Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[safe/jmp/linux-2.6] / net / sunrpc / xprtrdma / transport.c
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39
40 /*
41  * transport.c
42  *
43  * This file contains the top-level implementation of an RPC RDMA
44  * transport.
45  *
46  * Naming convention: functions beginning with xprt_ are part of the
47  * transport switch. All others are RPC RDMA internal.
48  */
49
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/seq_file.h>
53
54 #include "xprt_rdma.h"
55
56 #ifdef RPC_DEBUG
57 # define RPCDBG_FACILITY        RPCDBG_TRANS
58 #endif
59
60 MODULE_LICENSE("Dual BSD/GPL");
61
62 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
63 MODULE_AUTHOR("Network Appliance, Inc.");
64
65 /*
66  * tunables
67  */
68
69 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
70 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
71 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
72 static unsigned int xprt_rdma_inline_write_padding;
73 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
74                 int xprt_rdma_pad_optimize = 0;
75
76 #ifdef RPC_DEBUG
77
78 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
79 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
80 static unsigned int zero;
81 static unsigned int max_padding = PAGE_SIZE;
82 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
83 static unsigned int max_memreg = RPCRDMA_LAST - 1;
84
85 static struct ctl_table_header *sunrpc_table_header;
86
87 static ctl_table xr_tunables_table[] = {
88         {
89                 .ctl_name       = CTL_UNNUMBERED,
90                 .procname       = "rdma_slot_table_entries",
91                 .data           = &xprt_rdma_slot_table_entries,
92                 .maxlen         = sizeof(unsigned int),
93                 .mode           = 0644,
94                 .proc_handler   = &proc_dointvec_minmax,
95                 .strategy       = &sysctl_intvec,
96                 .extra1         = &min_slot_table_size,
97                 .extra2         = &max_slot_table_size
98         },
99         {
100                 .ctl_name       = CTL_UNNUMBERED,
101                 .procname       = "rdma_max_inline_read",
102                 .data           = &xprt_rdma_max_inline_read,
103                 .maxlen         = sizeof(unsigned int),
104                 .mode           = 0644,
105                 .proc_handler   = &proc_dointvec,
106                 .strategy       = &sysctl_intvec,
107         },
108         {
109                 .ctl_name       = CTL_UNNUMBERED,
110                 .procname       = "rdma_max_inline_write",
111                 .data           = &xprt_rdma_max_inline_write,
112                 .maxlen         = sizeof(unsigned int),
113                 .mode           = 0644,
114                 .proc_handler   = &proc_dointvec,
115                 .strategy       = &sysctl_intvec,
116         },
117         {
118                 .ctl_name       = CTL_UNNUMBERED,
119                 .procname       = "rdma_inline_write_padding",
120                 .data           = &xprt_rdma_inline_write_padding,
121                 .maxlen         = sizeof(unsigned int),
122                 .mode           = 0644,
123                 .proc_handler   = &proc_dointvec_minmax,
124                 .strategy       = &sysctl_intvec,
125                 .extra1         = &zero,
126                 .extra2         = &max_padding,
127         },
128         {
129                 .ctl_name       = CTL_UNNUMBERED,
130                 .procname       = "rdma_memreg_strategy",
131                 .data           = &xprt_rdma_memreg_strategy,
132                 .maxlen         = sizeof(unsigned int),
133                 .mode           = 0644,
134                 .proc_handler   = &proc_dointvec_minmax,
135                 .strategy       = &sysctl_intvec,
136                 .extra1         = &min_memreg,
137                 .extra2         = &max_memreg,
138         },
139         {
140                 .ctl_name       = CTL_UNNUMBERED,
141                 .procname       = "rdma_pad_optimize",
142                 .data           = &xprt_rdma_pad_optimize,
143                 .maxlen         = sizeof(unsigned int),
144                 .mode           = 0644,
145                 .proc_handler   = &proc_dointvec,
146         },
147         {
148                 .ctl_name = 0,
149         },
150 };
151
152 static ctl_table sunrpc_table[] = {
153         {
154                 .ctl_name       = CTL_SUNRPC,
155                 .procname       = "sunrpc",
156                 .mode           = 0555,
157                 .child          = xr_tunables_table
158         },
159         {
160                 .ctl_name = 0,
161         },
162 };
163
164 #endif
165
166 static struct rpc_xprt_ops xprt_rdma_procs;     /* forward reference */
167
168 static void
169 xprt_rdma_format_addresses(struct rpc_xprt *xprt)
170 {
171         struct sockaddr *sap = (struct sockaddr *)
172                                         &rpcx_to_rdmad(xprt).addr;
173         struct sockaddr_in *sin = (struct sockaddr_in *)sap;
174         char buf[64];
175
176         (void)rpc_ntop(sap, buf, sizeof(buf));
177         xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
178
179         (void)snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
180         xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
181
182         xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
183
184         (void)snprintf(buf, sizeof(buf), "%02x%02x%02x%02x",
185                                 NIPQUAD(sin->sin_addr.s_addr));
186         xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
187
188         (void)snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
189         xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
190
191         /* netid */
192         xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
193 }
194
195 static void
196 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
197 {
198         unsigned int i;
199
200         for (i = 0; i < RPC_DISPLAY_MAX; i++)
201                 switch (i) {
202                 case RPC_DISPLAY_PROTO:
203                 case RPC_DISPLAY_NETID:
204                         continue;
205                 default:
206                         kfree(xprt->address_strings[i]);
207                 }
208 }
209
210 static void
211 xprt_rdma_connect_worker(struct work_struct *work)
212 {
213         struct rpcrdma_xprt *r_xprt =
214                 container_of(work, struct rpcrdma_xprt, rdma_connect.work);
215         struct rpc_xprt *xprt = &r_xprt->xprt;
216         int rc = 0;
217
218         if (!xprt->shutdown) {
219                 xprt_clear_connected(xprt);
220
221                 dprintk("RPC:       %s: %sconnect\n", __func__,
222                                 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
223                 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
224                 if (rc)
225                         goto out;
226         }
227         goto out_clear;
228
229 out:
230         xprt_wake_pending_tasks(xprt, rc);
231
232 out_clear:
233         dprintk("RPC:       %s: exit\n", __func__);
234         xprt_clear_connecting(xprt);
235 }
236
237 /*
238  * xprt_rdma_destroy
239  *
240  * Destroy the xprt.
241  * Free all memory associated with the object, including its own.
242  * NOTE: none of the *destroy methods free memory for their top-level
243  * objects, even though they may have allocated it (they do free
244  * private memory). It's up to the caller to handle it. In this
245  * case (RDMA transport), all structure memory is inlined with the
246  * struct rpcrdma_xprt.
247  */
248 static void
249 xprt_rdma_destroy(struct rpc_xprt *xprt)
250 {
251         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
252         int rc;
253
254         dprintk("RPC:       %s: called\n", __func__);
255
256         cancel_delayed_work(&r_xprt->rdma_connect);
257         flush_scheduled_work();
258
259         xprt_clear_connected(xprt);
260
261         rpcrdma_buffer_destroy(&r_xprt->rx_buf);
262         rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
263         if (rc)
264                 dprintk("RPC:       %s: rpcrdma_ep_destroy returned %i\n",
265                         __func__, rc);
266         rpcrdma_ia_close(&r_xprt->rx_ia);
267
268         xprt_rdma_free_addresses(xprt);
269
270         kfree(xprt->slot);
271         xprt->slot = NULL;
272         kfree(xprt);
273
274         dprintk("RPC:       %s: returning\n", __func__);
275
276         module_put(THIS_MODULE);
277 }
278
279 static const struct rpc_timeout xprt_rdma_default_timeout = {
280         .to_initval = 60 * HZ,
281         .to_maxval = 60 * HZ,
282 };
283
284 /**
285  * xprt_setup_rdma - Set up transport to use RDMA
286  *
287  * @args: rpc transport arguments
288  */
289 static struct rpc_xprt *
290 xprt_setup_rdma(struct xprt_create *args)
291 {
292         struct rpcrdma_create_data_internal cdata;
293         struct rpc_xprt *xprt;
294         struct rpcrdma_xprt *new_xprt;
295         struct rpcrdma_ep *new_ep;
296         struct sockaddr_in *sin;
297         int rc;
298
299         if (args->addrlen > sizeof(xprt->addr)) {
300                 dprintk("RPC:       %s: address too large\n", __func__);
301                 return ERR_PTR(-EBADF);
302         }
303
304         xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
305         if (xprt == NULL) {
306                 dprintk("RPC:       %s: couldn't allocate rpcrdma_xprt\n",
307                         __func__);
308                 return ERR_PTR(-ENOMEM);
309         }
310
311         xprt->max_reqs = xprt_rdma_slot_table_entries;
312         xprt->slot = kcalloc(xprt->max_reqs,
313                                 sizeof(struct rpc_rqst), GFP_KERNEL);
314         if (xprt->slot == NULL) {
315                 dprintk("RPC:       %s: couldn't allocate %d slots\n",
316                         __func__, xprt->max_reqs);
317                 kfree(xprt);
318                 return ERR_PTR(-ENOMEM);
319         }
320
321         /* 60 second timeout, no retries */
322         xprt->timeout = &xprt_rdma_default_timeout;
323         xprt->bind_timeout = (60U * HZ);
324         xprt->connect_timeout = (60U * HZ);
325         xprt->reestablish_timeout = (5U * HZ);
326         xprt->idle_timeout = (5U * 60 * HZ);
327
328         xprt->resvport = 0;             /* privileged port not needed */
329         xprt->tsh_size = 0;             /* RPC-RDMA handles framing */
330         xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
331         xprt->ops = &xprt_rdma_procs;
332
333         /*
334          * Set up RDMA-specific connect data.
335          */
336
337         /* Put server RDMA address in local cdata */
338         memcpy(&cdata.addr, args->dstaddr, args->addrlen);
339
340         /* Ensure xprt->addr holds valid server TCP (not RDMA)
341          * address, for any side protocols which peek at it */
342         xprt->prot = IPPROTO_TCP;
343         xprt->addrlen = args->addrlen;
344         memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
345
346         sin = (struct sockaddr_in *)&cdata.addr;
347         if (ntohs(sin->sin_port) != 0)
348                 xprt_set_bound(xprt);
349
350         dprintk("RPC:       %s: %pI4:%u\n",
351                 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
352
353         /* Set max requests */
354         cdata.max_requests = xprt->max_reqs;
355
356         /* Set some length limits */
357         cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
358         cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
359
360         cdata.inline_wsize = xprt_rdma_max_inline_write;
361         if (cdata.inline_wsize > cdata.wsize)
362                 cdata.inline_wsize = cdata.wsize;
363
364         cdata.inline_rsize = xprt_rdma_max_inline_read;
365         if (cdata.inline_rsize > cdata.rsize)
366                 cdata.inline_rsize = cdata.rsize;
367
368         cdata.padding = xprt_rdma_inline_write_padding;
369
370         /*
371          * Create new transport instance, which includes initialized
372          *  o ia
373          *  o endpoint
374          *  o buffers
375          */
376
377         new_xprt = rpcx_to_rdmax(xprt);
378
379         rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
380                                 xprt_rdma_memreg_strategy);
381         if (rc)
382                 goto out1;
383
384         /*
385          * initialize and create ep
386          */
387         new_xprt->rx_data = cdata;
388         new_ep = &new_xprt->rx_ep;
389         new_ep->rep_remote_addr = cdata.addr;
390
391         rc = rpcrdma_ep_create(&new_xprt->rx_ep,
392                                 &new_xprt->rx_ia, &new_xprt->rx_data);
393         if (rc)
394                 goto out2;
395
396         /*
397          * Allocate pre-registered send and receive buffers for headers and
398          * any inline data. Also specify any padding which will be provided
399          * from a preregistered zero buffer.
400          */
401         rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
402                                 &new_xprt->rx_data);
403         if (rc)
404                 goto out3;
405
406         /*
407          * Register a callback for connection events. This is necessary because
408          * connection loss notification is async. We also catch connection loss
409          * when reaping receives.
410          */
411         INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
412         new_ep->rep_func = rpcrdma_conn_func;
413         new_ep->rep_xprt = xprt;
414
415         xprt_rdma_format_addresses(xprt);
416
417         if (!try_module_get(THIS_MODULE))
418                 goto out4;
419
420         return xprt;
421
422 out4:
423         xprt_rdma_free_addresses(xprt);
424         rc = -EINVAL;
425 out3:
426         (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
427 out2:
428         rpcrdma_ia_close(&new_xprt->rx_ia);
429 out1:
430         kfree(xprt->slot);
431         kfree(xprt);
432         return ERR_PTR(rc);
433 }
434
435 /*
436  * Close a connection, during shutdown or timeout/reconnect
437  */
438 static void
439 xprt_rdma_close(struct rpc_xprt *xprt)
440 {
441         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
442
443         dprintk("RPC:       %s: closing\n", __func__);
444         if (r_xprt->rx_ep.rep_connected > 0)
445                 xprt->reestablish_timeout = 0;
446         xprt_disconnect_done(xprt);
447         (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
448 }
449
450 static void
451 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
452 {
453         struct sockaddr_in *sap;
454
455         sap = (struct sockaddr_in *)&xprt->addr;
456         sap->sin_port = htons(port);
457         sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
458         sap->sin_port = htons(port);
459         dprintk("RPC:       %s: %u\n", __func__, port);
460 }
461
462 static void
463 xprt_rdma_connect(struct rpc_task *task)
464 {
465         struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
466         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
467
468         if (!xprt_test_and_set_connecting(xprt)) {
469                 if (r_xprt->rx_ep.rep_connected != 0) {
470                         /* Reconnect */
471                         schedule_delayed_work(&r_xprt->rdma_connect,
472                                 xprt->reestablish_timeout);
473                         xprt->reestablish_timeout <<= 1;
474                         if (xprt->reestablish_timeout > (30 * HZ))
475                                 xprt->reestablish_timeout = (30 * HZ);
476                         else if (xprt->reestablish_timeout < (5 * HZ))
477                                 xprt->reestablish_timeout = (5 * HZ);
478                 } else {
479                         schedule_delayed_work(&r_xprt->rdma_connect, 0);
480                         if (!RPC_IS_ASYNC(task))
481                                 flush_scheduled_work();
482                 }
483         }
484 }
485
486 static int
487 xprt_rdma_reserve_xprt(struct rpc_task *task)
488 {
489         struct rpc_xprt *xprt = task->tk_xprt;
490         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
491         int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
492
493         /* == RPC_CWNDSCALE @ init, but *after* setup */
494         if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
495                 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
496                 dprintk("RPC:       %s: cwndscale %lu\n", __func__,
497                         r_xprt->rx_buf.rb_cwndscale);
498                 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
499         }
500         xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
501         return xprt_reserve_xprt_cong(task);
502 }
503
504 /*
505  * The RDMA allocate/free functions need the task structure as a place
506  * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
507  * sequence. For this reason, the recv buffers are attached to send
508  * buffers for portions of the RPC. Note that the RPC layer allocates
509  * both send and receive buffers in the same call. We may register
510  * the receive buffer portion when using reply chunks.
511  */
512 static void *
513 xprt_rdma_allocate(struct rpc_task *task, size_t size)
514 {
515         struct rpc_xprt *xprt = task->tk_xprt;
516         struct rpcrdma_req *req, *nreq;
517
518         req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
519         BUG_ON(NULL == req);
520
521         if (size > req->rl_size) {
522                 dprintk("RPC:       %s: size %zd too large for buffer[%zd]: "
523                         "prog %d vers %d proc %d\n",
524                         __func__, size, req->rl_size,
525                         task->tk_client->cl_prog, task->tk_client->cl_vers,
526                         task->tk_msg.rpc_proc->p_proc);
527                 /*
528                  * Outgoing length shortage. Our inline write max must have
529                  * been configured to perform direct i/o.
530                  *
531                  * This is therefore a large metadata operation, and the
532                  * allocate call was made on the maximum possible message,
533                  * e.g. containing long filename(s) or symlink data. In
534                  * fact, while these metadata operations *might* carry
535                  * large outgoing payloads, they rarely *do*. However, we
536                  * have to commit to the request here, so reallocate and
537                  * register it now. The data path will never require this
538                  * reallocation.
539                  *
540                  * If the allocation or registration fails, the RPC framework
541                  * will (doggedly) retry.
542                  */
543                 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
544                                 RPCRDMA_BOUNCEBUFFERS) {
545                         /* forced to "pure inline" */
546                         dprintk("RPC:       %s: too much data (%zd) for inline "
547                                         "(r/w max %d/%d)\n", __func__, size,
548                                         rpcx_to_rdmad(xprt).inline_rsize,
549                                         rpcx_to_rdmad(xprt).inline_wsize);
550                         size = req->rl_size;
551                         rpc_exit(task, -EIO);           /* fail the operation */
552                         rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
553                         goto out;
554                 }
555                 if (task->tk_flags & RPC_TASK_SWAPPER)
556                         nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
557                 else
558                         nreq = kmalloc(sizeof *req + size, GFP_NOFS);
559                 if (nreq == NULL)
560                         goto outfail;
561
562                 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
563                                 nreq->rl_base, size + sizeof(struct rpcrdma_req)
564                                 - offsetof(struct rpcrdma_req, rl_base),
565                                 &nreq->rl_handle, &nreq->rl_iov)) {
566                         kfree(nreq);
567                         goto outfail;
568                 }
569                 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
570                 nreq->rl_size = size;
571                 nreq->rl_niovs = 0;
572                 nreq->rl_nchunks = 0;
573                 nreq->rl_buffer = (struct rpcrdma_buffer *)req;
574                 nreq->rl_reply = req->rl_reply;
575                 memcpy(nreq->rl_segments,
576                         req->rl_segments, sizeof nreq->rl_segments);
577                 /* flag the swap with an unused field */
578                 nreq->rl_iov.length = 0;
579                 req->rl_reply = NULL;
580                 req = nreq;
581         }
582         dprintk("RPC:       %s: size %zd, request 0x%p\n", __func__, size, req);
583 out:
584         req->rl_connect_cookie = 0;     /* our reserved value */
585         return req->rl_xdr_buf;
586
587 outfail:
588         rpcrdma_buffer_put(req);
589         rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
590         return NULL;
591 }
592
593 /*
594  * This function returns all RDMA resources to the pool.
595  */
596 static void
597 xprt_rdma_free(void *buffer)
598 {
599         struct rpcrdma_req *req;
600         struct rpcrdma_xprt *r_xprt;
601         struct rpcrdma_rep *rep;
602         int i;
603
604         if (buffer == NULL)
605                 return;
606
607         req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
608         if (req->rl_iov.length == 0) {  /* see allocate above */
609                 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
610                                       struct rpcrdma_xprt, rx_buf);
611         } else
612                 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
613         rep = req->rl_reply;
614
615         dprintk("RPC:       %s: called on 0x%p%s\n",
616                 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
617
618         /*
619          * Finish the deregistration. When using mw bind, this was
620          * begun in rpcrdma_reply_handler(). In all other modes, we
621          * do it here, in thread context. The process is considered
622          * complete when the rr_func vector becomes NULL - this
623          * was put in place during rpcrdma_reply_handler() - the wait
624          * call below will not block if the dereg is "done". If
625          * interrupted, our framework will clean up.
626          */
627         for (i = 0; req->rl_nchunks;) {
628                 --req->rl_nchunks;
629                 i += rpcrdma_deregister_external(
630                         &req->rl_segments[i], r_xprt, NULL);
631         }
632
633         if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
634                 rep->rr_func = NULL;    /* abandon the callback */
635                 req->rl_reply = NULL;
636         }
637
638         if (req->rl_iov.length == 0) {  /* see allocate above */
639                 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
640                 oreq->rl_reply = req->rl_reply;
641                 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
642                                                    req->rl_handle,
643                                                    &req->rl_iov);
644                 kfree(req);
645                 req = oreq;
646         }
647
648         /* Put back request+reply buffers */
649         rpcrdma_buffer_put(req);
650 }
651
652 /*
653  * send_request invokes the meat of RPC RDMA. It must do the following:
654  *  1.  Marshal the RPC request into an RPC RDMA request, which means
655  *      putting a header in front of data, and creating IOVs for RDMA
656  *      from those in the request.
657  *  2.  In marshaling, detect opportunities for RDMA, and use them.
658  *  3.  Post a recv message to set up asynch completion, then send
659  *      the request (rpcrdma_ep_post).
660  *  4.  No partial sends are possible in the RPC-RDMA protocol (as in UDP).
661  */
662
663 static int
664 xprt_rdma_send_request(struct rpc_task *task)
665 {
666         struct rpc_rqst *rqst = task->tk_rqstp;
667         struct rpc_xprt *xprt = task->tk_xprt;
668         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
669         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
670
671         /* marshal the send itself */
672         if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
673                 r_xprt->rx_stats.failed_marshal_count++;
674                 dprintk("RPC:       %s: rpcrdma_marshal_req failed\n",
675                         __func__);
676                 return -EIO;
677         }
678
679         if (req->rl_reply == NULL)              /* e.g. reconnection */
680                 rpcrdma_recv_buffer_get(req);
681
682         if (req->rl_reply) {
683                 req->rl_reply->rr_func = rpcrdma_reply_handler;
684                 /* this need only be done once, but... */
685                 req->rl_reply->rr_xprt = xprt;
686         }
687
688         /* Must suppress retransmit to maintain credits */
689         if (req->rl_connect_cookie == xprt->connect_cookie)
690                 goto drop_connection;
691         req->rl_connect_cookie = xprt->connect_cookie;
692
693         if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
694                 goto drop_connection;
695
696         task->tk_bytes_sent += rqst->rq_snd_buf.len;
697         rqst->rq_bytes_sent = 0;
698         return 0;
699
700 drop_connection:
701         xprt_disconnect_done(xprt);
702         return -ENOTCONN;       /* implies disconnect */
703 }
704
705 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
706 {
707         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
708         long idle_time = 0;
709
710         if (xprt_connected(xprt))
711                 idle_time = (long)(jiffies - xprt->last_used) / HZ;
712
713         seq_printf(seq,
714           "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
715           "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
716
717            0,   /* need a local port? */
718            xprt->stat.bind_count,
719            xprt->stat.connect_count,
720            xprt->stat.connect_time,
721            idle_time,
722            xprt->stat.sends,
723            xprt->stat.recvs,
724            xprt->stat.bad_xids,
725            xprt->stat.req_u,
726            xprt->stat.bklog_u,
727
728            r_xprt->rx_stats.read_chunk_count,
729            r_xprt->rx_stats.write_chunk_count,
730            r_xprt->rx_stats.reply_chunk_count,
731            r_xprt->rx_stats.total_rdma_request,
732            r_xprt->rx_stats.total_rdma_reply,
733            r_xprt->rx_stats.pullup_copy_count,
734            r_xprt->rx_stats.fixup_copy_count,
735            r_xprt->rx_stats.hardway_register_count,
736            r_xprt->rx_stats.failed_marshal_count,
737            r_xprt->rx_stats.bad_reply_count);
738 }
739
740 /*
741  * Plumbing for rpc transport switch and kernel module
742  */
743
744 static struct rpc_xprt_ops xprt_rdma_procs = {
745         .reserve_xprt           = xprt_rdma_reserve_xprt,
746         .release_xprt           = xprt_release_xprt_cong, /* sunrpc/xprt.c */
747         .release_request        = xprt_release_rqst_cong,       /* ditto */
748         .set_retrans_timeout    = xprt_set_retrans_timeout_def, /* ditto */
749         .rpcbind                = rpcb_getport_async,   /* sunrpc/rpcb_clnt.c */
750         .set_port               = xprt_rdma_set_port,
751         .connect                = xprt_rdma_connect,
752         .buf_alloc              = xprt_rdma_allocate,
753         .buf_free               = xprt_rdma_free,
754         .send_request           = xprt_rdma_send_request,
755         .close                  = xprt_rdma_close,
756         .destroy                = xprt_rdma_destroy,
757         .print_stats            = xprt_rdma_print_stats
758 };
759
760 static struct xprt_class xprt_rdma = {
761         .list                   = LIST_HEAD_INIT(xprt_rdma.list),
762         .name                   = "rdma",
763         .owner                  = THIS_MODULE,
764         .ident                  = XPRT_TRANSPORT_RDMA,
765         .setup                  = xprt_setup_rdma,
766 };
767
768 static void __exit xprt_rdma_cleanup(void)
769 {
770         int rc;
771
772         dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
773 #ifdef RPC_DEBUG
774         if (sunrpc_table_header) {
775                 unregister_sysctl_table(sunrpc_table_header);
776                 sunrpc_table_header = NULL;
777         }
778 #endif
779         rc = xprt_unregister_transport(&xprt_rdma);
780         if (rc)
781                 dprintk("RPC:       %s: xprt_unregister returned %i\n",
782                         __func__, rc);
783 }
784
785 static int __init xprt_rdma_init(void)
786 {
787         int rc;
788
789         rc = xprt_register_transport(&xprt_rdma);
790
791         if (rc)
792                 return rc;
793
794         dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
795
796         dprintk(KERN_INFO "Defaults:\n");
797         dprintk(KERN_INFO "\tSlots %d\n"
798                 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
799                 xprt_rdma_slot_table_entries,
800                 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
801         dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
802                 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
803
804 #ifdef RPC_DEBUG
805         if (!sunrpc_table_header)
806                 sunrpc_table_header = register_sysctl_table(sunrpc_table);
807 #endif
808         return 0;
809 }
810
811 module_init(xprt_rdma_init);
812 module_exit(xprt_rdma_cleanup);