctl_drop(arg2);
619                 break;
620
621         /*
622          * The next four prctl's remain to assist with transitioning a
623          * system from legacy UID=0 based privilege (when filesystem
624          * capabilities are not in use) to a system using filesystem
625          * capabilities only - as the POSIX.1e draft intended.
626          *
627          * Note:
628          *
629          *  PR_SET_SECUREBITS =
630          *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
631          *    | issecure_mask(SECURE_NOROOT)
632          *    | issecure_mask(SECURE_NOROOT_LOCKED)
633          *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
634          *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
635          *
636          * will ensure that the current process and all of its
637          * children will be locked into a pure
638          * capability-based-privilege environment.
639          */
640         case PR_SET_SECUREBITS:
641                 if ((((current->securebits & SECURE_ALL_LOCKS) >> 1)
642                      & (current->securebits ^ arg2))                  /*[1]*/
643                     || ((current->securebits & SECURE_ALL_LOCKS
644                          & ~arg2))                                    /*[2]*/
645                     || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
646                     || (cap_capable(current, CAP_SETPCAP) != 0)) {    /*[4]*/
647                         /*
648                          * [1] no changing of bits that are locked
649                          * [2] no unlocking of locks
650                          * [3] no setting of unsupported bits
651                          * [4] doing anything requires privilege (go read about
652                          *     the "sendmail capabilities bug")
653                          */
654                         error = -EPERM;  /* cannot change a locked bit */
655                 } else {
656                         current->securebits = arg2;
657                 }
658                 break;
659         case PR_GET_SECUREBITS:
660                 error = current->securebits;
661                 break;
662
663 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
664
665         case PR_GET_KEEPCAPS:
666                 if (issecure(SECURE_KEEP_CAPS))
667                         error = 1;
668                 break;
669         case PR_SET_KEEPCAPS:
670                 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
671                         error = -EINVAL;
672                 else if (issecure(SECURE_KEEP_CAPS_LOCKED))
673                         error = -EPERM;
674                 else if (arg2)
675                         current->securebits |= issecure_mask(SECURE_KEEP_CAPS);
676                 else
677                         current->securebits &=
678                                 ~issecure_mask(SECURE_KEEP_CAPS);
679                 break;
680
681         default:
682                 /* No functionality available - continue with default */
683                 return 0;
684         }
685
686         /* Functionality provided */
687         *rc_p = error;
688         return 1;
689 }
690
691 void cap_task_reparent_to_init (struct task_struct *p)
692 {
693         cap_set_init_eff(p->cap_effective);
694         cap_clear(p->cap_inheritable);
695         cap_set_full(p->cap_permitted);
696         p->securebits = SECUREBITS_DEFAULT;
697         return;
698 }
699
700 int cap_syslog (int type)
701 {
702         if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
703                 return -EPERM;
704         return 0;
705 }
706
707 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
708 {
709         int cap_sys_admin = 0;
710
711         if (cap_capable(current, CAP_SYS_ADMIN) == 0)
712                 cap_sys_admin = 1;
713         return __vm_enough_memory(mm, pages, cap_sys_admin);
714 }
715