cfg80211: call_crda() won't tell us if CRDA was present
[safe/jmp/linux-2.6] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44
45 /**
46  * struct regulatory_request - receipt of last regulatory request
47  *
48  * @wiphy: this is set if this request's initiator is
49  *      %REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
50  *      can be used by the wireless core to deal with conflicts
51  *      and potentially inform users of which devices specifically
52  *      cased the conflicts.
53  * @initiator: indicates who sent this request, could be any of
54  *      of those set in reg_set_by, %REGDOM_SET_BY_*
55  * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
56  *      regulatory domain. We have a few special codes:
57  *      00 - World regulatory domain
58  *      99 - built by driver but a specific alpha2 cannot be determined
59  *      98 - result of an intersection between two regulatory domains
60  * @intersect: indicates whether the wireless core should intersect
61  *      the requested regulatory domain with the presently set regulatory
62  *      domain.
63  */
64 struct regulatory_request {
65         struct wiphy *wiphy;
66         enum reg_set_by initiator;
67         char alpha2[2];
68         bool intersect;
69 };
70
71 /* Receipt of information from last regulatory request */
72 static struct regulatory_request *last_request;
73
74 /* To trigger userspace events */
75 static struct platform_device *reg_pdev;
76
77 /* Keep the ordering from large to small */
78 static u32 supported_bandwidths[] = {
79         MHZ_TO_KHZ(40),
80         MHZ_TO_KHZ(20),
81 };
82
83 /* Central wireless core regulatory domains, we only need two,
84  * the current one and a world regulatory domain in case we have no
85  * information to give us an alpha2 */
86 static const struct ieee80211_regdomain *cfg80211_regdomain;
87
88 /* We keep a static world regulatory domain in case of the absence of CRDA */
89 static const struct ieee80211_regdomain world_regdom = {
90         .n_reg_rules = 1,
91         .alpha2 =  "00",
92         .reg_rules = {
93                 REG_RULE(2412-10, 2462+10, 40, 6, 20,
94                         NL80211_RRF_PASSIVE_SCAN |
95                         NL80211_RRF_NO_IBSS),
96         }
97 };
98
99 static const struct ieee80211_regdomain *cfg80211_world_regdom =
100         &world_regdom;
101
102 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
103 static char *ieee80211_regdom = "US";
104 module_param(ieee80211_regdom, charp, 0444);
105 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
106
107 /* We assume 40 MHz bandwidth for the old regulatory work.
108  * We make emphasis we are using the exact same frequencies
109  * as before */
110
111 static const struct ieee80211_regdomain us_regdom = {
112         .n_reg_rules = 6,
113         .alpha2 =  "US",
114         .reg_rules = {
115                 /* IEEE 802.11b/g, channels 1..11 */
116                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
117                 /* IEEE 802.11a, channel 36 */
118                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
119                 /* IEEE 802.11a, channel 40 */
120                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
121                 /* IEEE 802.11a, channel 44 */
122                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
123                 /* IEEE 802.11a, channels 48..64 */
124                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
125                 /* IEEE 802.11a, channels 149..165, outdoor */
126                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
127         }
128 };
129
130 static const struct ieee80211_regdomain jp_regdom = {
131         .n_reg_rules = 3,
132         .alpha2 =  "JP",
133         .reg_rules = {
134                 /* IEEE 802.11b/g, channels 1..14 */
135                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
136                 /* IEEE 802.11a, channels 34..48 */
137                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
138                         NL80211_RRF_PASSIVE_SCAN),
139                 /* IEEE 802.11a, channels 52..64 */
140                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
141                         NL80211_RRF_NO_IBSS |
142                         NL80211_RRF_DFS),
143         }
144 };
145
146 static const struct ieee80211_regdomain eu_regdom = {
147         .n_reg_rules = 6,
148         /* This alpha2 is bogus, we leave it here just for stupid
149          * backward compatibility */
150         .alpha2 =  "EU",
151         .reg_rules = {
152                 /* IEEE 802.11b/g, channels 1..13 */
153                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
154                 /* IEEE 802.11a, channel 36 */
155                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
156                         NL80211_RRF_PASSIVE_SCAN),
157                 /* IEEE 802.11a, channel 40 */
158                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
159                         NL80211_RRF_PASSIVE_SCAN),
160                 /* IEEE 802.11a, channel 44 */
161                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
162                         NL80211_RRF_PASSIVE_SCAN),
163                 /* IEEE 802.11a, channels 48..64 */
164                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
165                         NL80211_RRF_NO_IBSS |
166                         NL80211_RRF_DFS),
167                 /* IEEE 802.11a, channels 100..140 */
168                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
169                         NL80211_RRF_NO_IBSS |
170                         NL80211_RRF_DFS),
171         }
172 };
173
174 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
175 {
176         if (alpha2[0] == 'U' && alpha2[1] == 'S')
177                 return &us_regdom;
178         if (alpha2[0] == 'J' && alpha2[1] == 'P')
179                 return &jp_regdom;
180         if (alpha2[0] == 'E' && alpha2[1] == 'U')
181                 return &eu_regdom;
182         /* Default, as per the old rules */
183         return &us_regdom;
184 }
185
186 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
187 {
188         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
189                 return true;
190         return false;
191 }
192 #else
193 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
194 {
195         return false;
196 }
197 #endif
198
199 static void reset_regdomains(void)
200 {
201         /* avoid freeing static information or freeing something twice */
202         if (cfg80211_regdomain == cfg80211_world_regdom)
203                 cfg80211_regdomain = NULL;
204         if (cfg80211_world_regdom == &world_regdom)
205                 cfg80211_world_regdom = NULL;
206         if (cfg80211_regdomain == &world_regdom)
207                 cfg80211_regdomain = NULL;
208         if (is_old_static_regdom(cfg80211_regdomain))
209                 cfg80211_regdomain = NULL;
210
211         kfree(cfg80211_regdomain);
212         kfree(cfg80211_world_regdom);
213
214         cfg80211_world_regdom = &world_regdom;
215         cfg80211_regdomain = NULL;
216 }
217
218 /* Dynamic world regulatory domain requested by the wireless
219  * core upon initialization */
220 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
221 {
222         BUG_ON(!last_request);
223
224         reset_regdomains();
225
226         cfg80211_world_regdom = rd;
227         cfg80211_regdomain = rd;
228 }
229
230 bool is_world_regdom(const char *alpha2)
231 {
232         if (!alpha2)
233                 return false;
234         if (alpha2[0] == '0' && alpha2[1] == '0')
235                 return true;
236         return false;
237 }
238
239 static bool is_alpha2_set(const char *alpha2)
240 {
241         if (!alpha2)
242                 return false;
243         if (alpha2[0] != 0 && alpha2[1] != 0)
244                 return true;
245         return false;
246 }
247
248 static bool is_alpha_upper(char letter)
249 {
250         /* ASCII A - Z */
251         if (letter >= 65 && letter <= 90)
252                 return true;
253         return false;
254 }
255
256 static bool is_unknown_alpha2(const char *alpha2)
257 {
258         if (!alpha2)
259                 return false;
260         /* Special case where regulatory domain was built by driver
261          * but a specific alpha2 cannot be determined */
262         if (alpha2[0] == '9' && alpha2[1] == '9')
263                 return true;
264         return false;
265 }
266
267 static bool is_an_alpha2(const char *alpha2)
268 {
269         if (!alpha2)
270                 return false;
271         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
272                 return true;
273         return false;
274 }
275
276 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
277 {
278         if (!alpha2_x || !alpha2_y)
279                 return false;
280         if (alpha2_x[0] == alpha2_y[0] &&
281                 alpha2_x[1] == alpha2_y[1])
282                 return true;
283         return false;
284 }
285
286 static bool regdom_changed(const char *alpha2)
287 {
288         if (!cfg80211_regdomain)
289                 return true;
290         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
291                 return false;
292         return true;
293 }
294
295 /* This lets us keep regulatory code which is updated on a regulatory
296  * basis in userspace. */
297 static int call_crda(const char *alpha2)
298 {
299         char country_env[9 + 2] = "COUNTRY=";
300         char *envp[] = {
301                 country_env,
302                 NULL
303         };
304
305         if (!is_world_regdom((char *) alpha2))
306                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
307                         alpha2[0], alpha2[1]);
308         else
309                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
310                         "regulatory domain\n");
311
312         country_env[8] = alpha2[0];
313         country_env[9] = alpha2[1];
314
315         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
316 }
317
318 /* Used by nl80211 before kmalloc'ing our regulatory domain */
319 bool reg_is_valid_request(const char *alpha2)
320 {
321         if (!last_request)
322                 return false;
323
324         return alpha2_equal(last_request->alpha2, alpha2);
325 }
326
327 /* Sanity check on a regulatory rule */
328 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
329 {
330         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
331         u32 freq_diff;
332
333         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
334                 return false;
335
336         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
337                 return false;
338
339         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
340
341         if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
342                 return false;
343
344         return true;
345 }
346
347 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
348 {
349         const struct ieee80211_reg_rule *reg_rule = NULL;
350         unsigned int i;
351
352         if (!rd->n_reg_rules)
353                 return false;
354
355         for (i = 0; i < rd->n_reg_rules; i++) {
356                 reg_rule = &rd->reg_rules[i];
357                 if (!is_valid_reg_rule(reg_rule))
358                         return false;
359         }
360
361         return true;
362 }
363
364 /* Returns value in KHz */
365 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
366         u32 freq)
367 {
368         unsigned int i;
369         for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
370                 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
371                 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
372                 if (start_freq_khz >= freq_range->start_freq_khz &&
373                         end_freq_khz <= freq_range->end_freq_khz)
374                         return supported_bandwidths[i];
375         }
376         return 0;
377 }
378
379 /* Helper for regdom_intersect(), this does the real
380  * mathematical intersection fun */
381 static int reg_rules_intersect(
382         const struct ieee80211_reg_rule *rule1,
383         const struct ieee80211_reg_rule *rule2,
384         struct ieee80211_reg_rule *intersected_rule)
385 {
386         const struct ieee80211_freq_range *freq_range1, *freq_range2;
387         struct ieee80211_freq_range *freq_range;
388         const struct ieee80211_power_rule *power_rule1, *power_rule2;
389         struct ieee80211_power_rule *power_rule;
390         u32 freq_diff;
391
392         freq_range1 = &rule1->freq_range;
393         freq_range2 = &rule2->freq_range;
394         freq_range = &intersected_rule->freq_range;
395
396         power_rule1 = &rule1->power_rule;
397         power_rule2 = &rule2->power_rule;
398         power_rule = &intersected_rule->power_rule;
399
400         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
401                 freq_range2->start_freq_khz);
402         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
403                 freq_range2->end_freq_khz);
404         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
405                 freq_range2->max_bandwidth_khz);
406
407         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
408         if (freq_range->max_bandwidth_khz > freq_diff)
409                 freq_range->max_bandwidth_khz = freq_diff;
410
411         power_rule->max_eirp = min(power_rule1->max_eirp,
412                 power_rule2->max_eirp);
413         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
414                 power_rule2->max_antenna_gain);
415
416         intersected_rule->flags = (rule1->flags | rule2->flags);
417
418         if (!is_valid_reg_rule(intersected_rule))
419                 return -EINVAL;
420
421         return 0;
422 }
423
424 /**
425  * regdom_intersect - do the intersection between two regulatory domains
426  * @rd1: first regulatory domain
427  * @rd2: second regulatory domain
428  *
429  * Use this function to get the intersection between two regulatory domains.
430  * Once completed we will mark the alpha2 for the rd as intersected, "98",
431  * as no one single alpha2 can represent this regulatory domain.
432  *
433  * Returns a pointer to the regulatory domain structure which will hold the
434  * resulting intersection of rules between rd1 and rd2. We will
435  * kzalloc() this structure for you.
436  */
437 static struct ieee80211_regdomain *regdom_intersect(
438         const struct ieee80211_regdomain *rd1,
439         const struct ieee80211_regdomain *rd2)
440 {
441         int r, size_of_regd;
442         unsigned int x, y;
443         unsigned int num_rules = 0, rule_idx = 0;
444         const struct ieee80211_reg_rule *rule1, *rule2;
445         struct ieee80211_reg_rule *intersected_rule;
446         struct ieee80211_regdomain *rd;
447         /* This is just a dummy holder to help us count */
448         struct ieee80211_reg_rule irule;
449
450         /* Uses the stack temporarily for counter arithmetic */
451         intersected_rule = &irule;
452
453         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
454
455         if (!rd1 || !rd2)
456                 return NULL;
457
458         /* First we get a count of the rules we'll need, then we actually
459          * build them. This is to so we can malloc() and free() a
460          * regdomain once. The reason we use reg_rules_intersect() here
461          * is it will return -EINVAL if the rule computed makes no sense.
462          * All rules that do check out OK are valid. */
463
464         for (x = 0; x < rd1->n_reg_rules; x++) {
465                 rule1 = &rd1->reg_rules[x];
466                 for (y = 0; y < rd2->n_reg_rules; y++) {
467                         rule2 = &rd2->reg_rules[y];
468                         if (!reg_rules_intersect(rule1, rule2,
469                                         intersected_rule))
470                                 num_rules++;
471                         memset(intersected_rule, 0,
472                                         sizeof(struct ieee80211_reg_rule));
473                 }
474         }
475
476         if (!num_rules)
477                 return NULL;
478
479         size_of_regd = sizeof(struct ieee80211_regdomain) +
480                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
481
482         rd = kzalloc(size_of_regd, GFP_KERNEL);
483         if (!rd)
484                 return NULL;
485
486         for (x = 0; x < rd1->n_reg_rules; x++) {
487                 rule1 = &rd1->reg_rules[x];
488                 for (y = 0; y < rd2->n_reg_rules; y++) {
489                         rule2 = &rd2->reg_rules[y];
490                         /* This time around instead of using the stack lets
491                          * write to the target rule directly saving ourselves
492                          * a memcpy() */
493                         intersected_rule = &rd->reg_rules[rule_idx];
494                         r = reg_rules_intersect(rule1, rule2,
495                                 intersected_rule);
496                         /* No need to memset here the intersected rule here as
497                          * we're not using the stack anymore */
498                         if (r)
499                                 continue;
500                         rule_idx++;
501                 }
502         }
503
504         if (rule_idx != num_rules) {
505                 kfree(rd);
506                 return NULL;
507         }
508
509         rd->n_reg_rules = num_rules;
510         rd->alpha2[0] = '9';
511         rd->alpha2[1] = '8';
512
513         return rd;
514 }
515
516 /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
517  * want to just have the channel structure use these */
518 static u32 map_regdom_flags(u32 rd_flags)
519 {
520         u32 channel_flags = 0;
521         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
522                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
523         if (rd_flags & NL80211_RRF_NO_IBSS)
524                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
525         if (rd_flags & NL80211_RRF_DFS)
526                 channel_flags |= IEEE80211_CHAN_RADAR;
527         return channel_flags;
528 }
529
530 /**
531  * freq_reg_info - get regulatory information for the given frequency
532  * @center_freq: Frequency in KHz for which we want regulatory information for
533  * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
534  *      you can set this to 0. If this frequency is allowed we then set
535  *      this value to the maximum allowed bandwidth.
536  * @reg_rule: the regulatory rule which we have for this frequency
537  *
538  * Use this function to get the regulatory rule for a specific frequency.
539  */
540 static int freq_reg_info(u32 center_freq, u32 *bandwidth,
541                          const struct ieee80211_reg_rule **reg_rule)
542 {
543         int i;
544         u32 max_bandwidth = 0;
545
546         if (!cfg80211_regdomain)
547                 return -EINVAL;
548
549         for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) {
550                 const struct ieee80211_reg_rule *rr;
551                 const struct ieee80211_freq_range *fr = NULL;
552                 const struct ieee80211_power_rule *pr = NULL;
553
554                 rr = &cfg80211_regdomain->reg_rules[i];
555                 fr = &rr->freq_range;
556                 pr = &rr->power_rule;
557                 max_bandwidth = freq_max_bandwidth(fr, center_freq);
558                 if (max_bandwidth && *bandwidth <= max_bandwidth) {
559                         *reg_rule = rr;
560                         *bandwidth = max_bandwidth;
561                         break;
562                 }
563         }
564
565         return !max_bandwidth;
566 }
567
568 static void handle_channel(struct ieee80211_channel *chan)
569 {
570         int r;
571         u32 flags = chan->orig_flags;
572         u32 max_bandwidth = 0;
573         const struct ieee80211_reg_rule *reg_rule = NULL;
574         const struct ieee80211_power_rule *power_rule = NULL;
575
576         r = freq_reg_info(MHZ_TO_KHZ(chan->center_freq),
577                 &max_bandwidth, &reg_rule);
578
579         if (r) {
580                 flags |= IEEE80211_CHAN_DISABLED;
581                 chan->flags = flags;
582                 return;
583         }
584
585         power_rule = &reg_rule->power_rule;
586
587         chan->flags = flags | map_regdom_flags(reg_rule->flags);
588         chan->max_antenna_gain = min(chan->orig_mag,
589                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
590         chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
591         if (chan->orig_mpwr)
592                 chan->max_power = min(chan->orig_mpwr,
593                         (int) MBM_TO_DBM(power_rule->max_eirp));
594         else
595                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
596 }
597
598 static void handle_band(struct ieee80211_supported_band *sband)
599 {
600         int i;
601
602         for (i = 0; i < sband->n_channels; i++)
603                 handle_channel(&sband->channels[i]);
604 }
605
606 static void update_all_wiphy_regulatory(enum reg_set_by setby)
607 {
608         struct cfg80211_registered_device *drv;
609
610         list_for_each_entry(drv, &cfg80211_drv_list, list)
611                 wiphy_update_regulatory(&drv->wiphy, setby);
612 }
613
614 void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
615 {
616         enum ieee80211_band band;
617         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
618                 if (wiphy->bands[band])
619                         handle_band(wiphy->bands[band]);
620                 if (wiphy->reg_notifier)
621                         wiphy->reg_notifier(wiphy, setby);
622         }
623 }
624
625 /* Return value which can be used by ignore_request() to indicate
626  * it has been determined we should intersect two regulatory domains */
627 #define REG_INTERSECT   1
628
629 /* This has the logic which determines when a new request
630  * should be ignored. */
631 static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
632                           const char *alpha2)
633 {
634         /* All initial requests are respected */
635         if (!last_request)
636                 return 0;
637
638         switch (set_by) {
639         case REGDOM_SET_BY_INIT:
640                 return -EINVAL;
641         case REGDOM_SET_BY_CORE:
642                 /*
643                  * Always respect new wireless core hints, should only happen
644                  * when updating the world regulatory domain at init.
645                  */
646                 return 0;
647         case REGDOM_SET_BY_COUNTRY_IE:
648                 if (unlikely(!is_an_alpha2(alpha2)))
649                         return -EINVAL;
650                 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
651                         if (last_request->wiphy != wiphy) {
652                                 /*
653                                  * Two cards with two APs claiming different
654                                  * different Country IE alpha2s. We could
655                                  * intersect them, but that seems unlikely
656                                  * to be correct. Reject second one for now.
657                                  */
658                                 if (!alpha2_equal(alpha2,
659                                                   cfg80211_regdomain->alpha2))
660                                         return -EOPNOTSUPP;
661                                 return -EALREADY;
662                         }
663                         /* Two consecutive Country IE hints on the same wiphy */
664                         if (!alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
665                                 return 0;
666                         return -EALREADY;
667                 }
668                 /*
669                  * Ignore Country IE hints for now, need to think about
670                  * what we need to do to support multi-domain operation.
671                  */
672                 return -EOPNOTSUPP;
673         case REGDOM_SET_BY_DRIVER:
674                 if (last_request->initiator == REGDOM_SET_BY_DRIVER)
675                         return -EALREADY;
676                 return 0;
677         case REGDOM_SET_BY_USER:
678                 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
679                         return REG_INTERSECT;
680                 return 0;
681         }
682
683         return -EINVAL;
684 }
685
686 /* Caller must hold &cfg80211_drv_mutex */
687 int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
688                       const char *alpha2)
689 {
690         struct regulatory_request *request;
691         bool intersect = false;
692         int r = 0;
693
694         r = ignore_request(wiphy, set_by, alpha2);
695
696         if (r == REG_INTERSECT)
697                 intersect = true;
698         else if (r)
699                 return r;
700
701         request = kzalloc(sizeof(struct regulatory_request),
702                           GFP_KERNEL);
703         if (!request)
704                 return -ENOMEM;
705
706         request->alpha2[0] = alpha2[0];
707         request->alpha2[1] = alpha2[1];
708         request->initiator = set_by;
709         request->wiphy = wiphy;
710         request->intersect = intersect;
711
712         kfree(last_request);
713         last_request = request;
714         return call_crda(alpha2);
715 }
716
717 void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
718 {
719         BUG_ON(!alpha2);
720
721         mutex_lock(&cfg80211_drv_mutex);
722         __regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2);
723         mutex_unlock(&cfg80211_drv_mutex);
724 }
725 EXPORT_SYMBOL(regulatory_hint);
726
727
728 static void print_rd_rules(const struct ieee80211_regdomain *rd)
729 {
730         unsigned int i;
731         const struct ieee80211_reg_rule *reg_rule = NULL;
732         const struct ieee80211_freq_range *freq_range = NULL;
733         const struct ieee80211_power_rule *power_rule = NULL;
734
735         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
736                 "(max_antenna_gain, max_eirp)\n");
737
738         for (i = 0; i < rd->n_reg_rules; i++) {
739                 reg_rule = &rd->reg_rules[i];
740                 freq_range = &reg_rule->freq_range;
741                 power_rule = &reg_rule->power_rule;
742
743                 /* There may not be documentation for max antenna gain
744                  * in certain regions */
745                 if (power_rule->max_antenna_gain)
746                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
747                                 "(%d mBi, %d mBm)\n",
748                                 freq_range->start_freq_khz,
749                                 freq_range->end_freq_khz,
750                                 freq_range->max_bandwidth_khz,
751                                 power_rule->max_antenna_gain,
752                                 power_rule->max_eirp);
753                 else
754                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
755                                 "(N/A, %d mBm)\n",
756                                 freq_range->start_freq_khz,
757                                 freq_range->end_freq_khz,
758                                 freq_range->max_bandwidth_khz,
759                                 power_rule->max_eirp);
760         }
761 }
762
763 static void print_regdomain(const struct ieee80211_regdomain *rd)
764 {
765
766         if (is_world_regdom(rd->alpha2))
767                 printk(KERN_INFO "cfg80211: World regulatory "
768                         "domain updated:\n");
769         else {
770                 if (is_unknown_alpha2(rd->alpha2))
771                         printk(KERN_INFO "cfg80211: Regulatory domain "
772                                 "changed to driver built-in settings "
773                                 "(unknown country)\n");
774                 else
775                         printk(KERN_INFO "cfg80211: Regulatory domain "
776                                 "changed to country: %c%c\n",
777                                 rd->alpha2[0], rd->alpha2[1]);
778         }
779         print_rd_rules(rd);
780 }
781
782 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
783 {
784         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
785                 rd->alpha2[0], rd->alpha2[1]);
786         print_rd_rules(rd);
787 }
788
789 /* Takes ownership of rd only if it doesn't fail */
790 static int __set_regdom(const struct ieee80211_regdomain *rd)
791 {
792         const struct ieee80211_regdomain *intersected_rd = NULL;
793         /* Some basic sanity checks first */
794
795         if (is_world_regdom(rd->alpha2)) {
796                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
797                         return -EINVAL;
798                 update_world_regdomain(rd);
799                 return 0;
800         }
801
802         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
803                         !is_unknown_alpha2(rd->alpha2))
804                 return -EINVAL;
805
806         if (!last_request)
807                 return -EINVAL;
808
809         /* allow overriding the static definitions if CRDA is present */
810         if (!is_old_static_regdom(cfg80211_regdomain) &&
811             !regdom_changed(rd->alpha2))
812                 return -EINVAL;
813
814         /* Now lets set the regulatory domain, update all driver channels
815          * and finally inform them of what we have done, in case they want
816          * to review or adjust their own settings based on their own
817          * internal EEPROM data */
818
819         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
820                 return -EINVAL;
821
822         if (!is_valid_rd(rd)) {
823                 printk(KERN_ERR "cfg80211: Invalid "
824                         "regulatory domain detected:\n");
825                 print_regdomain_info(rd);
826                 return -EINVAL;
827         }
828
829         if (!last_request->intersect) {
830                 reset_regdomains();
831                 cfg80211_regdomain = rd;
832                 return 0;
833         }
834
835         /* Intersection requires a bit more work */
836
837         if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
838
839                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
840                 if (!intersected_rd)
841                         return -EINVAL;
842
843                 /* We can trash what CRDA provided now */
844                 kfree(rd);
845                 rd = NULL;
846
847                 reset_regdomains();
848                 cfg80211_regdomain = intersected_rd;
849
850                 return 0;
851         }
852
853         /* Country IE parsing coming soon */
854         reset_regdomains();
855         WARN_ON(1);
856
857         return 0;
858 }
859
860
861 /* Use this call to set the current regulatory domain. Conflicts with
862  * multiple drivers can be ironed out later. Caller must've already
863  * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
864 int set_regdom(const struct ieee80211_regdomain *rd)
865 {
866         int r;
867
868         /* Note that this doesn't update the wiphys, this is done below */
869         r = __set_regdom(rd);
870         if (r) {
871                 kfree(rd);
872                 return r;
873         }
874
875         /* This would make this whole thing pointless */
876         if (!last_request->intersect)
877                 BUG_ON(rd != cfg80211_regdomain);
878
879         /* update all wiphys now with the new established regulatory domain */
880         update_all_wiphy_regulatory(last_request->initiator);
881
882         print_regdomain(cfg80211_regdomain);
883
884         return r;
885 }
886
887 int regulatory_init(void)
888 {
889         int err;
890
891         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
892         if (IS_ERR(reg_pdev))
893                 return PTR_ERR(reg_pdev);
894
895 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
896         cfg80211_regdomain = static_regdom(ieee80211_regdom);
897
898         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
899         print_regdomain_info(cfg80211_regdomain);
900         /* The old code still requests for a new regdomain and if
901          * you have CRDA you get it updated, otherwise you get
902          * stuck with the static values. We ignore "EU" code as
903          * that is not a valid ISO / IEC 3166 alpha2 */
904         if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
905                 err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE,
906                                         ieee80211_regdom);
907 #else
908         cfg80211_regdomain = cfg80211_world_regdom;
909
910         err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00");
911         if (err)
912                 printk(KERN_ERR "cfg80211: calling CRDA failed - "
913                        "unable to update world regulatory domain, "
914                        "using static definition\n");
915 #endif
916
917         return 0;
918 }
919
920 void regulatory_exit(void)
921 {
922         mutex_lock(&cfg80211_drv_mutex);
923
924         reset_regdomains();
925
926         kfree(last_request);
927
928         platform_device_unregister(reg_pdev);
929
930         mutex_unlock(&cfg80211_drv_mutex);
931 }