[SUNRPC]: Use proc_create() to setup ->proc_fops first
[safe/jmp/linux-2.6] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34
35 #define  RPCDBG_FACILITY RPCDBG_CACHE
36
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39
40 static void cache_init(struct cache_head *h)
41 {
42         time_t now = get_seconds();
43         h->next = NULL;
44         h->flags = 0;
45         kref_init(&h->ref);
46         h->expiry_time = now + CACHE_NEW_EXPIRY;
47         h->last_refresh = now;
48 }
49
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51                                        struct cache_head *key, int hash)
52 {
53         struct cache_head **head,  **hp;
54         struct cache_head *new = NULL;
55
56         head = &detail->hash_table[hash];
57
58         read_lock(&detail->hash_lock);
59
60         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61                 struct cache_head *tmp = *hp;
62                 if (detail->match(tmp, key)) {
63                         cache_get(tmp);
64                         read_unlock(&detail->hash_lock);
65                         return tmp;
66                 }
67         }
68         read_unlock(&detail->hash_lock);
69         /* Didn't find anything, insert an empty entry */
70
71         new = detail->alloc();
72         if (!new)
73                 return NULL;
74         /* must fully initialise 'new', else
75          * we might get lose if we need to
76          * cache_put it soon.
77          */
78         cache_init(new);
79         detail->init(new, key);
80
81         write_lock(&detail->hash_lock);
82
83         /* check if entry appeared while we slept */
84         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85                 struct cache_head *tmp = *hp;
86                 if (detail->match(tmp, key)) {
87                         cache_get(tmp);
88                         write_unlock(&detail->hash_lock);
89                         cache_put(new, detail);
90                         return tmp;
91                 }
92         }
93         new->next = *head;
94         *head = new;
95         detail->entries++;
96         cache_get(new);
97         write_unlock(&detail->hash_lock);
98
99         return new;
100 }
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
102
103
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108         head->expiry_time = expiry;
109         head->last_refresh = get_seconds();
110         return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112
113 static void cache_fresh_unlocked(struct cache_head *head,
114                         struct cache_detail *detail, int new)
115 {
116         if (new)
117                 cache_revisit_request(head);
118         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119                 cache_revisit_request(head);
120                 queue_loose(detail, head);
121         }
122 }
123
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125                                        struct cache_head *new, struct cache_head *old, int hash)
126 {
127         /* The 'old' entry is to be replaced by 'new'.
128          * If 'old' is not VALID, we update it directly,
129          * otherwise we need to replace it
130          */
131         struct cache_head **head;
132         struct cache_head *tmp;
133         int is_new;
134
135         if (!test_bit(CACHE_VALID, &old->flags)) {
136                 write_lock(&detail->hash_lock);
137                 if (!test_bit(CACHE_VALID, &old->flags)) {
138                         if (test_bit(CACHE_NEGATIVE, &new->flags))
139                                 set_bit(CACHE_NEGATIVE, &old->flags);
140                         else
141                                 detail->update(old, new);
142                         is_new = cache_fresh_locked(old, new->expiry_time);
143                         write_unlock(&detail->hash_lock);
144                         cache_fresh_unlocked(old, detail, is_new);
145                         return old;
146                 }
147                 write_unlock(&detail->hash_lock);
148         }
149         /* We need to insert a new entry */
150         tmp = detail->alloc();
151         if (!tmp) {
152                 cache_put(old, detail);
153                 return NULL;
154         }
155         cache_init(tmp);
156         detail->init(tmp, old);
157         head = &detail->hash_table[hash];
158
159         write_lock(&detail->hash_lock);
160         if (test_bit(CACHE_NEGATIVE, &new->flags))
161                 set_bit(CACHE_NEGATIVE, &tmp->flags);
162         else
163                 detail->update(tmp, new);
164         tmp->next = *head;
165         *head = tmp;
166         detail->entries++;
167         cache_get(tmp);
168         is_new = cache_fresh_locked(tmp, new->expiry_time);
169         cache_fresh_locked(old, 0);
170         write_unlock(&detail->hash_lock);
171         cache_fresh_unlocked(tmp, detail, is_new);
172         cache_fresh_unlocked(old, detail, 0);
173         cache_put(old, detail);
174         return tmp;
175 }
176 EXPORT_SYMBOL(sunrpc_cache_update);
177
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ETIMEDOUT if upcall failed and should be retried,
189  * -ENOENT if cache entry was negative
190  */
191 int cache_check(struct cache_detail *detail,
192                     struct cache_head *h, struct cache_req *rqstp)
193 {
194         int rv;
195         long refresh_age, age;
196
197         /* First decide return status as best we can */
198         if (!test_bit(CACHE_VALID, &h->flags) ||
199             h->expiry_time < get_seconds())
200                 rv = -EAGAIN;
201         else if (detail->flush_time > h->last_refresh)
202                 rv = -EAGAIN;
203         else {
204                 /* entry is valid */
205                 if (test_bit(CACHE_NEGATIVE, &h->flags))
206                         rv = -ENOENT;
207                 else rv = 0;
208         }
209
210         /* now see if we want to start an upcall */
211         refresh_age = (h->expiry_time - h->last_refresh);
212         age = get_seconds() - h->last_refresh;
213
214         if (rqstp == NULL) {
215                 if (rv == -EAGAIN)
216                         rv = -ENOENT;
217         } else if (rv == -EAGAIN || age > refresh_age/2) {
218                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219                                 refresh_age, age);
220                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221                         switch (cache_make_upcall(detail, h)) {
222                         case -EINVAL:
223                                 clear_bit(CACHE_PENDING, &h->flags);
224                                 if (rv == -EAGAIN) {
225                                         set_bit(CACHE_NEGATIVE, &h->flags);
226                                         cache_fresh_unlocked(h, detail,
227                                              cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228                                         rv = -ENOENT;
229                                 }
230                                 break;
231
232                         case -EAGAIN:
233                                 clear_bit(CACHE_PENDING, &h->flags);
234                                 cache_revisit_request(h);
235                                 break;
236                         }
237                 }
238         }
239
240         if (rv == -EAGAIN)
241                 if (cache_defer_req(rqstp, h) != 0)
242                         rv = -ETIMEDOUT;
243
244         if (rv)
245                 cache_put(h, detail);
246         return rv;
247 }
248 EXPORT_SYMBOL(cache_check);
249
250 /*
251  * caches need to be periodically cleaned.
252  * For this we maintain a list of cache_detail and
253  * a current pointer into that list and into the table
254  * for that entry.
255  *
256  * Each time clean_cache is called it finds the next non-empty entry
257  * in the current table and walks the list in that entry
258  * looking for entries that can be removed.
259  *
260  * An entry gets removed if:
261  * - The expiry is before current time
262  * - The last_refresh time is before the flush_time for that cache
263  *
264  * later we might drop old entries with non-NEVER expiry if that table
265  * is getting 'full' for some definition of 'full'
266  *
267  * The question of "how often to scan a table" is an interesting one
268  * and is answered in part by the use of the "nextcheck" field in the
269  * cache_detail.
270  * When a scan of a table begins, the nextcheck field is set to a time
271  * that is well into the future.
272  * While scanning, if an expiry time is found that is earlier than the
273  * current nextcheck time, nextcheck is set to that expiry time.
274  * If the flush_time is ever set to a time earlier than the nextcheck
275  * time, the nextcheck time is then set to that flush_time.
276  *
277  * A table is then only scanned if the current time is at least
278  * the nextcheck time.
279  *
280  */
281
282 static LIST_HEAD(cache_list);
283 static DEFINE_SPINLOCK(cache_list_lock);
284 static struct cache_detail *current_detail;
285 static int current_index;
286
287 static const struct file_operations cache_file_operations;
288 static const struct file_operations content_file_operations;
289 static const struct file_operations cache_flush_operations;
290
291 static void do_cache_clean(struct work_struct *work);
292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
293
294 static void remove_cache_proc_entries(struct cache_detail *cd)
295 {
296         if (cd->proc_ent == NULL)
297                 return;
298         if (cd->flush_ent)
299                 remove_proc_entry("flush", cd->proc_ent);
300         if (cd->channel_ent)
301                 remove_proc_entry("channel", cd->proc_ent);
302         if (cd->content_ent)
303                 remove_proc_entry("content", cd->proc_ent);
304         cd->proc_ent = NULL;
305         remove_proc_entry(cd->name, proc_net_rpc);
306 }
307
308 #ifdef CONFIG_PROC_FS
309 static int create_cache_proc_entries(struct cache_detail *cd)
310 {
311         struct proc_dir_entry *p;
312
313         cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
314         if (cd->proc_ent == NULL)
315                 goto out_nomem;
316         cd->proc_ent->owner = cd->owner;
317         cd->channel_ent = cd->content_ent = NULL;
318
319         p = proc_create("flush", S_IFREG|S_IRUSR|S_IWUSR,
320                         cd->proc_ent, &cache_flush_operations);
321         cd->flush_ent = p;
322         if (p == NULL)
323                 goto out_nomem;
324         p->owner = cd->owner;
325         p->data = cd;
326
327         if (cd->cache_request || cd->cache_parse) {
328                 p = proc_create("channel", S_IFREG|S_IRUSR|S_IWUSR,
329                                 cd->proc_ent, &cache_file_operations);
330                 cd->channel_ent = p;
331                 if (p == NULL)
332                         goto out_nomem;
333                 p->owner = cd->owner;
334                 p->data = cd;
335         }
336         if (cd->cache_show) {
337                 p = proc_create("content", S_IFREG|S_IRUSR|S_IWUSR,
338                                 cd->proc_ent, &content_file_operations);
339                 cd->content_ent = p;
340                 if (p == NULL)
341                         goto out_nomem;
342                 p->owner = cd->owner;
343                 p->data = cd;
344         }
345         return 0;
346 out_nomem:
347         remove_cache_proc_entries(cd);
348         return -ENOMEM;
349 }
350 #else /* CONFIG_PROC_FS */
351 static int create_cache_proc_entries(struct cache_detail *cd)
352 {
353         return 0;
354 }
355 #endif
356
357 int cache_register(struct cache_detail *cd)
358 {
359         int ret;
360
361         ret = create_cache_proc_entries(cd);
362         if (ret)
363                 return ret;
364         rwlock_init(&cd->hash_lock);
365         INIT_LIST_HEAD(&cd->queue);
366         spin_lock(&cache_list_lock);
367         cd->nextcheck = 0;
368         cd->entries = 0;
369         atomic_set(&cd->readers, 0);
370         cd->last_close = 0;
371         cd->last_warn = -1;
372         list_add(&cd->others, &cache_list);
373         spin_unlock(&cache_list_lock);
374
375         /* start the cleaning process */
376         schedule_delayed_work(&cache_cleaner, 0);
377         return 0;
378 }
379 EXPORT_SYMBOL(cache_register);
380
381 void cache_unregister(struct cache_detail *cd)
382 {
383         cache_purge(cd);
384         spin_lock(&cache_list_lock);
385         write_lock(&cd->hash_lock);
386         if (cd->entries || atomic_read(&cd->inuse)) {
387                 write_unlock(&cd->hash_lock);
388                 spin_unlock(&cache_list_lock);
389                 goto out;
390         }
391         if (current_detail == cd)
392                 current_detail = NULL;
393         list_del_init(&cd->others);
394         write_unlock(&cd->hash_lock);
395         spin_unlock(&cache_list_lock);
396         remove_cache_proc_entries(cd);
397         if (list_empty(&cache_list)) {
398                 /* module must be being unloaded so its safe to kill the worker */
399                 cancel_delayed_work_sync(&cache_cleaner);
400         }
401         return;
402 out:
403         printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
404 }
405 EXPORT_SYMBOL(cache_unregister);
406
407 /* clean cache tries to find something to clean
408  * and cleans it.
409  * It returns 1 if it cleaned something,
410  *            0 if it didn't find anything this time
411  *           -1 if it fell off the end of the list.
412  */
413 static int cache_clean(void)
414 {
415         int rv = 0;
416         struct list_head *next;
417
418         spin_lock(&cache_list_lock);
419
420         /* find a suitable table if we don't already have one */
421         while (current_detail == NULL ||
422             current_index >= current_detail->hash_size) {
423                 if (current_detail)
424                         next = current_detail->others.next;
425                 else
426                         next = cache_list.next;
427                 if (next == &cache_list) {
428                         current_detail = NULL;
429                         spin_unlock(&cache_list_lock);
430                         return -1;
431                 }
432                 current_detail = list_entry(next, struct cache_detail, others);
433                 if (current_detail->nextcheck > get_seconds())
434                         current_index = current_detail->hash_size;
435                 else {
436                         current_index = 0;
437                         current_detail->nextcheck = get_seconds()+30*60;
438                 }
439         }
440
441         /* find a non-empty bucket in the table */
442         while (current_detail &&
443                current_index < current_detail->hash_size &&
444                current_detail->hash_table[current_index] == NULL)
445                 current_index++;
446
447         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
448
449         if (current_detail && current_index < current_detail->hash_size) {
450                 struct cache_head *ch, **cp;
451                 struct cache_detail *d;
452
453                 write_lock(&current_detail->hash_lock);
454
455                 /* Ok, now to clean this strand */
456
457                 cp = & current_detail->hash_table[current_index];
458                 ch = *cp;
459                 for (; ch; cp= & ch->next, ch= *cp) {
460                         if (current_detail->nextcheck > ch->expiry_time)
461                                 current_detail->nextcheck = ch->expiry_time+1;
462                         if (ch->expiry_time >= get_seconds()
463                             && ch->last_refresh >= current_detail->flush_time
464                                 )
465                                 continue;
466                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
467                                 queue_loose(current_detail, ch);
468
469                         if (atomic_read(&ch->ref.refcount) == 1)
470                                 break;
471                 }
472                 if (ch) {
473                         *cp = ch->next;
474                         ch->next = NULL;
475                         current_detail->entries--;
476                         rv = 1;
477                 }
478                 write_unlock(&current_detail->hash_lock);
479                 d = current_detail;
480                 if (!ch)
481                         current_index ++;
482                 spin_unlock(&cache_list_lock);
483                 if (ch)
484                         cache_put(ch, d);
485         } else
486                 spin_unlock(&cache_list_lock);
487
488         return rv;
489 }
490
491 /*
492  * We want to regularly clean the cache, so we need to schedule some work ...
493  */
494 static void do_cache_clean(struct work_struct *work)
495 {
496         int delay = 5;
497         if (cache_clean() == -1)
498                 delay = 30*HZ;
499
500         if (list_empty(&cache_list))
501                 delay = 0;
502
503         if (delay)
504                 schedule_delayed_work(&cache_cleaner, delay);
505 }
506
507
508 /*
509  * Clean all caches promptly.  This just calls cache_clean
510  * repeatedly until we are sure that every cache has had a chance to
511  * be fully cleaned
512  */
513 void cache_flush(void)
514 {
515         while (cache_clean() != -1)
516                 cond_resched();
517         while (cache_clean() != -1)
518                 cond_resched();
519 }
520 EXPORT_SYMBOL(cache_flush);
521
522 void cache_purge(struct cache_detail *detail)
523 {
524         detail->flush_time = LONG_MAX;
525         detail->nextcheck = get_seconds();
526         cache_flush();
527         detail->flush_time = 1;
528 }
529 EXPORT_SYMBOL(cache_purge);
530
531
532 /*
533  * Deferral and Revisiting of Requests.
534  *
535  * If a cache lookup finds a pending entry, we
536  * need to defer the request and revisit it later.
537  * All deferred requests are stored in a hash table,
538  * indexed by "struct cache_head *".
539  * As it may be wasteful to store a whole request
540  * structure, we allow the request to provide a
541  * deferred form, which must contain a
542  * 'struct cache_deferred_req'
543  * This cache_deferred_req contains a method to allow
544  * it to be revisited when cache info is available
545  */
546
547 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
548 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
549
550 #define DFR_MAX 300     /* ??? */
551
552 static DEFINE_SPINLOCK(cache_defer_lock);
553 static LIST_HEAD(cache_defer_list);
554 static struct list_head cache_defer_hash[DFR_HASHSIZE];
555 static int cache_defer_cnt;
556
557 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
558 {
559         struct cache_deferred_req *dreq;
560         int hash = DFR_HASH(item);
561
562         if (cache_defer_cnt >= DFR_MAX) {
563                 /* too much in the cache, randomly drop this one,
564                  * or continue and drop the oldest below
565                  */
566                 if (net_random()&1)
567                         return -ETIMEDOUT;
568         }
569         dreq = req->defer(req);
570         if (dreq == NULL)
571                 return -ETIMEDOUT;
572
573         dreq->item = item;
574         dreq->recv_time = get_seconds();
575
576         spin_lock(&cache_defer_lock);
577
578         list_add(&dreq->recent, &cache_defer_list);
579
580         if (cache_defer_hash[hash].next == NULL)
581                 INIT_LIST_HEAD(&cache_defer_hash[hash]);
582         list_add(&dreq->hash, &cache_defer_hash[hash]);
583
584         /* it is in, now maybe clean up */
585         dreq = NULL;
586         if (++cache_defer_cnt > DFR_MAX) {
587                 dreq = list_entry(cache_defer_list.prev,
588                                   struct cache_deferred_req, recent);
589                 list_del(&dreq->recent);
590                 list_del(&dreq->hash);
591                 cache_defer_cnt--;
592         }
593         spin_unlock(&cache_defer_lock);
594
595         if (dreq) {
596                 /* there was one too many */
597                 dreq->revisit(dreq, 1);
598         }
599         if (!test_bit(CACHE_PENDING, &item->flags)) {
600                 /* must have just been validated... */
601                 cache_revisit_request(item);
602         }
603         return 0;
604 }
605
606 static void cache_revisit_request(struct cache_head *item)
607 {
608         struct cache_deferred_req *dreq;
609         struct list_head pending;
610
611         struct list_head *lp;
612         int hash = DFR_HASH(item);
613
614         INIT_LIST_HEAD(&pending);
615         spin_lock(&cache_defer_lock);
616
617         lp = cache_defer_hash[hash].next;
618         if (lp) {
619                 while (lp != &cache_defer_hash[hash]) {
620                         dreq = list_entry(lp, struct cache_deferred_req, hash);
621                         lp = lp->next;
622                         if (dreq->item == item) {
623                                 list_del(&dreq->hash);
624                                 list_move(&dreq->recent, &pending);
625                                 cache_defer_cnt--;
626                         }
627                 }
628         }
629         spin_unlock(&cache_defer_lock);
630
631         while (!list_empty(&pending)) {
632                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
633                 list_del_init(&dreq->recent);
634                 dreq->revisit(dreq, 0);
635         }
636 }
637
638 void cache_clean_deferred(void *owner)
639 {
640         struct cache_deferred_req *dreq, *tmp;
641         struct list_head pending;
642
643
644         INIT_LIST_HEAD(&pending);
645         spin_lock(&cache_defer_lock);
646
647         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
648                 if (dreq->owner == owner) {
649                         list_del(&dreq->hash);
650                         list_move(&dreq->recent, &pending);
651                         cache_defer_cnt--;
652                 }
653         }
654         spin_unlock(&cache_defer_lock);
655
656         while (!list_empty(&pending)) {
657                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
658                 list_del_init(&dreq->recent);
659                 dreq->revisit(dreq, 1);
660         }
661 }
662
663 /*
664  * communicate with user-space
665  *
666  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
667  * On read, you get a full request, or block.
668  * On write, an update request is processed.
669  * Poll works if anything to read, and always allows write.
670  *
671  * Implemented by linked list of requests.  Each open file has
672  * a ->private that also exists in this list.  New requests are added
673  * to the end and may wakeup and preceding readers.
674  * New readers are added to the head.  If, on read, an item is found with
675  * CACHE_UPCALLING clear, we free it from the list.
676  *
677  */
678
679 static DEFINE_SPINLOCK(queue_lock);
680 static DEFINE_MUTEX(queue_io_mutex);
681
682 struct cache_queue {
683         struct list_head        list;
684         int                     reader; /* if 0, then request */
685 };
686 struct cache_request {
687         struct cache_queue      q;
688         struct cache_head       *item;
689         char                    * buf;
690         int                     len;
691         int                     readers;
692 };
693 struct cache_reader {
694         struct cache_queue      q;
695         int                     offset; /* if non-0, we have a refcnt on next request */
696 };
697
698 static ssize_t
699 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
700 {
701         struct cache_reader *rp = filp->private_data;
702         struct cache_request *rq;
703         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
704         int err;
705
706         if (count == 0)
707                 return 0;
708
709         mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
710                               * readers on this file */
711  again:
712         spin_lock(&queue_lock);
713         /* need to find next request */
714         while (rp->q.list.next != &cd->queue &&
715                list_entry(rp->q.list.next, struct cache_queue, list)
716                ->reader) {
717                 struct list_head *next = rp->q.list.next;
718                 list_move(&rp->q.list, next);
719         }
720         if (rp->q.list.next == &cd->queue) {
721                 spin_unlock(&queue_lock);
722                 mutex_unlock(&queue_io_mutex);
723                 BUG_ON(rp->offset);
724                 return 0;
725         }
726         rq = container_of(rp->q.list.next, struct cache_request, q.list);
727         BUG_ON(rq->q.reader);
728         if (rp->offset == 0)
729                 rq->readers++;
730         spin_unlock(&queue_lock);
731
732         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
733                 err = -EAGAIN;
734                 spin_lock(&queue_lock);
735                 list_move(&rp->q.list, &rq->q.list);
736                 spin_unlock(&queue_lock);
737         } else {
738                 if (rp->offset + count > rq->len)
739                         count = rq->len - rp->offset;
740                 err = -EFAULT;
741                 if (copy_to_user(buf, rq->buf + rp->offset, count))
742                         goto out;
743                 rp->offset += count;
744                 if (rp->offset >= rq->len) {
745                         rp->offset = 0;
746                         spin_lock(&queue_lock);
747                         list_move(&rp->q.list, &rq->q.list);
748                         spin_unlock(&queue_lock);
749                 }
750                 err = 0;
751         }
752  out:
753         if (rp->offset == 0) {
754                 /* need to release rq */
755                 spin_lock(&queue_lock);
756                 rq->readers--;
757                 if (rq->readers == 0 &&
758                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
759                         list_del(&rq->q.list);
760                         spin_unlock(&queue_lock);
761                         cache_put(rq->item, cd);
762                         kfree(rq->buf);
763                         kfree(rq);
764                 } else
765                         spin_unlock(&queue_lock);
766         }
767         if (err == -EAGAIN)
768                 goto again;
769         mutex_unlock(&queue_io_mutex);
770         return err ? err :  count;
771 }
772
773 static char write_buf[8192]; /* protected by queue_io_mutex */
774
775 static ssize_t
776 cache_write(struct file *filp, const char __user *buf, size_t count,
777             loff_t *ppos)
778 {
779         int err;
780         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
781
782         if (count == 0)
783                 return 0;
784         if (count >= sizeof(write_buf))
785                 return -EINVAL;
786
787         mutex_lock(&queue_io_mutex);
788
789         if (copy_from_user(write_buf, buf, count)) {
790                 mutex_unlock(&queue_io_mutex);
791                 return -EFAULT;
792         }
793         write_buf[count] = '\0';
794         if (cd->cache_parse)
795                 err = cd->cache_parse(cd, write_buf, count);
796         else
797                 err = -EINVAL;
798
799         mutex_unlock(&queue_io_mutex);
800         return err ? err : count;
801 }
802
803 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
804
805 static unsigned int
806 cache_poll(struct file *filp, poll_table *wait)
807 {
808         unsigned int mask;
809         struct cache_reader *rp = filp->private_data;
810         struct cache_queue *cq;
811         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
812
813         poll_wait(filp, &queue_wait, wait);
814
815         /* alway allow write */
816         mask = POLL_OUT | POLLWRNORM;
817
818         if (!rp)
819                 return mask;
820
821         spin_lock(&queue_lock);
822
823         for (cq= &rp->q; &cq->list != &cd->queue;
824              cq = list_entry(cq->list.next, struct cache_queue, list))
825                 if (!cq->reader) {
826                         mask |= POLLIN | POLLRDNORM;
827                         break;
828                 }
829         spin_unlock(&queue_lock);
830         return mask;
831 }
832
833 static int
834 cache_ioctl(struct inode *ino, struct file *filp,
835             unsigned int cmd, unsigned long arg)
836 {
837         int len = 0;
838         struct cache_reader *rp = filp->private_data;
839         struct cache_queue *cq;
840         struct cache_detail *cd = PDE(ino)->data;
841
842         if (cmd != FIONREAD || !rp)
843                 return -EINVAL;
844
845         spin_lock(&queue_lock);
846
847         /* only find the length remaining in current request,
848          * or the length of the next request
849          */
850         for (cq= &rp->q; &cq->list != &cd->queue;
851              cq = list_entry(cq->list.next, struct cache_queue, list))
852                 if (!cq->reader) {
853                         struct cache_request *cr =
854                                 container_of(cq, struct cache_request, q);
855                         len = cr->len - rp->offset;
856                         break;
857                 }
858         spin_unlock(&queue_lock);
859
860         return put_user(len, (int __user *)arg);
861 }
862
863 static int
864 cache_open(struct inode *inode, struct file *filp)
865 {
866         struct cache_reader *rp = NULL;
867
868         nonseekable_open(inode, filp);
869         if (filp->f_mode & FMODE_READ) {
870                 struct cache_detail *cd = PDE(inode)->data;
871
872                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
873                 if (!rp)
874                         return -ENOMEM;
875                 rp->offset = 0;
876                 rp->q.reader = 1;
877                 atomic_inc(&cd->readers);
878                 spin_lock(&queue_lock);
879                 list_add(&rp->q.list, &cd->queue);
880                 spin_unlock(&queue_lock);
881         }
882         filp->private_data = rp;
883         return 0;
884 }
885
886 static int
887 cache_release(struct inode *inode, struct file *filp)
888 {
889         struct cache_reader *rp = filp->private_data;
890         struct cache_detail *cd = PDE(inode)->data;
891
892         if (rp) {
893                 spin_lock(&queue_lock);
894                 if (rp->offset) {
895                         struct cache_queue *cq;
896                         for (cq= &rp->q; &cq->list != &cd->queue;
897                              cq = list_entry(cq->list.next, struct cache_queue, list))
898                                 if (!cq->reader) {
899                                         container_of(cq, struct cache_request, q)
900                                                 ->readers--;
901                                         break;
902                                 }
903                         rp->offset = 0;
904                 }
905                 list_del(&rp->q.list);
906                 spin_unlock(&queue_lock);
907
908                 filp->private_data = NULL;
909                 kfree(rp);
910
911                 cd->last_close = get_seconds();
912                 atomic_dec(&cd->readers);
913         }
914         return 0;
915 }
916
917
918
919 static const struct file_operations cache_file_operations = {
920         .owner          = THIS_MODULE,
921         .llseek         = no_llseek,
922         .read           = cache_read,
923         .write          = cache_write,
924         .poll           = cache_poll,
925         .ioctl          = cache_ioctl, /* for FIONREAD */
926         .open           = cache_open,
927         .release        = cache_release,
928 };
929
930
931 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
932 {
933         struct cache_queue *cq;
934         spin_lock(&queue_lock);
935         list_for_each_entry(cq, &detail->queue, list)
936                 if (!cq->reader) {
937                         struct cache_request *cr = container_of(cq, struct cache_request, q);
938                         if (cr->item != ch)
939                                 continue;
940                         if (cr->readers != 0)
941                                 continue;
942                         list_del(&cr->q.list);
943                         spin_unlock(&queue_lock);
944                         cache_put(cr->item, detail);
945                         kfree(cr->buf);
946                         kfree(cr);
947                         return;
948                 }
949         spin_unlock(&queue_lock);
950 }
951
952 /*
953  * Support routines for text-based upcalls.
954  * Fields are separated by spaces.
955  * Fields are either mangled to quote space tab newline slosh with slosh
956  * or a hexified with a leading \x
957  * Record is terminated with newline.
958  *
959  */
960
961 void qword_add(char **bpp, int *lp, char *str)
962 {
963         char *bp = *bpp;
964         int len = *lp;
965         char c;
966
967         if (len < 0) return;
968
969         while ((c=*str++) && len)
970                 switch(c) {
971                 case ' ':
972                 case '\t':
973                 case '\n':
974                 case '\\':
975                         if (len >= 4) {
976                                 *bp++ = '\\';
977                                 *bp++ = '0' + ((c & 0300)>>6);
978                                 *bp++ = '0' + ((c & 0070)>>3);
979                                 *bp++ = '0' + ((c & 0007)>>0);
980                         }
981                         len -= 4;
982                         break;
983                 default:
984                         *bp++ = c;
985                         len--;
986                 }
987         if (c || len <1) len = -1;
988         else {
989                 *bp++ = ' ';
990                 len--;
991         }
992         *bpp = bp;
993         *lp = len;
994 }
995 EXPORT_SYMBOL(qword_add);
996
997 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
998 {
999         char *bp = *bpp;
1000         int len = *lp;
1001
1002         if (len < 0) return;
1003
1004         if (len > 2) {
1005                 *bp++ = '\\';
1006                 *bp++ = 'x';
1007                 len -= 2;
1008                 while (blen && len >= 2) {
1009                         unsigned char c = *buf++;
1010                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1011                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1012                         len -= 2;
1013                         blen--;
1014                 }
1015         }
1016         if (blen || len<1) len = -1;
1017         else {
1018                 *bp++ = ' ';
1019                 len--;
1020         }
1021         *bpp = bp;
1022         *lp = len;
1023 }
1024 EXPORT_SYMBOL(qword_addhex);
1025
1026 static void warn_no_listener(struct cache_detail *detail)
1027 {
1028         if (detail->last_warn != detail->last_close) {
1029                 detail->last_warn = detail->last_close;
1030                 if (detail->warn_no_listener)
1031                         detail->warn_no_listener(detail);
1032         }
1033 }
1034
1035 /*
1036  * register an upcall request to user-space.
1037  * Each request is at most one page long.
1038  */
1039 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1040 {
1041
1042         char *buf;
1043         struct cache_request *crq;
1044         char *bp;
1045         int len;
1046
1047         if (detail->cache_request == NULL)
1048                 return -EINVAL;
1049
1050         if (atomic_read(&detail->readers) == 0 &&
1051             detail->last_close < get_seconds() - 30) {
1052                         warn_no_listener(detail);
1053                         return -EINVAL;
1054         }
1055
1056         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1057         if (!buf)
1058                 return -EAGAIN;
1059
1060         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1061         if (!crq) {
1062                 kfree(buf);
1063                 return -EAGAIN;
1064         }
1065
1066         bp = buf; len = PAGE_SIZE;
1067
1068         detail->cache_request(detail, h, &bp, &len);
1069
1070         if (len < 0) {
1071                 kfree(buf);
1072                 kfree(crq);
1073                 return -EAGAIN;
1074         }
1075         crq->q.reader = 0;
1076         crq->item = cache_get(h);
1077         crq->buf = buf;
1078         crq->len = PAGE_SIZE - len;
1079         crq->readers = 0;
1080         spin_lock(&queue_lock);
1081         list_add_tail(&crq->q.list, &detail->queue);
1082         spin_unlock(&queue_lock);
1083         wake_up(&queue_wait);
1084         return 0;
1085 }
1086
1087 /*
1088  * parse a message from user-space and pass it
1089  * to an appropriate cache
1090  * Messages are, like requests, separated into fields by
1091  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1092  *
1093  * Message is
1094  *   reply cachename expiry key ... content....
1095  *
1096  * key and content are both parsed by cache
1097  */
1098
1099 #define isodigit(c) (isdigit(c) && c <= '7')
1100 int qword_get(char **bpp, char *dest, int bufsize)
1101 {
1102         /* return bytes copied, or -1 on error */
1103         char *bp = *bpp;
1104         int len = 0;
1105
1106         while (*bp == ' ') bp++;
1107
1108         if (bp[0] == '\\' && bp[1] == 'x') {
1109                 /* HEX STRING */
1110                 bp += 2;
1111                 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1112                         int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1113                         bp++;
1114                         byte <<= 4;
1115                         byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1116                         *dest++ = byte;
1117                         bp++;
1118                         len++;
1119                 }
1120         } else {
1121                 /* text with \nnn octal quoting */
1122                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1123                         if (*bp == '\\' &&
1124                             isodigit(bp[1]) && (bp[1] <= '3') &&
1125                             isodigit(bp[2]) &&
1126                             isodigit(bp[3])) {
1127                                 int byte = (*++bp -'0');
1128                                 bp++;
1129                                 byte = (byte << 3) | (*bp++ - '0');
1130                                 byte = (byte << 3) | (*bp++ - '0');
1131                                 *dest++ = byte;
1132                                 len++;
1133                         } else {
1134                                 *dest++ = *bp++;
1135                                 len++;
1136                         }
1137                 }
1138         }
1139
1140         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1141                 return -1;
1142         while (*bp == ' ') bp++;
1143         *bpp = bp;
1144         *dest = '\0';
1145         return len;
1146 }
1147 EXPORT_SYMBOL(qword_get);
1148
1149
1150 /*
1151  * support /proc/sunrpc/cache/$CACHENAME/content
1152  * as a seqfile.
1153  * We call ->cache_show passing NULL for the item to
1154  * get a header, then pass each real item in the cache
1155  */
1156
1157 struct handle {
1158         struct cache_detail *cd;
1159 };
1160
1161 static void *c_start(struct seq_file *m, loff_t *pos)
1162         __acquires(cd->hash_lock)
1163 {
1164         loff_t n = *pos;
1165         unsigned hash, entry;
1166         struct cache_head *ch;
1167         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1168
1169
1170         read_lock(&cd->hash_lock);
1171         if (!n--)
1172                 return SEQ_START_TOKEN;
1173         hash = n >> 32;
1174         entry = n & ((1LL<<32) - 1);
1175
1176         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1177                 if (!entry--)
1178                         return ch;
1179         n &= ~((1LL<<32) - 1);
1180         do {
1181                 hash++;
1182                 n += 1LL<<32;
1183         } while(hash < cd->hash_size &&
1184                 cd->hash_table[hash]==NULL);
1185         if (hash >= cd->hash_size)
1186                 return NULL;
1187         *pos = n+1;
1188         return cd->hash_table[hash];
1189 }
1190
1191 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1192 {
1193         struct cache_head *ch = p;
1194         int hash = (*pos >> 32);
1195         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1196
1197         if (p == SEQ_START_TOKEN)
1198                 hash = 0;
1199         else if (ch->next == NULL) {
1200                 hash++;
1201                 *pos += 1LL<<32;
1202         } else {
1203                 ++*pos;
1204                 return ch->next;
1205         }
1206         *pos &= ~((1LL<<32) - 1);
1207         while (hash < cd->hash_size &&
1208                cd->hash_table[hash] == NULL) {
1209                 hash++;
1210                 *pos += 1LL<<32;
1211         }
1212         if (hash >= cd->hash_size)
1213                 return NULL;
1214         ++*pos;
1215         return cd->hash_table[hash];
1216 }
1217
1218 static void c_stop(struct seq_file *m, void *p)
1219         __releases(cd->hash_lock)
1220 {
1221         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1222         read_unlock(&cd->hash_lock);
1223 }
1224
1225 static int c_show(struct seq_file *m, void *p)
1226 {
1227         struct cache_head *cp = p;
1228         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1229
1230         if (p == SEQ_START_TOKEN)
1231                 return cd->cache_show(m, cd, NULL);
1232
1233         ifdebug(CACHE)
1234                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1235                            cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1236         cache_get(cp);
1237         if (cache_check(cd, cp, NULL))
1238                 /* cache_check does a cache_put on failure */
1239                 seq_printf(m, "# ");
1240         else
1241                 cache_put(cp, cd);
1242
1243         return cd->cache_show(m, cd, cp);
1244 }
1245
1246 static const struct seq_operations cache_content_op = {
1247         .start  = c_start,
1248         .next   = c_next,
1249         .stop   = c_stop,
1250         .show   = c_show,
1251 };
1252
1253 static int content_open(struct inode *inode, struct file *file)
1254 {
1255         struct handle *han;
1256         struct cache_detail *cd = PDE(inode)->data;
1257
1258         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1259         if (han == NULL)
1260                 return -ENOMEM;
1261
1262         han->cd = cd;
1263         return 0;
1264 }
1265
1266 static const struct file_operations content_file_operations = {
1267         .open           = content_open,
1268         .read           = seq_read,
1269         .llseek         = seq_lseek,
1270         .release        = seq_release_private,
1271 };
1272
1273 static ssize_t read_flush(struct file *file, char __user *buf,
1274                             size_t count, loff_t *ppos)
1275 {
1276         struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1277         char tbuf[20];
1278         unsigned long p = *ppos;
1279         size_t len;
1280
1281         sprintf(tbuf, "%lu\n", cd->flush_time);
1282         len = strlen(tbuf);
1283         if (p >= len)
1284                 return 0;
1285         len -= p;
1286         if (len > count)
1287                 len = count;
1288         if (copy_to_user(buf, (void*)(tbuf+p), len))
1289                 return -EFAULT;
1290         *ppos += len;
1291         return len;
1292 }
1293
1294 static ssize_t write_flush(struct file * file, const char __user * buf,
1295                              size_t count, loff_t *ppos)
1296 {
1297         struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1298         char tbuf[20];
1299         char *ep;
1300         long flushtime;
1301         if (*ppos || count > sizeof(tbuf)-1)
1302                 return -EINVAL;
1303         if (copy_from_user(tbuf, buf, count))
1304                 return -EFAULT;
1305         tbuf[count] = 0;
1306         flushtime = simple_strtoul(tbuf, &ep, 0);
1307         if (*ep && *ep != '\n')
1308                 return -EINVAL;
1309
1310         cd->flush_time = flushtime;
1311         cd->nextcheck = get_seconds();
1312         cache_flush();
1313
1314         *ppos += count;
1315         return count;
1316 }
1317
1318 static const struct file_operations cache_flush_operations = {
1319         .open           = nonseekable_open,
1320         .read           = read_flush,
1321         .write          = write_flush,
1322 };