Revert "sunrpc: move the close processing after do recvfrom method"
[safe/jmp/linux-2.6] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52  * Central wireless core regulatory domains, we only need two,
53  * the current one and a world regulatory domain in case we have no
54  * information to give us an alpha2
55  */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59  * We use this as a place for the rd structure built from the
60  * last parsed country IE to rest until CRDA gets back to us with
61  * what it thinks should apply for the same country
62  */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /*
66  * Protects static reg.c components:
67  *     - cfg80211_world_regdom
68  *     - cfg80211_regdom
69  *     - country_ie_regdomain
70  *     - last_request
71  */
72 DEFINE_MUTEX(reg_mutex);
73 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74
75 /* Used to queue up regulatory hints */
76 static LIST_HEAD(reg_requests_list);
77 static spinlock_t reg_requests_lock;
78
79 /* Used to queue up beacon hints for review */
80 static LIST_HEAD(reg_pending_beacons);
81 static spinlock_t reg_pending_beacons_lock;
82
83 /* Used to keep track of processed beacon hints */
84 static LIST_HEAD(reg_beacon_list);
85
86 struct reg_beacon {
87         struct list_head list;
88         struct ieee80211_channel chan;
89 };
90
91 /* We keep a static world regulatory domain in case of the absence of CRDA */
92 static const struct ieee80211_regdomain world_regdom = {
93         .n_reg_rules = 5,
94         .alpha2 =  "00",
95         .reg_rules = {
96                 /* IEEE 802.11b/g, channels 1..11 */
97                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98                 /* IEEE 802.11b/g, channels 12..13. No HT40
99                  * channel fits here. */
100                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
101                         NL80211_RRF_PASSIVE_SCAN |
102                         NL80211_RRF_NO_IBSS),
103                 /* IEEE 802.11 channel 14 - Only JP enables
104                  * this and for 802.11b only */
105                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
106                         NL80211_RRF_PASSIVE_SCAN |
107                         NL80211_RRF_NO_IBSS |
108                         NL80211_RRF_NO_OFDM),
109                 /* IEEE 802.11a, channel 36..48 */
110                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
111                         NL80211_RRF_PASSIVE_SCAN |
112                         NL80211_RRF_NO_IBSS),
113
114                 /* NB: 5260 MHz - 5700 MHz requies DFS */
115
116                 /* IEEE 802.11a, channel 149..165 */
117                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
118                         NL80211_RRF_PASSIVE_SCAN |
119                         NL80211_RRF_NO_IBSS),
120         }
121 };
122
123 static const struct ieee80211_regdomain *cfg80211_world_regdom =
124         &world_regdom;
125
126 static char *ieee80211_regdom = "00";
127
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 /*
133  * We assume 40 MHz bandwidth for the old regulatory work.
134  * We make emphasis we are using the exact same frequencies
135  * as before
136  */
137
138 static const struct ieee80211_regdomain us_regdom = {
139         .n_reg_rules = 6,
140         .alpha2 =  "US",
141         .reg_rules = {
142                 /* IEEE 802.11b/g, channels 1..11 */
143                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144                 /* IEEE 802.11a, channel 36..48 */
145                 REG_RULE(5180-10, 5240+10, 40, 6, 17, 0),
146                 /* IEEE 802.11a, channels 48..64 */
147                 REG_RULE(5260-10, 5320+10, 40, 6, 20, NL80211_RRF_DFS),
148                 /* IEEE 802.11a, channels 100..124 */
149                 REG_RULE(5500-10, 5590+10, 40, 6, 20, NL80211_RRF_DFS),
150                 /* IEEE 802.11a, channels 132..144 */
151                 REG_RULE(5660-10, 5700+10, 40, 6, 20, NL80211_RRF_DFS),
152                 /* IEEE 802.11a, channels 149..165, outdoor */
153                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154         }
155 };
156
157 static const struct ieee80211_regdomain jp_regdom = {
158         .n_reg_rules = 6,
159         .alpha2 =  "JP",
160         .reg_rules = {
161                 /* IEEE 802.11b/g, channels 1..11 */
162                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
163                 /* IEEE 802.11b/g, channels 12..13 */
164                 REG_RULE(2467-10, 2472+10, 20, 6, 20, 0),
165                 /* IEEE 802.11b/g, channel 14 */
166                 REG_RULE(2484-10, 2484+10, 20, 6, 20, NL80211_RRF_NO_OFDM),
167                 /* IEEE 802.11a, channels 36..48 */
168                 REG_RULE(5180-10, 5240+10, 40, 6, 20, 0),
169                 /* IEEE 802.11a, channels 52..64 */
170                 REG_RULE(5260-10, 5320+10, 40, 6, 20, NL80211_RRF_DFS),
171                 /* IEEE 802.11a, channels 100..144 */
172                 REG_RULE(5500-10, 5700+10, 40, 6, 23, NL80211_RRF_DFS),
173         }
174 };
175
176 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
177 {
178         if (alpha2[0] == 'U' && alpha2[1] == 'S')
179                 return &us_regdom;
180         if (alpha2[0] == 'J' && alpha2[1] == 'P')
181                 return &jp_regdom;
182         /* Use world roaming rules for "EU", since it was a pseudo
183            domain anyway... */
184         if (alpha2[0] == 'E' && alpha2[1] == 'U')
185                 return &world_regdom;
186         /* Default, world roaming rules */
187         return &world_regdom;
188 }
189
190 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
191 {
192         if (rd == &us_regdom || rd == &jp_regdom || rd == &world_regdom)
193                 return true;
194         return false;
195 }
196 #else
197 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
198 {
199         return false;
200 }
201 #endif
202
203 static void reset_regdomains(void)
204 {
205         /* avoid freeing static information or freeing something twice */
206         if (cfg80211_regdomain == cfg80211_world_regdom)
207                 cfg80211_regdomain = NULL;
208         if (cfg80211_world_regdom == &world_regdom)
209                 cfg80211_world_regdom = NULL;
210         if (cfg80211_regdomain == &world_regdom)
211                 cfg80211_regdomain = NULL;
212         if (is_old_static_regdom(cfg80211_regdomain))
213                 cfg80211_regdomain = NULL;
214
215         kfree(cfg80211_regdomain);
216         kfree(cfg80211_world_regdom);
217
218         cfg80211_world_regdom = &world_regdom;
219         cfg80211_regdomain = NULL;
220 }
221
222 /*
223  * Dynamic world regulatory domain requested by the wireless
224  * core upon initialization
225  */
226 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
227 {
228         BUG_ON(!last_request);
229
230         reset_regdomains();
231
232         cfg80211_world_regdom = rd;
233         cfg80211_regdomain = rd;
234 }
235
236 bool is_world_regdom(const char *alpha2)
237 {
238         if (!alpha2)
239                 return false;
240         if (alpha2[0] == '0' && alpha2[1] == '0')
241                 return true;
242         return false;
243 }
244
245 static bool is_alpha2_set(const char *alpha2)
246 {
247         if (!alpha2)
248                 return false;
249         if (alpha2[0] != 0 && alpha2[1] != 0)
250                 return true;
251         return false;
252 }
253
254 static bool is_alpha_upper(char letter)
255 {
256         /* ASCII A - Z */
257         if (letter >= 65 && letter <= 90)
258                 return true;
259         return false;
260 }
261
262 static bool is_unknown_alpha2(const char *alpha2)
263 {
264         if (!alpha2)
265                 return false;
266         /*
267          * Special case where regulatory domain was built by driver
268          * but a specific alpha2 cannot be determined
269          */
270         if (alpha2[0] == '9' && alpha2[1] == '9')
271                 return true;
272         return false;
273 }
274
275 static bool is_intersected_alpha2(const char *alpha2)
276 {
277         if (!alpha2)
278                 return false;
279         /*
280          * Special case where regulatory domain is the
281          * result of an intersection between two regulatory domain
282          * structures
283          */
284         if (alpha2[0] == '9' && alpha2[1] == '8')
285                 return true;
286         return false;
287 }
288
289 static bool is_an_alpha2(const char *alpha2)
290 {
291         if (!alpha2)
292                 return false;
293         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
294                 return true;
295         return false;
296 }
297
298 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
299 {
300         if (!alpha2_x || !alpha2_y)
301                 return false;
302         if (alpha2_x[0] == alpha2_y[0] &&
303                 alpha2_x[1] == alpha2_y[1])
304                 return true;
305         return false;
306 }
307
308 static bool regdom_changes(const char *alpha2)
309 {
310         assert_cfg80211_lock();
311
312         if (!cfg80211_regdomain)
313                 return true;
314         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
315                 return false;
316         return true;
317 }
318
319 /**
320  * country_ie_integrity_changes - tells us if the country IE has changed
321  * @checksum: checksum of country IE of fields we are interested in
322  *
323  * If the country IE has not changed you can ignore it safely. This is
324  * useful to determine if two devices are seeing two different country IEs
325  * even on the same alpha2. Note that this will return false if no IE has
326  * been set on the wireless core yet.
327  */
328 static bool country_ie_integrity_changes(u32 checksum)
329 {
330         /* If no IE has been set then the checksum doesn't change */
331         if (unlikely(!last_request->country_ie_checksum))
332                 return false;
333         if (unlikely(last_request->country_ie_checksum != checksum))
334                 return true;
335         return false;
336 }
337
338 /*
339  * This lets us keep regulatory code which is updated on a regulatory
340  * basis in userspace.
341  */
342 static int call_crda(const char *alpha2)
343 {
344         char country_env[9 + 2] = "COUNTRY=";
345         char *envp[] = {
346                 country_env,
347                 NULL
348         };
349
350         if (!is_world_regdom((char *) alpha2))
351                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
352                         alpha2[0], alpha2[1]);
353         else
354                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
355                         "regulatory domain\n");
356
357         country_env[8] = alpha2[0];
358         country_env[9] = alpha2[1];
359
360         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
361 }
362
363 /* Used by nl80211 before kmalloc'ing our regulatory domain */
364 bool reg_is_valid_request(const char *alpha2)
365 {
366         assert_cfg80211_lock();
367
368         if (!last_request)
369                 return false;
370
371         return alpha2_equal(last_request->alpha2, alpha2);
372 }
373
374 /* Sanity check on a regulatory rule */
375 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
376 {
377         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
378         u32 freq_diff;
379
380         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
381                 return false;
382
383         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
384                 return false;
385
386         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
387
388         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
389                         freq_range->max_bandwidth_khz > freq_diff)
390                 return false;
391
392         return true;
393 }
394
395 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
396 {
397         const struct ieee80211_reg_rule *reg_rule = NULL;
398         unsigned int i;
399
400         if (!rd->n_reg_rules)
401                 return false;
402
403         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
404                 return false;
405
406         for (i = 0; i < rd->n_reg_rules; i++) {
407                 reg_rule = &rd->reg_rules[i];
408                 if (!is_valid_reg_rule(reg_rule))
409                         return false;
410         }
411
412         return true;
413 }
414
415 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
416                             u32 center_freq_khz,
417                             u32 bw_khz)
418 {
419         u32 start_freq_khz, end_freq_khz;
420
421         start_freq_khz = center_freq_khz - (bw_khz/2);
422         end_freq_khz = center_freq_khz + (bw_khz/2);
423
424         if (start_freq_khz >= freq_range->start_freq_khz &&
425             end_freq_khz <= freq_range->end_freq_khz)
426                 return true;
427
428         return false;
429 }
430
431 /**
432  * freq_in_rule_band - tells us if a frequency is in a frequency band
433  * @freq_range: frequency rule we want to query
434  * @freq_khz: frequency we are inquiring about
435  *
436  * This lets us know if a specific frequency rule is or is not relevant to
437  * a specific frequency's band. Bands are device specific and artificial
438  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
439  * safe for now to assume that a frequency rule should not be part of a
440  * frequency's band if the start freq or end freq are off by more than 2 GHz.
441  * This resolution can be lowered and should be considered as we add
442  * regulatory rule support for other "bands".
443  **/
444 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
445         u32 freq_khz)
446 {
447 #define ONE_GHZ_IN_KHZ  1000000
448         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
449                 return true;
450         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
451                 return true;
452         return false;
453 #undef ONE_GHZ_IN_KHZ
454 }
455
456 /*
457  * Converts a country IE to a regulatory domain. A regulatory domain
458  * structure has a lot of information which the IE doesn't yet have,
459  * so for the other values we use upper max values as we will intersect
460  * with our userspace regulatory agent to get lower bounds.
461  */
462 static struct ieee80211_regdomain *country_ie_2_rd(
463                                 u8 *country_ie,
464                                 u8 country_ie_len,
465                                 u32 *checksum)
466 {
467         struct ieee80211_regdomain *rd = NULL;
468         unsigned int i = 0;
469         char alpha2[2];
470         u32 flags = 0;
471         u32 num_rules = 0, size_of_regd = 0;
472         u8 *triplets_start = NULL;
473         u8 len_at_triplet = 0;
474         /* the last channel we have registered in a subband (triplet) */
475         int last_sub_max_channel = 0;
476
477         *checksum = 0xDEADBEEF;
478
479         /* Country IE requirements */
480         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
481                 country_ie_len & 0x01);
482
483         alpha2[0] = country_ie[0];
484         alpha2[1] = country_ie[1];
485
486         /*
487          * Third octet can be:
488          *    'I' - Indoor
489          *    'O' - Outdoor
490          *
491          *  anything else we assume is no restrictions
492          */
493         if (country_ie[2] == 'I')
494                 flags = NL80211_RRF_NO_OUTDOOR;
495         else if (country_ie[2] == 'O')
496                 flags = NL80211_RRF_NO_INDOOR;
497
498         country_ie += 3;
499         country_ie_len -= 3;
500
501         triplets_start = country_ie;
502         len_at_triplet = country_ie_len;
503
504         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
505
506         /*
507          * We need to build a reg rule for each triplet, but first we must
508          * calculate the number of reg rules we will need. We will need one
509          * for each channel subband
510          */
511         while (country_ie_len >= 3) {
512                 int end_channel = 0;
513                 struct ieee80211_country_ie_triplet *triplet =
514                         (struct ieee80211_country_ie_triplet *) country_ie;
515                 int cur_sub_max_channel = 0, cur_channel = 0;
516
517                 if (triplet->ext.reg_extension_id >=
518                                 IEEE80211_COUNTRY_EXTENSION_ID) {
519                         country_ie += 3;
520                         country_ie_len -= 3;
521                         continue;
522                 }
523
524                 /* 2 GHz */
525                 if (triplet->chans.first_channel <= 14)
526                         end_channel = triplet->chans.first_channel +
527                                 triplet->chans.num_channels;
528                 else
529                         /*
530                          * 5 GHz -- For example in country IEs if the first
531                          * channel given is 36 and the number of channels is 4
532                          * then the individual channel numbers defined for the
533                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
534                          * and not 36, 37, 38, 39.
535                          *
536                          * See: http://tinyurl.com/11d-clarification
537                          */
538                         end_channel =  triplet->chans.first_channel +
539                                 (4 * (triplet->chans.num_channels - 1));
540
541                 cur_channel = triplet->chans.first_channel;
542                 cur_sub_max_channel = end_channel;
543
544                 /* Basic sanity check */
545                 if (cur_sub_max_channel < cur_channel)
546                         return NULL;
547
548                 /*
549                  * Do not allow overlapping channels. Also channels
550                  * passed in each subband must be monotonically
551                  * increasing
552                  */
553                 if (last_sub_max_channel) {
554                         if (cur_channel <= last_sub_max_channel)
555                                 return NULL;
556                         if (cur_sub_max_channel <= last_sub_max_channel)
557                                 return NULL;
558                 }
559
560                 /*
561                  * When dot11RegulatoryClassesRequired is supported
562                  * we can throw ext triplets as part of this soup,
563                  * for now we don't care when those change as we
564                  * don't support them
565                  */
566                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
567                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
568                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
569
570                 last_sub_max_channel = cur_sub_max_channel;
571
572                 country_ie += 3;
573                 country_ie_len -= 3;
574                 num_rules++;
575
576                 /*
577                  * Note: this is not a IEEE requirement but
578                  * simply a memory requirement
579                  */
580                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
581                         return NULL;
582         }
583
584         country_ie = triplets_start;
585         country_ie_len = len_at_triplet;
586
587         size_of_regd = sizeof(struct ieee80211_regdomain) +
588                 (num_rules * sizeof(struct ieee80211_reg_rule));
589
590         rd = kzalloc(size_of_regd, GFP_KERNEL);
591         if (!rd)
592                 return NULL;
593
594         rd->n_reg_rules = num_rules;
595         rd->alpha2[0] = alpha2[0];
596         rd->alpha2[1] = alpha2[1];
597
598         /* This time around we fill in the rd */
599         while (country_ie_len >= 3) {
600                 int end_channel = 0;
601                 struct ieee80211_country_ie_triplet *triplet =
602                         (struct ieee80211_country_ie_triplet *) country_ie;
603                 struct ieee80211_reg_rule *reg_rule = NULL;
604                 struct ieee80211_freq_range *freq_range = NULL;
605                 struct ieee80211_power_rule *power_rule = NULL;
606
607                 /*
608                  * Must parse if dot11RegulatoryClassesRequired is true,
609                  * we don't support this yet
610                  */
611                 if (triplet->ext.reg_extension_id >=
612                                 IEEE80211_COUNTRY_EXTENSION_ID) {
613                         country_ie += 3;
614                         country_ie_len -= 3;
615                         continue;
616                 }
617
618                 reg_rule = &rd->reg_rules[i];
619                 freq_range = &reg_rule->freq_range;
620                 power_rule = &reg_rule->power_rule;
621
622                 reg_rule->flags = flags;
623
624                 /* 2 GHz */
625                 if (triplet->chans.first_channel <= 14)
626                         end_channel = triplet->chans.first_channel +
627                                 triplet->chans.num_channels;
628                 else
629                         end_channel =  triplet->chans.first_channel +
630                                 (4 * (triplet->chans.num_channels - 1));
631
632                 /*
633                  * The +10 is since the regulatory domain expects
634                  * the actual band edge, not the center of freq for
635                  * its start and end freqs, assuming 20 MHz bandwidth on
636                  * the channels passed
637                  */
638                 freq_range->start_freq_khz =
639                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
640                                 triplet->chans.first_channel) - 10);
641                 freq_range->end_freq_khz =
642                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
643                                 end_channel) + 10);
644
645                 /*
646                  * These are large arbitrary values we use to intersect later.
647                  * Increment this if we ever support >= 40 MHz channels
648                  * in IEEE 802.11
649                  */
650                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
651                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
652                 power_rule->max_eirp = DBM_TO_MBM(100);
653
654                 country_ie += 3;
655                 country_ie_len -= 3;
656                 i++;
657
658                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
659         }
660
661         return rd;
662 }
663
664
665 /*
666  * Helper for regdom_intersect(), this does the real
667  * mathematical intersection fun
668  */
669 static int reg_rules_intersect(
670         const struct ieee80211_reg_rule *rule1,
671         const struct ieee80211_reg_rule *rule2,
672         struct ieee80211_reg_rule *intersected_rule)
673 {
674         const struct ieee80211_freq_range *freq_range1, *freq_range2;
675         struct ieee80211_freq_range *freq_range;
676         const struct ieee80211_power_rule *power_rule1, *power_rule2;
677         struct ieee80211_power_rule *power_rule;
678         u32 freq_diff;
679
680         freq_range1 = &rule1->freq_range;
681         freq_range2 = &rule2->freq_range;
682         freq_range = &intersected_rule->freq_range;
683
684         power_rule1 = &rule1->power_rule;
685         power_rule2 = &rule2->power_rule;
686         power_rule = &intersected_rule->power_rule;
687
688         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
689                 freq_range2->start_freq_khz);
690         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
691                 freq_range2->end_freq_khz);
692         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
693                 freq_range2->max_bandwidth_khz);
694
695         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
696         if (freq_range->max_bandwidth_khz > freq_diff)
697                 freq_range->max_bandwidth_khz = freq_diff;
698
699         power_rule->max_eirp = min(power_rule1->max_eirp,
700                 power_rule2->max_eirp);
701         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
702                 power_rule2->max_antenna_gain);
703
704         intersected_rule->flags = (rule1->flags | rule2->flags);
705
706         if (!is_valid_reg_rule(intersected_rule))
707                 return -EINVAL;
708
709         return 0;
710 }
711
712 /**
713  * regdom_intersect - do the intersection between two regulatory domains
714  * @rd1: first regulatory domain
715  * @rd2: second regulatory domain
716  *
717  * Use this function to get the intersection between two regulatory domains.
718  * Once completed we will mark the alpha2 for the rd as intersected, "98",
719  * as no one single alpha2 can represent this regulatory domain.
720  *
721  * Returns a pointer to the regulatory domain structure which will hold the
722  * resulting intersection of rules between rd1 and rd2. We will
723  * kzalloc() this structure for you.
724  */
725 static struct ieee80211_regdomain *regdom_intersect(
726         const struct ieee80211_regdomain *rd1,
727         const struct ieee80211_regdomain *rd2)
728 {
729         int r, size_of_regd;
730         unsigned int x, y;
731         unsigned int num_rules = 0, rule_idx = 0;
732         const struct ieee80211_reg_rule *rule1, *rule2;
733         struct ieee80211_reg_rule *intersected_rule;
734         struct ieee80211_regdomain *rd;
735         /* This is just a dummy holder to help us count */
736         struct ieee80211_reg_rule irule;
737
738         /* Uses the stack temporarily for counter arithmetic */
739         intersected_rule = &irule;
740
741         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
742
743         if (!rd1 || !rd2)
744                 return NULL;
745
746         /*
747          * First we get a count of the rules we'll need, then we actually
748          * build them. This is to so we can malloc() and free() a
749          * regdomain once. The reason we use reg_rules_intersect() here
750          * is it will return -EINVAL if the rule computed makes no sense.
751          * All rules that do check out OK are valid.
752          */
753
754         for (x = 0; x < rd1->n_reg_rules; x++) {
755                 rule1 = &rd1->reg_rules[x];
756                 for (y = 0; y < rd2->n_reg_rules; y++) {
757                         rule2 = &rd2->reg_rules[y];
758                         if (!reg_rules_intersect(rule1, rule2,
759                                         intersected_rule))
760                                 num_rules++;
761                         memset(intersected_rule, 0,
762                                         sizeof(struct ieee80211_reg_rule));
763                 }
764         }
765
766         if (!num_rules)
767                 return NULL;
768
769         size_of_regd = sizeof(struct ieee80211_regdomain) +
770                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
771
772         rd = kzalloc(size_of_regd, GFP_KERNEL);
773         if (!rd)
774                 return NULL;
775
776         for (x = 0; x < rd1->n_reg_rules; x++) {
777                 rule1 = &rd1->reg_rules[x];
778                 for (y = 0; y < rd2->n_reg_rules; y++) {
779                         rule2 = &rd2->reg_rules[y];
780                         /*
781                          * This time around instead of using the stack lets
782                          * write to the target rule directly saving ourselves
783                          * a memcpy()
784                          */
785                         intersected_rule = &rd->reg_rules[rule_idx];
786                         r = reg_rules_intersect(rule1, rule2,
787                                 intersected_rule);
788                         /*
789                          * No need to memset here the intersected rule here as
790                          * we're not using the stack anymore
791                          */
792                         if (r)
793                                 continue;
794                         rule_idx++;
795                 }
796         }
797
798         if (rule_idx != num_rules) {
799                 kfree(rd);
800                 return NULL;
801         }
802
803         rd->n_reg_rules = num_rules;
804         rd->alpha2[0] = '9';
805         rd->alpha2[1] = '8';
806
807         return rd;
808 }
809
810 /*
811  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
812  * want to just have the channel structure use these
813  */
814 static u32 map_regdom_flags(u32 rd_flags)
815 {
816         u32 channel_flags = 0;
817         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
818                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
819         if (rd_flags & NL80211_RRF_NO_IBSS)
820                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
821         if (rd_flags & NL80211_RRF_DFS)
822                 channel_flags |= IEEE80211_CHAN_RADAR;
823         return channel_flags;
824 }
825
826 static int freq_reg_info_regd(struct wiphy *wiphy,
827                               u32 center_freq,
828                               u32 desired_bw_khz,
829                               const struct ieee80211_reg_rule **reg_rule,
830                               const struct ieee80211_regdomain *custom_regd)
831 {
832         int i;
833         bool band_rule_found = false;
834         const struct ieee80211_regdomain *regd;
835         bool bw_fits = false;
836
837         if (!desired_bw_khz)
838                 desired_bw_khz = MHZ_TO_KHZ(20);
839
840         regd = custom_regd ? custom_regd : cfg80211_regdomain;
841
842         /*
843          * Follow the driver's regulatory domain, if present, unless a country
844          * IE has been processed or a user wants to help complaince further
845          */
846         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
847             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
848             wiphy->regd)
849                 regd = wiphy->regd;
850
851         if (!regd)
852                 return -EINVAL;
853
854         for (i = 0; i < regd->n_reg_rules; i++) {
855                 const struct ieee80211_reg_rule *rr;
856                 const struct ieee80211_freq_range *fr = NULL;
857                 const struct ieee80211_power_rule *pr = NULL;
858
859                 rr = &regd->reg_rules[i];
860                 fr = &rr->freq_range;
861                 pr = &rr->power_rule;
862
863                 /*
864                  * We only need to know if one frequency rule was
865                  * was in center_freq's band, that's enough, so lets
866                  * not overwrite it once found
867                  */
868                 if (!band_rule_found)
869                         band_rule_found = freq_in_rule_band(fr, center_freq);
870
871                 bw_fits = reg_does_bw_fit(fr,
872                                           center_freq,
873                                           desired_bw_khz);
874
875                 if (band_rule_found && bw_fits) {
876                         *reg_rule = rr;
877                         return 0;
878                 }
879         }
880
881         if (!band_rule_found)
882                 return -ERANGE;
883
884         return -EINVAL;
885 }
886 EXPORT_SYMBOL(freq_reg_info);
887
888 int freq_reg_info(struct wiphy *wiphy,
889                   u32 center_freq,
890                   u32 desired_bw_khz,
891                   const struct ieee80211_reg_rule **reg_rule)
892 {
893         assert_cfg80211_lock();
894         return freq_reg_info_regd(wiphy,
895                                   center_freq,
896                                   desired_bw_khz,
897                                   reg_rule,
898                                   NULL);
899 }
900
901 /*
902  * Note that right now we assume the desired channel bandwidth
903  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
904  * per channel, the primary and the extension channel). To support
905  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
906  * new ieee80211_channel.target_bw and re run the regulatory check
907  * on the wiphy with the target_bw specified. Then we can simply use
908  * that below for the desired_bw_khz below.
909  */
910 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
911                            unsigned int chan_idx)
912 {
913         int r;
914         u32 flags, bw_flags = 0;
915         u32 desired_bw_khz = MHZ_TO_KHZ(20);
916         const struct ieee80211_reg_rule *reg_rule = NULL;
917         const struct ieee80211_power_rule *power_rule = NULL;
918         const struct ieee80211_freq_range *freq_range = NULL;
919         struct ieee80211_supported_band *sband;
920         struct ieee80211_channel *chan;
921         struct wiphy *request_wiphy = NULL;
922
923         assert_cfg80211_lock();
924
925         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
926
927         sband = wiphy->bands[band];
928         BUG_ON(chan_idx >= sband->n_channels);
929         chan = &sband->channels[chan_idx];
930
931         flags = chan->orig_flags;
932
933         r = freq_reg_info(wiphy,
934                           MHZ_TO_KHZ(chan->center_freq),
935                           desired_bw_khz,
936                           &reg_rule);
937
938         if (r) {
939                 /*
940                  * This means no regulatory rule was found in the country IE
941                  * with a frequency range on the center_freq's band, since
942                  * IEEE-802.11 allows for a country IE to have a subset of the
943                  * regulatory information provided in a country we ignore
944                  * disabling the channel unless at least one reg rule was
945                  * found on the center_freq's band. For details see this
946                  * clarification:
947                  *
948                  * http://tinyurl.com/11d-clarification
949                  */
950                 if (r == -ERANGE &&
951                     last_request->initiator ==
952                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
953 #ifdef CONFIG_CFG80211_REG_DEBUG
954                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
955                                 "intact on %s - no rule found in band on "
956                                 "Country IE\n",
957                                 chan->center_freq, wiphy_name(wiphy));
958 #endif
959                 } else {
960                 /*
961                  * In this case we know the country IE has at least one reg rule
962                  * for the band so we respect its band definitions
963                  */
964 #ifdef CONFIG_CFG80211_REG_DEBUG
965                         if (last_request->initiator ==
966                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
967                                 printk(KERN_DEBUG "cfg80211: Disabling "
968                                         "channel %d MHz on %s due to "
969                                         "Country IE\n",
970                                         chan->center_freq, wiphy_name(wiphy));
971 #endif
972                         flags |= IEEE80211_CHAN_DISABLED;
973                         chan->flags = flags;
974                 }
975                 return;
976         }
977
978         power_rule = &reg_rule->power_rule;
979         freq_range = &reg_rule->freq_range;
980
981         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
982                 bw_flags = IEEE80211_CHAN_NO_HT40;
983
984         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
985             request_wiphy && request_wiphy == wiphy &&
986             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
987                 /*
988                  * This gaurantees the driver's requested regulatory domain
989                  * will always be used as a base for further regulatory
990                  * settings
991                  */
992                 chan->flags = chan->orig_flags =
993                         map_regdom_flags(reg_rule->flags) | bw_flags;
994                 chan->max_antenna_gain = chan->orig_mag =
995                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
996                 chan->max_power = chan->orig_mpwr =
997                         (int) MBM_TO_DBM(power_rule->max_eirp);
998                 return;
999         }
1000
1001         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1002         chan->max_antenna_gain = min(chan->orig_mag,
1003                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1004         if (chan->orig_mpwr)
1005                 chan->max_power = min(chan->orig_mpwr,
1006                         (int) MBM_TO_DBM(power_rule->max_eirp));
1007         else
1008                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1009 }
1010
1011 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1012 {
1013         unsigned int i;
1014         struct ieee80211_supported_band *sband;
1015
1016         BUG_ON(!wiphy->bands[band]);
1017         sband = wiphy->bands[band];
1018
1019         for (i = 0; i < sband->n_channels; i++)
1020                 handle_channel(wiphy, band, i);
1021 }
1022
1023 static bool ignore_reg_update(struct wiphy *wiphy,
1024                               enum nl80211_reg_initiator initiator)
1025 {
1026         if (!last_request)
1027                 return true;
1028         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1029             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1030                 return true;
1031         /*
1032          * wiphy->regd will be set once the device has its own
1033          * desired regulatory domain set
1034          */
1035         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1036             !is_world_regdom(last_request->alpha2))
1037                 return true;
1038         return false;
1039 }
1040
1041 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1042 {
1043         struct cfg80211_registered_device *rdev;
1044
1045         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1046                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1047 }
1048
1049 static void handle_reg_beacon(struct wiphy *wiphy,
1050                               unsigned int chan_idx,
1051                               struct reg_beacon *reg_beacon)
1052 {
1053         struct ieee80211_supported_band *sband;
1054         struct ieee80211_channel *chan;
1055         bool channel_changed = false;
1056         struct ieee80211_channel chan_before;
1057
1058         assert_cfg80211_lock();
1059
1060         sband = wiphy->bands[reg_beacon->chan.band];
1061         chan = &sband->channels[chan_idx];
1062
1063         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1064                 return;
1065
1066         if (chan->beacon_found)
1067                 return;
1068
1069         chan->beacon_found = true;
1070
1071         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1072                 return;
1073
1074         chan_before.center_freq = chan->center_freq;
1075         chan_before.flags = chan->flags;
1076
1077         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1078                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1079                 channel_changed = true;
1080         }
1081
1082         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1083                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1084                 channel_changed = true;
1085         }
1086
1087         if (channel_changed)
1088                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1089 }
1090
1091 /*
1092  * Called when a scan on a wiphy finds a beacon on
1093  * new channel
1094  */
1095 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1096                                     struct reg_beacon *reg_beacon)
1097 {
1098         unsigned int i;
1099         struct ieee80211_supported_band *sband;
1100
1101         assert_cfg80211_lock();
1102
1103         if (!wiphy->bands[reg_beacon->chan.band])
1104                 return;
1105
1106         sband = wiphy->bands[reg_beacon->chan.band];
1107
1108         for (i = 0; i < sband->n_channels; i++)
1109                 handle_reg_beacon(wiphy, i, reg_beacon);
1110 }
1111
1112 /*
1113  * Called upon reg changes or a new wiphy is added
1114  */
1115 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1116 {
1117         unsigned int i;
1118         struct ieee80211_supported_band *sband;
1119         struct reg_beacon *reg_beacon;
1120
1121         assert_cfg80211_lock();
1122
1123         if (list_empty(&reg_beacon_list))
1124                 return;
1125
1126         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1127                 if (!wiphy->bands[reg_beacon->chan.band])
1128                         continue;
1129                 sband = wiphy->bands[reg_beacon->chan.band];
1130                 for (i = 0; i < sband->n_channels; i++)
1131                         handle_reg_beacon(wiphy, i, reg_beacon);
1132         }
1133 }
1134
1135 static bool reg_is_world_roaming(struct wiphy *wiphy)
1136 {
1137         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1138             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1139                 return true;
1140         if (last_request &&
1141             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1142             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1143                 return true;
1144         return false;
1145 }
1146
1147 /* Reap the advantages of previously found beacons */
1148 static void reg_process_beacons(struct wiphy *wiphy)
1149 {
1150         /*
1151          * Means we are just firing up cfg80211, so no beacons would
1152          * have been processed yet.
1153          */
1154         if (!last_request)
1155                 return;
1156         if (!reg_is_world_roaming(wiphy))
1157                 return;
1158         wiphy_update_beacon_reg(wiphy);
1159 }
1160
1161 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1162 {
1163         if (!chan)
1164                 return true;
1165         if (chan->flags & IEEE80211_CHAN_DISABLED)
1166                 return true;
1167         /* This would happen when regulatory rules disallow HT40 completely */
1168         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1169                 return true;
1170         return false;
1171 }
1172
1173 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1174                                          enum ieee80211_band band,
1175                                          unsigned int chan_idx)
1176 {
1177         struct ieee80211_supported_band *sband;
1178         struct ieee80211_channel *channel;
1179         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1180         unsigned int i;
1181
1182         assert_cfg80211_lock();
1183
1184         sband = wiphy->bands[band];
1185         BUG_ON(chan_idx >= sband->n_channels);
1186         channel = &sband->channels[chan_idx];
1187
1188         if (is_ht40_not_allowed(channel)) {
1189                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1190                 return;
1191         }
1192
1193         /*
1194          * We need to ensure the extension channels exist to
1195          * be able to use HT40- or HT40+, this finds them (or not)
1196          */
1197         for (i = 0; i < sband->n_channels; i++) {
1198                 struct ieee80211_channel *c = &sband->channels[i];
1199                 if (c->center_freq == (channel->center_freq - 20))
1200                         channel_before = c;
1201                 if (c->center_freq == (channel->center_freq + 20))
1202                         channel_after = c;
1203         }
1204
1205         /*
1206          * Please note that this assumes target bandwidth is 20 MHz,
1207          * if that ever changes we also need to change the below logic
1208          * to include that as well.
1209          */
1210         if (is_ht40_not_allowed(channel_before))
1211                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1212         else
1213                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1214
1215         if (is_ht40_not_allowed(channel_after))
1216                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1217         else
1218                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1219 }
1220
1221 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1222                                       enum ieee80211_band band)
1223 {
1224         unsigned int i;
1225         struct ieee80211_supported_band *sband;
1226
1227         BUG_ON(!wiphy->bands[band]);
1228         sband = wiphy->bands[band];
1229
1230         for (i = 0; i < sband->n_channels; i++)
1231                 reg_process_ht_flags_channel(wiphy, band, i);
1232 }
1233
1234 static void reg_process_ht_flags(struct wiphy *wiphy)
1235 {
1236         enum ieee80211_band band;
1237
1238         if (!wiphy)
1239                 return;
1240
1241         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1242                 if (wiphy->bands[band])
1243                         reg_process_ht_flags_band(wiphy, band);
1244         }
1245
1246 }
1247
1248 void wiphy_update_regulatory(struct wiphy *wiphy,
1249                              enum nl80211_reg_initiator initiator)
1250 {
1251         enum ieee80211_band band;
1252
1253         if (ignore_reg_update(wiphy, initiator))
1254                 goto out;
1255         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1256                 if (wiphy->bands[band])
1257                         handle_band(wiphy, band);
1258         }
1259 out:
1260         reg_process_beacons(wiphy);
1261         reg_process_ht_flags(wiphy);
1262         if (wiphy->reg_notifier)
1263                 wiphy->reg_notifier(wiphy, last_request);
1264 }
1265
1266 static void handle_channel_custom(struct wiphy *wiphy,
1267                                   enum ieee80211_band band,
1268                                   unsigned int chan_idx,
1269                                   const struct ieee80211_regdomain *regd)
1270 {
1271         int r;
1272         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1273         u32 bw_flags = 0;
1274         const struct ieee80211_reg_rule *reg_rule = NULL;
1275         const struct ieee80211_power_rule *power_rule = NULL;
1276         const struct ieee80211_freq_range *freq_range = NULL;
1277         struct ieee80211_supported_band *sband;
1278         struct ieee80211_channel *chan;
1279
1280         assert_reg_lock();
1281
1282         sband = wiphy->bands[band];
1283         BUG_ON(chan_idx >= sband->n_channels);
1284         chan = &sband->channels[chan_idx];
1285
1286         r = freq_reg_info_regd(wiphy,
1287                                MHZ_TO_KHZ(chan->center_freq),
1288                                desired_bw_khz,
1289                                &reg_rule,
1290                                regd);
1291
1292         if (r) {
1293                 chan->flags = IEEE80211_CHAN_DISABLED;
1294                 return;
1295         }
1296
1297         power_rule = &reg_rule->power_rule;
1298         freq_range = &reg_rule->freq_range;
1299
1300         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1301                 bw_flags = IEEE80211_CHAN_NO_HT40;
1302
1303         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1304         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1305         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1306 }
1307
1308 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1309                                const struct ieee80211_regdomain *regd)
1310 {
1311         unsigned int i;
1312         struct ieee80211_supported_band *sband;
1313
1314         BUG_ON(!wiphy->bands[band]);
1315         sband = wiphy->bands[band];
1316
1317         for (i = 0; i < sband->n_channels; i++)
1318                 handle_channel_custom(wiphy, band, i, regd);
1319 }
1320
1321 /* Used by drivers prior to wiphy registration */
1322 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1323                                    const struct ieee80211_regdomain *regd)
1324 {
1325         enum ieee80211_band band;
1326         unsigned int bands_set = 0;
1327
1328         mutex_lock(&reg_mutex);
1329         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1330                 if (!wiphy->bands[band])
1331                         continue;
1332                 handle_band_custom(wiphy, band, regd);
1333                 bands_set++;
1334         }
1335         mutex_unlock(&reg_mutex);
1336
1337         /*
1338          * no point in calling this if it won't have any effect
1339          * on your device's supportd bands.
1340          */
1341         WARN_ON(!bands_set);
1342 }
1343 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1344
1345 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1346                          const struct ieee80211_regdomain *src_regd)
1347 {
1348         struct ieee80211_regdomain *regd;
1349         int size_of_regd = 0;
1350         unsigned int i;
1351
1352         size_of_regd = sizeof(struct ieee80211_regdomain) +
1353           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1354
1355         regd = kzalloc(size_of_regd, GFP_KERNEL);
1356         if (!regd)
1357                 return -ENOMEM;
1358
1359         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1360
1361         for (i = 0; i < src_regd->n_reg_rules; i++)
1362                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1363                         sizeof(struct ieee80211_reg_rule));
1364
1365         *dst_regd = regd;
1366         return 0;
1367 }
1368
1369 /*
1370  * Return value which can be used by ignore_request() to indicate
1371  * it has been determined we should intersect two regulatory domains
1372  */
1373 #define REG_INTERSECT   1
1374
1375 /* This has the logic which determines when a new request
1376  * should be ignored. */
1377 static int ignore_request(struct wiphy *wiphy,
1378                           struct regulatory_request *pending_request)
1379 {
1380         struct wiphy *last_wiphy = NULL;
1381
1382         assert_cfg80211_lock();
1383
1384         /* All initial requests are respected */
1385         if (!last_request)
1386                 return 0;
1387
1388         switch (pending_request->initiator) {
1389         case NL80211_REGDOM_SET_BY_CORE:
1390                 return -EINVAL;
1391         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1392
1393                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1394
1395                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1396                         return -EINVAL;
1397                 if (last_request->initiator ==
1398                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1399                         if (last_wiphy != wiphy) {
1400                                 /*
1401                                  * Two cards with two APs claiming different
1402                                  * Country IE alpha2s. We could
1403                                  * intersect them, but that seems unlikely
1404                                  * to be correct. Reject second one for now.
1405                                  */
1406                                 if (regdom_changes(pending_request->alpha2))
1407                                         return -EOPNOTSUPP;
1408                                 return -EALREADY;
1409                         }
1410                         /*
1411                          * Two consecutive Country IE hints on the same wiphy.
1412                          * This should be picked up early by the driver/stack
1413                          */
1414                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1415                                 return 0;
1416                         return -EALREADY;
1417                 }
1418                 return REG_INTERSECT;
1419         case NL80211_REGDOM_SET_BY_DRIVER:
1420                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1421                         if (is_old_static_regdom(cfg80211_regdomain))
1422                                 return 0;
1423                         if (regdom_changes(pending_request->alpha2))
1424                                 return 0;
1425                         return -EALREADY;
1426                 }
1427
1428                 /*
1429                  * This would happen if you unplug and plug your card
1430                  * back in or if you add a new device for which the previously
1431                  * loaded card also agrees on the regulatory domain.
1432                  */
1433                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1434                     !regdom_changes(pending_request->alpha2))
1435                         return -EALREADY;
1436
1437                 return REG_INTERSECT;
1438         case NL80211_REGDOM_SET_BY_USER:
1439                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1440                         return REG_INTERSECT;
1441                 /*
1442                  * If the user knows better the user should set the regdom
1443                  * to their country before the IE is picked up
1444                  */
1445                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1446                           last_request->intersect)
1447                         return -EOPNOTSUPP;
1448                 /*
1449                  * Process user requests only after previous user/driver/core
1450                  * requests have been processed
1451                  */
1452                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1453                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1454                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1455                         if (regdom_changes(last_request->alpha2))
1456                                 return -EAGAIN;
1457                 }
1458
1459                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1460                     !regdom_changes(pending_request->alpha2))
1461                         return -EALREADY;
1462
1463                 return 0;
1464         }
1465
1466         return -EINVAL;
1467 }
1468
1469 /**
1470  * __regulatory_hint - hint to the wireless core a regulatory domain
1471  * @wiphy: if the hint comes from country information from an AP, this
1472  *      is required to be set to the wiphy that received the information
1473  * @pending_request: the regulatory request currently being processed
1474  *
1475  * The Wireless subsystem can use this function to hint to the wireless core
1476  * what it believes should be the current regulatory domain.
1477  *
1478  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1479  * already been set or other standard error codes.
1480  *
1481  * Caller must hold &cfg80211_mutex and &reg_mutex
1482  */
1483 static int __regulatory_hint(struct wiphy *wiphy,
1484                              struct regulatory_request *pending_request)
1485 {
1486         bool intersect = false;
1487         int r = 0;
1488
1489         assert_cfg80211_lock();
1490
1491         r = ignore_request(wiphy, pending_request);
1492
1493         if (r == REG_INTERSECT) {
1494                 if (pending_request->initiator ==
1495                     NL80211_REGDOM_SET_BY_DRIVER) {
1496                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1497                         if (r) {
1498                                 kfree(pending_request);
1499                                 return r;
1500                         }
1501                 }
1502                 intersect = true;
1503         } else if (r) {
1504                 /*
1505                  * If the regulatory domain being requested by the
1506                  * driver has already been set just copy it to the
1507                  * wiphy
1508                  */
1509                 if (r == -EALREADY &&
1510                     pending_request->initiator ==
1511                     NL80211_REGDOM_SET_BY_DRIVER) {
1512                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1513                         if (r) {
1514                                 kfree(pending_request);
1515                                 return r;
1516                         }
1517                         r = -EALREADY;
1518                         goto new_request;
1519                 }
1520                 kfree(pending_request);
1521                 return r;
1522         }
1523
1524 new_request:
1525         kfree(last_request);
1526
1527         last_request = pending_request;
1528         last_request->intersect = intersect;
1529
1530         pending_request = NULL;
1531
1532         /* When r == REG_INTERSECT we do need to call CRDA */
1533         if (r < 0) {
1534                 /*
1535                  * Since CRDA will not be called in this case as we already
1536                  * have applied the requested regulatory domain before we just
1537                  * inform userspace we have processed the request
1538                  */
1539                 if (r == -EALREADY)
1540                         nl80211_send_reg_change_event(last_request);
1541                 return r;
1542         }
1543
1544         return call_crda(last_request->alpha2);
1545 }
1546
1547 /* This processes *all* regulatory hints */
1548 static void reg_process_hint(struct regulatory_request *reg_request)
1549 {
1550         int r = 0;
1551         struct wiphy *wiphy = NULL;
1552
1553         BUG_ON(!reg_request->alpha2);
1554
1555         mutex_lock(&cfg80211_mutex);
1556         mutex_lock(&reg_mutex);
1557
1558         if (wiphy_idx_valid(reg_request->wiphy_idx))
1559                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1560
1561         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1562             !wiphy) {
1563                 kfree(reg_request);
1564                 goto out;
1565         }
1566
1567         r = __regulatory_hint(wiphy, reg_request);
1568         /* This is required so that the orig_* parameters are saved */
1569         if (r == -EALREADY && wiphy &&
1570             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1571                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1572 out:
1573         mutex_unlock(&reg_mutex);
1574         mutex_unlock(&cfg80211_mutex);
1575 }
1576
1577 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1578 static void reg_process_pending_hints(void)
1579         {
1580         struct regulatory_request *reg_request;
1581
1582         spin_lock(&reg_requests_lock);
1583         while (!list_empty(&reg_requests_list)) {
1584                 reg_request = list_first_entry(&reg_requests_list,
1585                                                struct regulatory_request,
1586                                                list);
1587                 list_del_init(&reg_request->list);
1588
1589                 spin_unlock(&reg_requests_lock);
1590                 reg_process_hint(reg_request);
1591                 spin_lock(&reg_requests_lock);
1592         }
1593         spin_unlock(&reg_requests_lock);
1594 }
1595
1596 /* Processes beacon hints -- this has nothing to do with country IEs */
1597 static void reg_process_pending_beacon_hints(void)
1598 {
1599         struct cfg80211_registered_device *rdev;
1600         struct reg_beacon *pending_beacon, *tmp;
1601
1602         /*
1603          * No need to hold the reg_mutex here as we just touch wiphys
1604          * and do not read or access regulatory variables.
1605          */
1606         mutex_lock(&cfg80211_mutex);
1607
1608         /* This goes through the _pending_ beacon list */
1609         spin_lock_bh(&reg_pending_beacons_lock);
1610
1611         if (list_empty(&reg_pending_beacons)) {
1612                 spin_unlock_bh(&reg_pending_beacons_lock);
1613                 goto out;
1614         }
1615
1616         list_for_each_entry_safe(pending_beacon, tmp,
1617                                  &reg_pending_beacons, list) {
1618
1619                 list_del_init(&pending_beacon->list);
1620
1621                 /* Applies the beacon hint to current wiphys */
1622                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1623                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1624
1625                 /* Remembers the beacon hint for new wiphys or reg changes */
1626                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1627         }
1628
1629         spin_unlock_bh(&reg_pending_beacons_lock);
1630 out:
1631         mutex_unlock(&cfg80211_mutex);
1632 }
1633
1634 static void reg_todo(struct work_struct *work)
1635 {
1636         reg_process_pending_hints();
1637         reg_process_pending_beacon_hints();
1638 }
1639
1640 static DECLARE_WORK(reg_work, reg_todo);
1641
1642 static void queue_regulatory_request(struct regulatory_request *request)
1643 {
1644         spin_lock(&reg_requests_lock);
1645         list_add_tail(&request->list, &reg_requests_list);
1646         spin_unlock(&reg_requests_lock);
1647
1648         schedule_work(&reg_work);
1649 }
1650
1651 /* Core regulatory hint -- happens once during cfg80211_init() */
1652 static int regulatory_hint_core(const char *alpha2)
1653 {
1654         struct regulatory_request *request;
1655
1656         BUG_ON(last_request);
1657
1658         request = kzalloc(sizeof(struct regulatory_request),
1659                           GFP_KERNEL);
1660         if (!request)
1661                 return -ENOMEM;
1662
1663         request->alpha2[0] = alpha2[0];
1664         request->alpha2[1] = alpha2[1];
1665         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1666
1667         queue_regulatory_request(request);
1668
1669         /*
1670          * This ensures last_request is populated once modules
1671          * come swinging in and calling regulatory hints and
1672          * wiphy_apply_custom_regulatory().
1673          */
1674         flush_scheduled_work();
1675
1676         return 0;
1677 }
1678
1679 /* User hints */
1680 int regulatory_hint_user(const char *alpha2)
1681 {
1682         struct regulatory_request *request;
1683
1684         BUG_ON(!alpha2);
1685
1686         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1687         if (!request)
1688                 return -ENOMEM;
1689
1690         request->wiphy_idx = WIPHY_IDX_STALE;
1691         request->alpha2[0] = alpha2[0];
1692         request->alpha2[1] = alpha2[1];
1693         request->initiator = NL80211_REGDOM_SET_BY_USER,
1694
1695         queue_regulatory_request(request);
1696
1697         return 0;
1698 }
1699
1700 /* Driver hints */
1701 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1702 {
1703         struct regulatory_request *request;
1704
1705         BUG_ON(!alpha2);
1706         BUG_ON(!wiphy);
1707
1708         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1709         if (!request)
1710                 return -ENOMEM;
1711
1712         request->wiphy_idx = get_wiphy_idx(wiphy);
1713
1714         /* Must have registered wiphy first */
1715         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1716
1717         request->alpha2[0] = alpha2[0];
1718         request->alpha2[1] = alpha2[1];
1719         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1720
1721         queue_regulatory_request(request);
1722
1723         return 0;
1724 }
1725 EXPORT_SYMBOL(regulatory_hint);
1726
1727 /* Caller must hold reg_mutex */
1728 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1729                         u32 country_ie_checksum)
1730 {
1731         struct wiphy *request_wiphy;
1732
1733         assert_reg_lock();
1734
1735         if (unlikely(last_request->initiator !=
1736             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1737                 return false;
1738
1739         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1740
1741         if (!request_wiphy)
1742                 return false;
1743
1744         if (likely(request_wiphy != wiphy))
1745                 return !country_ie_integrity_changes(country_ie_checksum);
1746         /*
1747          * We should not have let these through at this point, they
1748          * should have been picked up earlier by the first alpha2 check
1749          * on the device
1750          */
1751         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1752                 return true;
1753         return false;
1754 }
1755
1756 /*
1757  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1758  * therefore cannot iterate over the rdev list here.
1759  */
1760 void regulatory_hint_11d(struct wiphy *wiphy,
1761                         u8 *country_ie,
1762                         u8 country_ie_len)
1763 {
1764         struct ieee80211_regdomain *rd = NULL;
1765         char alpha2[2];
1766         u32 checksum = 0;
1767         enum environment_cap env = ENVIRON_ANY;
1768         struct regulatory_request *request;
1769
1770         mutex_lock(&reg_mutex);
1771
1772         if (unlikely(!last_request))
1773                 goto out;
1774
1775         /* IE len must be evenly divisible by 2 */
1776         if (country_ie_len & 0x01)
1777                 goto out;
1778
1779         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1780                 goto out;
1781
1782         /*
1783          * Pending country IE processing, this can happen after we
1784          * call CRDA and wait for a response if a beacon was received before
1785          * we were able to process the last regulatory_hint_11d() call
1786          */
1787         if (country_ie_regdomain)
1788                 goto out;
1789
1790         alpha2[0] = country_ie[0];
1791         alpha2[1] = country_ie[1];
1792
1793         if (country_ie[2] == 'I')
1794                 env = ENVIRON_INDOOR;
1795         else if (country_ie[2] == 'O')
1796                 env = ENVIRON_OUTDOOR;
1797
1798         /*
1799          * We will run this only upon a successful connection on cfg80211.
1800          * We leave conflict resolution to the workqueue, where can hold
1801          * cfg80211_mutex.
1802          */
1803         if (likely(last_request->initiator ==
1804             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1805             wiphy_idx_valid(last_request->wiphy_idx)))
1806                 goto out;
1807
1808         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1809         if (!rd)
1810                 goto out;
1811
1812         /*
1813          * This will not happen right now but we leave it here for the
1814          * the future when we want to add suspend/resume support and having
1815          * the user move to another country after doing so, or having the user
1816          * move to another AP. Right now we just trust the first AP.
1817          *
1818          * If we hit this before we add this support we want to be informed of
1819          * it as it would indicate a mistake in the current design
1820          */
1821         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1822                 goto free_rd_out;
1823
1824         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1825         if (!request)
1826                 goto free_rd_out;
1827
1828         /*
1829          * We keep this around for when CRDA comes back with a response so
1830          * we can intersect with that
1831          */
1832         country_ie_regdomain = rd;
1833
1834         request->wiphy_idx = get_wiphy_idx(wiphy);
1835         request->alpha2[0] = rd->alpha2[0];
1836         request->alpha2[1] = rd->alpha2[1];
1837         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1838         request->country_ie_checksum = checksum;
1839         request->country_ie_env = env;
1840
1841         mutex_unlock(&reg_mutex);
1842
1843         queue_regulatory_request(request);
1844
1845         return;
1846
1847 free_rd_out:
1848         kfree(rd);
1849 out:
1850         mutex_unlock(&reg_mutex);
1851 }
1852
1853 static bool freq_is_chan_12_13_14(u16 freq)
1854 {
1855         if (freq == ieee80211_channel_to_frequency(12) ||
1856             freq == ieee80211_channel_to_frequency(13) ||
1857             freq == ieee80211_channel_to_frequency(14))
1858                 return true;
1859         return false;
1860 }
1861
1862 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1863                                  struct ieee80211_channel *beacon_chan,
1864                                  gfp_t gfp)
1865 {
1866         struct reg_beacon *reg_beacon;
1867
1868         if (likely((beacon_chan->beacon_found ||
1869             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1870             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1871              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1872                 return 0;
1873
1874         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1875         if (!reg_beacon)
1876                 return -ENOMEM;
1877
1878 #ifdef CONFIG_CFG80211_REG_DEBUG
1879         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1880                 "frequency: %d MHz (Ch %d) on %s\n",
1881                 beacon_chan->center_freq,
1882                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1883                 wiphy_name(wiphy));
1884 #endif
1885         memcpy(&reg_beacon->chan, beacon_chan,
1886                 sizeof(struct ieee80211_channel));
1887
1888
1889         /*
1890          * Since we can be called from BH or and non-BH context
1891          * we must use spin_lock_bh()
1892          */
1893         spin_lock_bh(&reg_pending_beacons_lock);
1894         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1895         spin_unlock_bh(&reg_pending_beacons_lock);
1896
1897         schedule_work(&reg_work);
1898
1899         return 0;
1900 }
1901
1902 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1903 {
1904         unsigned int i;
1905         const struct ieee80211_reg_rule *reg_rule = NULL;
1906         const struct ieee80211_freq_range *freq_range = NULL;
1907         const struct ieee80211_power_rule *power_rule = NULL;
1908
1909         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1910                 "(max_antenna_gain, max_eirp)\n");
1911
1912         for (i = 0; i < rd->n_reg_rules; i++) {
1913                 reg_rule = &rd->reg_rules[i];
1914                 freq_range = &reg_rule->freq_range;
1915                 power_rule = &reg_rule->power_rule;
1916
1917                 /*
1918                  * There may not be documentation for max antenna gain
1919                  * in certain regions
1920                  */
1921                 if (power_rule->max_antenna_gain)
1922                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1923                                 "(%d mBi, %d mBm)\n",
1924                                 freq_range->start_freq_khz,
1925                                 freq_range->end_freq_khz,
1926                                 freq_range->max_bandwidth_khz,
1927                                 power_rule->max_antenna_gain,
1928                                 power_rule->max_eirp);
1929                 else
1930                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1931                                 "(N/A, %d mBm)\n",
1932                                 freq_range->start_freq_khz,
1933                                 freq_range->end_freq_khz,
1934                                 freq_range->max_bandwidth_khz,
1935                                 power_rule->max_eirp);
1936         }
1937 }
1938
1939 static void print_regdomain(const struct ieee80211_regdomain *rd)
1940 {
1941
1942         if (is_intersected_alpha2(rd->alpha2)) {
1943
1944                 if (last_request->initiator ==
1945                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1946                         struct cfg80211_registered_device *rdev;
1947                         rdev = cfg80211_rdev_by_wiphy_idx(
1948                                 last_request->wiphy_idx);
1949                         if (rdev) {
1950                                 printk(KERN_INFO "cfg80211: Current regulatory "
1951                                         "domain updated by AP to: %c%c\n",
1952                                         rdev->country_ie_alpha2[0],
1953                                         rdev->country_ie_alpha2[1]);
1954                         } else
1955                                 printk(KERN_INFO "cfg80211: Current regulatory "
1956                                         "domain intersected: \n");
1957                 } else
1958                                 printk(KERN_INFO "cfg80211: Current regulatory "
1959                                         "domain intersected: \n");
1960         } else if (is_world_regdom(rd->alpha2))
1961                 printk(KERN_INFO "cfg80211: World regulatory "
1962                         "domain updated:\n");
1963         else {
1964                 if (is_unknown_alpha2(rd->alpha2))
1965                         printk(KERN_INFO "cfg80211: Regulatory domain "
1966                                 "changed to driver built-in settings "
1967                                 "(unknown country)\n");
1968                 else
1969                         printk(KERN_INFO "cfg80211: Regulatory domain "
1970                                 "changed to country: %c%c\n",
1971                                 rd->alpha2[0], rd->alpha2[1]);
1972         }
1973         print_rd_rules(rd);
1974 }
1975
1976 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1977 {
1978         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1979                 rd->alpha2[0], rd->alpha2[1]);
1980         print_rd_rules(rd);
1981 }
1982
1983 #ifdef CONFIG_CFG80211_REG_DEBUG
1984 static void reg_country_ie_process_debug(
1985         const struct ieee80211_regdomain *rd,
1986         const struct ieee80211_regdomain *country_ie_regdomain,
1987         const struct ieee80211_regdomain *intersected_rd)
1988 {
1989         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1990         print_regdomain_info(country_ie_regdomain);
1991         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1992         print_regdomain_info(rd);
1993         if (intersected_rd) {
1994                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1995                         "and get:\n");
1996                 print_regdomain_info(intersected_rd);
1997                 return;
1998         }
1999         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2000 }
2001 #else
2002 static inline void reg_country_ie_process_debug(
2003         const struct ieee80211_regdomain *rd,
2004         const struct ieee80211_regdomain *country_ie_regdomain,
2005         const struct ieee80211_regdomain *intersected_rd)
2006 {
2007 }
2008 #endif
2009
2010 /* Takes ownership of rd only if it doesn't fail */
2011 static int __set_regdom(const struct ieee80211_regdomain *rd)
2012 {
2013         const struct ieee80211_regdomain *intersected_rd = NULL;
2014         struct cfg80211_registered_device *rdev = NULL;
2015         struct wiphy *request_wiphy;
2016         /* Some basic sanity checks first */
2017
2018         if (is_world_regdom(rd->alpha2)) {
2019                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2020                         return -EINVAL;
2021                 update_world_regdomain(rd);
2022                 return 0;
2023         }
2024
2025         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2026                         !is_unknown_alpha2(rd->alpha2))
2027                 return -EINVAL;
2028
2029         if (!last_request)
2030                 return -EINVAL;
2031
2032         /*
2033          * Lets only bother proceeding on the same alpha2 if the current
2034          * rd is non static (it means CRDA was present and was used last)
2035          * and the pending request came in from a country IE
2036          */
2037         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2038                 /*
2039                  * If someone else asked us to change the rd lets only bother
2040                  * checking if the alpha2 changes if CRDA was already called
2041                  */
2042                 if (!is_old_static_regdom(cfg80211_regdomain) &&
2043                     !regdom_changes(rd->alpha2))
2044                         return -EINVAL;
2045         }
2046
2047         /*
2048          * Now lets set the regulatory domain, update all driver channels
2049          * and finally inform them of what we have done, in case they want
2050          * to review or adjust their own settings based on their own
2051          * internal EEPROM data
2052          */
2053
2054         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2055                 return -EINVAL;
2056
2057         if (!is_valid_rd(rd)) {
2058                 printk(KERN_ERR "cfg80211: Invalid "
2059                         "regulatory domain detected:\n");
2060                 print_regdomain_info(rd);
2061                 return -EINVAL;
2062         }
2063
2064         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2065
2066         if (!last_request->intersect) {
2067                 int r;
2068
2069                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2070                         reset_regdomains();
2071                         cfg80211_regdomain = rd;
2072                         return 0;
2073                 }
2074
2075                 /*
2076                  * For a driver hint, lets copy the regulatory domain the
2077                  * driver wanted to the wiphy to deal with conflicts
2078                  */
2079
2080                 /*
2081                  * Userspace could have sent two replies with only
2082                  * one kernel request.
2083                  */
2084                 if (request_wiphy->regd)
2085                         return -EALREADY;
2086
2087                 r = reg_copy_regd(&request_wiphy->regd, rd);
2088                 if (r)
2089                         return r;
2090
2091                 reset_regdomains();
2092                 cfg80211_regdomain = rd;
2093                 return 0;
2094         }
2095
2096         /* Intersection requires a bit more work */
2097
2098         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2099
2100                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2101                 if (!intersected_rd)
2102                         return -EINVAL;
2103
2104                 /*
2105                  * We can trash what CRDA provided now.
2106                  * However if a driver requested this specific regulatory
2107                  * domain we keep it for its private use
2108                  */
2109                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2110                         request_wiphy->regd = rd;
2111                 else
2112                         kfree(rd);
2113
2114                 rd = NULL;
2115
2116                 reset_regdomains();
2117                 cfg80211_regdomain = intersected_rd;
2118
2119                 return 0;
2120         }
2121
2122         /*
2123          * Country IE requests are handled a bit differently, we intersect
2124          * the country IE rd with what CRDA believes that country should have
2125          */
2126
2127         /*
2128          * Userspace could have sent two replies with only
2129          * one kernel request. By the second reply we would have
2130          * already processed and consumed the country_ie_regdomain.
2131          */
2132         if (!country_ie_regdomain)
2133                 return -EALREADY;
2134         BUG_ON(rd == country_ie_regdomain);
2135
2136         /*
2137          * Intersect what CRDA returned and our what we
2138          * had built from the Country IE received
2139          */
2140
2141         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2142
2143         reg_country_ie_process_debug(rd,
2144                                      country_ie_regdomain,
2145                                      intersected_rd);
2146
2147         kfree(country_ie_regdomain);
2148         country_ie_regdomain = NULL;
2149
2150         if (!intersected_rd)
2151                 return -EINVAL;
2152
2153         rdev = wiphy_to_dev(request_wiphy);
2154
2155         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2156         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2157         rdev->env = last_request->country_ie_env;
2158
2159         BUG_ON(intersected_rd == rd);
2160
2161         kfree(rd);
2162         rd = NULL;
2163
2164         reset_regdomains();
2165         cfg80211_regdomain = intersected_rd;
2166
2167         return 0;
2168 }
2169
2170
2171 /*
2172  * Use this call to set the current regulatory domain. Conflicts with
2173  * multiple drivers can be ironed out later. Caller must've already
2174  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2175  */
2176 int set_regdom(const struct ieee80211_regdomain *rd)
2177 {
2178         int r;
2179
2180         assert_cfg80211_lock();
2181
2182         mutex_lock(&reg_mutex);
2183
2184         /* Note that this doesn't update the wiphys, this is done below */
2185         r = __set_regdom(rd);
2186         if (r) {
2187                 kfree(rd);
2188                 mutex_unlock(&reg_mutex);
2189                 return r;
2190         }
2191
2192         /* This would make this whole thing pointless */
2193         if (!last_request->intersect)
2194                 BUG_ON(rd != cfg80211_regdomain);
2195
2196         /* update all wiphys now with the new established regulatory domain */
2197         update_all_wiphy_regulatory(last_request->initiator);
2198
2199         print_regdomain(cfg80211_regdomain);
2200
2201         nl80211_send_reg_change_event(last_request);
2202
2203         mutex_unlock(&reg_mutex);
2204
2205         return r;
2206 }
2207
2208 /* Caller must hold cfg80211_mutex */
2209 void reg_device_remove(struct wiphy *wiphy)
2210 {
2211         struct wiphy *request_wiphy = NULL;
2212
2213         assert_cfg80211_lock();
2214
2215         mutex_lock(&reg_mutex);
2216
2217         kfree(wiphy->regd);
2218
2219         if (last_request)
2220                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2221
2222         if (!request_wiphy || request_wiphy != wiphy)
2223                 goto out;
2224
2225         last_request->wiphy_idx = WIPHY_IDX_STALE;
2226         last_request->country_ie_env = ENVIRON_ANY;
2227 out:
2228         mutex_unlock(&reg_mutex);
2229 }
2230
2231 int regulatory_init(void)
2232 {
2233         int err = 0;
2234
2235         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2236         if (IS_ERR(reg_pdev))
2237                 return PTR_ERR(reg_pdev);
2238
2239         spin_lock_init(&reg_requests_lock);
2240         spin_lock_init(&reg_pending_beacons_lock);
2241
2242 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2243         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2244
2245         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2246         print_regdomain_info(cfg80211_regdomain);
2247 #else
2248         cfg80211_regdomain = cfg80211_world_regdom;
2249
2250 #endif
2251         /* We always try to get an update for the static regdomain */
2252         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2253         if (err) {
2254                 if (err == -ENOMEM)
2255                         return err;
2256                 /*
2257                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2258                  * memory which is handled and propagated appropriately above
2259                  * but it can also fail during a netlink_broadcast() or during
2260                  * early boot for call_usermodehelper(). For now treat these
2261                  * errors as non-fatal.
2262                  */
2263                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2264                         "to call CRDA during init");
2265 #ifdef CONFIG_CFG80211_REG_DEBUG
2266                 /* We want to find out exactly why when debugging */
2267                 WARN_ON(err);
2268 #endif
2269         }
2270
2271         /*
2272          * Finally, if the user set the module parameter treat it
2273          * as a user hint.
2274          */
2275         if (!is_world_regdom(ieee80211_regdom))
2276                 regulatory_hint_user(ieee80211_regdom);
2277
2278         return 0;
2279 }
2280
2281 void regulatory_exit(void)
2282 {
2283         struct regulatory_request *reg_request, *tmp;
2284         struct reg_beacon *reg_beacon, *btmp;
2285
2286         cancel_work_sync(&reg_work);
2287
2288         mutex_lock(&cfg80211_mutex);
2289         mutex_lock(&reg_mutex);
2290
2291         reset_regdomains();
2292
2293         kfree(country_ie_regdomain);
2294         country_ie_regdomain = NULL;
2295
2296         kfree(last_request);
2297
2298         platform_device_unregister(reg_pdev);
2299
2300         spin_lock_bh(&reg_pending_beacons_lock);
2301         if (!list_empty(&reg_pending_beacons)) {
2302                 list_for_each_entry_safe(reg_beacon, btmp,
2303                                          &reg_pending_beacons, list) {
2304                         list_del(&reg_beacon->list);
2305                         kfree(reg_beacon);
2306                 }
2307         }
2308         spin_unlock_bh(&reg_pending_beacons_lock);
2309
2310         if (!list_empty(&reg_beacon_list)) {
2311                 list_for_each_entry_safe(reg_beacon, btmp,
2312                                          &reg_beacon_list, list) {
2313                         list_del(&reg_beacon->list);
2314                         kfree(reg_beacon);
2315                 }
2316         }
2317
2318         spin_lock(&reg_requests_lock);
2319         if (!list_empty(&reg_requests_list)) {
2320                 list_for_each_entry_safe(reg_request, tmp,
2321                                          &reg_requests_list, list) {
2322                         list_del(&reg_request->list);
2323                         kfree(reg_request);
2324                 }
2325         }
2326         spin_unlock(&reg_requests_lock);
2327
2328         mutex_unlock(&reg_mutex);
2329         mutex_unlock(&cfg80211_mutex);
2330 }