Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[safe/jmp/linux-2.6] / net / xfrm / xfrm_algo.c
1 /*
2  * xfrm algorithm interface
3  *
4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
24
25 /*
26  * Algorithms supported by IPsec.  These entries contain properties which
27  * are used in key negotiation and xfrm processing, and are used to verify
28  * that instantiated crypto transforms have correct parameters for IPsec
29  * purposes.
30  */
31 static struct xfrm_algo_desc aead_list[] = {
32 {
33         .name = "rfc4106(gcm(aes))",
34
35         .uinfo = {
36                 .aead = {
37                         .icv_truncbits = 64,
38                 }
39         },
40
41         .desc = {
42                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43                 .sadb_alg_ivlen = 8,
44                 .sadb_alg_minbits = 128,
45                 .sadb_alg_maxbits = 256
46         }
47 },
48 {
49         .name = "rfc4106(gcm(aes))",
50
51         .uinfo = {
52                 .aead = {
53                         .icv_truncbits = 96,
54                 }
55         },
56
57         .desc = {
58                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59                 .sadb_alg_ivlen = 8,
60                 .sadb_alg_minbits = 128,
61                 .sadb_alg_maxbits = 256
62         }
63 },
64 {
65         .name = "rfc4106(gcm(aes))",
66
67         .uinfo = {
68                 .aead = {
69                         .icv_truncbits = 128,
70                 }
71         },
72
73         .desc = {
74                 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75                 .sadb_alg_ivlen = 8,
76                 .sadb_alg_minbits = 128,
77                 .sadb_alg_maxbits = 256
78         }
79 },
80 {
81         .name = "rfc4309(ccm(aes))",
82
83         .uinfo = {
84                 .aead = {
85                         .icv_truncbits = 64,
86                 }
87         },
88
89         .desc = {
90                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91                 .sadb_alg_ivlen = 8,
92                 .sadb_alg_minbits = 128,
93                 .sadb_alg_maxbits = 256
94         }
95 },
96 {
97         .name = "rfc4309(ccm(aes))",
98
99         .uinfo = {
100                 .aead = {
101                         .icv_truncbits = 96,
102                 }
103         },
104
105         .desc = {
106                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107                 .sadb_alg_ivlen = 8,
108                 .sadb_alg_minbits = 128,
109                 .sadb_alg_maxbits = 256
110         }
111 },
112 {
113         .name = "rfc4309(ccm(aes))",
114
115         .uinfo = {
116                 .aead = {
117                         .icv_truncbits = 128,
118                 }
119         },
120
121         .desc = {
122                 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123                 .sadb_alg_ivlen = 8,
124                 .sadb_alg_minbits = 128,
125                 .sadb_alg_maxbits = 256
126         }
127 },
128 };
129
130 static struct xfrm_algo_desc aalg_list[] = {
131 {
132         .name = "digest_null",
133
134         .uinfo = {
135                 .auth = {
136                         .icv_truncbits = 0,
137                         .icv_fullbits = 0,
138                 }
139         },
140
141         .desc = {
142                 .sadb_alg_id = SADB_X_AALG_NULL,
143                 .sadb_alg_ivlen = 0,
144                 .sadb_alg_minbits = 0,
145                 .sadb_alg_maxbits = 0
146         }
147 },
148 {
149         .name = "hmac(md5)",
150         .compat = "md5",
151
152         .uinfo = {
153                 .auth = {
154                         .icv_truncbits = 96,
155                         .icv_fullbits = 128,
156                 }
157         },
158
159         .desc = {
160                 .sadb_alg_id = SADB_AALG_MD5HMAC,
161                 .sadb_alg_ivlen = 0,
162                 .sadb_alg_minbits = 128,
163                 .sadb_alg_maxbits = 128
164         }
165 },
166 {
167         .name = "hmac(sha1)",
168         .compat = "sha1",
169
170         .uinfo = {
171                 .auth = {
172                         .icv_truncbits = 96,
173                         .icv_fullbits = 160,
174                 }
175         },
176
177         .desc = {
178                 .sadb_alg_id = SADB_AALG_SHA1HMAC,
179                 .sadb_alg_ivlen = 0,
180                 .sadb_alg_minbits = 160,
181                 .sadb_alg_maxbits = 160
182         }
183 },
184 {
185         .name = "hmac(sha256)",
186         .compat = "sha256",
187
188         .uinfo = {
189                 .auth = {
190                         .icv_truncbits = 96,
191                         .icv_fullbits = 256,
192                 }
193         },
194
195         .desc = {
196                 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
197                 .sadb_alg_ivlen = 0,
198                 .sadb_alg_minbits = 256,
199                 .sadb_alg_maxbits = 256
200         }
201 },
202 {
203         .name = "hmac(sha384)",
204
205         .uinfo = {
206                 .auth = {
207                         .icv_truncbits = 192,
208                         .icv_fullbits = 384,
209                 }
210         },
211
212         .desc = {
213                 .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
214                 .sadb_alg_ivlen = 0,
215                 .sadb_alg_minbits = 384,
216                 .sadb_alg_maxbits = 384
217         }
218 },
219 {
220         .name = "hmac(sha512)",
221
222         .uinfo = {
223                 .auth = {
224                         .icv_truncbits = 256,
225                         .icv_fullbits = 512,
226                 }
227         },
228
229         .desc = {
230                 .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
231                 .sadb_alg_ivlen = 0,
232                 .sadb_alg_minbits = 512,
233                 .sadb_alg_maxbits = 512
234         }
235 },
236 {
237         .name = "hmac(rmd160)",
238         .compat = "rmd160",
239
240         .uinfo = {
241                 .auth = {
242                         .icv_truncbits = 96,
243                         .icv_fullbits = 160,
244                 }
245         },
246
247         .desc = {
248                 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
249                 .sadb_alg_ivlen = 0,
250                 .sadb_alg_minbits = 160,
251                 .sadb_alg_maxbits = 160
252         }
253 },
254 {
255         .name = "xcbc(aes)",
256
257         .uinfo = {
258                 .auth = {
259                         .icv_truncbits = 96,
260                         .icv_fullbits = 128,
261                 }
262         },
263
264         .desc = {
265                 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
266                 .sadb_alg_ivlen = 0,
267                 .sadb_alg_minbits = 128,
268                 .sadb_alg_maxbits = 128
269         }
270 },
271 };
272
273 static struct xfrm_algo_desc ealg_list[] = {
274 {
275         .name = "ecb(cipher_null)",
276         .compat = "cipher_null",
277
278         .uinfo = {
279                 .encr = {
280                         .blockbits = 8,
281                         .defkeybits = 0,
282                 }
283         },
284
285         .desc = {
286                 .sadb_alg_id =  SADB_EALG_NULL,
287                 .sadb_alg_ivlen = 0,
288                 .sadb_alg_minbits = 0,
289                 .sadb_alg_maxbits = 0
290         }
291 },
292 {
293         .name = "cbc(des)",
294         .compat = "des",
295
296         .uinfo = {
297                 .encr = {
298                         .blockbits = 64,
299                         .defkeybits = 64,
300                 }
301         },
302
303         .desc = {
304                 .sadb_alg_id = SADB_EALG_DESCBC,
305                 .sadb_alg_ivlen = 8,
306                 .sadb_alg_minbits = 64,
307                 .sadb_alg_maxbits = 64
308         }
309 },
310 {
311         .name = "cbc(des3_ede)",
312         .compat = "des3_ede",
313
314         .uinfo = {
315                 .encr = {
316                         .blockbits = 64,
317                         .defkeybits = 192,
318                 }
319         },
320
321         .desc = {
322                 .sadb_alg_id = SADB_EALG_3DESCBC,
323                 .sadb_alg_ivlen = 8,
324                 .sadb_alg_minbits = 192,
325                 .sadb_alg_maxbits = 192
326         }
327 },
328 {
329         .name = "cbc(cast5)",
330         .compat = "cast5",
331
332         .uinfo = {
333                 .encr = {
334                         .blockbits = 64,
335                         .defkeybits = 128,
336                 }
337         },
338
339         .desc = {
340                 .sadb_alg_id = SADB_X_EALG_CASTCBC,
341                 .sadb_alg_ivlen = 8,
342                 .sadb_alg_minbits = 40,
343                 .sadb_alg_maxbits = 128
344         }
345 },
346 {
347         .name = "cbc(blowfish)",
348         .compat = "blowfish",
349
350         .uinfo = {
351                 .encr = {
352                         .blockbits = 64,
353                         .defkeybits = 128,
354                 }
355         },
356
357         .desc = {
358                 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
359                 .sadb_alg_ivlen = 8,
360                 .sadb_alg_minbits = 40,
361                 .sadb_alg_maxbits = 448
362         }
363 },
364 {
365         .name = "cbc(aes)",
366         .compat = "aes",
367
368         .uinfo = {
369                 .encr = {
370                         .blockbits = 128,
371                         .defkeybits = 128,
372                 }
373         },
374
375         .desc = {
376                 .sadb_alg_id = SADB_X_EALG_AESCBC,
377                 .sadb_alg_ivlen = 8,
378                 .sadb_alg_minbits = 128,
379                 .sadb_alg_maxbits = 256
380         }
381 },
382 {
383         .name = "cbc(serpent)",
384         .compat = "serpent",
385
386         .uinfo = {
387                 .encr = {
388                         .blockbits = 128,
389                         .defkeybits = 128,
390                 }
391         },
392
393         .desc = {
394                 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
395                 .sadb_alg_ivlen = 8,
396                 .sadb_alg_minbits = 128,
397                 .sadb_alg_maxbits = 256,
398         }
399 },
400 {
401         .name = "cbc(camellia)",
402         .compat = "camellia",
403
404         .uinfo = {
405                 .encr = {
406                         .blockbits = 128,
407                         .defkeybits = 128,
408                 }
409         },
410
411         .desc = {
412                 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
413                 .sadb_alg_ivlen = 8,
414                 .sadb_alg_minbits = 128,
415                 .sadb_alg_maxbits = 256
416         }
417 },
418 {
419         .name = "cbc(twofish)",
420         .compat = "twofish",
421
422         .uinfo = {
423                 .encr = {
424                         .blockbits = 128,
425                         .defkeybits = 128,
426                 }
427         },
428
429         .desc = {
430                 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
431                 .sadb_alg_ivlen = 8,
432                 .sadb_alg_minbits = 128,
433                 .sadb_alg_maxbits = 256
434         }
435 },
436 {
437         .name = "rfc3686(ctr(aes))",
438
439         .uinfo = {
440                 .encr = {
441                         .blockbits = 128,
442                         .defkeybits = 160, /* 128-bit key + 32-bit nonce */
443                 }
444         },
445
446         .desc = {
447                 .sadb_alg_id = SADB_X_EALG_AESCTR,
448                 .sadb_alg_ivlen = 8,
449                 .sadb_alg_minbits = 128,
450                 .sadb_alg_maxbits = 256
451         }
452 },
453 };
454
455 static struct xfrm_algo_desc calg_list[] = {
456 {
457         .name = "deflate",
458         .uinfo = {
459                 .comp = {
460                         .threshold = 90,
461                 }
462         },
463         .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
464 },
465 {
466         .name = "lzs",
467         .uinfo = {
468                 .comp = {
469                         .threshold = 90,
470                 }
471         },
472         .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
473 },
474 {
475         .name = "lzjh",
476         .uinfo = {
477                 .comp = {
478                         .threshold = 50,
479                 }
480         },
481         .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
482 },
483 };
484
485 static inline int aead_entries(void)
486 {
487         return ARRAY_SIZE(aead_list);
488 }
489
490 static inline int aalg_entries(void)
491 {
492         return ARRAY_SIZE(aalg_list);
493 }
494
495 static inline int ealg_entries(void)
496 {
497         return ARRAY_SIZE(ealg_list);
498 }
499
500 static inline int calg_entries(void)
501 {
502         return ARRAY_SIZE(calg_list);
503 }
504
505 struct xfrm_algo_list {
506         struct xfrm_algo_desc *algs;
507         int entries;
508         u32 type;
509         u32 mask;
510 };
511
512 static const struct xfrm_algo_list xfrm_aead_list = {
513         .algs = aead_list,
514         .entries = ARRAY_SIZE(aead_list),
515         .type = CRYPTO_ALG_TYPE_AEAD,
516         .mask = CRYPTO_ALG_TYPE_MASK,
517 };
518
519 static const struct xfrm_algo_list xfrm_aalg_list = {
520         .algs = aalg_list,
521         .entries = ARRAY_SIZE(aalg_list),
522         .type = CRYPTO_ALG_TYPE_HASH,
523         .mask = CRYPTO_ALG_TYPE_HASH_MASK,
524 };
525
526 static const struct xfrm_algo_list xfrm_ealg_list = {
527         .algs = ealg_list,
528         .entries = ARRAY_SIZE(ealg_list),
529         .type = CRYPTO_ALG_TYPE_BLKCIPHER,
530         .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
531 };
532
533 static const struct xfrm_algo_list xfrm_calg_list = {
534         .algs = calg_list,
535         .entries = ARRAY_SIZE(calg_list),
536         .type = CRYPTO_ALG_TYPE_COMPRESS,
537         .mask = CRYPTO_ALG_TYPE_MASK,
538 };
539
540 static struct xfrm_algo_desc *xfrm_find_algo(
541         const struct xfrm_algo_list *algo_list,
542         int match(const struct xfrm_algo_desc *entry, const void *data),
543         const void *data, int probe)
544 {
545         struct xfrm_algo_desc *list = algo_list->algs;
546         int i, status;
547
548         for (i = 0; i < algo_list->entries; i++) {
549                 if (!match(list + i, data))
550                         continue;
551
552                 if (list[i].available)
553                         return &list[i];
554
555                 if (!probe)
556                         break;
557
558                 status = crypto_has_alg(list[i].name, algo_list->type,
559                                         algo_list->mask);
560                 if (!status)
561                         break;
562
563                 list[i].available = status;
564                 return &list[i];
565         }
566         return NULL;
567 }
568
569 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
570                              const void *data)
571 {
572         return entry->desc.sadb_alg_id == (unsigned long)data;
573 }
574
575 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
576 {
577         return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
578                               (void *)(unsigned long)alg_id, 1);
579 }
580 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
581
582 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
583 {
584         return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
585                               (void *)(unsigned long)alg_id, 1);
586 }
587 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
588
589 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
590 {
591         return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
592                               (void *)(unsigned long)alg_id, 1);
593 }
594 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
595
596 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
597                                const void *data)
598 {
599         const char *name = data;
600
601         return name && (!strcmp(name, entry->name) ||
602                         (entry->compat && !strcmp(name, entry->compat)));
603 }
604
605 struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
606 {
607         return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
608                               probe);
609 }
610 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
611
612 struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
613 {
614         return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
615                               probe);
616 }
617 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
618
619 struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
620 {
621         return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
622                               probe);
623 }
624 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
625
626 struct xfrm_aead_name {
627         const char *name;
628         int icvbits;
629 };
630
631 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
632                                 const void *data)
633 {
634         const struct xfrm_aead_name *aead = data;
635         const char *name = aead->name;
636
637         return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
638                !strcmp(name, entry->name);
639 }
640
641 struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
642 {
643         struct xfrm_aead_name data = {
644                 .name = name,
645                 .icvbits = icv_len,
646         };
647
648         return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
649                               probe);
650 }
651 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
652
653 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
654 {
655         if (idx >= aalg_entries())
656                 return NULL;
657
658         return &aalg_list[idx];
659 }
660 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
661
662 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
663 {
664         if (idx >= ealg_entries())
665                 return NULL;
666
667         return &ealg_list[idx];
668 }
669 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
670
671 /*
672  * Probe for the availability of crypto algorithms, and set the available
673  * flag for any algorithms found on the system.  This is typically called by
674  * pfkey during userspace SA add, update or register.
675  */
676 void xfrm_probe_algs(void)
677 {
678         int i, status;
679
680         BUG_ON(in_softirq());
681
682         for (i = 0; i < aalg_entries(); i++) {
683                 status = crypto_has_hash(aalg_list[i].name, 0,
684                                          CRYPTO_ALG_ASYNC);
685                 if (aalg_list[i].available != status)
686                         aalg_list[i].available = status;
687         }
688
689         for (i = 0; i < ealg_entries(); i++) {
690                 status = crypto_has_blkcipher(ealg_list[i].name, 0,
691                                               CRYPTO_ALG_ASYNC);
692                 if (ealg_list[i].available != status)
693                         ealg_list[i].available = status;
694         }
695
696         for (i = 0; i < calg_entries(); i++) {
697                 status = crypto_has_comp(calg_list[i].name, 0,
698                                          CRYPTO_ALG_ASYNC);
699                 if (calg_list[i].available != status)
700                         calg_list[i].available = status;
701         }
702 }
703 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
704
705 int xfrm_count_auth_supported(void)
706 {
707         int i, n;
708
709         for (i = 0, n = 0; i < aalg_entries(); i++)
710                 if (aalg_list[i].available)
711                         n++;
712         return n;
713 }
714 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
715
716 int xfrm_count_enc_supported(void)
717 {
718         int i, n;
719
720         for (i = 0, n = 0; i < ealg_entries(); i++)
721                 if (ealg_list[i].available)
722                         n++;
723         return n;
724 }
725 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
726
727 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
728
729 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
730 {
731         if (tail != skb) {
732                 skb->data_len += len;
733                 skb->len += len;
734         }
735         return skb_put(tail, len);
736 }
737 EXPORT_SYMBOL_GPL(pskb_put);
738 #endif