netfilter: nf_ct_ftp: fix out of bounds read in update_nl_seq()
[safe/jmp/linux-2.6] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52  * Central wireless core regulatory domains, we only need two,
53  * the current one and a world regulatory domain in case we have no
54  * information to give us an alpha2
55  */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59  * We use this as a place for the rd structure built from the
60  * last parsed country IE to rest until CRDA gets back to us with
61  * what it thinks should apply for the same country
62  */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /*
66  * Protects static reg.c components:
67  *     - cfg80211_world_regdom
68  *     - cfg80211_regdom
69  *     - country_ie_regdomain
70  *     - last_request
71  */
72 DEFINE_MUTEX(reg_mutex);
73 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74
75 /* Used to queue up regulatory hints */
76 static LIST_HEAD(reg_requests_list);
77 static spinlock_t reg_requests_lock;
78
79 /* Used to queue up beacon hints for review */
80 static LIST_HEAD(reg_pending_beacons);
81 static spinlock_t reg_pending_beacons_lock;
82
83 /* Used to keep track of processed beacon hints */
84 static LIST_HEAD(reg_beacon_list);
85
86 struct reg_beacon {
87         struct list_head list;
88         struct ieee80211_channel chan;
89 };
90
91 /* We keep a static world regulatory domain in case of the absence of CRDA */
92 static const struct ieee80211_regdomain world_regdom = {
93         .n_reg_rules = 5,
94         .alpha2 =  "00",
95         .reg_rules = {
96                 /* IEEE 802.11b/g, channels 1..11 */
97                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98                 /* IEEE 802.11b/g, channels 12..13. No HT40
99                  * channel fits here. */
100                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
101                         NL80211_RRF_PASSIVE_SCAN |
102                         NL80211_RRF_NO_IBSS),
103                 /* IEEE 802.11 channel 14 - Only JP enables
104                  * this and for 802.11b only */
105                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
106                         NL80211_RRF_PASSIVE_SCAN |
107                         NL80211_RRF_NO_IBSS |
108                         NL80211_RRF_NO_OFDM),
109                 /* IEEE 802.11a, channel 36..48 */
110                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
111                         NL80211_RRF_PASSIVE_SCAN |
112                         NL80211_RRF_NO_IBSS),
113
114                 /* NB: 5260 MHz - 5700 MHz requies DFS */
115
116                 /* IEEE 802.11a, channel 149..165 */
117                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
118                         NL80211_RRF_PASSIVE_SCAN |
119                         NL80211_RRF_NO_IBSS),
120         }
121 };
122
123 static const struct ieee80211_regdomain *cfg80211_world_regdom =
124         &world_regdom;
125
126 static char *ieee80211_regdom = "00";
127
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 /*
133  * We assume 40 MHz bandwidth for the old regulatory work.
134  * We make emphasis we are using the exact same frequencies
135  * as before
136  */
137
138 static const struct ieee80211_regdomain us_regdom = {
139         .n_reg_rules = 6,
140         .alpha2 =  "US",
141         .reg_rules = {
142                 /* IEEE 802.11b/g, channels 1..11 */
143                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144                 /* IEEE 802.11a, channel 36 */
145                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146                 /* IEEE 802.11a, channel 40 */
147                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148                 /* IEEE 802.11a, channel 44 */
149                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150                 /* IEEE 802.11a, channels 48..64 */
151                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152                 /* IEEE 802.11a, channels 149..165, outdoor */
153                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154         }
155 };
156
157 static const struct ieee80211_regdomain jp_regdom = {
158         .n_reg_rules = 3,
159         .alpha2 =  "JP",
160         .reg_rules = {
161                 /* IEEE 802.11b/g, channels 1..14 */
162                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163                 /* IEEE 802.11a, channels 34..48 */
164                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165                         NL80211_RRF_PASSIVE_SCAN),
166                 /* IEEE 802.11a, channels 52..64 */
167                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168                         NL80211_RRF_NO_IBSS |
169                         NL80211_RRF_DFS),
170         }
171 };
172
173 static const struct ieee80211_regdomain eu_regdom = {
174         .n_reg_rules = 6,
175         /*
176          * This alpha2 is bogus, we leave it here just for stupid
177          * backward compatibility
178          */
179         .alpha2 =  "EU",
180         .reg_rules = {
181                 /* IEEE 802.11b/g, channels 1..13 */
182                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183                 /* IEEE 802.11a, channel 36 */
184                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185                         NL80211_RRF_PASSIVE_SCAN),
186                 /* IEEE 802.11a, channel 40 */
187                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188                         NL80211_RRF_PASSIVE_SCAN),
189                 /* IEEE 802.11a, channel 44 */
190                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191                         NL80211_RRF_PASSIVE_SCAN),
192                 /* IEEE 802.11a, channels 48..64 */
193                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194                         NL80211_RRF_NO_IBSS |
195                         NL80211_RRF_DFS),
196                 /* IEEE 802.11a, channels 100..140 */
197                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198                         NL80211_RRF_NO_IBSS |
199                         NL80211_RRF_DFS),
200         }
201 };
202
203 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204 {
205         if (alpha2[0] == 'U' && alpha2[1] == 'S')
206                 return &us_regdom;
207         if (alpha2[0] == 'J' && alpha2[1] == 'P')
208                 return &jp_regdom;
209         if (alpha2[0] == 'E' && alpha2[1] == 'U')
210                 return &eu_regdom;
211         /* Default, as per the old rules */
212         return &us_regdom;
213 }
214
215 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 {
217         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218                 return true;
219         return false;
220 }
221 #else
222 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223 {
224         return false;
225 }
226 #endif
227
228 static void reset_regdomains(void)
229 {
230         /* avoid freeing static information or freeing something twice */
231         if (cfg80211_regdomain == cfg80211_world_regdom)
232                 cfg80211_regdomain = NULL;
233         if (cfg80211_world_regdom == &world_regdom)
234                 cfg80211_world_regdom = NULL;
235         if (cfg80211_regdomain == &world_regdom)
236                 cfg80211_regdomain = NULL;
237         if (is_old_static_regdom(cfg80211_regdomain))
238                 cfg80211_regdomain = NULL;
239
240         kfree(cfg80211_regdomain);
241         kfree(cfg80211_world_regdom);
242
243         cfg80211_world_regdom = &world_regdom;
244         cfg80211_regdomain = NULL;
245 }
246
247 /*
248  * Dynamic world regulatory domain requested by the wireless
249  * core upon initialization
250  */
251 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252 {
253         BUG_ON(!last_request);
254
255         reset_regdomains();
256
257         cfg80211_world_regdom = rd;
258         cfg80211_regdomain = rd;
259 }
260
261 bool is_world_regdom(const char *alpha2)
262 {
263         if (!alpha2)
264                 return false;
265         if (alpha2[0] == '0' && alpha2[1] == '0')
266                 return true;
267         return false;
268 }
269
270 static bool is_alpha2_set(const char *alpha2)
271 {
272         if (!alpha2)
273                 return false;
274         if (alpha2[0] != 0 && alpha2[1] != 0)
275                 return true;
276         return false;
277 }
278
279 static bool is_alpha_upper(char letter)
280 {
281         /* ASCII A - Z */
282         if (letter >= 65 && letter <= 90)
283                 return true;
284         return false;
285 }
286
287 static bool is_unknown_alpha2(const char *alpha2)
288 {
289         if (!alpha2)
290                 return false;
291         /*
292          * Special case where regulatory domain was built by driver
293          * but a specific alpha2 cannot be determined
294          */
295         if (alpha2[0] == '9' && alpha2[1] == '9')
296                 return true;
297         return false;
298 }
299
300 static bool is_intersected_alpha2(const char *alpha2)
301 {
302         if (!alpha2)
303                 return false;
304         /*
305          * Special case where regulatory domain is the
306          * result of an intersection between two regulatory domain
307          * structures
308          */
309         if (alpha2[0] == '9' && alpha2[1] == '8')
310                 return true;
311         return false;
312 }
313
314 static bool is_an_alpha2(const char *alpha2)
315 {
316         if (!alpha2)
317                 return false;
318         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319                 return true;
320         return false;
321 }
322
323 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 {
325         if (!alpha2_x || !alpha2_y)
326                 return false;
327         if (alpha2_x[0] == alpha2_y[0] &&
328                 alpha2_x[1] == alpha2_y[1])
329                 return true;
330         return false;
331 }
332
333 static bool regdom_changes(const char *alpha2)
334 {
335         assert_cfg80211_lock();
336
337         if (!cfg80211_regdomain)
338                 return true;
339         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340                 return false;
341         return true;
342 }
343
344 /**
345  * country_ie_integrity_changes - tells us if the country IE has changed
346  * @checksum: checksum of country IE of fields we are interested in
347  *
348  * If the country IE has not changed you can ignore it safely. This is
349  * useful to determine if two devices are seeing two different country IEs
350  * even on the same alpha2. Note that this will return false if no IE has
351  * been set on the wireless core yet.
352  */
353 static bool country_ie_integrity_changes(u32 checksum)
354 {
355         /* If no IE has been set then the checksum doesn't change */
356         if (unlikely(!last_request->country_ie_checksum))
357                 return false;
358         if (unlikely(last_request->country_ie_checksum != checksum))
359                 return true;
360         return false;
361 }
362
363 /*
364  * This lets us keep regulatory code which is updated on a regulatory
365  * basis in userspace.
366  */
367 static int call_crda(const char *alpha2)
368 {
369         char country_env[9 + 2] = "COUNTRY=";
370         char *envp[] = {
371                 country_env,
372                 NULL
373         };
374
375         if (!is_world_regdom((char *) alpha2))
376                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377                         alpha2[0], alpha2[1]);
378         else
379                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380                         "regulatory domain\n");
381
382         country_env[8] = alpha2[0];
383         country_env[9] = alpha2[1];
384
385         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391         assert_cfg80211_lock();
392
393         if (!last_request)
394                 return false;
395
396         return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403         u32 freq_diff;
404
405         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406                 return false;
407
408         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409                 return false;
410
411         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414                         freq_range->max_bandwidth_khz > freq_diff)
415                 return false;
416
417         return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422         const struct ieee80211_reg_rule *reg_rule = NULL;
423         unsigned int i;
424
425         if (!rd->n_reg_rules)
426                 return false;
427
428         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429                 return false;
430
431         for (i = 0; i < rd->n_reg_rules; i++) {
432                 reg_rule = &rd->reg_rules[i];
433                 if (!is_valid_reg_rule(reg_rule))
434                         return false;
435         }
436
437         return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441                             u32 center_freq_khz,
442                             u32 bw_khz)
443 {
444         u32 start_freq_khz, end_freq_khz;
445
446         start_freq_khz = center_freq_khz - (bw_khz/2);
447         end_freq_khz = center_freq_khz + (bw_khz/2);
448
449         if (start_freq_khz >= freq_range->start_freq_khz &&
450             end_freq_khz <= freq_range->end_freq_khz)
451                 return true;
452
453         return false;
454 }
455
456 /**
457  * freq_in_rule_band - tells us if a frequency is in a frequency band
458  * @freq_range: frequency rule we want to query
459  * @freq_khz: frequency we are inquiring about
460  *
461  * This lets us know if a specific frequency rule is or is not relevant to
462  * a specific frequency's band. Bands are device specific and artificial
463  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464  * safe for now to assume that a frequency rule should not be part of a
465  * frequency's band if the start freq or end freq are off by more than 2 GHz.
466  * This resolution can be lowered and should be considered as we add
467  * regulatory rule support for other "bands".
468  **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470         u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ  1000000
473         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474                 return true;
475         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476                 return true;
477         return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482  * Converts a country IE to a regulatory domain. A regulatory domain
483  * structure has a lot of information which the IE doesn't yet have,
484  * so for the other values we use upper max values as we will intersect
485  * with our userspace regulatory agent to get lower bounds.
486  */
487 static struct ieee80211_regdomain *country_ie_2_rd(
488                                 u8 *country_ie,
489                                 u8 country_ie_len,
490                                 u32 *checksum)
491 {
492         struct ieee80211_regdomain *rd = NULL;
493         unsigned int i = 0;
494         char alpha2[2];
495         u32 flags = 0;
496         u32 num_rules = 0, size_of_regd = 0;
497         u8 *triplets_start = NULL;
498         u8 len_at_triplet = 0;
499         /* the last channel we have registered in a subband (triplet) */
500         int last_sub_max_channel = 0;
501
502         *checksum = 0xDEADBEEF;
503
504         /* Country IE requirements */
505         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506                 country_ie_len & 0x01);
507
508         alpha2[0] = country_ie[0];
509         alpha2[1] = country_ie[1];
510
511         /*
512          * Third octet can be:
513          *    'I' - Indoor
514          *    'O' - Outdoor
515          *
516          *  anything else we assume is no restrictions
517          */
518         if (country_ie[2] == 'I')
519                 flags = NL80211_RRF_NO_OUTDOOR;
520         else if (country_ie[2] == 'O')
521                 flags = NL80211_RRF_NO_INDOOR;
522
523         country_ie += 3;
524         country_ie_len -= 3;
525
526         triplets_start = country_ie;
527         len_at_triplet = country_ie_len;
528
529         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
530
531         /*
532          * We need to build a reg rule for each triplet, but first we must
533          * calculate the number of reg rules we will need. We will need one
534          * for each channel subband
535          */
536         while (country_ie_len >= 3) {
537                 int end_channel = 0;
538                 struct ieee80211_country_ie_triplet *triplet =
539                         (struct ieee80211_country_ie_triplet *) country_ie;
540                 int cur_sub_max_channel = 0, cur_channel = 0;
541
542                 if (triplet->ext.reg_extension_id >=
543                                 IEEE80211_COUNTRY_EXTENSION_ID) {
544                         country_ie += 3;
545                         country_ie_len -= 3;
546                         continue;
547                 }
548
549                 /* 2 GHz */
550                 if (triplet->chans.first_channel <= 14)
551                         end_channel = triplet->chans.first_channel +
552                                 triplet->chans.num_channels;
553                 else
554                         /*
555                          * 5 GHz -- For example in country IEs if the first
556                          * channel given is 36 and the number of channels is 4
557                          * then the individual channel numbers defined for the
558                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559                          * and not 36, 37, 38, 39.
560                          *
561                          * See: http://tinyurl.com/11d-clarification
562                          */
563                         end_channel =  triplet->chans.first_channel +
564                                 (4 * (triplet->chans.num_channels - 1));
565
566                 cur_channel = triplet->chans.first_channel;
567                 cur_sub_max_channel = end_channel;
568
569                 /* Basic sanity check */
570                 if (cur_sub_max_channel < cur_channel)
571                         return NULL;
572
573                 /*
574                  * Do not allow overlapping channels. Also channels
575                  * passed in each subband must be monotonically
576                  * increasing
577                  */
578                 if (last_sub_max_channel) {
579                         if (cur_channel <= last_sub_max_channel)
580                                 return NULL;
581                         if (cur_sub_max_channel <= last_sub_max_channel)
582                                 return NULL;
583                 }
584
585                 /*
586                  * When dot11RegulatoryClassesRequired is supported
587                  * we can throw ext triplets as part of this soup,
588                  * for now we don't care when those change as we
589                  * don't support them
590                  */
591                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
594
595                 last_sub_max_channel = cur_sub_max_channel;
596
597                 country_ie += 3;
598                 country_ie_len -= 3;
599                 num_rules++;
600
601                 /*
602                  * Note: this is not a IEEE requirement but
603                  * simply a memory requirement
604                  */
605                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606                         return NULL;
607         }
608
609         country_ie = triplets_start;
610         country_ie_len = len_at_triplet;
611
612         size_of_regd = sizeof(struct ieee80211_regdomain) +
613                 (num_rules * sizeof(struct ieee80211_reg_rule));
614
615         rd = kzalloc(size_of_regd, GFP_KERNEL);
616         if (!rd)
617                 return NULL;
618
619         rd->n_reg_rules = num_rules;
620         rd->alpha2[0] = alpha2[0];
621         rd->alpha2[1] = alpha2[1];
622
623         /* This time around we fill in the rd */
624         while (country_ie_len >= 3) {
625                 int end_channel = 0;
626                 struct ieee80211_country_ie_triplet *triplet =
627                         (struct ieee80211_country_ie_triplet *) country_ie;
628                 struct ieee80211_reg_rule *reg_rule = NULL;
629                 struct ieee80211_freq_range *freq_range = NULL;
630                 struct ieee80211_power_rule *power_rule = NULL;
631
632                 /*
633                  * Must parse if dot11RegulatoryClassesRequired is true,
634                  * we don't support this yet
635                  */
636                 if (triplet->ext.reg_extension_id >=
637                                 IEEE80211_COUNTRY_EXTENSION_ID) {
638                         country_ie += 3;
639                         country_ie_len -= 3;
640                         continue;
641                 }
642
643                 reg_rule = &rd->reg_rules[i];
644                 freq_range = &reg_rule->freq_range;
645                 power_rule = &reg_rule->power_rule;
646
647                 reg_rule->flags = flags;
648
649                 /* 2 GHz */
650                 if (triplet->chans.first_channel <= 14)
651                         end_channel = triplet->chans.first_channel +
652                                 triplet->chans.num_channels;
653                 else
654                         end_channel =  triplet->chans.first_channel +
655                                 (4 * (triplet->chans.num_channels - 1));
656
657                 /*
658                  * The +10 is since the regulatory domain expects
659                  * the actual band edge, not the center of freq for
660                  * its start and end freqs, assuming 20 MHz bandwidth on
661                  * the channels passed
662                  */
663                 freq_range->start_freq_khz =
664                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665                                 triplet->chans.first_channel) - 10);
666                 freq_range->end_freq_khz =
667                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
668                                 end_channel) + 10);
669
670                 /*
671                  * These are large arbitrary values we use to intersect later.
672                  * Increment this if we ever support >= 40 MHz channels
673                  * in IEEE 802.11
674                  */
675                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
677                 power_rule->max_eirp = DBM_TO_MBM(100);
678
679                 country_ie += 3;
680                 country_ie_len -= 3;
681                 i++;
682
683                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
684         }
685
686         return rd;
687 }
688
689
690 /*
691  * Helper for regdom_intersect(), this does the real
692  * mathematical intersection fun
693  */
694 static int reg_rules_intersect(
695         const struct ieee80211_reg_rule *rule1,
696         const struct ieee80211_reg_rule *rule2,
697         struct ieee80211_reg_rule *intersected_rule)
698 {
699         const struct ieee80211_freq_range *freq_range1, *freq_range2;
700         struct ieee80211_freq_range *freq_range;
701         const struct ieee80211_power_rule *power_rule1, *power_rule2;
702         struct ieee80211_power_rule *power_rule;
703         u32 freq_diff;
704
705         freq_range1 = &rule1->freq_range;
706         freq_range2 = &rule2->freq_range;
707         freq_range = &intersected_rule->freq_range;
708
709         power_rule1 = &rule1->power_rule;
710         power_rule2 = &rule2->power_rule;
711         power_rule = &intersected_rule->power_rule;
712
713         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714                 freq_range2->start_freq_khz);
715         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716                 freq_range2->end_freq_khz);
717         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718                 freq_range2->max_bandwidth_khz);
719
720         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721         if (freq_range->max_bandwidth_khz > freq_diff)
722                 freq_range->max_bandwidth_khz = freq_diff;
723
724         power_rule->max_eirp = min(power_rule1->max_eirp,
725                 power_rule2->max_eirp);
726         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727                 power_rule2->max_antenna_gain);
728
729         intersected_rule->flags = (rule1->flags | rule2->flags);
730
731         if (!is_valid_reg_rule(intersected_rule))
732                 return -EINVAL;
733
734         return 0;
735 }
736
737 /**
738  * regdom_intersect - do the intersection between two regulatory domains
739  * @rd1: first regulatory domain
740  * @rd2: second regulatory domain
741  *
742  * Use this function to get the intersection between two regulatory domains.
743  * Once completed we will mark the alpha2 for the rd as intersected, "98",
744  * as no one single alpha2 can represent this regulatory domain.
745  *
746  * Returns a pointer to the regulatory domain structure which will hold the
747  * resulting intersection of rules between rd1 and rd2. We will
748  * kzalloc() this structure for you.
749  */
750 static struct ieee80211_regdomain *regdom_intersect(
751         const struct ieee80211_regdomain *rd1,
752         const struct ieee80211_regdomain *rd2)
753 {
754         int r, size_of_regd;
755         unsigned int x, y;
756         unsigned int num_rules = 0, rule_idx = 0;
757         const struct ieee80211_reg_rule *rule1, *rule2;
758         struct ieee80211_reg_rule *intersected_rule;
759         struct ieee80211_regdomain *rd;
760         /* This is just a dummy holder to help us count */
761         struct ieee80211_reg_rule irule;
762
763         /* Uses the stack temporarily for counter arithmetic */
764         intersected_rule = &irule;
765
766         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
767
768         if (!rd1 || !rd2)
769                 return NULL;
770
771         /*
772          * First we get a count of the rules we'll need, then we actually
773          * build them. This is to so we can malloc() and free() a
774          * regdomain once. The reason we use reg_rules_intersect() here
775          * is it will return -EINVAL if the rule computed makes no sense.
776          * All rules that do check out OK are valid.
777          */
778
779         for (x = 0; x < rd1->n_reg_rules; x++) {
780                 rule1 = &rd1->reg_rules[x];
781                 for (y = 0; y < rd2->n_reg_rules; y++) {
782                         rule2 = &rd2->reg_rules[y];
783                         if (!reg_rules_intersect(rule1, rule2,
784                                         intersected_rule))
785                                 num_rules++;
786                         memset(intersected_rule, 0,
787                                         sizeof(struct ieee80211_reg_rule));
788                 }
789         }
790
791         if (!num_rules)
792                 return NULL;
793
794         size_of_regd = sizeof(struct ieee80211_regdomain) +
795                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
796
797         rd = kzalloc(size_of_regd, GFP_KERNEL);
798         if (!rd)
799                 return NULL;
800
801         for (x = 0; x < rd1->n_reg_rules; x++) {
802                 rule1 = &rd1->reg_rules[x];
803                 for (y = 0; y < rd2->n_reg_rules; y++) {
804                         rule2 = &rd2->reg_rules[y];
805                         /*
806                          * This time around instead of using the stack lets
807                          * write to the target rule directly saving ourselves
808                          * a memcpy()
809                          */
810                         intersected_rule = &rd->reg_rules[rule_idx];
811                         r = reg_rules_intersect(rule1, rule2,
812                                 intersected_rule);
813                         /*
814                          * No need to memset here the intersected rule here as
815                          * we're not using the stack anymore
816                          */
817                         if (r)
818                                 continue;
819                         rule_idx++;
820                 }
821         }
822
823         if (rule_idx != num_rules) {
824                 kfree(rd);
825                 return NULL;
826         }
827
828         rd->n_reg_rules = num_rules;
829         rd->alpha2[0] = '9';
830         rd->alpha2[1] = '8';
831
832         return rd;
833 }
834
835 /*
836  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837  * want to just have the channel structure use these
838  */
839 static u32 map_regdom_flags(u32 rd_flags)
840 {
841         u32 channel_flags = 0;
842         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844         if (rd_flags & NL80211_RRF_NO_IBSS)
845                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
846         if (rd_flags & NL80211_RRF_DFS)
847                 channel_flags |= IEEE80211_CHAN_RADAR;
848         return channel_flags;
849 }
850
851 static int freq_reg_info_regd(struct wiphy *wiphy,
852                               u32 center_freq,
853                               u32 desired_bw_khz,
854                               const struct ieee80211_reg_rule **reg_rule,
855                               const struct ieee80211_regdomain *custom_regd)
856 {
857         int i;
858         bool band_rule_found = false;
859         const struct ieee80211_regdomain *regd;
860         bool bw_fits = false;
861
862         if (!desired_bw_khz)
863                 desired_bw_khz = MHZ_TO_KHZ(20);
864
865         regd = custom_regd ? custom_regd : cfg80211_regdomain;
866
867         /*
868          * Follow the driver's regulatory domain, if present, unless a country
869          * IE has been processed or a user wants to help complaince further
870          */
871         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
872             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
873             wiphy->regd)
874                 regd = wiphy->regd;
875
876         if (!regd)
877                 return -EINVAL;
878
879         for (i = 0; i < regd->n_reg_rules; i++) {
880                 const struct ieee80211_reg_rule *rr;
881                 const struct ieee80211_freq_range *fr = NULL;
882                 const struct ieee80211_power_rule *pr = NULL;
883
884                 rr = &regd->reg_rules[i];
885                 fr = &rr->freq_range;
886                 pr = &rr->power_rule;
887
888                 /*
889                  * We only need to know if one frequency rule was
890                  * was in center_freq's band, that's enough, so lets
891                  * not overwrite it once found
892                  */
893                 if (!band_rule_found)
894                         band_rule_found = freq_in_rule_band(fr, center_freq);
895
896                 bw_fits = reg_does_bw_fit(fr,
897                                           center_freq,
898                                           desired_bw_khz);
899
900                 if (band_rule_found && bw_fits) {
901                         *reg_rule = rr;
902                         return 0;
903                 }
904         }
905
906         if (!band_rule_found)
907                 return -ERANGE;
908
909         return -EINVAL;
910 }
911 EXPORT_SYMBOL(freq_reg_info);
912
913 int freq_reg_info(struct wiphy *wiphy,
914                   u32 center_freq,
915                   u32 desired_bw_khz,
916                   const struct ieee80211_reg_rule **reg_rule)
917 {
918         assert_cfg80211_lock();
919         return freq_reg_info_regd(wiphy,
920                                   center_freq,
921                                   desired_bw_khz,
922                                   reg_rule,
923                                   NULL);
924 }
925
926 /*
927  * Note that right now we assume the desired channel bandwidth
928  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
929  * per channel, the primary and the extension channel). To support
930  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
931  * new ieee80211_channel.target_bw and re run the regulatory check
932  * on the wiphy with the target_bw specified. Then we can simply use
933  * that below for the desired_bw_khz below.
934  */
935 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
936                            unsigned int chan_idx)
937 {
938         int r;
939         u32 flags, bw_flags = 0;
940         u32 desired_bw_khz = MHZ_TO_KHZ(20);
941         const struct ieee80211_reg_rule *reg_rule = NULL;
942         const struct ieee80211_power_rule *power_rule = NULL;
943         const struct ieee80211_freq_range *freq_range = NULL;
944         struct ieee80211_supported_band *sband;
945         struct ieee80211_channel *chan;
946         struct wiphy *request_wiphy = NULL;
947
948         assert_cfg80211_lock();
949
950         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
951
952         sband = wiphy->bands[band];
953         BUG_ON(chan_idx >= sband->n_channels);
954         chan = &sband->channels[chan_idx];
955
956         flags = chan->orig_flags;
957
958         r = freq_reg_info(wiphy,
959                           MHZ_TO_KHZ(chan->center_freq),
960                           desired_bw_khz,
961                           &reg_rule);
962
963         if (r) {
964                 /*
965                  * This means no regulatory rule was found in the country IE
966                  * with a frequency range on the center_freq's band, since
967                  * IEEE-802.11 allows for a country IE to have a subset of the
968                  * regulatory information provided in a country we ignore
969                  * disabling the channel unless at least one reg rule was
970                  * found on the center_freq's band. For details see this
971                  * clarification:
972                  *
973                  * http://tinyurl.com/11d-clarification
974                  */
975                 if (r == -ERANGE &&
976                     last_request->initiator ==
977                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
978 #ifdef CONFIG_CFG80211_REG_DEBUG
979                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
980                                 "intact on %s - no rule found in band on "
981                                 "Country IE\n",
982                                 chan->center_freq, wiphy_name(wiphy));
983 #endif
984                 } else {
985                 /*
986                  * In this case we know the country IE has at least one reg rule
987                  * for the band so we respect its band definitions
988                  */
989 #ifdef CONFIG_CFG80211_REG_DEBUG
990                         if (last_request->initiator ==
991                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
992                                 printk(KERN_DEBUG "cfg80211: Disabling "
993                                         "channel %d MHz on %s due to "
994                                         "Country IE\n",
995                                         chan->center_freq, wiphy_name(wiphy));
996 #endif
997                         flags |= IEEE80211_CHAN_DISABLED;
998                         chan->flags = flags;
999                 }
1000                 return;
1001         }
1002
1003         power_rule = &reg_rule->power_rule;
1004         freq_range = &reg_rule->freq_range;
1005
1006         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007                 bw_flags = IEEE80211_CHAN_NO_HT40;
1008
1009         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1010             request_wiphy && request_wiphy == wiphy &&
1011             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1012                 /*
1013                  * This gaurantees the driver's requested regulatory domain
1014                  * will always be used as a base for further regulatory
1015                  * settings
1016                  */
1017                 chan->flags = chan->orig_flags =
1018                         map_regdom_flags(reg_rule->flags) | bw_flags;
1019                 chan->max_antenna_gain = chan->orig_mag =
1020                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1021                 chan->max_power = chan->orig_mpwr =
1022                         (int) MBM_TO_DBM(power_rule->max_eirp);
1023                 return;
1024         }
1025
1026         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1027         chan->max_antenna_gain = min(chan->orig_mag,
1028                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1029         if (chan->orig_mpwr)
1030                 chan->max_power = min(chan->orig_mpwr,
1031                         (int) MBM_TO_DBM(power_rule->max_eirp));
1032         else
1033                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1034 }
1035
1036 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1037 {
1038         unsigned int i;
1039         struct ieee80211_supported_band *sband;
1040
1041         BUG_ON(!wiphy->bands[band]);
1042         sband = wiphy->bands[band];
1043
1044         for (i = 0; i < sband->n_channels; i++)
1045                 handle_channel(wiphy, band, i);
1046 }
1047
1048 static bool ignore_reg_update(struct wiphy *wiphy,
1049                               enum nl80211_reg_initiator initiator)
1050 {
1051         if (!last_request)
1052                 return true;
1053         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1054             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1055                 return true;
1056         /*
1057          * wiphy->regd will be set once the device has its own
1058          * desired regulatory domain set
1059          */
1060         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1061             !is_world_regdom(last_request->alpha2))
1062                 return true;
1063         return false;
1064 }
1065
1066 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1067 {
1068         struct cfg80211_registered_device *rdev;
1069
1070         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1071                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1072 }
1073
1074 static void handle_reg_beacon(struct wiphy *wiphy,
1075                               unsigned int chan_idx,
1076                               struct reg_beacon *reg_beacon)
1077 {
1078         struct ieee80211_supported_band *sband;
1079         struct ieee80211_channel *chan;
1080         bool channel_changed = false;
1081         struct ieee80211_channel chan_before;
1082
1083         assert_cfg80211_lock();
1084
1085         sband = wiphy->bands[reg_beacon->chan.band];
1086         chan = &sband->channels[chan_idx];
1087
1088         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1089                 return;
1090
1091         if (chan->beacon_found)
1092                 return;
1093
1094         chan->beacon_found = true;
1095
1096         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1097                 return;
1098
1099         chan_before.center_freq = chan->center_freq;
1100         chan_before.flags = chan->flags;
1101
1102         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1103                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1104                 channel_changed = true;
1105         }
1106
1107         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1108                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1109                 channel_changed = true;
1110         }
1111
1112         if (channel_changed)
1113                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1114 }
1115
1116 /*
1117  * Called when a scan on a wiphy finds a beacon on
1118  * new channel
1119  */
1120 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1121                                     struct reg_beacon *reg_beacon)
1122 {
1123         unsigned int i;
1124         struct ieee80211_supported_band *sband;
1125
1126         assert_cfg80211_lock();
1127
1128         if (!wiphy->bands[reg_beacon->chan.band])
1129                 return;
1130
1131         sband = wiphy->bands[reg_beacon->chan.band];
1132
1133         for (i = 0; i < sband->n_channels; i++)
1134                 handle_reg_beacon(wiphy, i, reg_beacon);
1135 }
1136
1137 /*
1138  * Called upon reg changes or a new wiphy is added
1139  */
1140 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1141 {
1142         unsigned int i;
1143         struct ieee80211_supported_band *sband;
1144         struct reg_beacon *reg_beacon;
1145
1146         assert_cfg80211_lock();
1147
1148         if (list_empty(&reg_beacon_list))
1149                 return;
1150
1151         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1152                 if (!wiphy->bands[reg_beacon->chan.band])
1153                         continue;
1154                 sband = wiphy->bands[reg_beacon->chan.band];
1155                 for (i = 0; i < sband->n_channels; i++)
1156                         handle_reg_beacon(wiphy, i, reg_beacon);
1157         }
1158 }
1159
1160 static bool reg_is_world_roaming(struct wiphy *wiphy)
1161 {
1162         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1163             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1164                 return true;
1165         if (last_request &&
1166             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1167             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1168                 return true;
1169         return false;
1170 }
1171
1172 /* Reap the advantages of previously found beacons */
1173 static void reg_process_beacons(struct wiphy *wiphy)
1174 {
1175         /*
1176          * Means we are just firing up cfg80211, so no beacons would
1177          * have been processed yet.
1178          */
1179         if (!last_request)
1180                 return;
1181         if (!reg_is_world_roaming(wiphy))
1182                 return;
1183         wiphy_update_beacon_reg(wiphy);
1184 }
1185
1186 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1187 {
1188         if (!chan)
1189                 return true;
1190         if (chan->flags & IEEE80211_CHAN_DISABLED)
1191                 return true;
1192         /* This would happen when regulatory rules disallow HT40 completely */
1193         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1194                 return true;
1195         return false;
1196 }
1197
1198 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1199                                          enum ieee80211_band band,
1200                                          unsigned int chan_idx)
1201 {
1202         struct ieee80211_supported_band *sband;
1203         struct ieee80211_channel *channel;
1204         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1205         unsigned int i;
1206
1207         assert_cfg80211_lock();
1208
1209         sband = wiphy->bands[band];
1210         BUG_ON(chan_idx >= sband->n_channels);
1211         channel = &sband->channels[chan_idx];
1212
1213         if (is_ht40_not_allowed(channel)) {
1214                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1215                 return;
1216         }
1217
1218         /*
1219          * We need to ensure the extension channels exist to
1220          * be able to use HT40- or HT40+, this finds them (or not)
1221          */
1222         for (i = 0; i < sband->n_channels; i++) {
1223                 struct ieee80211_channel *c = &sband->channels[i];
1224                 if (c->center_freq == (channel->center_freq - 20))
1225                         channel_before = c;
1226                 if (c->center_freq == (channel->center_freq + 20))
1227                         channel_after = c;
1228         }
1229
1230         /*
1231          * Please note that this assumes target bandwidth is 20 MHz,
1232          * if that ever changes we also need to change the below logic
1233          * to include that as well.
1234          */
1235         if (is_ht40_not_allowed(channel_before))
1236                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1237         else
1238                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1239
1240         if (is_ht40_not_allowed(channel_after))
1241                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1242         else
1243                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1244 }
1245
1246 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1247                                       enum ieee80211_band band)
1248 {
1249         unsigned int i;
1250         struct ieee80211_supported_band *sband;
1251
1252         BUG_ON(!wiphy->bands[band]);
1253         sband = wiphy->bands[band];
1254
1255         for (i = 0; i < sband->n_channels; i++)
1256                 reg_process_ht_flags_channel(wiphy, band, i);
1257 }
1258
1259 static void reg_process_ht_flags(struct wiphy *wiphy)
1260 {
1261         enum ieee80211_band band;
1262
1263         if (!wiphy)
1264                 return;
1265
1266         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1267                 if (wiphy->bands[band])
1268                         reg_process_ht_flags_band(wiphy, band);
1269         }
1270
1271 }
1272
1273 void wiphy_update_regulatory(struct wiphy *wiphy,
1274                              enum nl80211_reg_initiator initiator)
1275 {
1276         enum ieee80211_band band;
1277
1278         if (ignore_reg_update(wiphy, initiator))
1279                 goto out;
1280         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1281                 if (wiphy->bands[band])
1282                         handle_band(wiphy, band);
1283         }
1284 out:
1285         reg_process_beacons(wiphy);
1286         reg_process_ht_flags(wiphy);
1287         if (wiphy->reg_notifier)
1288                 wiphy->reg_notifier(wiphy, last_request);
1289 }
1290
1291 static void handle_channel_custom(struct wiphy *wiphy,
1292                                   enum ieee80211_band band,
1293                                   unsigned int chan_idx,
1294                                   const struct ieee80211_regdomain *regd)
1295 {
1296         int r;
1297         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1298         u32 bw_flags = 0;
1299         const struct ieee80211_reg_rule *reg_rule = NULL;
1300         const struct ieee80211_power_rule *power_rule = NULL;
1301         const struct ieee80211_freq_range *freq_range = NULL;
1302         struct ieee80211_supported_band *sband;
1303         struct ieee80211_channel *chan;
1304
1305         assert_reg_lock();
1306
1307         sband = wiphy->bands[band];
1308         BUG_ON(chan_idx >= sband->n_channels);
1309         chan = &sband->channels[chan_idx];
1310
1311         r = freq_reg_info_regd(wiphy,
1312                                MHZ_TO_KHZ(chan->center_freq),
1313                                desired_bw_khz,
1314                                &reg_rule,
1315                                regd);
1316
1317         if (r) {
1318                 chan->flags = IEEE80211_CHAN_DISABLED;
1319                 return;
1320         }
1321
1322         power_rule = &reg_rule->power_rule;
1323         freq_range = &reg_rule->freq_range;
1324
1325         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1326                 bw_flags = IEEE80211_CHAN_NO_HT40;
1327
1328         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1329         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1330         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1331 }
1332
1333 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1334                                const struct ieee80211_regdomain *regd)
1335 {
1336         unsigned int i;
1337         struct ieee80211_supported_band *sband;
1338
1339         BUG_ON(!wiphy->bands[band]);
1340         sband = wiphy->bands[band];
1341
1342         for (i = 0; i < sband->n_channels; i++)
1343                 handle_channel_custom(wiphy, band, i, regd);
1344 }
1345
1346 /* Used by drivers prior to wiphy registration */
1347 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1348                                    const struct ieee80211_regdomain *regd)
1349 {
1350         enum ieee80211_band band;
1351         unsigned int bands_set = 0;
1352
1353         mutex_lock(&reg_mutex);
1354         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1355                 if (!wiphy->bands[band])
1356                         continue;
1357                 handle_band_custom(wiphy, band, regd);
1358                 bands_set++;
1359         }
1360         mutex_unlock(&reg_mutex);
1361
1362         /*
1363          * no point in calling this if it won't have any effect
1364          * on your device's supportd bands.
1365          */
1366         WARN_ON(!bands_set);
1367 }
1368 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1369
1370 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1371                          const struct ieee80211_regdomain *src_regd)
1372 {
1373         struct ieee80211_regdomain *regd;
1374         int size_of_regd = 0;
1375         unsigned int i;
1376
1377         size_of_regd = sizeof(struct ieee80211_regdomain) +
1378           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1379
1380         regd = kzalloc(size_of_regd, GFP_KERNEL);
1381         if (!regd)
1382                 return -ENOMEM;
1383
1384         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1385
1386         for (i = 0; i < src_regd->n_reg_rules; i++)
1387                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1388                         sizeof(struct ieee80211_reg_rule));
1389
1390         *dst_regd = regd;
1391         return 0;
1392 }
1393
1394 /*
1395  * Return value which can be used by ignore_request() to indicate
1396  * it has been determined we should intersect two regulatory domains
1397  */
1398 #define REG_INTERSECT   1
1399
1400 /* This has the logic which determines when a new request
1401  * should be ignored. */
1402 static int ignore_request(struct wiphy *wiphy,
1403                           struct regulatory_request *pending_request)
1404 {
1405         struct wiphy *last_wiphy = NULL;
1406
1407         assert_cfg80211_lock();
1408
1409         /* All initial requests are respected */
1410         if (!last_request)
1411                 return 0;
1412
1413         switch (pending_request->initiator) {
1414         case NL80211_REGDOM_SET_BY_CORE:
1415                 return -EINVAL;
1416         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1417
1418                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1419
1420                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1421                         return -EINVAL;
1422                 if (last_request->initiator ==
1423                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1424                         if (last_wiphy != wiphy) {
1425                                 /*
1426                                  * Two cards with two APs claiming different
1427                                  * Country IE alpha2s. We could
1428                                  * intersect them, but that seems unlikely
1429                                  * to be correct. Reject second one for now.
1430                                  */
1431                                 if (regdom_changes(pending_request->alpha2))
1432                                         return -EOPNOTSUPP;
1433                                 return -EALREADY;
1434                         }
1435                         /*
1436                          * Two consecutive Country IE hints on the same wiphy.
1437                          * This should be picked up early by the driver/stack
1438                          */
1439                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1440                                 return 0;
1441                         return -EALREADY;
1442                 }
1443                 return REG_INTERSECT;
1444         case NL80211_REGDOM_SET_BY_DRIVER:
1445                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1446                         if (is_old_static_regdom(cfg80211_regdomain))
1447                                 return 0;
1448                         if (regdom_changes(pending_request->alpha2))
1449                                 return 0;
1450                         return -EALREADY;
1451                 }
1452
1453                 /*
1454                  * This would happen if you unplug and plug your card
1455                  * back in or if you add a new device for which the previously
1456                  * loaded card also agrees on the regulatory domain.
1457                  */
1458                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1459                     !regdom_changes(pending_request->alpha2))
1460                         return -EALREADY;
1461
1462                 return REG_INTERSECT;
1463         case NL80211_REGDOM_SET_BY_USER:
1464                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1465                         return REG_INTERSECT;
1466                 /*
1467                  * If the user knows better the user should set the regdom
1468                  * to their country before the IE is picked up
1469                  */
1470                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1471                           last_request->intersect)
1472                         return -EOPNOTSUPP;
1473                 /*
1474                  * Process user requests only after previous user/driver/core
1475                  * requests have been processed
1476                  */
1477                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1478                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1479                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1480                         if (regdom_changes(last_request->alpha2))
1481                                 return -EAGAIN;
1482                 }
1483
1484                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1485                     !regdom_changes(pending_request->alpha2))
1486                         return -EALREADY;
1487
1488                 return 0;
1489         }
1490
1491         return -EINVAL;
1492 }
1493
1494 /**
1495  * __regulatory_hint - hint to the wireless core a regulatory domain
1496  * @wiphy: if the hint comes from country information from an AP, this
1497  *      is required to be set to the wiphy that received the information
1498  * @pending_request: the regulatory request currently being processed
1499  *
1500  * The Wireless subsystem can use this function to hint to the wireless core
1501  * what it believes should be the current regulatory domain.
1502  *
1503  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1504  * already been set or other standard error codes.
1505  *
1506  * Caller must hold &cfg80211_mutex and &reg_mutex
1507  */
1508 static int __regulatory_hint(struct wiphy *wiphy,
1509                              struct regulatory_request *pending_request)
1510 {
1511         bool intersect = false;
1512         int r = 0;
1513
1514         assert_cfg80211_lock();
1515
1516         r = ignore_request(wiphy, pending_request);
1517
1518         if (r == REG_INTERSECT) {
1519                 if (pending_request->initiator ==
1520                     NL80211_REGDOM_SET_BY_DRIVER) {
1521                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1522                         if (r) {
1523                                 kfree(pending_request);
1524                                 return r;
1525                         }
1526                 }
1527                 intersect = true;
1528         } else if (r) {
1529                 /*
1530                  * If the regulatory domain being requested by the
1531                  * driver has already been set just copy it to the
1532                  * wiphy
1533                  */
1534                 if (r == -EALREADY &&
1535                     pending_request->initiator ==
1536                     NL80211_REGDOM_SET_BY_DRIVER) {
1537                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1538                         if (r) {
1539                                 kfree(pending_request);
1540                                 return r;
1541                         }
1542                         r = -EALREADY;
1543                         goto new_request;
1544                 }
1545                 kfree(pending_request);
1546                 return r;
1547         }
1548
1549 new_request:
1550         kfree(last_request);
1551
1552         last_request = pending_request;
1553         last_request->intersect = intersect;
1554
1555         pending_request = NULL;
1556
1557         /* When r == REG_INTERSECT we do need to call CRDA */
1558         if (r < 0) {
1559                 /*
1560                  * Since CRDA will not be called in this case as we already
1561                  * have applied the requested regulatory domain before we just
1562                  * inform userspace we have processed the request
1563                  */
1564                 if (r == -EALREADY)
1565                         nl80211_send_reg_change_event(last_request);
1566                 return r;
1567         }
1568
1569         return call_crda(last_request->alpha2);
1570 }
1571
1572 /* This processes *all* regulatory hints */
1573 static void reg_process_hint(struct regulatory_request *reg_request)
1574 {
1575         int r = 0;
1576         struct wiphy *wiphy = NULL;
1577
1578         BUG_ON(!reg_request->alpha2);
1579
1580         mutex_lock(&cfg80211_mutex);
1581         mutex_lock(&reg_mutex);
1582
1583         if (wiphy_idx_valid(reg_request->wiphy_idx))
1584                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1585
1586         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1587             !wiphy) {
1588                 kfree(reg_request);
1589                 goto out;
1590         }
1591
1592         r = __regulatory_hint(wiphy, reg_request);
1593         /* This is required so that the orig_* parameters are saved */
1594         if (r == -EALREADY && wiphy &&
1595             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1596                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1597 out:
1598         mutex_unlock(&reg_mutex);
1599         mutex_unlock(&cfg80211_mutex);
1600 }
1601
1602 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1603 static void reg_process_pending_hints(void)
1604         {
1605         struct regulatory_request *reg_request;
1606
1607         spin_lock(&reg_requests_lock);
1608         while (!list_empty(&reg_requests_list)) {
1609                 reg_request = list_first_entry(&reg_requests_list,
1610                                                struct regulatory_request,
1611                                                list);
1612                 list_del_init(&reg_request->list);
1613
1614                 spin_unlock(&reg_requests_lock);
1615                 reg_process_hint(reg_request);
1616                 spin_lock(&reg_requests_lock);
1617         }
1618         spin_unlock(&reg_requests_lock);
1619 }
1620
1621 /* Processes beacon hints -- this has nothing to do with country IEs */
1622 static void reg_process_pending_beacon_hints(void)
1623 {
1624         struct cfg80211_registered_device *rdev;
1625         struct reg_beacon *pending_beacon, *tmp;
1626
1627         /*
1628          * No need to hold the reg_mutex here as we just touch wiphys
1629          * and do not read or access regulatory variables.
1630          */
1631         mutex_lock(&cfg80211_mutex);
1632
1633         /* This goes through the _pending_ beacon list */
1634         spin_lock_bh(&reg_pending_beacons_lock);
1635
1636         if (list_empty(&reg_pending_beacons)) {
1637                 spin_unlock_bh(&reg_pending_beacons_lock);
1638                 goto out;
1639         }
1640
1641         list_for_each_entry_safe(pending_beacon, tmp,
1642                                  &reg_pending_beacons, list) {
1643
1644                 list_del_init(&pending_beacon->list);
1645
1646                 /* Applies the beacon hint to current wiphys */
1647                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1648                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1649
1650                 /* Remembers the beacon hint for new wiphys or reg changes */
1651                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1652         }
1653
1654         spin_unlock_bh(&reg_pending_beacons_lock);
1655 out:
1656         mutex_unlock(&cfg80211_mutex);
1657 }
1658
1659 static void reg_todo(struct work_struct *work)
1660 {
1661         reg_process_pending_hints();
1662         reg_process_pending_beacon_hints();
1663 }
1664
1665 static DECLARE_WORK(reg_work, reg_todo);
1666
1667 static void queue_regulatory_request(struct regulatory_request *request)
1668 {
1669         spin_lock(&reg_requests_lock);
1670         list_add_tail(&request->list, &reg_requests_list);
1671         spin_unlock(&reg_requests_lock);
1672
1673         schedule_work(&reg_work);
1674 }
1675
1676 /* Core regulatory hint -- happens once during cfg80211_init() */
1677 static int regulatory_hint_core(const char *alpha2)
1678 {
1679         struct regulatory_request *request;
1680
1681         BUG_ON(last_request);
1682
1683         request = kzalloc(sizeof(struct regulatory_request),
1684                           GFP_KERNEL);
1685         if (!request)
1686                 return -ENOMEM;
1687
1688         request->alpha2[0] = alpha2[0];
1689         request->alpha2[1] = alpha2[1];
1690         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1691
1692         queue_regulatory_request(request);
1693
1694         /*
1695          * This ensures last_request is populated once modules
1696          * come swinging in and calling regulatory hints and
1697          * wiphy_apply_custom_regulatory().
1698          */
1699         flush_scheduled_work();
1700
1701         return 0;
1702 }
1703
1704 /* User hints */
1705 int regulatory_hint_user(const char *alpha2)
1706 {
1707         struct regulatory_request *request;
1708
1709         BUG_ON(!alpha2);
1710
1711         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1712         if (!request)
1713                 return -ENOMEM;
1714
1715         request->wiphy_idx = WIPHY_IDX_STALE;
1716         request->alpha2[0] = alpha2[0];
1717         request->alpha2[1] = alpha2[1];
1718         request->initiator = NL80211_REGDOM_SET_BY_USER,
1719
1720         queue_regulatory_request(request);
1721
1722         return 0;
1723 }
1724
1725 /* Driver hints */
1726 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1727 {
1728         struct regulatory_request *request;
1729
1730         BUG_ON(!alpha2);
1731         BUG_ON(!wiphy);
1732
1733         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1734         if (!request)
1735                 return -ENOMEM;
1736
1737         request->wiphy_idx = get_wiphy_idx(wiphy);
1738
1739         /* Must have registered wiphy first */
1740         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1741
1742         request->alpha2[0] = alpha2[0];
1743         request->alpha2[1] = alpha2[1];
1744         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1745
1746         queue_regulatory_request(request);
1747
1748         return 0;
1749 }
1750 EXPORT_SYMBOL(regulatory_hint);
1751
1752 /* Caller must hold reg_mutex */
1753 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1754                         u32 country_ie_checksum)
1755 {
1756         struct wiphy *request_wiphy;
1757
1758         assert_reg_lock();
1759
1760         if (unlikely(last_request->initiator !=
1761             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1762                 return false;
1763
1764         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1765
1766         if (!request_wiphy)
1767                 return false;
1768
1769         if (likely(request_wiphy != wiphy))
1770                 return !country_ie_integrity_changes(country_ie_checksum);
1771         /*
1772          * We should not have let these through at this point, they
1773          * should have been picked up earlier by the first alpha2 check
1774          * on the device
1775          */
1776         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1777                 return true;
1778         return false;
1779 }
1780
1781 /*
1782  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1783  * therefore cannot iterate over the rdev list here.
1784  */
1785 void regulatory_hint_11d(struct wiphy *wiphy,
1786                         u8 *country_ie,
1787                         u8 country_ie_len)
1788 {
1789         struct ieee80211_regdomain *rd = NULL;
1790         char alpha2[2];
1791         u32 checksum = 0;
1792         enum environment_cap env = ENVIRON_ANY;
1793         struct regulatory_request *request;
1794
1795         mutex_lock(&reg_mutex);
1796
1797         if (unlikely(!last_request))
1798                 goto out;
1799
1800         /* IE len must be evenly divisible by 2 */
1801         if (country_ie_len & 0x01)
1802                 goto out;
1803
1804         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1805                 goto out;
1806
1807         /*
1808          * Pending country IE processing, this can happen after we
1809          * call CRDA and wait for a response if a beacon was received before
1810          * we were able to process the last regulatory_hint_11d() call
1811          */
1812         if (country_ie_regdomain)
1813                 goto out;
1814
1815         alpha2[0] = country_ie[0];
1816         alpha2[1] = country_ie[1];
1817
1818         if (country_ie[2] == 'I')
1819                 env = ENVIRON_INDOOR;
1820         else if (country_ie[2] == 'O')
1821                 env = ENVIRON_OUTDOOR;
1822
1823         /*
1824          * We will run this only upon a successful connection on cfg80211.
1825          * We leave conflict resolution to the workqueue, where can hold
1826          * cfg80211_mutex.
1827          */
1828         if (likely(last_request->initiator ==
1829             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1830             wiphy_idx_valid(last_request->wiphy_idx)))
1831                 goto out;
1832
1833         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1834         if (!rd)
1835                 goto out;
1836
1837         /*
1838          * This will not happen right now but we leave it here for the
1839          * the future when we want to add suspend/resume support and having
1840          * the user move to another country after doing so, or having the user
1841          * move to another AP. Right now we just trust the first AP.
1842          *
1843          * If we hit this before we add this support we want to be informed of
1844          * it as it would indicate a mistake in the current design
1845          */
1846         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1847                 goto free_rd_out;
1848
1849         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1850         if (!request)
1851                 goto free_rd_out;
1852
1853         /*
1854          * We keep this around for when CRDA comes back with a response so
1855          * we can intersect with that
1856          */
1857         country_ie_regdomain = rd;
1858
1859         request->wiphy_idx = get_wiphy_idx(wiphy);
1860         request->alpha2[0] = rd->alpha2[0];
1861         request->alpha2[1] = rd->alpha2[1];
1862         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1863         request->country_ie_checksum = checksum;
1864         request->country_ie_env = env;
1865
1866         mutex_unlock(&reg_mutex);
1867
1868         queue_regulatory_request(request);
1869
1870         return;
1871
1872 free_rd_out:
1873         kfree(rd);
1874 out:
1875         mutex_unlock(&reg_mutex);
1876 }
1877
1878 static bool freq_is_chan_12_13_14(u16 freq)
1879 {
1880         if (freq == ieee80211_channel_to_frequency(12) ||
1881             freq == ieee80211_channel_to_frequency(13) ||
1882             freq == ieee80211_channel_to_frequency(14))
1883                 return true;
1884         return false;
1885 }
1886
1887 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1888                                  struct ieee80211_channel *beacon_chan,
1889                                  gfp_t gfp)
1890 {
1891         struct reg_beacon *reg_beacon;
1892
1893         if (likely((beacon_chan->beacon_found ||
1894             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1895             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1896              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1897                 return 0;
1898
1899         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1900         if (!reg_beacon)
1901                 return -ENOMEM;
1902
1903 #ifdef CONFIG_CFG80211_REG_DEBUG
1904         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1905                 "frequency: %d MHz (Ch %d) on %s\n",
1906                 beacon_chan->center_freq,
1907                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1908                 wiphy_name(wiphy));
1909 #endif
1910         memcpy(&reg_beacon->chan, beacon_chan,
1911                 sizeof(struct ieee80211_channel));
1912
1913
1914         /*
1915          * Since we can be called from BH or and non-BH context
1916          * we must use spin_lock_bh()
1917          */
1918         spin_lock_bh(&reg_pending_beacons_lock);
1919         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1920         spin_unlock_bh(&reg_pending_beacons_lock);
1921
1922         schedule_work(&reg_work);
1923
1924         return 0;
1925 }
1926
1927 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1928 {
1929         unsigned int i;
1930         const struct ieee80211_reg_rule *reg_rule = NULL;
1931         const struct ieee80211_freq_range *freq_range = NULL;
1932         const struct ieee80211_power_rule *power_rule = NULL;
1933
1934         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1935                 "(max_antenna_gain, max_eirp)\n");
1936
1937         for (i = 0; i < rd->n_reg_rules; i++) {
1938                 reg_rule = &rd->reg_rules[i];
1939                 freq_range = &reg_rule->freq_range;
1940                 power_rule = &reg_rule->power_rule;
1941
1942                 /*
1943                  * There may not be documentation for max antenna gain
1944                  * in certain regions
1945                  */
1946                 if (power_rule->max_antenna_gain)
1947                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1948                                 "(%d mBi, %d mBm)\n",
1949                                 freq_range->start_freq_khz,
1950                                 freq_range->end_freq_khz,
1951                                 freq_range->max_bandwidth_khz,
1952                                 power_rule->max_antenna_gain,
1953                                 power_rule->max_eirp);
1954                 else
1955                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1956                                 "(N/A, %d mBm)\n",
1957                                 freq_range->start_freq_khz,
1958                                 freq_range->end_freq_khz,
1959                                 freq_range->max_bandwidth_khz,
1960                                 power_rule->max_eirp);
1961         }
1962 }
1963
1964 static void print_regdomain(const struct ieee80211_regdomain *rd)
1965 {
1966
1967         if (is_intersected_alpha2(rd->alpha2)) {
1968
1969                 if (last_request->initiator ==
1970                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1971                         struct cfg80211_registered_device *rdev;
1972                         rdev = cfg80211_rdev_by_wiphy_idx(
1973                                 last_request->wiphy_idx);
1974                         if (rdev) {
1975                                 printk(KERN_INFO "cfg80211: Current regulatory "
1976                                         "domain updated by AP to: %c%c\n",
1977                                         rdev->country_ie_alpha2[0],
1978                                         rdev->country_ie_alpha2[1]);
1979                         } else
1980                                 printk(KERN_INFO "cfg80211: Current regulatory "
1981                                         "domain intersected: \n");
1982                 } else
1983                                 printk(KERN_INFO "cfg80211: Current regulatory "
1984                                         "domain intersected: \n");
1985         } else if (is_world_regdom(rd->alpha2))
1986                 printk(KERN_INFO "cfg80211: World regulatory "
1987                         "domain updated:\n");
1988         else {
1989                 if (is_unknown_alpha2(rd->alpha2))
1990                         printk(KERN_INFO "cfg80211: Regulatory domain "
1991                                 "changed to driver built-in settings "
1992                                 "(unknown country)\n");
1993                 else
1994                         printk(KERN_INFO "cfg80211: Regulatory domain "
1995                                 "changed to country: %c%c\n",
1996                                 rd->alpha2[0], rd->alpha2[1]);
1997         }
1998         print_rd_rules(rd);
1999 }
2000
2001 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2002 {
2003         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2004                 rd->alpha2[0], rd->alpha2[1]);
2005         print_rd_rules(rd);
2006 }
2007
2008 #ifdef CONFIG_CFG80211_REG_DEBUG
2009 static void reg_country_ie_process_debug(
2010         const struct ieee80211_regdomain *rd,
2011         const struct ieee80211_regdomain *country_ie_regdomain,
2012         const struct ieee80211_regdomain *intersected_rd)
2013 {
2014         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2015         print_regdomain_info(country_ie_regdomain);
2016         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2017         print_regdomain_info(rd);
2018         if (intersected_rd) {
2019                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2020                         "and get:\n");
2021                 print_regdomain_info(intersected_rd);
2022                 return;
2023         }
2024         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2025 }
2026 #else
2027 static inline void reg_country_ie_process_debug(
2028         const struct ieee80211_regdomain *rd,
2029         const struct ieee80211_regdomain *country_ie_regdomain,
2030         const struct ieee80211_regdomain *intersected_rd)
2031 {
2032 }
2033 #endif
2034
2035 /* Takes ownership of rd only if it doesn't fail */
2036 static int __set_regdom(const struct ieee80211_regdomain *rd)
2037 {
2038         const struct ieee80211_regdomain *intersected_rd = NULL;
2039         struct cfg80211_registered_device *rdev = NULL;
2040         struct wiphy *request_wiphy;
2041         /* Some basic sanity checks first */
2042
2043         if (is_world_regdom(rd->alpha2)) {
2044                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2045                         return -EINVAL;
2046                 update_world_regdomain(rd);
2047                 return 0;
2048         }
2049
2050         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2051                         !is_unknown_alpha2(rd->alpha2))
2052                 return -EINVAL;
2053
2054         if (!last_request)
2055                 return -EINVAL;
2056
2057         /*
2058          * Lets only bother proceeding on the same alpha2 if the current
2059          * rd is non static (it means CRDA was present and was used last)
2060          * and the pending request came in from a country IE
2061          */
2062         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2063                 /*
2064                  * If someone else asked us to change the rd lets only bother
2065                  * checking if the alpha2 changes if CRDA was already called
2066                  */
2067                 if (!is_old_static_regdom(cfg80211_regdomain) &&
2068                     !regdom_changes(rd->alpha2))
2069                         return -EINVAL;
2070         }
2071
2072         /*
2073          * Now lets set the regulatory domain, update all driver channels
2074          * and finally inform them of what we have done, in case they want
2075          * to review or adjust their own settings based on their own
2076          * internal EEPROM data
2077          */
2078
2079         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2080                 return -EINVAL;
2081
2082         if (!is_valid_rd(rd)) {
2083                 printk(KERN_ERR "cfg80211: Invalid "
2084                         "regulatory domain detected:\n");
2085                 print_regdomain_info(rd);
2086                 return -EINVAL;
2087         }
2088
2089         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2090
2091         if (!last_request->intersect) {
2092                 int r;
2093
2094                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2095                         reset_regdomains();
2096                         cfg80211_regdomain = rd;
2097                         return 0;
2098                 }
2099
2100                 /*
2101                  * For a driver hint, lets copy the regulatory domain the
2102                  * driver wanted to the wiphy to deal with conflicts
2103                  */
2104
2105                 /*
2106                  * Userspace could have sent two replies with only
2107                  * one kernel request.
2108                  */
2109                 if (request_wiphy->regd)
2110                         return -EALREADY;
2111
2112                 r = reg_copy_regd(&request_wiphy->regd, rd);
2113                 if (r)
2114                         return r;
2115
2116                 reset_regdomains();
2117                 cfg80211_regdomain = rd;
2118                 return 0;
2119         }
2120
2121         /* Intersection requires a bit more work */
2122
2123         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2124
2125                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2126                 if (!intersected_rd)
2127                         return -EINVAL;
2128
2129                 /*
2130                  * We can trash what CRDA provided now.
2131                  * However if a driver requested this specific regulatory
2132                  * domain we keep it for its private use
2133                  */
2134                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2135                         request_wiphy->regd = rd;
2136                 else
2137                         kfree(rd);
2138
2139                 rd = NULL;
2140
2141                 reset_regdomains();
2142                 cfg80211_regdomain = intersected_rd;
2143
2144                 return 0;
2145         }
2146
2147         /*
2148          * Country IE requests are handled a bit differently, we intersect
2149          * the country IE rd with what CRDA believes that country should have
2150          */
2151
2152         /*
2153          * Userspace could have sent two replies with only
2154          * one kernel request. By the second reply we would have
2155          * already processed and consumed the country_ie_regdomain.
2156          */
2157         if (!country_ie_regdomain)
2158                 return -EALREADY;
2159         BUG_ON(rd == country_ie_regdomain);
2160
2161         /*
2162          * Intersect what CRDA returned and our what we
2163          * had built from the Country IE received
2164          */
2165
2166         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2167
2168         reg_country_ie_process_debug(rd,
2169                                      country_ie_regdomain,
2170                                      intersected_rd);
2171
2172         kfree(country_ie_regdomain);
2173         country_ie_regdomain = NULL;
2174
2175         if (!intersected_rd)
2176                 return -EINVAL;
2177
2178         rdev = wiphy_to_dev(request_wiphy);
2179
2180         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2181         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2182         rdev->env = last_request->country_ie_env;
2183
2184         BUG_ON(intersected_rd == rd);
2185
2186         kfree(rd);
2187         rd = NULL;
2188
2189         reset_regdomains();
2190         cfg80211_regdomain = intersected_rd;
2191
2192         return 0;
2193 }
2194
2195
2196 /*
2197  * Use this call to set the current regulatory domain. Conflicts with
2198  * multiple drivers can be ironed out later. Caller must've already
2199  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2200  */
2201 int set_regdom(const struct ieee80211_regdomain *rd)
2202 {
2203         int r;
2204
2205         assert_cfg80211_lock();
2206
2207         mutex_lock(&reg_mutex);
2208
2209         /* Note that this doesn't update the wiphys, this is done below */
2210         r = __set_regdom(rd);
2211         if (r) {
2212                 kfree(rd);
2213                 mutex_unlock(&reg_mutex);
2214                 return r;
2215         }
2216
2217         /* This would make this whole thing pointless */
2218         if (!last_request->intersect)
2219                 BUG_ON(rd != cfg80211_regdomain);
2220
2221         /* update all wiphys now with the new established regulatory domain */
2222         update_all_wiphy_regulatory(last_request->initiator);
2223
2224         print_regdomain(cfg80211_regdomain);
2225
2226         nl80211_send_reg_change_event(last_request);
2227
2228         mutex_unlock(&reg_mutex);
2229
2230         return r;
2231 }
2232
2233 /* Caller must hold cfg80211_mutex */
2234 void reg_device_remove(struct wiphy *wiphy)
2235 {
2236         struct wiphy *request_wiphy = NULL;
2237
2238         assert_cfg80211_lock();
2239
2240         mutex_lock(&reg_mutex);
2241
2242         kfree(wiphy->regd);
2243
2244         if (last_request)
2245                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2246
2247         if (!request_wiphy || request_wiphy != wiphy)
2248                 goto out;
2249
2250         last_request->wiphy_idx = WIPHY_IDX_STALE;
2251         last_request->country_ie_env = ENVIRON_ANY;
2252 out:
2253         mutex_unlock(&reg_mutex);
2254 }
2255
2256 int regulatory_init(void)
2257 {
2258         int err = 0;
2259
2260         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2261         if (IS_ERR(reg_pdev))
2262                 return PTR_ERR(reg_pdev);
2263
2264         spin_lock_init(&reg_requests_lock);
2265         spin_lock_init(&reg_pending_beacons_lock);
2266
2267 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2268         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2269
2270         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2271         print_regdomain_info(cfg80211_regdomain);
2272 #else
2273         cfg80211_regdomain = cfg80211_world_regdom;
2274
2275 #endif
2276         /* We always try to get an update for the static regdomain */
2277         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2278         if (err) {
2279                 if (err == -ENOMEM)
2280                         return err;
2281                 /*
2282                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2283                  * memory which is handled and propagated appropriately above
2284                  * but it can also fail during a netlink_broadcast() or during
2285                  * early boot for call_usermodehelper(). For now treat these
2286                  * errors as non-fatal.
2287                  */
2288                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2289                         "to call CRDA during init");
2290 #ifdef CONFIG_CFG80211_REG_DEBUG
2291                 /* We want to find out exactly why when debugging */
2292                 WARN_ON(err);
2293 #endif
2294         }
2295
2296         /*
2297          * Finally, if the user set the module parameter treat it
2298          * as a user hint.
2299          */
2300         if (!is_world_regdom(ieee80211_regdom))
2301                 regulatory_hint_user(ieee80211_regdom);
2302
2303         return 0;
2304 }
2305
2306 void regulatory_exit(void)
2307 {
2308         struct regulatory_request *reg_request, *tmp;
2309         struct reg_beacon *reg_beacon, *btmp;
2310
2311         cancel_work_sync(&reg_work);
2312
2313         mutex_lock(&cfg80211_mutex);
2314         mutex_lock(&reg_mutex);
2315
2316         reset_regdomains();
2317
2318         kfree(country_ie_regdomain);
2319         country_ie_regdomain = NULL;
2320
2321         kfree(last_request);
2322
2323         platform_device_unregister(reg_pdev);
2324
2325         spin_lock_bh(&reg_pending_beacons_lock);
2326         if (!list_empty(&reg_pending_beacons)) {
2327                 list_for_each_entry_safe(reg_beacon, btmp,
2328                                          &reg_pending_beacons, list) {
2329                         list_del(&reg_beacon->list);
2330                         kfree(reg_beacon);
2331                 }
2332         }
2333         spin_unlock_bh(&reg_pending_beacons_lock);
2334
2335         if (!list_empty(&reg_beacon_list)) {
2336                 list_for_each_entry_safe(reg_beacon, btmp,
2337                                          &reg_beacon_list, list) {
2338                         list_del(&reg_beacon->list);
2339                         kfree(reg_beacon);
2340                 }
2341         }
2342
2343         spin_lock(&reg_requests_lock);
2344         if (!list_empty(&reg_requests_list)) {
2345                 list_for_each_entry_safe(reg_request, tmp,
2346                                          &reg_requests_list, list) {
2347                         list_del(&reg_request->list);
2348                         kfree(reg_request);
2349                 }
2350         }
2351         spin_unlock(&reg_requests_lock);
2352
2353         mutex_unlock(&reg_mutex);
2354         mutex_unlock(&cfg80211_mutex);
2355 }