svc: Move the authinfo cache to svc_xprt.
[safe/jmp/linux-2.6] / net / sunrpc / svcsock.c
1 /*
2  * linux/net/sunrpc/svcsock.c
3  *
4  * These are the RPC server socket internals.
5  *
6  * The server scheduling algorithm does not always distribute the load
7  * evenly when servicing a single client. May need to modify the
8  * svc_xprt_enqueue procedure...
9  *
10  * TCP support is largely untested and may be a little slow. The problem
11  * is that we currently do two separate recvfrom's, one for the 4-byte
12  * record length, and the second for the actual record. This could possibly
13  * be improved by always reading a minimum size of around 100 bytes and
14  * tucking any superfluous bytes away in a temporary store. Still, that
15  * leaves write requests out in the rain. An alternative may be to peek at
16  * the first skb in the queue, and if it matches the next TCP sequence
17  * number, to extract the record marker. Yuck.
18  *
19  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
44
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
50
51 /* SMP locking strategy:
52  *
53  *      svc_pool->sp_lock protects most of the fields of that pool.
54  *      svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55  *      when both need to be taken (rare), svc_serv->sv_lock is first.
56  *      BKL protects svc_serv->sv_nrthread.
57  *      svc_sock->sk_lock protects the svc_sock->sk_deferred list
58  *             and the ->sk_info_authunix cache.
59  *      svc_sock->sk_xprt.xpt_flags.XPT_BUSY prevents a svc_sock being
60  *      enqueued multiply.
61  *
62  *      Some flags can be set to certain values at any time
63  *      providing that certain rules are followed:
64  *
65  *      XPT_CONN, XPT_DATA, can be set or cleared at any time.
66  *              after a set, svc_xprt_enqueue must be called.
67  *              after a clear, the socket must be read/accepted
68  *               if this succeeds, it must be set again.
69  *      XPT_CLOSE can set at any time. It is never cleared.
70  *      xpt_ref contains a bias of '1' until XPT_DEAD is set.
71  *             so when xprt_ref hits zero, we know the transport is dead
72  *             and no-one is using it.
73  *      XPT_DEAD can only be set while XPT_BUSY is held which ensures
74  *             no other thread will be using the socket or will try to
75  *             set XPT_DEAD.
76  *
77  */
78
79 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
80
81
82 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
83                                          int *errp, int flags);
84 static void             svc_delete_xprt(struct svc_xprt *xprt);
85 static void             svc_udp_data_ready(struct sock *, int);
86 static int              svc_udp_recvfrom(struct svc_rqst *);
87 static int              svc_udp_sendto(struct svc_rqst *);
88 static void             svc_close_xprt(struct svc_xprt *xprt);
89 static void             svc_sock_detach(struct svc_xprt *);
90 static void             svc_sock_free(struct svc_xprt *);
91
92 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
93 static int svc_deferred_recv(struct svc_rqst *rqstp);
94 static struct cache_deferred_req *svc_defer(struct cache_req *req);
95 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
96                                           struct sockaddr *, int, int);
97
98 /* apparently the "standard" is that clients close
99  * idle connections after 5 minutes, servers after
100  * 6 minutes
101  *   http://www.connectathon.org/talks96/nfstcp.pdf
102  */
103 static int svc_conn_age_period = 6*60;
104
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 static struct lock_class_key svc_key[2];
107 static struct lock_class_key svc_slock_key[2];
108
109 static inline void svc_reclassify_socket(struct socket *sock)
110 {
111         struct sock *sk = sock->sk;
112         BUG_ON(sock_owned_by_user(sk));
113         switch (sk->sk_family) {
114         case AF_INET:
115                 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
116                                               &svc_slock_key[0],
117                                               "sk_xprt.xpt_lock-AF_INET-NFSD",
118                                               &svc_key[0]);
119                 break;
120
121         case AF_INET6:
122                 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
123                                               &svc_slock_key[1],
124                                               "sk_xprt.xpt_lock-AF_INET6-NFSD",
125                                               &svc_key[1]);
126                 break;
127
128         default:
129                 BUG();
130         }
131 }
132 #else
133 static inline void svc_reclassify_socket(struct socket *sock)
134 {
135 }
136 #endif
137
138 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
139 {
140         switch (addr->sa_family) {
141         case AF_INET:
142                 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
143                         NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
144                         ntohs(((struct sockaddr_in *) addr)->sin_port));
145                 break;
146
147         case AF_INET6:
148                 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
149                         NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
150                         ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
151                 break;
152
153         default:
154                 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
155                 break;
156         }
157         return buf;
158 }
159
160 /**
161  * svc_print_addr - Format rq_addr field for printing
162  * @rqstp: svc_rqst struct containing address to print
163  * @buf: target buffer for formatted address
164  * @len: length of target buffer
165  *
166  */
167 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
168 {
169         return __svc_print_addr(svc_addr(rqstp), buf, len);
170 }
171 EXPORT_SYMBOL_GPL(svc_print_addr);
172
173 /*
174  * Queue up an idle server thread.  Must have pool->sp_lock held.
175  * Note: this is really a stack rather than a queue, so that we only
176  * use as many different threads as we need, and the rest don't pollute
177  * the cache.
178  */
179 static inline void
180 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
181 {
182         list_add(&rqstp->rq_list, &pool->sp_threads);
183 }
184
185 /*
186  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
187  */
188 static inline void
189 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
190 {
191         list_del(&rqstp->rq_list);
192 }
193
194 /*
195  * Release an skbuff after use
196  */
197 static void svc_release_skb(struct svc_rqst *rqstp)
198 {
199         struct sk_buff *skb = rqstp->rq_xprt_ctxt;
200         struct svc_deferred_req *dr = rqstp->rq_deferred;
201
202         if (skb) {
203                 rqstp->rq_xprt_ctxt = NULL;
204
205                 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
206                 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
207         }
208         if (dr) {
209                 rqstp->rq_deferred = NULL;
210                 kfree(dr);
211         }
212 }
213
214 /*
215  * Queue up a socket with data pending. If there are idle nfsd
216  * processes, wake 'em up.
217  *
218  */
219 void svc_xprt_enqueue(struct svc_xprt *xprt)
220 {
221         struct svc_serv *serv = xprt->xpt_server;
222         struct svc_pool *pool;
223         struct svc_rqst *rqstp;
224         int cpu;
225
226         if (!(xprt->xpt_flags &
227               ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
228                 return;
229         if (test_bit(XPT_DEAD, &xprt->xpt_flags))
230                 return;
231
232         cpu = get_cpu();
233         pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
234         put_cpu();
235
236         spin_lock_bh(&pool->sp_lock);
237
238         if (!list_empty(&pool->sp_threads) &&
239             !list_empty(&pool->sp_sockets))
240                 printk(KERN_ERR
241                        "svc_xprt_enqueue: "
242                        "threads and transports both waiting??\n");
243
244         if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
245                 /* Don't enqueue dead sockets */
246                 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
247                 goto out_unlock;
248         }
249
250         /* Mark socket as busy. It will remain in this state until the
251          * server has processed all pending data and put the socket back
252          * on the idle list.  We update XPT_BUSY atomically because
253          * it also guards against trying to enqueue the svc_sock twice.
254          */
255         if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
256                 /* Don't enqueue socket while already enqueued */
257                 dprintk("svc: transport %p busy, not enqueued\n", xprt);
258                 goto out_unlock;
259         }
260         BUG_ON(xprt->xpt_pool != NULL);
261         xprt->xpt_pool = pool;
262
263         /* Handle pending connection */
264         if (test_bit(XPT_CONN, &xprt->xpt_flags))
265                 goto process;
266
267         /* Handle close in-progress */
268         if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
269                 goto process;
270
271         /* Check if we have space to reply to a request */
272         if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
273                 /* Don't enqueue while not enough space for reply */
274                 dprintk("svc: no write space, transport %p  not enqueued\n",
275                         xprt);
276                 xprt->xpt_pool = NULL;
277                 clear_bit(XPT_BUSY, &xprt->xpt_flags);
278                 goto out_unlock;
279         }
280
281  process:
282         if (!list_empty(&pool->sp_threads)) {
283                 rqstp = list_entry(pool->sp_threads.next,
284                                    struct svc_rqst,
285                                    rq_list);
286                 dprintk("svc: transport %p served by daemon %p\n",
287                         xprt, rqstp);
288                 svc_thread_dequeue(pool, rqstp);
289                 if (rqstp->rq_xprt)
290                         printk(KERN_ERR
291                                 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
292                                 rqstp, rqstp->rq_xprt);
293                 rqstp->rq_xprt = xprt;
294                 svc_xprt_get(xprt);
295                 rqstp->rq_reserved = serv->sv_max_mesg;
296                 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
297                 BUG_ON(xprt->xpt_pool != pool);
298                 wake_up(&rqstp->rq_wait);
299         } else {
300                 dprintk("svc: transport %p put into queue\n", xprt);
301                 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
302                 BUG_ON(xprt->xpt_pool != pool);
303         }
304
305 out_unlock:
306         spin_unlock_bh(&pool->sp_lock);
307 }
308 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
309
310 /*
311  * Dequeue the first socket.  Must be called with the pool->sp_lock held.
312  */
313 static inline struct svc_sock *
314 svc_sock_dequeue(struct svc_pool *pool)
315 {
316         struct svc_sock *svsk;
317
318         if (list_empty(&pool->sp_sockets))
319                 return NULL;
320
321         svsk = list_entry(pool->sp_sockets.next,
322                           struct svc_sock, sk_xprt.xpt_ready);
323         list_del_init(&svsk->sk_xprt.xpt_ready);
324
325         dprintk("svc: socket %p dequeued, inuse=%d\n",
326                 svsk->sk_sk, atomic_read(&svsk->sk_xprt.xpt_ref.refcount));
327
328         return svsk;
329 }
330
331 /*
332  * svc_xprt_received conditionally queues the transport for processing
333  * by another thread. The caller must hold the XPT_BUSY bit and must
334  * not thereafter touch transport data.
335  *
336  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
337  * insufficient) data.
338  */
339 void svc_xprt_received(struct svc_xprt *xprt)
340 {
341         BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
342         xprt->xpt_pool = NULL;
343         clear_bit(XPT_BUSY, &xprt->xpt_flags);
344         svc_xprt_enqueue(xprt);
345 }
346 EXPORT_SYMBOL_GPL(svc_xprt_received);
347
348 /**
349  * svc_reserve - change the space reserved for the reply to a request.
350  * @rqstp:  The request in question
351  * @space: new max space to reserve
352  *
353  * Each request reserves some space on the output queue of the socket
354  * to make sure the reply fits.  This function reduces that reserved
355  * space to be the amount of space used already, plus @space.
356  *
357  */
358 void svc_reserve(struct svc_rqst *rqstp, int space)
359 {
360         space += rqstp->rq_res.head[0].iov_len;
361
362         if (space < rqstp->rq_reserved) {
363                 struct svc_xprt *xprt = rqstp->rq_xprt;
364                 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
365                 rqstp->rq_reserved = space;
366
367                 svc_xprt_enqueue(xprt);
368         }
369 }
370
371 static void
372 svc_sock_release(struct svc_rqst *rqstp)
373 {
374         struct svc_sock *svsk = rqstp->rq_sock;
375
376         rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
377
378         svc_free_res_pages(rqstp);
379         rqstp->rq_res.page_len = 0;
380         rqstp->rq_res.page_base = 0;
381
382
383         /* Reset response buffer and release
384          * the reservation.
385          * But first, check that enough space was reserved
386          * for the reply, otherwise we have a bug!
387          */
388         if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
389                 printk(KERN_ERR "RPC request reserved %d but used %d\n",
390                        rqstp->rq_reserved,
391                        rqstp->rq_res.len);
392
393         rqstp->rq_res.head[0].iov_len = 0;
394         svc_reserve(rqstp, 0);
395         rqstp->rq_sock = NULL;
396
397         svc_xprt_put(&svsk->sk_xprt);
398 }
399
400 /*
401  * External function to wake up a server waiting for data
402  * This really only makes sense for services like lockd
403  * which have exactly one thread anyway.
404  */
405 void
406 svc_wake_up(struct svc_serv *serv)
407 {
408         struct svc_rqst *rqstp;
409         unsigned int i;
410         struct svc_pool *pool;
411
412         for (i = 0; i < serv->sv_nrpools; i++) {
413                 pool = &serv->sv_pools[i];
414
415                 spin_lock_bh(&pool->sp_lock);
416                 if (!list_empty(&pool->sp_threads)) {
417                         rqstp = list_entry(pool->sp_threads.next,
418                                            struct svc_rqst,
419                                            rq_list);
420                         dprintk("svc: daemon %p woken up.\n", rqstp);
421                         /*
422                         svc_thread_dequeue(pool, rqstp);
423                         rqstp->rq_sock = NULL;
424                          */
425                         wake_up(&rqstp->rq_wait);
426                 }
427                 spin_unlock_bh(&pool->sp_lock);
428         }
429 }
430
431 union svc_pktinfo_u {
432         struct in_pktinfo pkti;
433         struct in6_pktinfo pkti6;
434 };
435 #define SVC_PKTINFO_SPACE \
436         CMSG_SPACE(sizeof(union svc_pktinfo_u))
437
438 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
439 {
440         switch (rqstp->rq_sock->sk_sk->sk_family) {
441         case AF_INET: {
442                         struct in_pktinfo *pki = CMSG_DATA(cmh);
443
444                         cmh->cmsg_level = SOL_IP;
445                         cmh->cmsg_type = IP_PKTINFO;
446                         pki->ipi_ifindex = 0;
447                         pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
448                         cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
449                 }
450                 break;
451
452         case AF_INET6: {
453                         struct in6_pktinfo *pki = CMSG_DATA(cmh);
454
455                         cmh->cmsg_level = SOL_IPV6;
456                         cmh->cmsg_type = IPV6_PKTINFO;
457                         pki->ipi6_ifindex = 0;
458                         ipv6_addr_copy(&pki->ipi6_addr,
459                                         &rqstp->rq_daddr.addr6);
460                         cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
461                 }
462                 break;
463         }
464         return;
465 }
466
467 /*
468  * Generic sendto routine
469  */
470 static int
471 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
472 {
473         struct svc_sock *svsk = rqstp->rq_sock;
474         struct socket   *sock = svsk->sk_sock;
475         int             slen;
476         union {
477                 struct cmsghdr  hdr;
478                 long            all[SVC_PKTINFO_SPACE / sizeof(long)];
479         } buffer;
480         struct cmsghdr *cmh = &buffer.hdr;
481         int             len = 0;
482         int             result;
483         int             size;
484         struct page     **ppage = xdr->pages;
485         size_t          base = xdr->page_base;
486         unsigned int    pglen = xdr->page_len;
487         unsigned int    flags = MSG_MORE;
488         char            buf[RPC_MAX_ADDRBUFLEN];
489
490         slen = xdr->len;
491
492         if (rqstp->rq_prot == IPPROTO_UDP) {
493                 struct msghdr msg = {
494                         .msg_name       = &rqstp->rq_addr,
495                         .msg_namelen    = rqstp->rq_addrlen,
496                         .msg_control    = cmh,
497                         .msg_controllen = sizeof(buffer),
498                         .msg_flags      = MSG_MORE,
499                 };
500
501                 svc_set_cmsg_data(rqstp, cmh);
502
503                 if (sock_sendmsg(sock, &msg, 0) < 0)
504                         goto out;
505         }
506
507         /* send head */
508         if (slen == xdr->head[0].iov_len)
509                 flags = 0;
510         len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
511                                   xdr->head[0].iov_len, flags);
512         if (len != xdr->head[0].iov_len)
513                 goto out;
514         slen -= xdr->head[0].iov_len;
515         if (slen == 0)
516                 goto out;
517
518         /* send page data */
519         size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
520         while (pglen > 0) {
521                 if (slen == size)
522                         flags = 0;
523                 result = kernel_sendpage(sock, *ppage, base, size, flags);
524                 if (result > 0)
525                         len += result;
526                 if (result != size)
527                         goto out;
528                 slen -= size;
529                 pglen -= size;
530                 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
531                 base = 0;
532                 ppage++;
533         }
534         /* send tail */
535         if (xdr->tail[0].iov_len) {
536                 result = kernel_sendpage(sock, rqstp->rq_respages[0],
537                                              ((unsigned long)xdr->tail[0].iov_base)
538                                                 & (PAGE_SIZE-1),
539                                              xdr->tail[0].iov_len, 0);
540
541                 if (result > 0)
542                         len += result;
543         }
544 out:
545         dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
546                 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
547                 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
548
549         return len;
550 }
551
552 /*
553  * Report socket names for nfsdfs
554  */
555 static int one_sock_name(char *buf, struct svc_sock *svsk)
556 {
557         int len;
558
559         switch(svsk->sk_sk->sk_family) {
560         case AF_INET:
561                 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
562                               svsk->sk_sk->sk_protocol==IPPROTO_UDP?
563                               "udp" : "tcp",
564                               NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
565                               inet_sk(svsk->sk_sk)->num);
566                 break;
567         default:
568                 len = sprintf(buf, "*unknown-%d*\n",
569                                svsk->sk_sk->sk_family);
570         }
571         return len;
572 }
573
574 int
575 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
576 {
577         struct svc_sock *svsk, *closesk = NULL;
578         int len = 0;
579
580         if (!serv)
581                 return 0;
582         spin_lock_bh(&serv->sv_lock);
583         list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
584                 int onelen = one_sock_name(buf+len, svsk);
585                 if (toclose && strcmp(toclose, buf+len) == 0)
586                         closesk = svsk;
587                 else
588                         len += onelen;
589         }
590         spin_unlock_bh(&serv->sv_lock);
591         if (closesk)
592                 /* Should unregister with portmap, but you cannot
593                  * unregister just one protocol...
594                  */
595                 svc_close_xprt(&closesk->sk_xprt);
596         else if (toclose)
597                 return -ENOENT;
598         return len;
599 }
600 EXPORT_SYMBOL(svc_sock_names);
601
602 /*
603  * Check input queue length
604  */
605 static int
606 svc_recv_available(struct svc_sock *svsk)
607 {
608         struct socket   *sock = svsk->sk_sock;
609         int             avail, err;
610
611         err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
612
613         return (err >= 0)? avail : err;
614 }
615
616 /*
617  * Generic recvfrom routine.
618  */
619 static int
620 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
621 {
622         struct svc_sock *svsk = rqstp->rq_sock;
623         struct msghdr msg = {
624                 .msg_flags      = MSG_DONTWAIT,
625         };
626         struct sockaddr *sin;
627         int len;
628
629         len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
630                                 msg.msg_flags);
631
632         /* sock_recvmsg doesn't fill in the name/namelen, so we must..
633          */
634         memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
635         rqstp->rq_addrlen = svsk->sk_remotelen;
636
637         /* Destination address in request is needed for binding the
638          * source address in RPC callbacks later.
639          */
640         sin = (struct sockaddr *)&svsk->sk_local;
641         switch (sin->sa_family) {
642         case AF_INET:
643                 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
644                 break;
645         case AF_INET6:
646                 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
647                 break;
648         }
649
650         dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
651                 svsk, iov[0].iov_base, iov[0].iov_len, len);
652
653         return len;
654 }
655
656 /*
657  * Set socket snd and rcv buffer lengths
658  */
659 static inline void
660 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
661 {
662 #if 0
663         mm_segment_t    oldfs;
664         oldfs = get_fs(); set_fs(KERNEL_DS);
665         sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
666                         (char*)&snd, sizeof(snd));
667         sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
668                         (char*)&rcv, sizeof(rcv));
669 #else
670         /* sock_setsockopt limits use to sysctl_?mem_max,
671          * which isn't acceptable.  Until that is made conditional
672          * on not having CAP_SYS_RESOURCE or similar, we go direct...
673          * DaveM said I could!
674          */
675         lock_sock(sock->sk);
676         sock->sk->sk_sndbuf = snd * 2;
677         sock->sk->sk_rcvbuf = rcv * 2;
678         sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
679         release_sock(sock->sk);
680 #endif
681 }
682 /*
683  * INET callback when data has been received on the socket.
684  */
685 static void
686 svc_udp_data_ready(struct sock *sk, int count)
687 {
688         struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
689
690         if (svsk) {
691                 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
692                         svsk, sk, count,
693                         test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
694                 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
695                 svc_xprt_enqueue(&svsk->sk_xprt);
696         }
697         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
698                 wake_up_interruptible(sk->sk_sleep);
699 }
700
701 /*
702  * INET callback when space is newly available on the socket.
703  */
704 static void
705 svc_write_space(struct sock *sk)
706 {
707         struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
708
709         if (svsk) {
710                 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
711                         svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
712                 svc_xprt_enqueue(&svsk->sk_xprt);
713         }
714
715         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
716                 dprintk("RPC svc_write_space: someone sleeping on %p\n",
717                        svsk);
718                 wake_up_interruptible(sk->sk_sleep);
719         }
720 }
721
722 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
723                                             struct cmsghdr *cmh)
724 {
725         switch (rqstp->rq_sock->sk_sk->sk_family) {
726         case AF_INET: {
727                 struct in_pktinfo *pki = CMSG_DATA(cmh);
728                 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
729                 break;
730                 }
731         case AF_INET6: {
732                 struct in6_pktinfo *pki = CMSG_DATA(cmh);
733                 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
734                 break;
735                 }
736         }
737 }
738
739 /*
740  * Receive a datagram from a UDP socket.
741  */
742 static int
743 svc_udp_recvfrom(struct svc_rqst *rqstp)
744 {
745         struct svc_sock *svsk = rqstp->rq_sock;
746         struct svc_serv *serv = svsk->sk_xprt.xpt_server;
747         struct sk_buff  *skb;
748         union {
749                 struct cmsghdr  hdr;
750                 long            all[SVC_PKTINFO_SPACE / sizeof(long)];
751         } buffer;
752         struct cmsghdr *cmh = &buffer.hdr;
753         int             err, len;
754         struct msghdr msg = {
755                 .msg_name = svc_addr(rqstp),
756                 .msg_control = cmh,
757                 .msg_controllen = sizeof(buffer),
758                 .msg_flags = MSG_DONTWAIT,
759         };
760
761         if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
762             /* udp sockets need large rcvbuf as all pending
763              * requests are still in that buffer.  sndbuf must
764              * also be large enough that there is enough space
765              * for one reply per thread.  We count all threads
766              * rather than threads in a particular pool, which
767              * provides an upper bound on the number of threads
768              * which will access the socket.
769              */
770             svc_sock_setbufsize(svsk->sk_sock,
771                                 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
772                                 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
773
774         if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
775                 svc_xprt_received(&svsk->sk_xprt);
776                 return svc_deferred_recv(rqstp);
777         }
778
779         clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
780         skb = NULL;
781         err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
782                              0, 0, MSG_PEEK | MSG_DONTWAIT);
783         if (err >= 0)
784                 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
785
786         if (skb == NULL) {
787                 if (err != -EAGAIN) {
788                         /* possibly an icmp error */
789                         dprintk("svc: recvfrom returned error %d\n", -err);
790                         set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
791                 }
792                 svc_xprt_received(&svsk->sk_xprt);
793                 return -EAGAIN;
794         }
795         rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
796         if (skb->tstamp.tv64 == 0) {
797                 skb->tstamp = ktime_get_real();
798                 /* Don't enable netstamp, sunrpc doesn't
799                    need that much accuracy */
800         }
801         svsk->sk_sk->sk_stamp = skb->tstamp;
802         set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
803
804         /*
805          * Maybe more packets - kick another thread ASAP.
806          */
807         svc_xprt_received(&svsk->sk_xprt);
808
809         len  = skb->len - sizeof(struct udphdr);
810         rqstp->rq_arg.len = len;
811
812         rqstp->rq_prot = IPPROTO_UDP;
813
814         if (cmh->cmsg_level != IPPROTO_IP ||
815             cmh->cmsg_type != IP_PKTINFO) {
816                 if (net_ratelimit())
817                         printk("rpcsvc: received unknown control message:"
818                                "%d/%d\n",
819                                cmh->cmsg_level, cmh->cmsg_type);
820                 skb_free_datagram(svsk->sk_sk, skb);
821                 return 0;
822         }
823         svc_udp_get_dest_address(rqstp, cmh);
824
825         if (skb_is_nonlinear(skb)) {
826                 /* we have to copy */
827                 local_bh_disable();
828                 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
829                         local_bh_enable();
830                         /* checksum error */
831                         skb_free_datagram(svsk->sk_sk, skb);
832                         return 0;
833                 }
834                 local_bh_enable();
835                 skb_free_datagram(svsk->sk_sk, skb);
836         } else {
837                 /* we can use it in-place */
838                 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
839                 rqstp->rq_arg.head[0].iov_len = len;
840                 if (skb_checksum_complete(skb)) {
841                         skb_free_datagram(svsk->sk_sk, skb);
842                         return 0;
843                 }
844                 rqstp->rq_xprt_ctxt = skb;
845         }
846
847         rqstp->rq_arg.page_base = 0;
848         if (len <= rqstp->rq_arg.head[0].iov_len) {
849                 rqstp->rq_arg.head[0].iov_len = len;
850                 rqstp->rq_arg.page_len = 0;
851                 rqstp->rq_respages = rqstp->rq_pages+1;
852         } else {
853                 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
854                 rqstp->rq_respages = rqstp->rq_pages + 1 +
855                         DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
856         }
857
858         if (serv->sv_stats)
859                 serv->sv_stats->netudpcnt++;
860
861         return len;
862 }
863
864 static int
865 svc_udp_sendto(struct svc_rqst *rqstp)
866 {
867         int             error;
868
869         error = svc_sendto(rqstp, &rqstp->rq_res);
870         if (error == -ECONNREFUSED)
871                 /* ICMP error on earlier request. */
872                 error = svc_sendto(rqstp, &rqstp->rq_res);
873
874         return error;
875 }
876
877 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
878 {
879 }
880
881 static int svc_udp_has_wspace(struct svc_xprt *xprt)
882 {
883         struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
884         struct svc_serv *serv = xprt->xpt_server;
885         unsigned long required;
886
887         /*
888          * Set the SOCK_NOSPACE flag before checking the available
889          * sock space.
890          */
891         set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
892         required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
893         if (required*2 > sock_wspace(svsk->sk_sk))
894                 return 0;
895         clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
896         return 1;
897 }
898
899 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
900 {
901         BUG();
902         return NULL;
903 }
904
905 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
906                                        struct sockaddr *sa, int salen,
907                                        int flags)
908 {
909         return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
910 }
911
912 static struct svc_xprt_ops svc_udp_ops = {
913         .xpo_create = svc_udp_create,
914         .xpo_recvfrom = svc_udp_recvfrom,
915         .xpo_sendto = svc_udp_sendto,
916         .xpo_release_rqst = svc_release_skb,
917         .xpo_detach = svc_sock_detach,
918         .xpo_free = svc_sock_free,
919         .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
920         .xpo_has_wspace = svc_udp_has_wspace,
921         .xpo_accept = svc_udp_accept,
922 };
923
924 static struct svc_xprt_class svc_udp_class = {
925         .xcl_name = "udp",
926         .xcl_owner = THIS_MODULE,
927         .xcl_ops = &svc_udp_ops,
928         .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
929 };
930
931 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
932 {
933         int one = 1;
934         mm_segment_t oldfs;
935
936         svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
937         clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
938         svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
939         svsk->sk_sk->sk_write_space = svc_write_space;
940
941         /* initialise setting must have enough space to
942          * receive and respond to one request.
943          * svc_udp_recvfrom will re-adjust if necessary
944          */
945         svc_sock_setbufsize(svsk->sk_sock,
946                             3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
947                             3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
948
949         set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* might have come in before data_ready set up */
950         set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
951
952         oldfs = get_fs();
953         set_fs(KERNEL_DS);
954         /* make sure we get destination address info */
955         svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
956                                        (char __user *)&one, sizeof(one));
957         set_fs(oldfs);
958 }
959
960 /*
961  * A data_ready event on a listening socket means there's a connection
962  * pending. Do not use state_change as a substitute for it.
963  */
964 static void
965 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
966 {
967         struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
968
969         dprintk("svc: socket %p TCP (listen) state change %d\n",
970                 sk, sk->sk_state);
971
972         /*
973          * This callback may called twice when a new connection
974          * is established as a child socket inherits everything
975          * from a parent LISTEN socket.
976          * 1) data_ready method of the parent socket will be called
977          *    when one of child sockets become ESTABLISHED.
978          * 2) data_ready method of the child socket may be called
979          *    when it receives data before the socket is accepted.
980          * In case of 2, we should ignore it silently.
981          */
982         if (sk->sk_state == TCP_LISTEN) {
983                 if (svsk) {
984                         set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
985                         svc_xprt_enqueue(&svsk->sk_xprt);
986                 } else
987                         printk("svc: socket %p: no user data\n", sk);
988         }
989
990         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
991                 wake_up_interruptible_all(sk->sk_sleep);
992 }
993
994 /*
995  * A state change on a connected socket means it's dying or dead.
996  */
997 static void
998 svc_tcp_state_change(struct sock *sk)
999 {
1000         struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1001
1002         dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
1003                 sk, sk->sk_state, sk->sk_user_data);
1004
1005         if (!svsk)
1006                 printk("svc: socket %p: no user data\n", sk);
1007         else {
1008                 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1009                 svc_xprt_enqueue(&svsk->sk_xprt);
1010         }
1011         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1012                 wake_up_interruptible_all(sk->sk_sleep);
1013 }
1014
1015 static void
1016 svc_tcp_data_ready(struct sock *sk, int count)
1017 {
1018         struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1019
1020         dprintk("svc: socket %p TCP data ready (svsk %p)\n",
1021                 sk, sk->sk_user_data);
1022         if (svsk) {
1023                 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1024                 svc_xprt_enqueue(&svsk->sk_xprt);
1025         }
1026         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1027                 wake_up_interruptible(sk->sk_sleep);
1028 }
1029
1030 static inline int svc_port_is_privileged(struct sockaddr *sin)
1031 {
1032         switch (sin->sa_family) {
1033         case AF_INET:
1034                 return ntohs(((struct sockaddr_in *)sin)->sin_port)
1035                         < PROT_SOCK;
1036         case AF_INET6:
1037                 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1038                         < PROT_SOCK;
1039         default:
1040                 return 0;
1041         }
1042 }
1043
1044 /*
1045  * Accept a TCP connection
1046  */
1047 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
1048 {
1049         struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1050         struct sockaddr_storage addr;
1051         struct sockaddr *sin = (struct sockaddr *) &addr;
1052         struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1053         struct socket   *sock = svsk->sk_sock;
1054         struct socket   *newsock;
1055         struct svc_sock *newsvsk;
1056         int             err, slen;
1057         char            buf[RPC_MAX_ADDRBUFLEN];
1058
1059         dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1060         if (!sock)
1061                 return NULL;
1062
1063         clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1064         err = kernel_accept(sock, &newsock, O_NONBLOCK);
1065         if (err < 0) {
1066                 if (err == -ENOMEM)
1067                         printk(KERN_WARNING "%s: no more sockets!\n",
1068                                serv->sv_name);
1069                 else if (err != -EAGAIN && net_ratelimit())
1070                         printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1071                                    serv->sv_name, -err);
1072                 return NULL;
1073         }
1074         set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1075
1076         err = kernel_getpeername(newsock, sin, &slen);
1077         if (err < 0) {
1078                 if (net_ratelimit())
1079                         printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1080                                    serv->sv_name, -err);
1081                 goto failed;            /* aborted connection or whatever */
1082         }
1083
1084         /* Ideally, we would want to reject connections from unauthorized
1085          * hosts here, but when we get encryption, the IP of the host won't
1086          * tell us anything.  For now just warn about unpriv connections.
1087          */
1088         if (!svc_port_is_privileged(sin)) {
1089                 dprintk(KERN_WARNING
1090                         "%s: connect from unprivileged port: %s\n",
1091                         serv->sv_name,
1092                         __svc_print_addr(sin, buf, sizeof(buf)));
1093         }
1094         dprintk("%s: connect from %s\n", serv->sv_name,
1095                 __svc_print_addr(sin, buf, sizeof(buf)));
1096
1097         /* make sure that a write doesn't block forever when
1098          * low on memory
1099          */
1100         newsock->sk->sk_sndtimeo = HZ*30;
1101
1102         if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1103                                  (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1104                 goto failed;
1105         memcpy(&newsvsk->sk_remote, sin, slen);
1106         newsvsk->sk_remotelen = slen;
1107         err = kernel_getsockname(newsock, sin, &slen);
1108         if (unlikely(err < 0)) {
1109                 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1110                 slen = offsetof(struct sockaddr, sa_data);
1111         }
1112         memcpy(&newsvsk->sk_local, sin, slen);
1113
1114         if (serv->sv_stats)
1115                 serv->sv_stats->nettcpconn++;
1116
1117         return &newsvsk->sk_xprt;
1118
1119 failed:
1120         sock_release(newsock);
1121         return NULL;
1122 }
1123
1124 /*
1125  * Receive data from a TCP socket.
1126  */
1127 static int
1128 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1129 {
1130         struct svc_sock *svsk = rqstp->rq_sock;
1131         struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1132         int             len;
1133         struct kvec *vec;
1134         int pnum, vlen;
1135
1136         dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1137                 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
1138                 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
1139                 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
1140
1141         if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1142                 svc_xprt_received(&svsk->sk_xprt);
1143                 return svc_deferred_recv(rqstp);
1144         }
1145
1146         if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
1147                 /* sndbuf needs to have room for one request
1148                  * per thread, otherwise we can stall even when the
1149                  * network isn't a bottleneck.
1150                  *
1151                  * We count all threads rather than threads in a
1152                  * particular pool, which provides an upper bound
1153                  * on the number of threads which will access the socket.
1154                  *
1155                  * rcvbuf just needs to be able to hold a few requests.
1156                  * Normally they will be removed from the queue
1157                  * as soon a a complete request arrives.
1158                  */
1159                 svc_sock_setbufsize(svsk->sk_sock,
1160                                     (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1161                                     3 * serv->sv_max_mesg);
1162
1163         clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1164
1165         /* Receive data. If we haven't got the record length yet, get
1166          * the next four bytes. Otherwise try to gobble up as much as
1167          * possible up to the complete record length.
1168          */
1169         if (svsk->sk_tcplen < 4) {
1170                 unsigned long   want = 4 - svsk->sk_tcplen;
1171                 struct kvec     iov;
1172
1173                 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1174                 iov.iov_len  = want;
1175                 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1176                         goto error;
1177                 svsk->sk_tcplen += len;
1178
1179                 if (len < want) {
1180                         dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1181                                 len, want);
1182                         svc_xprt_received(&svsk->sk_xprt);
1183                         return -EAGAIN; /* record header not complete */
1184                 }
1185
1186                 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1187                 if (!(svsk->sk_reclen & 0x80000000)) {
1188                         /* FIXME: technically, a record can be fragmented,
1189                          *  and non-terminal fragments will not have the top
1190                          *  bit set in the fragment length header.
1191                          *  But apparently no known nfs clients send fragmented
1192                          *  records. */
1193                         if (net_ratelimit())
1194                                 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1195                                        " (non-terminal)\n",
1196                                        (unsigned long) svsk->sk_reclen);
1197                         goto err_delete;
1198                 }
1199                 svsk->sk_reclen &= 0x7fffffff;
1200                 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1201                 if (svsk->sk_reclen > serv->sv_max_mesg) {
1202                         if (net_ratelimit())
1203                                 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1204                                        " (large)\n",
1205                                        (unsigned long) svsk->sk_reclen);
1206                         goto err_delete;
1207                 }
1208         }
1209
1210         /* Check whether enough data is available */
1211         len = svc_recv_available(svsk);
1212         if (len < 0)
1213                 goto error;
1214
1215         if (len < svsk->sk_reclen) {
1216                 dprintk("svc: incomplete TCP record (%d of %d)\n",
1217                         len, svsk->sk_reclen);
1218                 svc_xprt_received(&svsk->sk_xprt);
1219                 return -EAGAIN; /* record not complete */
1220         }
1221         len = svsk->sk_reclen;
1222         set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1223
1224         vec = rqstp->rq_vec;
1225         vec[0] = rqstp->rq_arg.head[0];
1226         vlen = PAGE_SIZE;
1227         pnum = 1;
1228         while (vlen < len) {
1229                 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1230                 vec[pnum].iov_len = PAGE_SIZE;
1231                 pnum++;
1232                 vlen += PAGE_SIZE;
1233         }
1234         rqstp->rq_respages = &rqstp->rq_pages[pnum];
1235
1236         /* Now receive data */
1237         len = svc_recvfrom(rqstp, vec, pnum, len);
1238         if (len < 0)
1239                 goto error;
1240
1241         dprintk("svc: TCP complete record (%d bytes)\n", len);
1242         rqstp->rq_arg.len = len;
1243         rqstp->rq_arg.page_base = 0;
1244         if (len <= rqstp->rq_arg.head[0].iov_len) {
1245                 rqstp->rq_arg.head[0].iov_len = len;
1246                 rqstp->rq_arg.page_len = 0;
1247         } else {
1248                 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1249         }
1250
1251         rqstp->rq_xprt_ctxt   = NULL;
1252         rqstp->rq_prot        = IPPROTO_TCP;
1253
1254         /* Reset TCP read info */
1255         svsk->sk_reclen = 0;
1256         svsk->sk_tcplen = 0;
1257
1258         svc_xprt_received(&svsk->sk_xprt);
1259         if (serv->sv_stats)
1260                 serv->sv_stats->nettcpcnt++;
1261
1262         return len;
1263
1264  err_delete:
1265         set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1266         return -EAGAIN;
1267
1268  error:
1269         if (len == -EAGAIN) {
1270                 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1271                 svc_xprt_received(&svsk->sk_xprt);
1272         } else {
1273                 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1274                        svsk->sk_xprt.xpt_server->sv_name, -len);
1275                 goto err_delete;
1276         }
1277
1278         return len;
1279 }
1280
1281 /*
1282  * Send out data on TCP socket.
1283  */
1284 static int
1285 svc_tcp_sendto(struct svc_rqst *rqstp)
1286 {
1287         struct xdr_buf  *xbufp = &rqstp->rq_res;
1288         int sent;
1289         __be32 reclen;
1290
1291         /* Set up the first element of the reply kvec.
1292          * Any other kvecs that may be in use have been taken
1293          * care of by the server implementation itself.
1294          */
1295         reclen = htonl(0x80000000|((xbufp->len ) - 4));
1296         memcpy(xbufp->head[0].iov_base, &reclen, 4);
1297
1298         if (test_bit(XPT_DEAD, &rqstp->rq_sock->sk_xprt.xpt_flags))
1299                 return -ENOTCONN;
1300
1301         sent = svc_sendto(rqstp, &rqstp->rq_res);
1302         if (sent != xbufp->len) {
1303                 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1304                        rqstp->rq_sock->sk_xprt.xpt_server->sv_name,
1305                        (sent<0)?"got error":"sent only",
1306                        sent, xbufp->len);
1307                 set_bit(XPT_CLOSE, &rqstp->rq_sock->sk_xprt.xpt_flags);
1308                 svc_xprt_enqueue(rqstp->rq_xprt);
1309                 sent = -EAGAIN;
1310         }
1311         return sent;
1312 }
1313
1314 /*
1315  * Setup response header. TCP has a 4B record length field.
1316  */
1317 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1318 {
1319         struct kvec *resv = &rqstp->rq_res.head[0];
1320
1321         /* tcp needs a space for the record length... */
1322         svc_putnl(resv, 0);
1323 }
1324
1325 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1326 {
1327         struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1328         struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1329         int required;
1330         int wspace;
1331
1332         /*
1333          * Set the SOCK_NOSPACE flag before checking the available
1334          * sock space.
1335          */
1336         set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1337         required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
1338         wspace = sk_stream_wspace(svsk->sk_sk);
1339
1340         if (wspace < sk_stream_min_wspace(svsk->sk_sk))
1341                 return 0;
1342         if (required * 2 > wspace)
1343                 return 0;
1344
1345         clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1346         return 1;
1347 }
1348
1349 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1350                                        struct sockaddr *sa, int salen,
1351                                        int flags)
1352 {
1353         return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
1354 }
1355
1356 static struct svc_xprt_ops svc_tcp_ops = {
1357         .xpo_create = svc_tcp_create,
1358         .xpo_recvfrom = svc_tcp_recvfrom,
1359         .xpo_sendto = svc_tcp_sendto,
1360         .xpo_release_rqst = svc_release_skb,
1361         .xpo_detach = svc_sock_detach,
1362         .xpo_free = svc_sock_free,
1363         .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1364         .xpo_has_wspace = svc_tcp_has_wspace,
1365         .xpo_accept = svc_tcp_accept,
1366 };
1367
1368 static struct svc_xprt_class svc_tcp_class = {
1369         .xcl_name = "tcp",
1370         .xcl_owner = THIS_MODULE,
1371         .xcl_ops = &svc_tcp_ops,
1372         .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1373 };
1374
1375 void svc_init_xprt_sock(void)
1376 {
1377         svc_reg_xprt_class(&svc_tcp_class);
1378         svc_reg_xprt_class(&svc_udp_class);
1379 }
1380
1381 void svc_cleanup_xprt_sock(void)
1382 {
1383         svc_unreg_xprt_class(&svc_tcp_class);
1384         svc_unreg_xprt_class(&svc_udp_class);
1385 }
1386
1387 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1388 {
1389         struct sock     *sk = svsk->sk_sk;
1390         struct tcp_sock *tp = tcp_sk(sk);
1391
1392         svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1393         set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1394         if (sk->sk_state == TCP_LISTEN) {
1395                 dprintk("setting up TCP socket for listening\n");
1396                 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1397                 sk->sk_data_ready = svc_tcp_listen_data_ready;
1398                 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1399         } else {
1400                 dprintk("setting up TCP socket for reading\n");
1401                 sk->sk_state_change = svc_tcp_state_change;
1402                 sk->sk_data_ready = svc_tcp_data_ready;
1403                 sk->sk_write_space = svc_write_space;
1404
1405                 svsk->sk_reclen = 0;
1406                 svsk->sk_tcplen = 0;
1407
1408                 tp->nonagle = 1;        /* disable Nagle's algorithm */
1409
1410                 /* initialise setting must have enough space to
1411                  * receive and respond to one request.
1412                  * svc_tcp_recvfrom will re-adjust if necessary
1413                  */
1414                 svc_sock_setbufsize(svsk->sk_sock,
1415                                     3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1416                                     3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1417
1418                 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1419                 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1420                 if (sk->sk_state != TCP_ESTABLISHED)
1421                         set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1422         }
1423 }
1424
1425 void
1426 svc_sock_update_bufs(struct svc_serv *serv)
1427 {
1428         /*
1429          * The number of server threads has changed. Update
1430          * rcvbuf and sndbuf accordingly on all sockets
1431          */
1432         struct list_head *le;
1433
1434         spin_lock_bh(&serv->sv_lock);
1435         list_for_each(le, &serv->sv_permsocks) {
1436                 struct svc_sock *svsk =
1437                         list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1438                 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1439         }
1440         list_for_each(le, &serv->sv_tempsocks) {
1441                 struct svc_sock *svsk =
1442                         list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1443                 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1444         }
1445         spin_unlock_bh(&serv->sv_lock);
1446 }
1447
1448 /*
1449  * Make sure that we don't have too many active connections.  If we
1450  * have, something must be dropped.
1451  *
1452  * There's no point in trying to do random drop here for DoS
1453  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
1454  * attacker can easily beat that.
1455  *
1456  * The only somewhat efficient mechanism would be if drop old
1457  * connections from the same IP first. But right now we don't even
1458  * record the client IP in svc_sock.
1459  */
1460 static void svc_check_conn_limits(struct svc_serv *serv)
1461 {
1462         if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1463                 struct svc_sock *svsk = NULL;
1464                 spin_lock_bh(&serv->sv_lock);
1465                 if (!list_empty(&serv->sv_tempsocks)) {
1466                         if (net_ratelimit()) {
1467                                 /* Try to help the admin */
1468                                 printk(KERN_NOTICE "%s: too many open TCP "
1469                                        "sockets, consider increasing the "
1470                                        "number of nfsd threads\n",
1471                                        serv->sv_name);
1472                         }
1473                         /*
1474                          * Always select the oldest socket. It's not fair,
1475                          * but so is life
1476                          */
1477                         svsk = list_entry(serv->sv_tempsocks.prev,
1478                                           struct svc_sock,
1479                                           sk_xprt.xpt_list);
1480                         set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1481                         svc_xprt_get(&svsk->sk_xprt);
1482                 }
1483                 spin_unlock_bh(&serv->sv_lock);
1484
1485                 if (svsk) {
1486                         svc_xprt_enqueue(&svsk->sk_xprt);
1487                         svc_xprt_put(&svsk->sk_xprt);
1488                 }
1489         }
1490 }
1491
1492 /*
1493  * Receive the next request on any socket.  This code is carefully
1494  * organised not to touch any cachelines in the shared svc_serv
1495  * structure, only cachelines in the local svc_pool.
1496  */
1497 int
1498 svc_recv(struct svc_rqst *rqstp, long timeout)
1499 {
1500         struct svc_sock         *svsk = NULL;
1501         struct svc_serv         *serv = rqstp->rq_server;
1502         struct svc_pool         *pool = rqstp->rq_pool;
1503         int                     len, i;
1504         int                     pages;
1505         struct xdr_buf          *arg;
1506         DECLARE_WAITQUEUE(wait, current);
1507
1508         dprintk("svc: server %p waiting for data (to = %ld)\n",
1509                 rqstp, timeout);
1510
1511         if (rqstp->rq_sock)
1512                 printk(KERN_ERR
1513                         "svc_recv: service %p, socket not NULL!\n",
1514                          rqstp);
1515         if (waitqueue_active(&rqstp->rq_wait))
1516                 printk(KERN_ERR
1517                         "svc_recv: service %p, wait queue active!\n",
1518                          rqstp);
1519
1520
1521         /* now allocate needed pages.  If we get a failure, sleep briefly */
1522         pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1523         for (i=0; i < pages ; i++)
1524                 while (rqstp->rq_pages[i] == NULL) {
1525                         struct page *p = alloc_page(GFP_KERNEL);
1526                         if (!p)
1527                                 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1528                         rqstp->rq_pages[i] = p;
1529                 }
1530         rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1531         BUG_ON(pages >= RPCSVC_MAXPAGES);
1532
1533         /* Make arg->head point to first page and arg->pages point to rest */
1534         arg = &rqstp->rq_arg;
1535         arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1536         arg->head[0].iov_len = PAGE_SIZE;
1537         arg->pages = rqstp->rq_pages + 1;
1538         arg->page_base = 0;
1539         /* save at least one page for response */
1540         arg->page_len = (pages-2)*PAGE_SIZE;
1541         arg->len = (pages-1)*PAGE_SIZE;
1542         arg->tail[0].iov_len = 0;
1543
1544         try_to_freeze();
1545         cond_resched();
1546         if (signalled())
1547                 return -EINTR;
1548
1549         spin_lock_bh(&pool->sp_lock);
1550         if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1551                 rqstp->rq_sock = svsk;
1552                 svc_xprt_get(&svsk->sk_xprt);
1553                 rqstp->rq_reserved = serv->sv_max_mesg;
1554                 atomic_add(rqstp->rq_reserved, &svsk->sk_xprt.xpt_reserved);
1555         } else {
1556                 /* No data pending. Go to sleep */
1557                 svc_thread_enqueue(pool, rqstp);
1558
1559                 /*
1560                  * We have to be able to interrupt this wait
1561                  * to bring down the daemons ...
1562                  */
1563                 set_current_state(TASK_INTERRUPTIBLE);
1564                 add_wait_queue(&rqstp->rq_wait, &wait);
1565                 spin_unlock_bh(&pool->sp_lock);
1566
1567                 schedule_timeout(timeout);
1568
1569                 try_to_freeze();
1570
1571                 spin_lock_bh(&pool->sp_lock);
1572                 remove_wait_queue(&rqstp->rq_wait, &wait);
1573
1574                 if (!(svsk = rqstp->rq_sock)) {
1575                         svc_thread_dequeue(pool, rqstp);
1576                         spin_unlock_bh(&pool->sp_lock);
1577                         dprintk("svc: server %p, no data yet\n", rqstp);
1578                         return signalled()? -EINTR : -EAGAIN;
1579                 }
1580         }
1581         spin_unlock_bh(&pool->sp_lock);
1582
1583         len = 0;
1584         if (test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)) {
1585                 dprintk("svc_recv: found XPT_CLOSE\n");
1586                 svc_delete_xprt(&svsk->sk_xprt);
1587         } else if (test_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags)) {
1588                 struct svc_xprt *newxpt;
1589                 newxpt = svsk->sk_xprt.xpt_ops->xpo_accept(&svsk->sk_xprt);
1590                 if (newxpt) {
1591                         /*
1592                          * We know this module_get will succeed because the
1593                          * listener holds a reference too
1594                          */
1595                         __module_get(newxpt->xpt_class->xcl_owner);
1596                         svc_check_conn_limits(svsk->sk_xprt.xpt_server);
1597                         svc_xprt_received(newxpt);
1598                 }
1599                 svc_xprt_received(&svsk->sk_xprt);
1600         } else {
1601                 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1602                         rqstp, pool->sp_id, svsk,
1603                         atomic_read(&svsk->sk_xprt.xpt_ref.refcount));
1604                 len = svsk->sk_xprt.xpt_ops->xpo_recvfrom(rqstp);
1605                 dprintk("svc: got len=%d\n", len);
1606         }
1607
1608         /* No data, incomplete (TCP) read, or accept() */
1609         if (len == 0 || len == -EAGAIN) {
1610                 rqstp->rq_res.len = 0;
1611                 svc_sock_release(rqstp);
1612                 return -EAGAIN;
1613         }
1614         clear_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags);
1615
1616         rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1617         rqstp->rq_chandle.defer = svc_defer;
1618
1619         if (serv->sv_stats)
1620                 serv->sv_stats->netcnt++;
1621         return len;
1622 }
1623
1624 /*
1625  * Drop request
1626  */
1627 void
1628 svc_drop(struct svc_rqst *rqstp)
1629 {
1630         dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1631         svc_sock_release(rqstp);
1632 }
1633
1634 /*
1635  * Return reply to client.
1636  */
1637 int
1638 svc_send(struct svc_rqst *rqstp)
1639 {
1640         struct svc_xprt *xprt;
1641         int             len;
1642         struct xdr_buf  *xb;
1643
1644         xprt = rqstp->rq_xprt;
1645         if (!xprt)
1646                 return -EFAULT;
1647
1648         /* release the receive skb before sending the reply */
1649         rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
1650
1651         /* calculate over-all length */
1652         xb = & rqstp->rq_res;
1653         xb->len = xb->head[0].iov_len +
1654                 xb->page_len +
1655                 xb->tail[0].iov_len;
1656
1657         /* Grab mutex to serialize outgoing data. */
1658         mutex_lock(&xprt->xpt_mutex);
1659         if (test_bit(XPT_DEAD, &xprt->xpt_flags))
1660                 len = -ENOTCONN;
1661         else
1662                 len = xprt->xpt_ops->xpo_sendto(rqstp);
1663         mutex_unlock(&xprt->xpt_mutex);
1664         svc_sock_release(rqstp);
1665
1666         if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1667                 return 0;
1668         return len;
1669 }
1670
1671 /*
1672  * Timer function to close old temporary sockets, using
1673  * a mark-and-sweep algorithm.
1674  */
1675 static void
1676 svc_age_temp_sockets(unsigned long closure)
1677 {
1678         struct svc_serv *serv = (struct svc_serv *)closure;
1679         struct svc_sock *svsk;
1680         struct list_head *le, *next;
1681         LIST_HEAD(to_be_aged);
1682
1683         dprintk("svc_age_temp_sockets\n");
1684
1685         if (!spin_trylock_bh(&serv->sv_lock)) {
1686                 /* busy, try again 1 sec later */
1687                 dprintk("svc_age_temp_sockets: busy\n");
1688                 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1689                 return;
1690         }
1691
1692         list_for_each_safe(le, next, &serv->sv_tempsocks) {
1693                 svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1694
1695                 if (!test_and_set_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags))
1696                         continue;
1697                 if (atomic_read(&svsk->sk_xprt.xpt_ref.refcount) > 1
1698                     || test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags))
1699                         continue;
1700                 svc_xprt_get(&svsk->sk_xprt);
1701                 list_move(le, &to_be_aged);
1702                 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1703                 set_bit(XPT_DETACHED, &svsk->sk_xprt.xpt_flags);
1704         }
1705         spin_unlock_bh(&serv->sv_lock);
1706
1707         while (!list_empty(&to_be_aged)) {
1708                 le = to_be_aged.next;
1709                 /* fiddling the sk_xprt.xpt_list node is safe 'cos we're XPT_DETACHED */
1710                 list_del_init(le);
1711                 svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1712
1713                 dprintk("queuing svsk %p for closing\n", svsk);
1714
1715                 /* a thread will dequeue and close it soon */
1716                 svc_xprt_enqueue(&svsk->sk_xprt);
1717                 svc_xprt_put(&svsk->sk_xprt);
1718         }
1719
1720         mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1721 }
1722
1723 /*
1724  * Initialize socket for RPC use and create svc_sock struct
1725  * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1726  */
1727 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1728                                                 struct socket *sock,
1729                                                 int *errp, int flags)
1730 {
1731         struct svc_sock *svsk;
1732         struct sock     *inet;
1733         int             pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1734         int             is_temporary = flags & SVC_SOCK_TEMPORARY;
1735
1736         dprintk("svc: svc_setup_socket %p\n", sock);
1737         if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1738                 *errp = -ENOMEM;
1739                 return NULL;
1740         }
1741
1742         inet = sock->sk;
1743
1744         /* Register socket with portmapper */
1745         if (*errp >= 0 && pmap_register)
1746                 *errp = svc_register(serv, inet->sk_protocol,
1747                                      ntohs(inet_sk(inet)->sport));
1748
1749         if (*errp < 0) {
1750                 kfree(svsk);
1751                 return NULL;
1752         }
1753
1754         set_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags);
1755         inet->sk_user_data = svsk;
1756         svsk->sk_sock = sock;
1757         svsk->sk_sk = inet;
1758         svsk->sk_ostate = inet->sk_state_change;
1759         svsk->sk_odata = inet->sk_data_ready;
1760         svsk->sk_owspace = inet->sk_write_space;
1761         INIT_LIST_HEAD(&svsk->sk_deferred);
1762
1763         /* Initialize the socket */
1764         if (sock->type == SOCK_DGRAM)
1765                 svc_udp_init(svsk, serv);
1766         else
1767                 svc_tcp_init(svsk, serv);
1768
1769         spin_lock_bh(&serv->sv_lock);
1770         if (is_temporary) {
1771                 set_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1772                 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_tempsocks);
1773                 serv->sv_tmpcnt++;
1774                 if (serv->sv_temptimer.function == NULL) {
1775                         /* setup timer to age temp sockets */
1776                         setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1777                                         (unsigned long)serv);
1778                         mod_timer(&serv->sv_temptimer,
1779                                         jiffies + svc_conn_age_period * HZ);
1780                 }
1781         } else {
1782                 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1783                 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1784         }
1785         spin_unlock_bh(&serv->sv_lock);
1786
1787         dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1788                                 svsk, svsk->sk_sk);
1789
1790         return svsk;
1791 }
1792
1793 int svc_addsock(struct svc_serv *serv,
1794                 int fd,
1795                 char *name_return,
1796                 int *proto)
1797 {
1798         int err = 0;
1799         struct socket *so = sockfd_lookup(fd, &err);
1800         struct svc_sock *svsk = NULL;
1801
1802         if (!so)
1803                 return err;
1804         if (so->sk->sk_family != AF_INET)
1805                 err =  -EAFNOSUPPORT;
1806         else if (so->sk->sk_protocol != IPPROTO_TCP &&
1807             so->sk->sk_protocol != IPPROTO_UDP)
1808                 err =  -EPROTONOSUPPORT;
1809         else if (so->state > SS_UNCONNECTED)
1810                 err = -EISCONN;
1811         else {
1812                 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1813                 if (svsk) {
1814                         svc_xprt_received(&svsk->sk_xprt);
1815                         err = 0;
1816                 }
1817         }
1818         if (err) {
1819                 sockfd_put(so);
1820                 return err;
1821         }
1822         if (proto) *proto = so->sk->sk_protocol;
1823         return one_sock_name(name_return, svsk);
1824 }
1825 EXPORT_SYMBOL_GPL(svc_addsock);
1826
1827 /*
1828  * Create socket for RPC service.
1829  */
1830 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1831                                           int protocol,
1832                                           struct sockaddr *sin, int len,
1833                                           int flags)
1834 {
1835         struct svc_sock *svsk;
1836         struct socket   *sock;
1837         int             error;
1838         int             type;
1839         char            buf[RPC_MAX_ADDRBUFLEN];
1840
1841         dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1842                         serv->sv_program->pg_name, protocol,
1843                         __svc_print_addr(sin, buf, sizeof(buf)));
1844
1845         if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1846                 printk(KERN_WARNING "svc: only UDP and TCP "
1847                                 "sockets supported\n");
1848                 return ERR_PTR(-EINVAL);
1849         }
1850         type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1851
1852         error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1853         if (error < 0)
1854                 return ERR_PTR(error);
1855
1856         svc_reclassify_socket(sock);
1857
1858         if (type == SOCK_STREAM)
1859                 sock->sk->sk_reuse = 1;         /* allow address reuse */
1860         error = kernel_bind(sock, sin, len);
1861         if (error < 0)
1862                 goto bummer;
1863
1864         if (protocol == IPPROTO_TCP) {
1865                 if ((error = kernel_listen(sock, 64)) < 0)
1866                         goto bummer;
1867         }
1868
1869         if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1870                 svc_xprt_received(&svsk->sk_xprt);
1871                 return (struct svc_xprt *)svsk;
1872         }
1873
1874 bummer:
1875         dprintk("svc: svc_create_socket error = %d\n", -error);
1876         sock_release(sock);
1877         return ERR_PTR(error);
1878 }
1879
1880 /*
1881  * Detach the svc_sock from the socket so that no
1882  * more callbacks occur.
1883  */
1884 static void svc_sock_detach(struct svc_xprt *xprt)
1885 {
1886         struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1887         struct sock *sk = svsk->sk_sk;
1888
1889         dprintk("svc: svc_sock_detach(%p)\n", svsk);
1890
1891         /* put back the old socket callbacks */
1892         sk->sk_state_change = svsk->sk_ostate;
1893         sk->sk_data_ready = svsk->sk_odata;
1894         sk->sk_write_space = svsk->sk_owspace;
1895 }
1896
1897 /*
1898  * Free the svc_sock's socket resources and the svc_sock itself.
1899  */
1900 static void svc_sock_free(struct svc_xprt *xprt)
1901 {
1902         struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1903         dprintk("svc: svc_sock_free(%p)\n", svsk);
1904
1905         if (svsk->sk_sock->file)
1906                 sockfd_put(svsk->sk_sock);
1907         else
1908                 sock_release(svsk->sk_sock);
1909         kfree(svsk);
1910 }
1911
1912 /*
1913  * Remove a dead transport
1914  */
1915 static void svc_delete_xprt(struct svc_xprt *xprt)
1916 {
1917         struct svc_serv *serv = xprt->xpt_server;
1918
1919         dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1920         xprt->xpt_ops->xpo_detach(xprt);
1921
1922         spin_lock_bh(&serv->sv_lock);
1923         if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
1924                 list_del_init(&xprt->xpt_list);
1925         /*
1926          * We used to delete the transport from whichever list
1927          * it's sk_xprt.xpt_ready node was on, but we don't actually
1928          * need to.  This is because the only time we're called
1929          * while still attached to a queue, the queue itself
1930          * is about to be destroyed (in svc_destroy).
1931          */
1932         if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
1933                 BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
1934                 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1935                         serv->sv_tmpcnt--;
1936                 svc_xprt_put(xprt);
1937         }
1938         spin_unlock_bh(&serv->sv_lock);
1939 }
1940
1941 static void svc_close_xprt(struct svc_xprt *xprt)
1942 {
1943         set_bit(XPT_CLOSE, &xprt->xpt_flags);
1944         if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1945                 /* someone else will have to effect the close */
1946                 return;
1947
1948         svc_xprt_get(xprt);
1949         svc_delete_xprt(xprt);
1950         clear_bit(XPT_BUSY, &xprt->xpt_flags);
1951         svc_xprt_put(xprt);
1952 }
1953
1954 void svc_close_all(struct list_head *xprt_list)
1955 {
1956         struct svc_xprt *xprt;
1957         struct svc_xprt *tmp;
1958
1959         list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
1960                 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1961                 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
1962                         /* Waiting to be processed, but no threads left,
1963                          * So just remove it from the waiting list
1964                          */
1965                         list_del_init(&xprt->xpt_ready);
1966                         clear_bit(XPT_BUSY, &xprt->xpt_flags);
1967                 }
1968                 svc_close_xprt(xprt);
1969         }
1970 }
1971
1972 /*
1973  * Handle defer and revisit of requests
1974  */
1975
1976 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1977 {
1978         struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1979         struct svc_sock *svsk;
1980
1981         if (too_many) {
1982                 svc_xprt_put(&dr->svsk->sk_xprt);
1983                 kfree(dr);
1984                 return;
1985         }
1986         dprintk("revisit queued\n");
1987         svsk = dr->svsk;
1988         dr->svsk = NULL;
1989         spin_lock(&svsk->sk_xprt.xpt_lock);
1990         list_add(&dr->handle.recent, &svsk->sk_deferred);
1991         spin_unlock(&svsk->sk_xprt.xpt_lock);
1992         set_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
1993         svc_xprt_enqueue(&svsk->sk_xprt);
1994         svc_xprt_put(&svsk->sk_xprt);
1995 }
1996
1997 static struct cache_deferred_req *
1998 svc_defer(struct cache_req *req)
1999 {
2000         struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
2001         int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
2002         struct svc_deferred_req *dr;
2003
2004         if (rqstp->rq_arg.page_len)
2005                 return NULL; /* if more than a page, give up FIXME */
2006         if (rqstp->rq_deferred) {
2007                 dr = rqstp->rq_deferred;
2008                 rqstp->rq_deferred = NULL;
2009         } else {
2010                 int skip  = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
2011                 /* FIXME maybe discard if size too large */
2012                 dr = kmalloc(size, GFP_KERNEL);
2013                 if (dr == NULL)
2014                         return NULL;
2015
2016                 dr->handle.owner = rqstp->rq_server;
2017                 dr->prot = rqstp->rq_prot;
2018                 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
2019                 dr->addrlen = rqstp->rq_addrlen;
2020                 dr->daddr = rqstp->rq_daddr;
2021                 dr->argslen = rqstp->rq_arg.len >> 2;
2022                 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
2023         }
2024         svc_xprt_get(rqstp->rq_xprt);
2025         dr->svsk = rqstp->rq_sock;
2026
2027         dr->handle.revisit = svc_revisit;
2028         return &dr->handle;
2029 }
2030
2031 /*
2032  * recv data from a deferred request into an active one
2033  */
2034 static int svc_deferred_recv(struct svc_rqst *rqstp)
2035 {
2036         struct svc_deferred_req *dr = rqstp->rq_deferred;
2037
2038         rqstp->rq_arg.head[0].iov_base = dr->args;
2039         rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
2040         rqstp->rq_arg.page_len = 0;
2041         rqstp->rq_arg.len = dr->argslen<<2;
2042         rqstp->rq_prot        = dr->prot;
2043         memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
2044         rqstp->rq_addrlen     = dr->addrlen;
2045         rqstp->rq_daddr       = dr->daddr;
2046         rqstp->rq_respages    = rqstp->rq_pages;
2047         return dr->argslen<<2;
2048 }
2049
2050
2051 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
2052 {
2053         struct svc_deferred_req *dr = NULL;
2054
2055         if (!test_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags))
2056                 return NULL;
2057         spin_lock(&svsk->sk_xprt.xpt_lock);
2058         clear_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
2059         if (!list_empty(&svsk->sk_deferred)) {
2060                 dr = list_entry(svsk->sk_deferred.next,
2061                                 struct svc_deferred_req,
2062                                 handle.recent);
2063                 list_del_init(&dr->handle.recent);
2064                 set_bit(XPT_DEFERRED, &svsk->sk_xprt.xpt_flags);
2065         }
2066         spin_unlock(&svsk->sk_xprt.xpt_lock);
2067         return dr;
2068 }