net: remove INIT_RCU_HEAD() usage
[safe/jmp/linux-2.6] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 /*
15  *      Changes:
16  *      Yuji SEKIYA @USAGI:     Support default route on router node;
17  *                              remove ip6_null_entry from the top of
18  *                              routing table.
19  *      Ville Nuorvala:         Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29
30 #ifdef  CONFIG_PROC_FS
31 #include <linux/proc_fs.h>
32 #endif
33
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 #define RT6_DEBUG 2
42
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54         FWS_S,
55 #endif
56         FWS_L,
57         FWS_R,
58         FWS_C,
59         FWS_U
60 };
61
62 struct fib6_cleaner_t
63 {
64         struct fib6_walker_t w;
65         struct net *net;
66         int (*func)(struct rt6_info *, void *arg);
67         void *arg;
68 };
69
70 static DEFINE_RWLOCK(fib6_walker_lock);
71
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79                               struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84
85 /*
86  *      A routing update causes an increase of the serial number on the
87  *      affected subtree. This allows for cached routes to be asynchronously
88  *      tested when modifications are made to the destination cache as a
89  *      result of redirects, path MTU changes, etc.
90  */
91
92 static __u32 rt_sernum;
93
94 static void fib6_gc_timer_cb(unsigned long arg);
95
96 static struct fib6_walker_t fib6_walker_list = {
97         .prev   = &fib6_walker_list,
98         .next   = &fib6_walker_list,
99 };
100
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
102
103 static inline void fib6_walker_link(struct fib6_walker_t *w)
104 {
105         write_lock_bh(&fib6_walker_lock);
106         w->next = fib6_walker_list.next;
107         w->prev = &fib6_walker_list;
108         w->next->prev = w;
109         w->prev->next = w;
110         write_unlock_bh(&fib6_walker_lock);
111 }
112
113 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
114 {
115         write_lock_bh(&fib6_walker_lock);
116         w->next->prev = w->prev;
117         w->prev->next = w->next;
118         w->prev = w->next = w;
119         write_unlock_bh(&fib6_walker_lock);
120 }
121 static __inline__ u32 fib6_new_sernum(void)
122 {
123         u32 n = ++rt_sernum;
124         if ((__s32)n <= 0)
125                 rt_sernum = n = 1;
126         return n;
127 }
128
129 /*
130  *      Auxiliary address test functions for the radix tree.
131  *
132  *      These assume a 32bit processor (although it will work on
133  *      64bit processors)
134  */
135
136 /*
137  *      test bit
138  */
139
140 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
141 {
142         __be32 *addr = token;
143
144         return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
145 }
146
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149         struct fib6_node *fn;
150
151         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152
153         return fn;
154 }
155
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158         kmem_cache_free(fib6_node_kmem, fn);
159 }
160
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163         if (atomic_dec_and_test(&rt->rt6i_ref))
164                 dst_free(&rt->u.dst);
165 }
166
167 static void fib6_link_table(struct net *net, struct fib6_table *tb)
168 {
169         unsigned int h;
170
171         /*
172          * Initialize table lock at a single place to give lockdep a key,
173          * tables aren't visible prior to being linked to the list.
174          */
175         rwlock_init(&tb->tb6_lock);
176
177         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
178
179         /*
180          * No protection necessary, this is the only list mutatation
181          * operation, tables never disappear once they exist.
182          */
183         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
184 }
185
186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
187
188 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
189 {
190         struct fib6_table *table;
191
192         table = kzalloc(sizeof(*table), GFP_ATOMIC);
193         if (table != NULL) {
194                 table->tb6_id = id;
195                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
196                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
197         }
198
199         return table;
200 }
201
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
203 {
204         struct fib6_table *tb;
205
206         if (id == 0)
207                 id = RT6_TABLE_MAIN;
208         tb = fib6_get_table(net, id);
209         if (tb)
210                 return tb;
211
212         tb = fib6_alloc_table(net, id);
213         if (tb != NULL)
214                 fib6_link_table(net, tb);
215
216         return tb;
217 }
218
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
220 {
221         struct fib6_table *tb;
222         struct hlist_head *head;
223         struct hlist_node *node;
224         unsigned int h;
225
226         if (id == 0)
227                 id = RT6_TABLE_MAIN;
228         h = id & (FIB6_TABLE_HASHSZ - 1);
229         rcu_read_lock();
230         head = &net->ipv6.fib_table_hash[h];
231         hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
232                 if (tb->tb6_id == id) {
233                         rcu_read_unlock();
234                         return tb;
235                 }
236         }
237         rcu_read_unlock();
238
239         return NULL;
240 }
241
242 static void __net_init fib6_tables_init(struct net *net)
243 {
244         fib6_link_table(net, net->ipv6.fib6_main_tbl);
245         fib6_link_table(net, net->ipv6.fib6_local_tbl);
246 }
247 #else
248
249 struct fib6_table *fib6_new_table(struct net *net, u32 id)
250 {
251         return fib6_get_table(net, id);
252 }
253
254 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 {
256           return net->ipv6.fib6_main_tbl;
257 }
258
259 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
260                                    int flags, pol_lookup_t lookup)
261 {
262         return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
263 }
264
265 static void __net_init fib6_tables_init(struct net *net)
266 {
267         fib6_link_table(net, net->ipv6.fib6_main_tbl);
268 }
269
270 #endif
271
272 static int fib6_dump_node(struct fib6_walker_t *w)
273 {
274         int res;
275         struct rt6_info *rt;
276
277         for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
278                 res = rt6_dump_route(rt, w->args);
279                 if (res < 0) {
280                         /* Frame is full, suspend walking */
281                         w->leaf = rt;
282                         return 1;
283                 }
284                 WARN_ON(res == 0);
285         }
286         w->leaf = NULL;
287         return 0;
288 }
289
290 static void fib6_dump_end(struct netlink_callback *cb)
291 {
292         struct fib6_walker_t *w = (void*)cb->args[2];
293
294         if (w) {
295                 if (cb->args[4]) {
296                         cb->args[4] = 0;
297                         fib6_walker_unlink(w);
298                 }
299                 cb->args[2] = 0;
300                 kfree(w);
301         }
302         cb->done = (void*)cb->args[3];
303         cb->args[1] = 3;
304 }
305
306 static int fib6_dump_done(struct netlink_callback *cb)
307 {
308         fib6_dump_end(cb);
309         return cb->done ? cb->done(cb) : 0;
310 }
311
312 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
313                            struct netlink_callback *cb)
314 {
315         struct fib6_walker_t *w;
316         int res;
317
318         w = (void *)cb->args[2];
319         w->root = &table->tb6_root;
320
321         if (cb->args[4] == 0) {
322                 w->count = 0;
323                 w->skip = 0;
324
325                 read_lock_bh(&table->tb6_lock);
326                 res = fib6_walk(w);
327                 read_unlock_bh(&table->tb6_lock);
328                 if (res > 0) {
329                         cb->args[4] = 1;
330                         cb->args[5] = w->root->fn_sernum;
331                 }
332         } else {
333                 if (cb->args[5] != w->root->fn_sernum) {
334                         /* Begin at the root if the tree changed */
335                         cb->args[5] = w->root->fn_sernum;
336                         w->state = FWS_INIT;
337                         w->node = w->root;
338                         w->skip = w->count;
339                 } else
340                         w->skip = 0;
341
342                 read_lock_bh(&table->tb6_lock);
343                 res = fib6_walk_continue(w);
344                 read_unlock_bh(&table->tb6_lock);
345                 if (res <= 0) {
346                         fib6_walker_unlink(w);
347                         cb->args[4] = 0;
348                 }
349         }
350
351         return res;
352 }
353
354 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
355 {
356         struct net *net = sock_net(skb->sk);
357         unsigned int h, s_h;
358         unsigned int e = 0, s_e;
359         struct rt6_rtnl_dump_arg arg;
360         struct fib6_walker_t *w;
361         struct fib6_table *tb;
362         struct hlist_node *node;
363         struct hlist_head *head;
364         int res = 0;
365
366         s_h = cb->args[0];
367         s_e = cb->args[1];
368
369         w = (void *)cb->args[2];
370         if (w == NULL) {
371                 /* New dump:
372                  *
373                  * 1. hook callback destructor.
374                  */
375                 cb->args[3] = (long)cb->done;
376                 cb->done = fib6_dump_done;
377
378                 /*
379                  * 2. allocate and initialize walker.
380                  */
381                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
382                 if (w == NULL)
383                         return -ENOMEM;
384                 w->func = fib6_dump_node;
385                 cb->args[2] = (long)w;
386         }
387
388         arg.skb = skb;
389         arg.cb = cb;
390         arg.net = net;
391         w->args = &arg;
392
393         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
394                 e = 0;
395                 head = &net->ipv6.fib_table_hash[h];
396                 hlist_for_each_entry(tb, node, head, tb6_hlist) {
397                         if (e < s_e)
398                                 goto next;
399                         res = fib6_dump_table(tb, skb, cb);
400                         if (res != 0)
401                                 goto out;
402 next:
403                         e++;
404                 }
405         }
406 out:
407         cb->args[1] = e;
408         cb->args[0] = h;
409
410         res = res < 0 ? res : skb->len;
411         if (res <= 0)
412                 fib6_dump_end(cb);
413         return res;
414 }
415
416 /*
417  *      Routing Table
418  *
419  *      return the appropriate node for a routing tree "add" operation
420  *      by either creating and inserting or by returning an existing
421  *      node.
422  */
423
424 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
425                                      int addrlen, int plen,
426                                      int offset)
427 {
428         struct fib6_node *fn, *in, *ln;
429         struct fib6_node *pn = NULL;
430         struct rt6key *key;
431         int     bit;
432         __be32  dir = 0;
433         __u32   sernum = fib6_new_sernum();
434
435         RT6_TRACE("fib6_add_1\n");
436
437         /* insert node in tree */
438
439         fn = root;
440
441         do {
442                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
443
444                 /*
445                  *      Prefix match
446                  */
447                 if (plen < fn->fn_bit ||
448                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
449                         goto insert_above;
450
451                 /*
452                  *      Exact match ?
453                  */
454
455                 if (plen == fn->fn_bit) {
456                         /* clean up an intermediate node */
457                         if ((fn->fn_flags & RTN_RTINFO) == 0) {
458                                 rt6_release(fn->leaf);
459                                 fn->leaf = NULL;
460                         }
461
462                         fn->fn_sernum = sernum;
463
464                         return fn;
465                 }
466
467                 /*
468                  *      We have more bits to go
469                  */
470
471                 /* Try to walk down on tree. */
472                 fn->fn_sernum = sernum;
473                 dir = addr_bit_set(addr, fn->fn_bit);
474                 pn = fn;
475                 fn = dir ? fn->right: fn->left;
476         } while (fn);
477
478         /*
479          *      We walked to the bottom of tree.
480          *      Create new leaf node without children.
481          */
482
483         ln = node_alloc();
484
485         if (ln == NULL)
486                 return NULL;
487         ln->fn_bit = plen;
488
489         ln->parent = pn;
490         ln->fn_sernum = sernum;
491
492         if (dir)
493                 pn->right = ln;
494         else
495                 pn->left  = ln;
496
497         return ln;
498
499
500 insert_above:
501         /*
502          * split since we don't have a common prefix anymore or
503          * we have a less significant route.
504          * we've to insert an intermediate node on the list
505          * this new node will point to the one we need to create
506          * and the current
507          */
508
509         pn = fn->parent;
510
511         /* find 1st bit in difference between the 2 addrs.
512
513            See comment in __ipv6_addr_diff: bit may be an invalid value,
514            but if it is >= plen, the value is ignored in any case.
515          */
516
517         bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
518
519         /*
520          *              (intermediate)[in]
521          *                /        \
522          *      (new leaf node)[ln] (old node)[fn]
523          */
524         if (plen > bit) {
525                 in = node_alloc();
526                 ln = node_alloc();
527
528                 if (in == NULL || ln == NULL) {
529                         if (in)
530                                 node_free(in);
531                         if (ln)
532                                 node_free(ln);
533                         return NULL;
534                 }
535
536                 /*
537                  * new intermediate node.
538                  * RTN_RTINFO will
539                  * be off since that an address that chooses one of
540                  * the branches would not match less specific routes
541                  * in the other branch
542                  */
543
544                 in->fn_bit = bit;
545
546                 in->parent = pn;
547                 in->leaf = fn->leaf;
548                 atomic_inc(&in->leaf->rt6i_ref);
549
550                 in->fn_sernum = sernum;
551
552                 /* update parent pointer */
553                 if (dir)
554                         pn->right = in;
555                 else
556                         pn->left  = in;
557
558                 ln->fn_bit = plen;
559
560                 ln->parent = in;
561                 fn->parent = in;
562
563                 ln->fn_sernum = sernum;
564
565                 if (addr_bit_set(addr, bit)) {
566                         in->right = ln;
567                         in->left  = fn;
568                 } else {
569                         in->left  = ln;
570                         in->right = fn;
571                 }
572         } else { /* plen <= bit */
573
574                 /*
575                  *              (new leaf node)[ln]
576                  *                /        \
577                  *           (old node)[fn] NULL
578                  */
579
580                 ln = node_alloc();
581
582                 if (ln == NULL)
583                         return NULL;
584
585                 ln->fn_bit = plen;
586
587                 ln->parent = pn;
588
589                 ln->fn_sernum = sernum;
590
591                 if (dir)
592                         pn->right = ln;
593                 else
594                         pn->left  = ln;
595
596                 if (addr_bit_set(&key->addr, plen))
597                         ln->right = fn;
598                 else
599                         ln->left  = fn;
600
601                 fn->parent = ln;
602         }
603         return ln;
604 }
605
606 /*
607  *      Insert routing information in a node.
608  */
609
610 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
611                             struct nl_info *info)
612 {
613         struct rt6_info *iter = NULL;
614         struct rt6_info **ins;
615
616         ins = &fn->leaf;
617
618         for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
619                 /*
620                  *      Search for duplicates
621                  */
622
623                 if (iter->rt6i_metric == rt->rt6i_metric) {
624                         /*
625                          *      Same priority level
626                          */
627
628                         if (iter->rt6i_dev == rt->rt6i_dev &&
629                             iter->rt6i_idev == rt->rt6i_idev &&
630                             ipv6_addr_equal(&iter->rt6i_gateway,
631                                             &rt->rt6i_gateway)) {
632                                 if (!(iter->rt6i_flags&RTF_EXPIRES))
633                                         return -EEXIST;
634                                 iter->rt6i_expires = rt->rt6i_expires;
635                                 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
636                                         iter->rt6i_flags &= ~RTF_EXPIRES;
637                                         iter->rt6i_expires = 0;
638                                 }
639                                 return -EEXIST;
640                         }
641                 }
642
643                 if (iter->rt6i_metric > rt->rt6i_metric)
644                         break;
645
646                 ins = &iter->u.dst.rt6_next;
647         }
648
649         /* Reset round-robin state, if necessary */
650         if (ins == &fn->leaf)
651                 fn->rr_ptr = NULL;
652
653         /*
654          *      insert node
655          */
656
657         rt->u.dst.rt6_next = iter;
658         *ins = rt;
659         rt->rt6i_node = fn;
660         atomic_inc(&rt->rt6i_ref);
661         inet6_rt_notify(RTM_NEWROUTE, rt, info);
662         info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
663
664         if ((fn->fn_flags & RTN_RTINFO) == 0) {
665                 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
666                 fn->fn_flags |= RTN_RTINFO;
667         }
668
669         return 0;
670 }
671
672 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
673 {
674         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
675             (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
676                 mod_timer(&net->ipv6.ip6_fib_timer,
677                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
678 }
679
680 void fib6_force_start_gc(struct net *net)
681 {
682         if (!timer_pending(&net->ipv6.ip6_fib_timer))
683                 mod_timer(&net->ipv6.ip6_fib_timer,
684                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
685 }
686
687 /*
688  *      Add routing information to the routing tree.
689  *      <destination addr>/<source addr>
690  *      with source addr info in sub-trees
691  */
692
693 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
694 {
695         struct fib6_node *fn, *pn = NULL;
696         int err = -ENOMEM;
697
698         fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
699                         rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
700
701         if (fn == NULL)
702                 goto out;
703
704         pn = fn;
705
706 #ifdef CONFIG_IPV6_SUBTREES
707         if (rt->rt6i_src.plen) {
708                 struct fib6_node *sn;
709
710                 if (fn->subtree == NULL) {
711                         struct fib6_node *sfn;
712
713                         /*
714                          * Create subtree.
715                          *
716                          *              fn[main tree]
717                          *              |
718                          *              sfn[subtree root]
719                          *                 \
720                          *                  sn[new leaf node]
721                          */
722
723                         /* Create subtree root node */
724                         sfn = node_alloc();
725                         if (sfn == NULL)
726                                 goto st_failure;
727
728                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
729                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
730                         sfn->fn_flags = RTN_ROOT;
731                         sfn->fn_sernum = fib6_new_sernum();
732
733                         /* Now add the first leaf node to new subtree */
734
735                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
736                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
737                                         offsetof(struct rt6_info, rt6i_src));
738
739                         if (sn == NULL) {
740                                 /* If it is failed, discard just allocated
741                                    root, and then (in st_failure) stale node
742                                    in main tree.
743                                  */
744                                 node_free(sfn);
745                                 goto st_failure;
746                         }
747
748                         /* Now link new subtree to main tree */
749                         sfn->parent = fn;
750                         fn->subtree = sfn;
751                 } else {
752                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
753                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
754                                         offsetof(struct rt6_info, rt6i_src));
755
756                         if (sn == NULL)
757                                 goto st_failure;
758                 }
759
760                 if (fn->leaf == NULL) {
761                         fn->leaf = rt;
762                         atomic_inc(&rt->rt6i_ref);
763                 }
764                 fn = sn;
765         }
766 #endif
767
768         err = fib6_add_rt2node(fn, rt, info);
769
770         if (err == 0) {
771                 fib6_start_gc(info->nl_net, rt);
772                 if (!(rt->rt6i_flags&RTF_CACHE))
773                         fib6_prune_clones(info->nl_net, pn, rt);
774         }
775
776 out:
777         if (err) {
778 #ifdef CONFIG_IPV6_SUBTREES
779                 /*
780                  * If fib6_add_1 has cleared the old leaf pointer in the
781                  * super-tree leaf node we have to find a new one for it.
782                  */
783                 if (pn != fn && pn->leaf == rt) {
784                         pn->leaf = NULL;
785                         atomic_dec(&rt->rt6i_ref);
786                 }
787                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
788                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
789 #if RT6_DEBUG >= 2
790                         if (!pn->leaf) {
791                                 WARN_ON(pn->leaf == NULL);
792                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
793                         }
794 #endif
795                         atomic_inc(&pn->leaf->rt6i_ref);
796                 }
797 #endif
798                 dst_free(&rt->u.dst);
799         }
800         return err;
801
802 #ifdef CONFIG_IPV6_SUBTREES
803         /* Subtree creation failed, probably main tree node
804            is orphan. If it is, shoot it.
805          */
806 st_failure:
807         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
808                 fib6_repair_tree(info->nl_net, fn);
809         dst_free(&rt->u.dst);
810         return err;
811 #endif
812 }
813
814 /*
815  *      Routing tree lookup
816  *
817  */
818
819 struct lookup_args {
820         int             offset;         /* key offset on rt6_info       */
821         struct in6_addr *addr;          /* search key                   */
822 };
823
824 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
825                                         struct lookup_args *args)
826 {
827         struct fib6_node *fn;
828         __be32 dir;
829
830         if (unlikely(args->offset == 0))
831                 return NULL;
832
833         /*
834          *      Descend on a tree
835          */
836
837         fn = root;
838
839         for (;;) {
840                 struct fib6_node *next;
841
842                 dir = addr_bit_set(args->addr, fn->fn_bit);
843
844                 next = dir ? fn->right : fn->left;
845
846                 if (next) {
847                         fn = next;
848                         continue;
849                 }
850
851                 break;
852         }
853
854         while(fn) {
855                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
856                         struct rt6key *key;
857
858                         key = (struct rt6key *) ((u8 *) fn->leaf +
859                                                  args->offset);
860
861                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
862 #ifdef CONFIG_IPV6_SUBTREES
863                                 if (fn->subtree)
864                                         fn = fib6_lookup_1(fn->subtree, args + 1);
865 #endif
866                                 if (!fn || fn->fn_flags & RTN_RTINFO)
867                                         return fn;
868                         }
869                 }
870
871                 if (fn->fn_flags & RTN_ROOT)
872                         break;
873
874                 fn = fn->parent;
875         }
876
877         return NULL;
878 }
879
880 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
881                                struct in6_addr *saddr)
882 {
883         struct fib6_node *fn;
884         struct lookup_args args[] = {
885                 {
886                         .offset = offsetof(struct rt6_info, rt6i_dst),
887                         .addr = daddr,
888                 },
889 #ifdef CONFIG_IPV6_SUBTREES
890                 {
891                         .offset = offsetof(struct rt6_info, rt6i_src),
892                         .addr = saddr,
893                 },
894 #endif
895                 {
896                         .offset = 0,    /* sentinel */
897                 }
898         };
899
900         fn = fib6_lookup_1(root, daddr ? args : args + 1);
901
902         if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
903                 fn = root;
904
905         return fn;
906 }
907
908 /*
909  *      Get node with specified destination prefix (and source prefix,
910  *      if subtrees are used)
911  */
912
913
914 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
915                                         struct in6_addr *addr,
916                                         int plen, int offset)
917 {
918         struct fib6_node *fn;
919
920         for (fn = root; fn ; ) {
921                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
922
923                 /*
924                  *      Prefix match
925                  */
926                 if (plen < fn->fn_bit ||
927                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
928                         return NULL;
929
930                 if (plen == fn->fn_bit)
931                         return fn;
932
933                 /*
934                  *      We have more bits to go
935                  */
936                 if (addr_bit_set(addr, fn->fn_bit))
937                         fn = fn->right;
938                 else
939                         fn = fn->left;
940         }
941         return NULL;
942 }
943
944 struct fib6_node * fib6_locate(struct fib6_node *root,
945                                struct in6_addr *daddr, int dst_len,
946                                struct in6_addr *saddr, int src_len)
947 {
948         struct fib6_node *fn;
949
950         fn = fib6_locate_1(root, daddr, dst_len,
951                            offsetof(struct rt6_info, rt6i_dst));
952
953 #ifdef CONFIG_IPV6_SUBTREES
954         if (src_len) {
955                 WARN_ON(saddr == NULL);
956                 if (fn && fn->subtree)
957                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
958                                            offsetof(struct rt6_info, rt6i_src));
959         }
960 #endif
961
962         if (fn && fn->fn_flags&RTN_RTINFO)
963                 return fn;
964
965         return NULL;
966 }
967
968
969 /*
970  *      Deletion
971  *
972  */
973
974 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
975 {
976         if (fn->fn_flags&RTN_ROOT)
977                 return net->ipv6.ip6_null_entry;
978
979         while(fn) {
980                 if(fn->left)
981                         return fn->left->leaf;
982
983                 if(fn->right)
984                         return fn->right->leaf;
985
986                 fn = FIB6_SUBTREE(fn);
987         }
988         return NULL;
989 }
990
991 /*
992  *      Called to trim the tree of intermediate nodes when possible. "fn"
993  *      is the node we want to try and remove.
994  */
995
996 static struct fib6_node *fib6_repair_tree(struct net *net,
997                                            struct fib6_node *fn)
998 {
999         int children;
1000         int nstate;
1001         struct fib6_node *child, *pn;
1002         struct fib6_walker_t *w;
1003         int iter = 0;
1004
1005         for (;;) {
1006                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1007                 iter++;
1008
1009                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1010                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1011                 WARN_ON(fn->leaf != NULL);
1012
1013                 children = 0;
1014                 child = NULL;
1015                 if (fn->right) child = fn->right, children |= 1;
1016                 if (fn->left) child = fn->left, children |= 2;
1017
1018                 if (children == 3 || FIB6_SUBTREE(fn)
1019 #ifdef CONFIG_IPV6_SUBTREES
1020                     /* Subtree root (i.e. fn) may have one child */
1021                     || (children && fn->fn_flags&RTN_ROOT)
1022 #endif
1023                     ) {
1024                         fn->leaf = fib6_find_prefix(net, fn);
1025 #if RT6_DEBUG >= 2
1026                         if (fn->leaf==NULL) {
1027                                 WARN_ON(!fn->leaf);
1028                                 fn->leaf = net->ipv6.ip6_null_entry;
1029                         }
1030 #endif
1031                         atomic_inc(&fn->leaf->rt6i_ref);
1032                         return fn->parent;
1033                 }
1034
1035                 pn = fn->parent;
1036 #ifdef CONFIG_IPV6_SUBTREES
1037                 if (FIB6_SUBTREE(pn) == fn) {
1038                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1039                         FIB6_SUBTREE(pn) = NULL;
1040                         nstate = FWS_L;
1041                 } else {
1042                         WARN_ON(fn->fn_flags & RTN_ROOT);
1043 #endif
1044                         if (pn->right == fn) pn->right = child;
1045                         else if (pn->left == fn) pn->left = child;
1046 #if RT6_DEBUG >= 2
1047                         else
1048                                 WARN_ON(1);
1049 #endif
1050                         if (child)
1051                                 child->parent = pn;
1052                         nstate = FWS_R;
1053 #ifdef CONFIG_IPV6_SUBTREES
1054                 }
1055 #endif
1056
1057                 read_lock(&fib6_walker_lock);
1058                 FOR_WALKERS(w) {
1059                         if (child == NULL) {
1060                                 if (w->root == fn) {
1061                                         w->root = w->node = NULL;
1062                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1063                                 } else if (w->node == fn) {
1064                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1065                                         w->node = pn;
1066                                         w->state = nstate;
1067                                 }
1068                         } else {
1069                                 if (w->root == fn) {
1070                                         w->root = child;
1071                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1072                                 }
1073                                 if (w->node == fn) {
1074                                         w->node = child;
1075                                         if (children&2) {
1076                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1077                                                 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1078                                         } else {
1079                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1080                                                 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1081                                         }
1082                                 }
1083                         }
1084                 }
1085                 read_unlock(&fib6_walker_lock);
1086
1087                 node_free(fn);
1088                 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1089                         return pn;
1090
1091                 rt6_release(pn->leaf);
1092                 pn->leaf = NULL;
1093                 fn = pn;
1094         }
1095 }
1096
1097 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1098                            struct nl_info *info)
1099 {
1100         struct fib6_walker_t *w;
1101         struct rt6_info *rt = *rtp;
1102         struct net *net = info->nl_net;
1103
1104         RT6_TRACE("fib6_del_route\n");
1105
1106         /* Unlink it */
1107         *rtp = rt->u.dst.rt6_next;
1108         rt->rt6i_node = NULL;
1109         net->ipv6.rt6_stats->fib_rt_entries--;
1110         net->ipv6.rt6_stats->fib_discarded_routes++;
1111
1112         /* Reset round-robin state, if necessary */
1113         if (fn->rr_ptr == rt)
1114                 fn->rr_ptr = NULL;
1115
1116         /* Adjust walkers */
1117         read_lock(&fib6_walker_lock);
1118         FOR_WALKERS(w) {
1119                 if (w->state == FWS_C && w->leaf == rt) {
1120                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1121                         w->leaf = rt->u.dst.rt6_next;
1122                         if (w->leaf == NULL)
1123                                 w->state = FWS_U;
1124                 }
1125         }
1126         read_unlock(&fib6_walker_lock);
1127
1128         rt->u.dst.rt6_next = NULL;
1129
1130         /* If it was last route, expunge its radix tree node */
1131         if (fn->leaf == NULL) {
1132                 fn->fn_flags &= ~RTN_RTINFO;
1133                 net->ipv6.rt6_stats->fib_route_nodes--;
1134                 fn = fib6_repair_tree(net, fn);
1135         }
1136
1137         if (atomic_read(&rt->rt6i_ref) != 1) {
1138                 /* This route is used as dummy address holder in some split
1139                  * nodes. It is not leaked, but it still holds other resources,
1140                  * which must be released in time. So, scan ascendant nodes
1141                  * and replace dummy references to this route with references
1142                  * to still alive ones.
1143                  */
1144                 while (fn) {
1145                         if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1146                                 fn->leaf = fib6_find_prefix(net, fn);
1147                                 atomic_inc(&fn->leaf->rt6i_ref);
1148                                 rt6_release(rt);
1149                         }
1150                         fn = fn->parent;
1151                 }
1152                 /* No more references are possible at this point. */
1153                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1154         }
1155
1156         inet6_rt_notify(RTM_DELROUTE, rt, info);
1157         rt6_release(rt);
1158 }
1159
1160 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1161 {
1162         struct net *net = info->nl_net;
1163         struct fib6_node *fn = rt->rt6i_node;
1164         struct rt6_info **rtp;
1165
1166 #if RT6_DEBUG >= 2
1167         if (rt->u.dst.obsolete>0) {
1168                 WARN_ON(fn != NULL);
1169                 return -ENOENT;
1170         }
1171 #endif
1172         if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1173                 return -ENOENT;
1174
1175         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1176
1177         if (!(rt->rt6i_flags&RTF_CACHE)) {
1178                 struct fib6_node *pn = fn;
1179 #ifdef CONFIG_IPV6_SUBTREES
1180                 /* clones of this route might be in another subtree */
1181                 if (rt->rt6i_src.plen) {
1182                         while (!(pn->fn_flags&RTN_ROOT))
1183                                 pn = pn->parent;
1184                         pn = pn->parent;
1185                 }
1186 #endif
1187                 fib6_prune_clones(info->nl_net, pn, rt);
1188         }
1189
1190         /*
1191          *      Walk the leaf entries looking for ourself
1192          */
1193
1194         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1195                 if (*rtp == rt) {
1196                         fib6_del_route(fn, rtp, info);
1197                         return 0;
1198                 }
1199         }
1200         return -ENOENT;
1201 }
1202
1203 /*
1204  *      Tree traversal function.
1205  *
1206  *      Certainly, it is not interrupt safe.
1207  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1208  *      It means, that we can modify tree during walking
1209  *      and use this function for garbage collection, clone pruning,
1210  *      cleaning tree when a device goes down etc. etc.
1211  *
1212  *      It guarantees that every node will be traversed,
1213  *      and that it will be traversed only once.
1214  *
1215  *      Callback function w->func may return:
1216  *      0 -> continue walking.
1217  *      positive value -> walking is suspended (used by tree dumps,
1218  *      and probably by gc, if it will be split to several slices)
1219  *      negative value -> terminate walking.
1220  *
1221  *      The function itself returns:
1222  *      0   -> walk is complete.
1223  *      >0  -> walk is incomplete (i.e. suspended)
1224  *      <0  -> walk is terminated by an error.
1225  */
1226
1227 static int fib6_walk_continue(struct fib6_walker_t *w)
1228 {
1229         struct fib6_node *fn, *pn;
1230
1231         for (;;) {
1232                 fn = w->node;
1233                 if (fn == NULL)
1234                         return 0;
1235
1236                 if (w->prune && fn != w->root &&
1237                     fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1238                         w->state = FWS_C;
1239                         w->leaf = fn->leaf;
1240                 }
1241                 switch (w->state) {
1242 #ifdef CONFIG_IPV6_SUBTREES
1243                 case FWS_S:
1244                         if (FIB6_SUBTREE(fn)) {
1245                                 w->node = FIB6_SUBTREE(fn);
1246                                 continue;
1247                         }
1248                         w->state = FWS_L;
1249 #endif
1250                 case FWS_L:
1251                         if (fn->left) {
1252                                 w->node = fn->left;
1253                                 w->state = FWS_INIT;
1254                                 continue;
1255                         }
1256                         w->state = FWS_R;
1257                 case FWS_R:
1258                         if (fn->right) {
1259                                 w->node = fn->right;
1260                                 w->state = FWS_INIT;
1261                                 continue;
1262                         }
1263                         w->state = FWS_C;
1264                         w->leaf = fn->leaf;
1265                 case FWS_C:
1266                         if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1267                                 int err;
1268
1269                                 if (w->count < w->skip) {
1270                                         w->count++;
1271                                         continue;
1272                                 }
1273
1274                                 err = w->func(w);
1275                                 if (err)
1276                                         return err;
1277
1278                                 w->count++;
1279                                 continue;
1280                         }
1281                         w->state = FWS_U;
1282                 case FWS_U:
1283                         if (fn == w->root)
1284                                 return 0;
1285                         pn = fn->parent;
1286                         w->node = pn;
1287 #ifdef CONFIG_IPV6_SUBTREES
1288                         if (FIB6_SUBTREE(pn) == fn) {
1289                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1290                                 w->state = FWS_L;
1291                                 continue;
1292                         }
1293 #endif
1294                         if (pn->left == fn) {
1295                                 w->state = FWS_R;
1296                                 continue;
1297                         }
1298                         if (pn->right == fn) {
1299                                 w->state = FWS_C;
1300                                 w->leaf = w->node->leaf;
1301                                 continue;
1302                         }
1303 #if RT6_DEBUG >= 2
1304                         WARN_ON(1);
1305 #endif
1306                 }
1307         }
1308 }
1309
1310 static int fib6_walk(struct fib6_walker_t *w)
1311 {
1312         int res;
1313
1314         w->state = FWS_INIT;
1315         w->node = w->root;
1316
1317         fib6_walker_link(w);
1318         res = fib6_walk_continue(w);
1319         if (res <= 0)
1320                 fib6_walker_unlink(w);
1321         return res;
1322 }
1323
1324 static int fib6_clean_node(struct fib6_walker_t *w)
1325 {
1326         int res;
1327         struct rt6_info *rt;
1328         struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1329         struct nl_info info = {
1330                 .nl_net = c->net,
1331         };
1332
1333         for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1334                 res = c->func(rt, c->arg);
1335                 if (res < 0) {
1336                         w->leaf = rt;
1337                         res = fib6_del(rt, &info);
1338                         if (res) {
1339 #if RT6_DEBUG >= 2
1340                                 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1341 #endif
1342                                 continue;
1343                         }
1344                         return 0;
1345                 }
1346                 WARN_ON(res != 0);
1347         }
1348         w->leaf = rt;
1349         return 0;
1350 }
1351
1352 /*
1353  *      Convenient frontend to tree walker.
1354  *
1355  *      func is called on each route.
1356  *              It may return -1 -> delete this route.
1357  *                            0  -> continue walking
1358  *
1359  *      prune==1 -> only immediate children of node (certainly,
1360  *      ignoring pure split nodes) will be scanned.
1361  */
1362
1363 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1364                             int (*func)(struct rt6_info *, void *arg),
1365                             int prune, void *arg)
1366 {
1367         struct fib6_cleaner_t c;
1368
1369         c.w.root = root;
1370         c.w.func = fib6_clean_node;
1371         c.w.prune = prune;
1372         c.w.count = 0;
1373         c.w.skip = 0;
1374         c.func = func;
1375         c.arg = arg;
1376         c.net = net;
1377
1378         fib6_walk(&c.w);
1379 }
1380
1381 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1382                     int prune, void *arg)
1383 {
1384         struct fib6_table *table;
1385         struct hlist_node *node;
1386         struct hlist_head *head;
1387         unsigned int h;
1388
1389         rcu_read_lock();
1390         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1391                 head = &net->ipv6.fib_table_hash[h];
1392                 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1393                         write_lock_bh(&table->tb6_lock);
1394                         fib6_clean_tree(net, &table->tb6_root,
1395                                         func, prune, arg);
1396                         write_unlock_bh(&table->tb6_lock);
1397                 }
1398         }
1399         rcu_read_unlock();
1400 }
1401
1402 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1403 {
1404         if (rt->rt6i_flags & RTF_CACHE) {
1405                 RT6_TRACE("pruning clone %p\n", rt);
1406                 return -1;
1407         }
1408
1409         return 0;
1410 }
1411
1412 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1413                               struct rt6_info *rt)
1414 {
1415         fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1416 }
1417
1418 /*
1419  *      Garbage collection
1420  */
1421
1422 static struct fib6_gc_args
1423 {
1424         int                     timeout;
1425         int                     more;
1426 } gc_args;
1427
1428 static int fib6_age(struct rt6_info *rt, void *arg)
1429 {
1430         unsigned long now = jiffies;
1431
1432         /*
1433          *      check addrconf expiration here.
1434          *      Routes are expired even if they are in use.
1435          *
1436          *      Also age clones. Note, that clones are aged out
1437          *      only if they are not in use now.
1438          */
1439
1440         if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1441                 if (time_after(now, rt->rt6i_expires)) {
1442                         RT6_TRACE("expiring %p\n", rt);
1443                         return -1;
1444                 }
1445                 gc_args.more++;
1446         } else if (rt->rt6i_flags & RTF_CACHE) {
1447                 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1448                     time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1449                         RT6_TRACE("aging clone %p\n", rt);
1450                         return -1;
1451                 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1452                            (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1453                         RT6_TRACE("purging route %p via non-router but gateway\n",
1454                                   rt);
1455                         return -1;
1456                 }
1457                 gc_args.more++;
1458         }
1459
1460         return 0;
1461 }
1462
1463 static DEFINE_SPINLOCK(fib6_gc_lock);
1464
1465 void fib6_run_gc(unsigned long expires, struct net *net)
1466 {
1467         if (expires != ~0UL) {
1468                 spin_lock_bh(&fib6_gc_lock);
1469                 gc_args.timeout = expires ? (int)expires :
1470                         net->ipv6.sysctl.ip6_rt_gc_interval;
1471         } else {
1472                 if (!spin_trylock_bh(&fib6_gc_lock)) {
1473                         mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1474                         return;
1475                 }
1476                 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1477         }
1478
1479         gc_args.more = icmp6_dst_gc();
1480
1481         fib6_clean_all(net, fib6_age, 0, NULL);
1482
1483         if (gc_args.more)
1484                 mod_timer(&net->ipv6.ip6_fib_timer,
1485                           round_jiffies(jiffies
1486                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1487         else
1488                 del_timer(&net->ipv6.ip6_fib_timer);
1489         spin_unlock_bh(&fib6_gc_lock);
1490 }
1491
1492 static void fib6_gc_timer_cb(unsigned long arg)
1493 {
1494         fib6_run_gc(0, (struct net *)arg);
1495 }
1496
1497 static int __net_init fib6_net_init(struct net *net)
1498 {
1499         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1500
1501         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1502         if (!net->ipv6.rt6_stats)
1503                 goto out_timer;
1504
1505         net->ipv6.fib_table_hash = kcalloc(FIB6_TABLE_HASHSZ,
1506                                            sizeof(*net->ipv6.fib_table_hash),
1507                                            GFP_KERNEL);
1508         if (!net->ipv6.fib_table_hash)
1509                 goto out_rt6_stats;
1510
1511         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1512                                           GFP_KERNEL);
1513         if (!net->ipv6.fib6_main_tbl)
1514                 goto out_fib_table_hash;
1515
1516         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1517         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1518         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1519                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1520
1521 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1522         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1523                                            GFP_KERNEL);
1524         if (!net->ipv6.fib6_local_tbl)
1525                 goto out_fib6_main_tbl;
1526         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1527         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1528         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1529                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1530 #endif
1531         fib6_tables_init(net);
1532
1533         return 0;
1534
1535 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1536 out_fib6_main_tbl:
1537         kfree(net->ipv6.fib6_main_tbl);
1538 #endif
1539 out_fib_table_hash:
1540         kfree(net->ipv6.fib_table_hash);
1541 out_rt6_stats:
1542         kfree(net->ipv6.rt6_stats);
1543 out_timer:
1544         return -ENOMEM;
1545  }
1546
1547 static void fib6_net_exit(struct net *net)
1548 {
1549         rt6_ifdown(net, NULL);
1550         del_timer_sync(&net->ipv6.ip6_fib_timer);
1551
1552 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1553         kfree(net->ipv6.fib6_local_tbl);
1554 #endif
1555         kfree(net->ipv6.fib6_main_tbl);
1556         kfree(net->ipv6.fib_table_hash);
1557         kfree(net->ipv6.rt6_stats);
1558 }
1559
1560 static struct pernet_operations fib6_net_ops = {
1561         .init = fib6_net_init,
1562         .exit = fib6_net_exit,
1563 };
1564
1565 int __init fib6_init(void)
1566 {
1567         int ret = -ENOMEM;
1568
1569         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1570                                            sizeof(struct fib6_node),
1571                                            0, SLAB_HWCACHE_ALIGN,
1572                                            NULL);
1573         if (!fib6_node_kmem)
1574                 goto out;
1575
1576         ret = register_pernet_subsys(&fib6_net_ops);
1577         if (ret)
1578                 goto out_kmem_cache_create;
1579
1580         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1581         if (ret)
1582                 goto out_unregister_subsys;
1583 out:
1584         return ret;
1585
1586 out_unregister_subsys:
1587         unregister_pernet_subsys(&fib6_net_ops);
1588 out_kmem_cache_create:
1589         kmem_cache_destroy(fib6_node_kmem);
1590         goto out;
1591 }
1592
1593 void fib6_gc_cleanup(void)
1594 {
1595         unregister_pernet_subsys(&fib6_net_ops);
1596         kmem_cache_destroy(fib6_node_kmem);
1597 }