5c70493dff023f9a1052131ec779e127458faa2c
[safe/jmp/linux-2.6] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9  *
10  *              IPv4 specific functions
11  *
12  *
13  *              code split from:
14  *              linux/ipv4/tcp.c
15  *              linux/ipv4/tcp_input.c
16  *              linux/ipv4/tcp_output.c
17  *
18  *              See tcp.c for author information
19  *
20  *      This program is free software; you can redistribute it and/or
21  *      modify it under the terms of the GNU General Public License
22  *      as published by the Free Software Foundation; either version
23  *      2 of the License, or (at your option) any later version.
24  */
25
26 /*
27  * Changes:
28  *              David S. Miller :       New socket lookup architecture.
29  *                                      This code is dedicated to John Dyson.
30  *              David S. Miller :       Change semantics of established hash,
31  *                                      half is devoted to TIME_WAIT sockets
32  *                                      and the rest go in the other half.
33  *              Andi Kleen :            Add support for syncookies and fixed
34  *                                      some bugs: ip options weren't passed to
35  *                                      the TCP layer, missed a check for an
36  *                                      ACK bit.
37  *              Andi Kleen :            Implemented fast path mtu discovery.
38  *                                      Fixed many serious bugs in the
39  *                                      request_sock handling and moved
40  *                                      most of it into the af independent code.
41  *                                      Added tail drop and some other bugfixes.
42  *                                      Added new listen semantics.
43  *              Mike McLagan    :       Routing by source
44  *      Juan Jose Ciarlante:            ip_dynaddr bits
45  *              Andi Kleen:             various fixes.
46  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
47  *                                      coma.
48  *      Andi Kleen              :       Fix new listen.
49  *      Andi Kleen              :       Fix accept error reporting.
50  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
51  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
52  *                                      a single port at the same time.
53  */
54
55 #include <linux/config.h>
56
57 #include <linux/types.h>
58 #include <linux/fcntl.h>
59 #include <linux/module.h>
60 #include <linux/random.h>
61 #include <linux/cache.h>
62 #include <linux/jhash.h>
63 #include <linux/init.h>
64 #include <linux/times.h>
65
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80
81 int sysctl_tcp_tw_reuse;
82 int sysctl_tcp_low_latency;
83
84 /* Check TCP sequence numbers in ICMP packets. */
85 #define ICMP_MIN_LENGTH 8
86
87 /* Socket used for sending RSTs */
88 static struct socket *tcp_socket;
89
90 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
91
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93         .lhash_lock     = RW_LOCK_UNLOCKED,
94         .lhash_users    = ATOMIC_INIT(0),
95         .lhash_wait     = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
96 };
97
98 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
99 {
100         return inet_csk_get_port(&tcp_hashinfo, sk, snum,
101                                  inet_csk_bind_conflict);
102 }
103
104 static void tcp_v4_hash(struct sock *sk)
105 {
106         inet_hash(&tcp_hashinfo, sk);
107 }
108
109 void tcp_unhash(struct sock *sk)
110 {
111         inet_unhash(&tcp_hashinfo, sk);
112 }
113
114 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
115 {
116         return secure_tcp_sequence_number(skb->nh.iph->daddr,
117                                           skb->nh.iph->saddr,
118                                           skb->h.th->dest,
119                                           skb->h.th->source);
120 }
121
122 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
123 {
124         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
125         struct tcp_sock *tp = tcp_sk(sk);
126
127         /* With PAWS, it is safe from the viewpoint
128            of data integrity. Even without PAWS it is safe provided sequence
129            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
130
131            Actually, the idea is close to VJ's one, only timestamp cache is
132            held not per host, but per port pair and TW bucket is used as state
133            holder.
134
135            If TW bucket has been already destroyed we fall back to VJ's scheme
136            and use initial timestamp retrieved from peer table.
137          */
138         if (tcptw->tw_ts_recent_stamp &&
139             (twp == NULL || (sysctl_tcp_tw_reuse &&
140                              xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
141                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
142                 if (tp->write_seq == 0)
143                         tp->write_seq = 1;
144                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
145                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
146                 sock_hold(sktw);
147                 return 1;
148         }
149
150         return 0;
151 }
152
153 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
154
155 /* This will initiate an outgoing connection. */
156 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
157 {
158         struct inet_sock *inet = inet_sk(sk);
159         struct tcp_sock *tp = tcp_sk(sk);
160         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
161         struct rtable *rt;
162         u32 daddr, nexthop;
163         int tmp;
164         int err;
165
166         if (addr_len < sizeof(struct sockaddr_in))
167                 return -EINVAL;
168
169         if (usin->sin_family != AF_INET)
170                 return -EAFNOSUPPORT;
171
172         nexthop = daddr = usin->sin_addr.s_addr;
173         if (inet->opt && inet->opt->srr) {
174                 if (!daddr)
175                         return -EINVAL;
176                 nexthop = inet->opt->faddr;
177         }
178
179         tmp = ip_route_connect(&rt, nexthop, inet->saddr,
180                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
181                                IPPROTO_TCP,
182                                inet->sport, usin->sin_port, sk);
183         if (tmp < 0)
184                 return tmp;
185
186         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187                 ip_rt_put(rt);
188                 return -ENETUNREACH;
189         }
190
191         if (!inet->opt || !inet->opt->srr)
192                 daddr = rt->rt_dst;
193
194         if (!inet->saddr)
195                 inet->saddr = rt->rt_src;
196         inet->rcv_saddr = inet->saddr;
197
198         if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
199                 /* Reset inherited state */
200                 tp->rx_opt.ts_recent       = 0;
201                 tp->rx_opt.ts_recent_stamp = 0;
202                 tp->write_seq              = 0;
203         }
204
205         if (tcp_death_row.sysctl_tw_recycle &&
206             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
207                 struct inet_peer *peer = rt_get_peer(rt);
208
209                 /* VJ's idea. We save last timestamp seen from
210                  * the destination in peer table, when entering state TIME-WAIT
211                  * and initialize rx_opt.ts_recent from it, when trying new connection.
212                  */
213
214                 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
215                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
216                         tp->rx_opt.ts_recent = peer->tcp_ts;
217                 }
218         }
219
220         inet->dport = usin->sin_port;
221         inet->daddr = daddr;
222
223         inet_csk(sk)->icsk_ext_hdr_len = 0;
224         if (inet->opt)
225                 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
226
227         tp->rx_opt.mss_clamp = 536;
228
229         /* Socket identity is still unknown (sport may be zero).
230          * However we set state to SYN-SENT and not releasing socket
231          * lock select source port, enter ourselves into the hash tables and
232          * complete initialization after this.
233          */
234         tcp_set_state(sk, TCP_SYN_SENT);
235         err = inet_hash_connect(&tcp_death_row, sk);
236         if (err)
237                 goto failure;
238
239         err = ip_route_newports(&rt, inet->sport, inet->dport, sk);
240         if (err)
241                 goto failure;
242
243         /* OK, now commit destination to socket.  */
244         sk_setup_caps(sk, &rt->u.dst);
245
246         if (!tp->write_seq)
247                 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
248                                                            inet->daddr,
249                                                            inet->sport,
250                                                            usin->sin_port);
251
252         inet->id = tp->write_seq ^ jiffies;
253
254         err = tcp_connect(sk);
255         rt = NULL;
256         if (err)
257                 goto failure;
258
259         return 0;
260
261 failure:
262         /* This unhashes the socket and releases the local port, if necessary. */
263         tcp_set_state(sk, TCP_CLOSE);
264         ip_rt_put(rt);
265         sk->sk_route_caps = 0;
266         inet->dport = 0;
267         return err;
268 }
269
270 /*
271  * This routine does path mtu discovery as defined in RFC1191.
272  */
273 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
274 {
275         struct dst_entry *dst;
276         struct inet_sock *inet = inet_sk(sk);
277
278         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
279          * send out by Linux are always <576bytes so they should go through
280          * unfragmented).
281          */
282         if (sk->sk_state == TCP_LISTEN)
283                 return;
284
285         /* We don't check in the destentry if pmtu discovery is forbidden
286          * on this route. We just assume that no packet_to_big packets
287          * are send back when pmtu discovery is not active.
288          * There is a small race when the user changes this flag in the
289          * route, but I think that's acceptable.
290          */
291         if ((dst = __sk_dst_check(sk, 0)) == NULL)
292                 return;
293
294         dst->ops->update_pmtu(dst, mtu);
295
296         /* Something is about to be wrong... Remember soft error
297          * for the case, if this connection will not able to recover.
298          */
299         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
300                 sk->sk_err_soft = EMSGSIZE;
301
302         mtu = dst_mtu(dst);
303
304         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
305             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
306                 tcp_sync_mss(sk, mtu);
307
308                 /* Resend the TCP packet because it's
309                  * clear that the old packet has been
310                  * dropped. This is the new "fast" path mtu
311                  * discovery.
312                  */
313                 tcp_simple_retransmit(sk);
314         } /* else let the usual retransmit timer handle it */
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *skb, u32 info)
334 {
335         struct iphdr *iph = (struct iphdr *)skb->data;
336         struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
337         struct tcp_sock *tp;
338         struct inet_sock *inet;
339         int type = skb->h.icmph->type;
340         int code = skb->h.icmph->code;
341         struct sock *sk;
342         __u32 seq;
343         int err;
344
345         if (skb->len < (iph->ihl << 2) + 8) {
346                 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
347                 return;
348         }
349
350         sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
351                          th->source, inet_iif(skb));
352         if (!sk) {
353                 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
354                 return;
355         }
356         if (sk->sk_state == TCP_TIME_WAIT) {
357                 inet_twsk_put((struct inet_timewait_sock *)sk);
358                 return;
359         }
360
361         bh_lock_sock(sk);
362         /* If too many ICMPs get dropped on busy
363          * servers this needs to be solved differently.
364          */
365         if (sock_owned_by_user(sk))
366                 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
367
368         if (sk->sk_state == TCP_CLOSE)
369                 goto out;
370
371         tp = tcp_sk(sk);
372         seq = ntohl(th->seq);
373         if (sk->sk_state != TCP_LISTEN &&
374             !between(seq, tp->snd_una, tp->snd_nxt)) {
375                 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
376                 goto out;
377         }
378
379         switch (type) {
380         case ICMP_SOURCE_QUENCH:
381                 /* Just silently ignore these. */
382                 goto out;
383         case ICMP_PARAMETERPROB:
384                 err = EPROTO;
385                 break;
386         case ICMP_DEST_UNREACH:
387                 if (code > NR_ICMP_UNREACH)
388                         goto out;
389
390                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
391                         if (!sock_owned_by_user(sk))
392                                 do_pmtu_discovery(sk, iph, info);
393                         goto out;
394                 }
395
396                 err = icmp_err_convert[code].errno;
397                 break;
398         case ICMP_TIME_EXCEEDED:
399                 err = EHOSTUNREACH;
400                 break;
401         default:
402                 goto out;
403         }
404
405         switch (sk->sk_state) {
406                 struct request_sock *req, **prev;
407         case TCP_LISTEN:
408                 if (sock_owned_by_user(sk))
409                         goto out;
410
411                 req = inet_csk_search_req(sk, &prev, th->dest,
412                                           iph->daddr, iph->saddr);
413                 if (!req)
414                         goto out;
415
416                 /* ICMPs are not backlogged, hence we cannot get
417                    an established socket here.
418                  */
419                 BUG_TRAP(!req->sk);
420
421                 if (seq != tcp_rsk(req)->snt_isn) {
422                         NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
423                         goto out;
424                 }
425
426                 /*
427                  * Still in SYN_RECV, just remove it silently.
428                  * There is no good way to pass the error to the newly
429                  * created socket, and POSIX does not want network
430                  * errors returned from accept().
431                  */
432                 inet_csk_reqsk_queue_drop(sk, req, prev);
433                 goto out;
434
435         case TCP_SYN_SENT:
436         case TCP_SYN_RECV:  /* Cannot happen.
437                                It can f.e. if SYNs crossed.
438                              */
439                 if (!sock_owned_by_user(sk)) {
440                         TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
441                         sk->sk_err = err;
442
443                         sk->sk_error_report(sk);
444
445                         tcp_done(sk);
446                 } else {
447                         sk->sk_err_soft = err;
448                 }
449                 goto out;
450         }
451
452         /* If we've already connected we will keep trying
453          * until we time out, or the user gives up.
454          *
455          * rfc1122 4.2.3.9 allows to consider as hard errors
456          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
457          * but it is obsoleted by pmtu discovery).
458          *
459          * Note, that in modern internet, where routing is unreliable
460          * and in each dark corner broken firewalls sit, sending random
461          * errors ordered by their masters even this two messages finally lose
462          * their original sense (even Linux sends invalid PORT_UNREACHs)
463          *
464          * Now we are in compliance with RFCs.
465          *                                                      --ANK (980905)
466          */
467
468         inet = inet_sk(sk);
469         if (!sock_owned_by_user(sk) && inet->recverr) {
470                 sk->sk_err = err;
471                 sk->sk_error_report(sk);
472         } else  { /* Only an error on timeout */
473                 sk->sk_err_soft = err;
474         }
475
476 out:
477         bh_unlock_sock(sk);
478         sock_put(sk);
479 }
480
481 /* This routine computes an IPv4 TCP checksum. */
482 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
483 {
484         struct inet_sock *inet = inet_sk(sk);
485         struct tcphdr *th = skb->h.th;
486
487         if (skb->ip_summed == CHECKSUM_HW) {
488                 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
489                 skb->csum = offsetof(struct tcphdr, check);
490         } else {
491                 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
492                                          csum_partial((char *)th,
493                                                       th->doff << 2,
494                                                       skb->csum));
495         }
496 }
497
498 /*
499  *      This routine will send an RST to the other tcp.
500  *
501  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
502  *                    for reset.
503  *      Answer: if a packet caused RST, it is not for a socket
504  *              existing in our system, if it is matched to a socket,
505  *              it is just duplicate segment or bug in other side's TCP.
506  *              So that we build reply only basing on parameters
507  *              arrived with segment.
508  *      Exception: precedence violation. We do not implement it in any case.
509  */
510
511 static void tcp_v4_send_reset(struct sk_buff *skb)
512 {
513         struct tcphdr *th = skb->h.th;
514         struct tcphdr rth;
515         struct ip_reply_arg arg;
516
517         /* Never send a reset in response to a reset. */
518         if (th->rst)
519                 return;
520
521         if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
522                 return;
523
524         /* Swap the send and the receive. */
525         memset(&rth, 0, sizeof(struct tcphdr));
526         rth.dest   = th->source;
527         rth.source = th->dest;
528         rth.doff   = sizeof(struct tcphdr) / 4;
529         rth.rst    = 1;
530
531         if (th->ack) {
532                 rth.seq = th->ack_seq;
533         } else {
534                 rth.ack = 1;
535                 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
536                                     skb->len - (th->doff << 2));
537         }
538
539         memset(&arg, 0, sizeof arg);
540         arg.iov[0].iov_base = (unsigned char *)&rth;
541         arg.iov[0].iov_len  = sizeof rth;
542         arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
543                                       skb->nh.iph->saddr, /*XXX*/
544                                       sizeof(struct tcphdr), IPPROTO_TCP, 0);
545         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
546
547         ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
548
549         TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
550         TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
551 }
552
553 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
554    outside socket context is ugly, certainly. What can I do?
555  */
556
557 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
558                             u32 win, u32 ts)
559 {
560         struct tcphdr *th = skb->h.th;
561         struct {
562                 struct tcphdr th;
563                 u32 tsopt[3];
564         } rep;
565         struct ip_reply_arg arg;
566
567         memset(&rep.th, 0, sizeof(struct tcphdr));
568         memset(&arg, 0, sizeof arg);
569
570         arg.iov[0].iov_base = (unsigned char *)&rep;
571         arg.iov[0].iov_len  = sizeof(rep.th);
572         if (ts) {
573                 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
574                                      (TCPOPT_TIMESTAMP << 8) |
575                                      TCPOLEN_TIMESTAMP);
576                 rep.tsopt[1] = htonl(tcp_time_stamp);
577                 rep.tsopt[2] = htonl(ts);
578                 arg.iov[0].iov_len = sizeof(rep);
579         }
580
581         /* Swap the send and the receive. */
582         rep.th.dest    = th->source;
583         rep.th.source  = th->dest;
584         rep.th.doff    = arg.iov[0].iov_len / 4;
585         rep.th.seq     = htonl(seq);
586         rep.th.ack_seq = htonl(ack);
587         rep.th.ack     = 1;
588         rep.th.window  = htons(win);
589
590         arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
591                                       skb->nh.iph->saddr, /*XXX*/
592                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
593         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
594
595         ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
596
597         TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
598 }
599
600 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
601 {
602         struct inet_timewait_sock *tw = inet_twsk(sk);
603         const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
604
605         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
606                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
607
608         inet_twsk_put(tw);
609 }
610
611 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
612 {
613         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
614                         req->ts_recent);
615 }
616
617 /*
618  *      Send a SYN-ACK after having received an ACK.
619  *      This still operates on a request_sock only, not on a big
620  *      socket.
621  */
622 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
623                               struct dst_entry *dst)
624 {
625         const struct inet_request_sock *ireq = inet_rsk(req);
626         int err = -1;
627         struct sk_buff * skb;
628
629         /* First, grab a route. */
630         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
631                 goto out;
632
633         skb = tcp_make_synack(sk, dst, req);
634
635         if (skb) {
636                 struct tcphdr *th = skb->h.th;
637
638                 th->check = tcp_v4_check(th, skb->len,
639                                          ireq->loc_addr,
640                                          ireq->rmt_addr,
641                                          csum_partial((char *)th, skb->len,
642                                                       skb->csum));
643
644                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
645                                             ireq->rmt_addr,
646                                             ireq->opt);
647                 if (err == NET_XMIT_CN)
648                         err = 0;
649         }
650
651 out:
652         dst_release(dst);
653         return err;
654 }
655
656 /*
657  *      IPv4 request_sock destructor.
658  */
659 static void tcp_v4_reqsk_destructor(struct request_sock *req)
660 {
661         kfree(inet_rsk(req)->opt);
662 }
663
664 static void syn_flood_warning(struct sk_buff *skb)
665 {
666         static unsigned long warntime;
667
668         if (time_after(jiffies, (warntime + HZ * 60))) {
669                 warntime = jiffies;
670                 printk(KERN_INFO
671                        "possible SYN flooding on port %d. Sending cookies.\n",
672                        ntohs(skb->h.th->dest));
673         }
674 }
675
676 /*
677  * Save and compile IPv4 options into the request_sock if needed.
678  */
679 static struct ip_options *tcp_v4_save_options(struct sock *sk,
680                                               struct sk_buff *skb)
681 {
682         struct ip_options *opt = &(IPCB(skb)->opt);
683         struct ip_options *dopt = NULL;
684
685         if (opt && opt->optlen) {
686                 int opt_size = optlength(opt);
687                 dopt = kmalloc(opt_size, GFP_ATOMIC);
688                 if (dopt) {
689                         if (ip_options_echo(dopt, skb)) {
690                                 kfree(dopt);
691                                 dopt = NULL;
692                         }
693                 }
694         }
695         return dopt;
696 }
697
698 struct request_sock_ops tcp_request_sock_ops = {
699         .family         =       PF_INET,
700         .obj_size       =       sizeof(struct tcp_request_sock),
701         .rtx_syn_ack    =       tcp_v4_send_synack,
702         .send_ack       =       tcp_v4_reqsk_send_ack,
703         .destructor     =       tcp_v4_reqsk_destructor,
704         .send_reset     =       tcp_v4_send_reset,
705 };
706
707 static struct timewait_sock_ops tcp_timewait_sock_ops = {
708         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
709         .twsk_unique    = tcp_twsk_unique,
710 };
711
712 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
713 {
714         struct inet_request_sock *ireq;
715         struct tcp_options_received tmp_opt;
716         struct request_sock *req;
717         __u32 saddr = skb->nh.iph->saddr;
718         __u32 daddr = skb->nh.iph->daddr;
719         __u32 isn = TCP_SKB_CB(skb)->when;
720         struct dst_entry *dst = NULL;
721 #ifdef CONFIG_SYN_COOKIES
722         int want_cookie = 0;
723 #else
724 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
725 #endif
726
727         /* Never answer to SYNs send to broadcast or multicast */
728         if (((struct rtable *)skb->dst)->rt_flags &
729             (RTCF_BROADCAST | RTCF_MULTICAST))
730                 goto drop;
731
732         /* TW buckets are converted to open requests without
733          * limitations, they conserve resources and peer is
734          * evidently real one.
735          */
736         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
737 #ifdef CONFIG_SYN_COOKIES
738                 if (sysctl_tcp_syncookies) {
739                         want_cookie = 1;
740                 } else
741 #endif
742                 goto drop;
743         }
744
745         /* Accept backlog is full. If we have already queued enough
746          * of warm entries in syn queue, drop request. It is better than
747          * clogging syn queue with openreqs with exponentially increasing
748          * timeout.
749          */
750         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
751                 goto drop;
752
753         req = reqsk_alloc(&tcp_request_sock_ops);
754         if (!req)
755                 goto drop;
756
757         tcp_clear_options(&tmp_opt);
758         tmp_opt.mss_clamp = 536;
759         tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
760
761         tcp_parse_options(skb, &tmp_opt, 0);
762
763         if (want_cookie) {
764                 tcp_clear_options(&tmp_opt);
765                 tmp_opt.saw_tstamp = 0;
766         }
767
768         if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
769                 /* Some OSes (unknown ones, but I see them on web server, which
770                  * contains information interesting only for windows'
771                  * users) do not send their stamp in SYN. It is easy case.
772                  * We simply do not advertise TS support.
773                  */
774                 tmp_opt.saw_tstamp = 0;
775                 tmp_opt.tstamp_ok  = 0;
776         }
777         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
778
779         tcp_openreq_init(req, &tmp_opt, skb);
780
781         ireq = inet_rsk(req);
782         ireq->loc_addr = daddr;
783         ireq->rmt_addr = saddr;
784         ireq->opt = tcp_v4_save_options(sk, skb);
785         if (!want_cookie)
786                 TCP_ECN_create_request(req, skb->h.th);
787
788         if (want_cookie) {
789 #ifdef CONFIG_SYN_COOKIES
790                 syn_flood_warning(skb);
791 #endif
792                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
793         } else if (!isn) {
794                 struct inet_peer *peer = NULL;
795
796                 /* VJ's idea. We save last timestamp seen
797                  * from the destination in peer table, when entering
798                  * state TIME-WAIT, and check against it before
799                  * accepting new connection request.
800                  *
801                  * If "isn" is not zero, this request hit alive
802                  * timewait bucket, so that all the necessary checks
803                  * are made in the function processing timewait state.
804                  */
805                 if (tmp_opt.saw_tstamp &&
806                     tcp_death_row.sysctl_tw_recycle &&
807                     (dst = inet_csk_route_req(sk, req)) != NULL &&
808                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
809                     peer->v4daddr == saddr) {
810                         if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
811                             (s32)(peer->tcp_ts - req->ts_recent) >
812                                                         TCP_PAWS_WINDOW) {
813                                 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
814                                 dst_release(dst);
815                                 goto drop_and_free;
816                         }
817                 }
818                 /* Kill the following clause, if you dislike this way. */
819                 else if (!sysctl_tcp_syncookies &&
820                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
821                           (sysctl_max_syn_backlog >> 2)) &&
822                          (!peer || !peer->tcp_ts_stamp) &&
823                          (!dst || !dst_metric(dst, RTAX_RTT))) {
824                         /* Without syncookies last quarter of
825                          * backlog is filled with destinations,
826                          * proven to be alive.
827                          * It means that we continue to communicate
828                          * to destinations, already remembered
829                          * to the moment of synflood.
830                          */
831                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
832                                        "request from %u.%u.%u.%u/%u\n",
833                                        NIPQUAD(saddr),
834                                        ntohs(skb->h.th->source));
835                         dst_release(dst);
836                         goto drop_and_free;
837                 }
838
839                 isn = tcp_v4_init_sequence(sk, skb);
840         }
841         tcp_rsk(req)->snt_isn = isn;
842
843         if (tcp_v4_send_synack(sk, req, dst))
844                 goto drop_and_free;
845
846         if (want_cookie) {
847                 reqsk_free(req);
848         } else {
849                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
850         }
851         return 0;
852
853 drop_and_free:
854         reqsk_free(req);
855 drop:
856         TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
857         return 0;
858 }
859
860
861 /*
862  * The three way handshake has completed - we got a valid synack -
863  * now create the new socket.
864  */
865 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
866                                   struct request_sock *req,
867                                   struct dst_entry *dst)
868 {
869         struct inet_request_sock *ireq;
870         struct inet_sock *newinet;
871         struct tcp_sock *newtp;
872         struct sock *newsk;
873
874         if (sk_acceptq_is_full(sk))
875                 goto exit_overflow;
876
877         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
878                 goto exit;
879
880         newsk = tcp_create_openreq_child(sk, req, skb);
881         if (!newsk)
882                 goto exit;
883
884         sk_setup_caps(newsk, dst);
885
886         newtp                 = tcp_sk(newsk);
887         newinet               = inet_sk(newsk);
888         ireq                  = inet_rsk(req);
889         newinet->daddr        = ireq->rmt_addr;
890         newinet->rcv_saddr    = ireq->loc_addr;
891         newinet->saddr        = ireq->loc_addr;
892         newinet->opt          = ireq->opt;
893         ireq->opt             = NULL;
894         newinet->mc_index     = inet_iif(skb);
895         newinet->mc_ttl       = skb->nh.iph->ttl;
896         inet_csk(newsk)->icsk_ext_hdr_len = 0;
897         if (newinet->opt)
898                 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
899         newinet->id = newtp->write_seq ^ jiffies;
900
901         tcp_sync_mss(newsk, dst_mtu(dst));
902         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
903         tcp_initialize_rcv_mss(newsk);
904
905         __inet_hash(&tcp_hashinfo, newsk, 0);
906         __inet_inherit_port(&tcp_hashinfo, sk, newsk);
907
908         return newsk;
909
910 exit_overflow:
911         NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
912 exit:
913         NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
914         dst_release(dst);
915         return NULL;
916 }
917
918 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
919 {
920         struct tcphdr *th = skb->h.th;
921         struct iphdr *iph = skb->nh.iph;
922         struct sock *nsk;
923         struct request_sock **prev;
924         /* Find possible connection requests. */
925         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
926                                                        iph->saddr, iph->daddr);
927         if (req)
928                 return tcp_check_req(sk, skb, req, prev);
929
930         nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
931                                         th->source, skb->nh.iph->daddr,
932                                         ntohs(th->dest), inet_iif(skb));
933
934         if (nsk) {
935                 if (nsk->sk_state != TCP_TIME_WAIT) {
936                         bh_lock_sock(nsk);
937                         return nsk;
938                 }
939                 inet_twsk_put((struct inet_timewait_sock *)nsk);
940                 return NULL;
941         }
942
943 #ifdef CONFIG_SYN_COOKIES
944         if (!th->rst && !th->syn && th->ack)
945                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
946 #endif
947         return sk;
948 }
949
950 static int tcp_v4_checksum_init(struct sk_buff *skb)
951 {
952         if (skb->ip_summed == CHECKSUM_HW) {
953                 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
954                                   skb->nh.iph->daddr, skb->csum)) {
955                         skb->ip_summed = CHECKSUM_UNNECESSARY;
956                         return 0;
957                 }
958         }
959
960         skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
961                                        skb->len, IPPROTO_TCP, 0);
962
963         if (skb->len <= 76) {
964                 return __skb_checksum_complete(skb);
965         }
966         return 0;
967 }
968
969
970 /* The socket must have it's spinlock held when we get
971  * here.
972  *
973  * We have a potential double-lock case here, so even when
974  * doing backlog processing we use the BH locking scheme.
975  * This is because we cannot sleep with the original spinlock
976  * held.
977  */
978 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
979 {
980         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
981                 TCP_CHECK_TIMER(sk);
982                 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
983                         goto reset;
984                 TCP_CHECK_TIMER(sk);
985                 return 0;
986         }
987
988         if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
989                 goto csum_err;
990
991         if (sk->sk_state == TCP_LISTEN) {
992                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
993                 if (!nsk)
994                         goto discard;
995
996                 if (nsk != sk) {
997                         if (tcp_child_process(sk, nsk, skb))
998                                 goto reset;
999                         return 0;
1000                 }
1001         }
1002
1003         TCP_CHECK_TIMER(sk);
1004         if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1005                 goto reset;
1006         TCP_CHECK_TIMER(sk);
1007         return 0;
1008
1009 reset:
1010         tcp_v4_send_reset(skb);
1011 discard:
1012         kfree_skb(skb);
1013         /* Be careful here. If this function gets more complicated and
1014          * gcc suffers from register pressure on the x86, sk (in %ebx)
1015          * might be destroyed here. This current version compiles correctly,
1016          * but you have been warned.
1017          */
1018         return 0;
1019
1020 csum_err:
1021         TCP_INC_STATS_BH(TCP_MIB_INERRS);
1022         goto discard;
1023 }
1024
1025 /*
1026  *      From tcp_input.c
1027  */
1028
1029 int tcp_v4_rcv(struct sk_buff *skb)
1030 {
1031         struct tcphdr *th;
1032         struct sock *sk;
1033         int ret;
1034
1035         if (skb->pkt_type != PACKET_HOST)
1036                 goto discard_it;
1037
1038         /* Count it even if it's bad */
1039         TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1040
1041         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1042                 goto discard_it;
1043
1044         th = skb->h.th;
1045
1046         if (th->doff < sizeof(struct tcphdr) / 4)
1047                 goto bad_packet;
1048         if (!pskb_may_pull(skb, th->doff * 4))
1049                 goto discard_it;
1050
1051         /* An explanation is required here, I think.
1052          * Packet length and doff are validated by header prediction,
1053          * provided case of th->doff==0 is eliminated.
1054          * So, we defer the checks. */
1055         if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1056              tcp_v4_checksum_init(skb)))
1057                 goto bad_packet;
1058
1059         th = skb->h.th;
1060         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1061         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1062                                     skb->len - th->doff * 4);
1063         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1064         TCP_SKB_CB(skb)->when    = 0;
1065         TCP_SKB_CB(skb)->flags   = skb->nh.iph->tos;
1066         TCP_SKB_CB(skb)->sacked  = 0;
1067
1068         sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1069                            skb->nh.iph->daddr, ntohs(th->dest),
1070                            inet_iif(skb));
1071
1072         if (!sk)
1073                 goto no_tcp_socket;
1074
1075 process:
1076         if (sk->sk_state == TCP_TIME_WAIT)
1077                 goto do_time_wait;
1078
1079         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1080                 goto discard_and_relse;
1081
1082         if (sk_filter(sk, skb, 0))
1083                 goto discard_and_relse;
1084
1085         skb->dev = NULL;
1086
1087         bh_lock_sock(sk);
1088         ret = 0;
1089         if (!sock_owned_by_user(sk)) {
1090                 if (!tcp_prequeue(sk, skb))
1091                         ret = tcp_v4_do_rcv(sk, skb);
1092         } else
1093                 sk_add_backlog(sk, skb);
1094         bh_unlock_sock(sk);
1095
1096         sock_put(sk);
1097
1098         return ret;
1099
1100 no_tcp_socket:
1101         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1102                 goto discard_it;
1103
1104         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1105 bad_packet:
1106                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1107         } else {
1108                 tcp_v4_send_reset(skb);
1109         }
1110
1111 discard_it:
1112         /* Discard frame. */
1113         kfree_skb(skb);
1114         return 0;
1115
1116 discard_and_relse:
1117         sock_put(sk);
1118         goto discard_it;
1119
1120 do_time_wait:
1121         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1122                 inet_twsk_put((struct inet_timewait_sock *) sk);
1123                 goto discard_it;
1124         }
1125
1126         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1127                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1128                 inet_twsk_put((struct inet_timewait_sock *) sk);
1129                 goto discard_it;
1130         }
1131         switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1132                                            skb, th)) {
1133         case TCP_TW_SYN: {
1134                 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1135                                                         skb->nh.iph->daddr,
1136                                                         ntohs(th->dest),
1137                                                         inet_iif(skb));
1138                 if (sk2) {
1139                         inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1140                                              &tcp_death_row);
1141                         inet_twsk_put((struct inet_timewait_sock *)sk);
1142                         sk = sk2;
1143                         goto process;
1144                 }
1145                 /* Fall through to ACK */
1146         }
1147         case TCP_TW_ACK:
1148                 tcp_v4_timewait_ack(sk, skb);
1149                 break;
1150         case TCP_TW_RST:
1151                 goto no_tcp_socket;
1152         case TCP_TW_SUCCESS:;
1153         }
1154         goto discard_it;
1155 }
1156
1157 /* VJ's idea. Save last timestamp seen from this destination
1158  * and hold it at least for normal timewait interval to use for duplicate
1159  * segment detection in subsequent connections, before they enter synchronized
1160  * state.
1161  */
1162
1163 int tcp_v4_remember_stamp(struct sock *sk)
1164 {
1165         struct inet_sock *inet = inet_sk(sk);
1166         struct tcp_sock *tp = tcp_sk(sk);
1167         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1168         struct inet_peer *peer = NULL;
1169         int release_it = 0;
1170
1171         if (!rt || rt->rt_dst != inet->daddr) {
1172                 peer = inet_getpeer(inet->daddr, 1);
1173                 release_it = 1;
1174         } else {
1175                 if (!rt->peer)
1176                         rt_bind_peer(rt, 1);
1177                 peer = rt->peer;
1178         }
1179
1180         if (peer) {
1181                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1182                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1183                      peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1184                         peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1185                         peer->tcp_ts = tp->rx_opt.ts_recent;
1186                 }
1187                 if (release_it)
1188                         inet_putpeer(peer);
1189                 return 1;
1190         }
1191
1192         return 0;
1193 }
1194
1195 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1196 {
1197         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1198
1199         if (peer) {
1200                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1201
1202                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1203                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1204                      peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1205                         peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1206                         peer->tcp_ts       = tcptw->tw_ts_recent;
1207                 }
1208                 inet_putpeer(peer);
1209                 return 1;
1210         }
1211
1212         return 0;
1213 }
1214
1215 struct inet_connection_sock_af_ops ipv4_specific = {
1216         .queue_xmit     =       ip_queue_xmit,
1217         .send_check     =       tcp_v4_send_check,
1218         .rebuild_header =       inet_sk_rebuild_header,
1219         .conn_request   =       tcp_v4_conn_request,
1220         .syn_recv_sock  =       tcp_v4_syn_recv_sock,
1221         .remember_stamp =       tcp_v4_remember_stamp,
1222         .net_header_len =       sizeof(struct iphdr),
1223         .setsockopt     =       ip_setsockopt,
1224         .getsockopt     =       ip_getsockopt,
1225         .addr2sockaddr  =       inet_csk_addr2sockaddr,
1226         .sockaddr_len   =       sizeof(struct sockaddr_in),
1227 };
1228
1229 /* NOTE: A lot of things set to zero explicitly by call to
1230  *       sk_alloc() so need not be done here.
1231  */
1232 static int tcp_v4_init_sock(struct sock *sk)
1233 {
1234         struct inet_connection_sock *icsk = inet_csk(sk);
1235         struct tcp_sock *tp = tcp_sk(sk);
1236
1237         skb_queue_head_init(&tp->out_of_order_queue);
1238         tcp_init_xmit_timers(sk);
1239         tcp_prequeue_init(tp);
1240
1241         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1242         tp->mdev = TCP_TIMEOUT_INIT;
1243
1244         /* So many TCP implementations out there (incorrectly) count the
1245          * initial SYN frame in their delayed-ACK and congestion control
1246          * algorithms that we must have the following bandaid to talk
1247          * efficiently to them.  -DaveM
1248          */
1249         tp->snd_cwnd = 2;
1250
1251         /* See draft-stevens-tcpca-spec-01 for discussion of the
1252          * initialization of these values.
1253          */
1254         tp->snd_ssthresh = 0x7fffffff;  /* Infinity */
1255         tp->snd_cwnd_clamp = ~0;
1256         tp->mss_cache = 536;
1257
1258         tp->reordering = sysctl_tcp_reordering;
1259         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1260
1261         sk->sk_state = TCP_CLOSE;
1262
1263         sk->sk_write_space = sk_stream_write_space;
1264         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1265
1266         icsk->icsk_af_ops = &ipv4_specific;
1267         icsk->icsk_sync_mss = tcp_sync_mss;
1268
1269         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1270         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1271
1272         atomic_inc(&tcp_sockets_allocated);
1273
1274         return 0;
1275 }
1276
1277 int tcp_v4_destroy_sock(struct sock *sk)
1278 {
1279         struct tcp_sock *tp = tcp_sk(sk);
1280
1281         tcp_clear_xmit_timers(sk);
1282
1283         tcp_cleanup_congestion_control(sk);
1284
1285         /* Cleanup up the write buffer. */
1286         sk_stream_writequeue_purge(sk);
1287
1288         /* Cleans up our, hopefully empty, out_of_order_queue. */
1289         __skb_queue_purge(&tp->out_of_order_queue);
1290
1291         /* Clean prequeue, it must be empty really */
1292         __skb_queue_purge(&tp->ucopy.prequeue);
1293
1294         /* Clean up a referenced TCP bind bucket. */
1295         if (inet_csk(sk)->icsk_bind_hash)
1296                 inet_put_port(&tcp_hashinfo, sk);
1297
1298         /*
1299          * If sendmsg cached page exists, toss it.
1300          */
1301         if (sk->sk_sndmsg_page) {
1302                 __free_page(sk->sk_sndmsg_page);
1303                 sk->sk_sndmsg_page = NULL;
1304         }
1305
1306         atomic_dec(&tcp_sockets_allocated);
1307
1308         return 0;
1309 }
1310
1311 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1312
1313 #ifdef CONFIG_PROC_FS
1314 /* Proc filesystem TCP sock list dumping. */
1315
1316 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1317 {
1318         return hlist_empty(head) ? NULL :
1319                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1320 }
1321
1322 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1323 {
1324         return tw->tw_node.next ?
1325                 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1326 }
1327
1328 static void *listening_get_next(struct seq_file *seq, void *cur)
1329 {
1330         struct inet_connection_sock *icsk;
1331         struct hlist_node *node;
1332         struct sock *sk = cur;
1333         struct tcp_iter_state* st = seq->private;
1334
1335         if (!sk) {
1336                 st->bucket = 0;
1337                 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1338                 goto get_sk;
1339         }
1340
1341         ++st->num;
1342
1343         if (st->state == TCP_SEQ_STATE_OPENREQ) {
1344                 struct request_sock *req = cur;
1345
1346                 icsk = inet_csk(st->syn_wait_sk);
1347                 req = req->dl_next;
1348                 while (1) {
1349                         while (req) {
1350                                 if (req->rsk_ops->family == st->family) {
1351                                         cur = req;
1352                                         goto out;
1353                                 }
1354                                 req = req->dl_next;
1355                         }
1356                         if (++st->sbucket >= TCP_SYNQ_HSIZE)
1357                                 break;
1358 get_req:
1359                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1360                 }
1361                 sk        = sk_next(st->syn_wait_sk);
1362                 st->state = TCP_SEQ_STATE_LISTENING;
1363                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1364         } else {
1365                 icsk = inet_csk(sk);
1366                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1367                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1368                         goto start_req;
1369                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1370                 sk = sk_next(sk);
1371         }
1372 get_sk:
1373         sk_for_each_from(sk, node) {
1374                 if (sk->sk_family == st->family) {
1375                         cur = sk;
1376                         goto out;
1377                 }
1378                 icsk = inet_csk(sk);
1379                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1380                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1381 start_req:
1382                         st->uid         = sock_i_uid(sk);
1383                         st->syn_wait_sk = sk;
1384                         st->state       = TCP_SEQ_STATE_OPENREQ;
1385                         st->sbucket     = 0;
1386                         goto get_req;
1387                 }
1388                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1389         }
1390         if (++st->bucket < INET_LHTABLE_SIZE) {
1391                 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1392                 goto get_sk;
1393         }
1394         cur = NULL;
1395 out:
1396         return cur;
1397 }
1398
1399 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1400 {
1401         void *rc = listening_get_next(seq, NULL);
1402
1403         while (rc && *pos) {
1404                 rc = listening_get_next(seq, rc);
1405                 --*pos;
1406         }
1407         return rc;
1408 }
1409
1410 static void *established_get_first(struct seq_file *seq)
1411 {
1412         struct tcp_iter_state* st = seq->private;
1413         void *rc = NULL;
1414
1415         for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1416                 struct sock *sk;
1417                 struct hlist_node *node;
1418                 struct inet_timewait_sock *tw;
1419
1420                 /* We can reschedule _before_ having picked the target: */
1421                 cond_resched_softirq();
1422
1423                 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1424                 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1425                         if (sk->sk_family != st->family) {
1426                                 continue;
1427                         }
1428                         rc = sk;
1429                         goto out;
1430                 }
1431                 st->state = TCP_SEQ_STATE_TIME_WAIT;
1432                 inet_twsk_for_each(tw, node,
1433                                    &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1434                         if (tw->tw_family != st->family) {
1435                                 continue;
1436                         }
1437                         rc = tw;
1438                         goto out;
1439                 }
1440                 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1441                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1442         }
1443 out:
1444         return rc;
1445 }
1446
1447 static void *established_get_next(struct seq_file *seq, void *cur)
1448 {
1449         struct sock *sk = cur;
1450         struct inet_timewait_sock *tw;
1451         struct hlist_node *node;
1452         struct tcp_iter_state* st = seq->private;
1453
1454         ++st->num;
1455
1456         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1457                 tw = cur;
1458                 tw = tw_next(tw);
1459 get_tw:
1460                 while (tw && tw->tw_family != st->family) {
1461                         tw = tw_next(tw);
1462                 }
1463                 if (tw) {
1464                         cur = tw;
1465                         goto out;
1466                 }
1467                 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1468                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1469
1470                 /* We can reschedule between buckets: */
1471                 cond_resched_softirq();
1472
1473                 if (++st->bucket < tcp_hashinfo.ehash_size) {
1474                         read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1475                         sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1476                 } else {
1477                         cur = NULL;
1478                         goto out;
1479                 }
1480         } else
1481                 sk = sk_next(sk);
1482
1483         sk_for_each_from(sk, node) {
1484                 if (sk->sk_family == st->family)
1485                         goto found;
1486         }
1487
1488         st->state = TCP_SEQ_STATE_TIME_WAIT;
1489         tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1490         goto get_tw;
1491 found:
1492         cur = sk;
1493 out:
1494         return cur;
1495 }
1496
1497 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1498 {
1499         void *rc = established_get_first(seq);
1500
1501         while (rc && pos) {
1502                 rc = established_get_next(seq, rc);
1503                 --pos;
1504         }               
1505         return rc;
1506 }
1507
1508 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1509 {
1510         void *rc;
1511         struct tcp_iter_state* st = seq->private;
1512
1513         inet_listen_lock(&tcp_hashinfo);
1514         st->state = TCP_SEQ_STATE_LISTENING;
1515         rc        = listening_get_idx(seq, &pos);
1516
1517         if (!rc) {
1518                 inet_listen_unlock(&tcp_hashinfo);
1519                 local_bh_disable();
1520                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1521                 rc        = established_get_idx(seq, pos);
1522         }
1523
1524         return rc;
1525 }
1526
1527 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1528 {
1529         struct tcp_iter_state* st = seq->private;
1530         st->state = TCP_SEQ_STATE_LISTENING;
1531         st->num = 0;
1532         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1533 }
1534
1535 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1536 {
1537         void *rc = NULL;
1538         struct tcp_iter_state* st;
1539
1540         if (v == SEQ_START_TOKEN) {
1541                 rc = tcp_get_idx(seq, 0);
1542                 goto out;
1543         }
1544         st = seq->private;
1545
1546         switch (st->state) {
1547         case TCP_SEQ_STATE_OPENREQ:
1548         case TCP_SEQ_STATE_LISTENING:
1549                 rc = listening_get_next(seq, v);
1550                 if (!rc) {
1551                         inet_listen_unlock(&tcp_hashinfo);
1552                         local_bh_disable();
1553                         st->state = TCP_SEQ_STATE_ESTABLISHED;
1554                         rc        = established_get_first(seq);
1555                 }
1556                 break;
1557         case TCP_SEQ_STATE_ESTABLISHED:
1558         case TCP_SEQ_STATE_TIME_WAIT:
1559                 rc = established_get_next(seq, v);
1560                 break;
1561         }
1562 out:
1563         ++*pos;
1564         return rc;
1565 }
1566
1567 static void tcp_seq_stop(struct seq_file *seq, void *v)
1568 {
1569         struct tcp_iter_state* st = seq->private;
1570
1571         switch (st->state) {
1572         case TCP_SEQ_STATE_OPENREQ:
1573                 if (v) {
1574                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1575                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1576                 }
1577         case TCP_SEQ_STATE_LISTENING:
1578                 if (v != SEQ_START_TOKEN)
1579                         inet_listen_unlock(&tcp_hashinfo);
1580                 break;
1581         case TCP_SEQ_STATE_TIME_WAIT:
1582         case TCP_SEQ_STATE_ESTABLISHED:
1583                 if (v)
1584                         read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1585                 local_bh_enable();
1586                 break;
1587         }
1588 }
1589
1590 static int tcp_seq_open(struct inode *inode, struct file *file)
1591 {
1592         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1593         struct seq_file *seq;
1594         struct tcp_iter_state *s;
1595         int rc;
1596
1597         if (unlikely(afinfo == NULL))
1598                 return -EINVAL;
1599
1600         s = kmalloc(sizeof(*s), GFP_KERNEL);
1601         if (!s)
1602                 return -ENOMEM;
1603         memset(s, 0, sizeof(*s));
1604         s->family               = afinfo->family;
1605         s->seq_ops.start        = tcp_seq_start;
1606         s->seq_ops.next         = tcp_seq_next;
1607         s->seq_ops.show         = afinfo->seq_show;
1608         s->seq_ops.stop         = tcp_seq_stop;
1609
1610         rc = seq_open(file, &s->seq_ops);
1611         if (rc)
1612                 goto out_kfree;
1613         seq          = file->private_data;
1614         seq->private = s;
1615 out:
1616         return rc;
1617 out_kfree:
1618         kfree(s);
1619         goto out;
1620 }
1621
1622 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1623 {
1624         int rc = 0;
1625         struct proc_dir_entry *p;
1626
1627         if (!afinfo)
1628                 return -EINVAL;
1629         afinfo->seq_fops->owner         = afinfo->owner;
1630         afinfo->seq_fops->open          = tcp_seq_open;
1631         afinfo->seq_fops->read          = seq_read;
1632         afinfo->seq_fops->llseek        = seq_lseek;
1633         afinfo->seq_fops->release       = seq_release_private;
1634         
1635         p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1636         if (p)
1637                 p->data = afinfo;
1638         else
1639                 rc = -ENOMEM;
1640         return rc;
1641 }
1642
1643 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1644 {
1645         if (!afinfo)
1646                 return;
1647         proc_net_remove(afinfo->name);
1648         memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops)); 
1649 }
1650
1651 static void get_openreq4(struct sock *sk, struct request_sock *req,
1652                          char *tmpbuf, int i, int uid)
1653 {
1654         const struct inet_request_sock *ireq = inet_rsk(req);
1655         int ttd = req->expires - jiffies;
1656
1657         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1658                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1659                 i,
1660                 ireq->loc_addr,
1661                 ntohs(inet_sk(sk)->sport),
1662                 ireq->rmt_addr,
1663                 ntohs(ireq->rmt_port),
1664                 TCP_SYN_RECV,
1665                 0, 0, /* could print option size, but that is af dependent. */
1666                 1,    /* timers active (only the expire timer) */
1667                 jiffies_to_clock_t(ttd),
1668                 req->retrans,
1669                 uid,
1670                 0,  /* non standard timer */
1671                 0, /* open_requests have no inode */
1672                 atomic_read(&sk->sk_refcnt),
1673                 req);
1674 }
1675
1676 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1677 {
1678         int timer_active;
1679         unsigned long timer_expires;
1680         struct tcp_sock *tp = tcp_sk(sp);
1681         const struct inet_connection_sock *icsk = inet_csk(sp);
1682         struct inet_sock *inet = inet_sk(sp);
1683         unsigned int dest = inet->daddr;
1684         unsigned int src = inet->rcv_saddr;
1685         __u16 destp = ntohs(inet->dport);
1686         __u16 srcp = ntohs(inet->sport);
1687
1688         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1689                 timer_active    = 1;
1690                 timer_expires   = icsk->icsk_timeout;
1691         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1692                 timer_active    = 4;
1693                 timer_expires   = icsk->icsk_timeout;
1694         } else if (timer_pending(&sp->sk_timer)) {
1695                 timer_active    = 2;
1696                 timer_expires   = sp->sk_timer.expires;
1697         } else {
1698                 timer_active    = 0;
1699                 timer_expires = jiffies;
1700         }
1701
1702         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1703                         "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1704                 i, src, srcp, dest, destp, sp->sk_state,
1705                 tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
1706                 timer_active,
1707                 jiffies_to_clock_t(timer_expires - jiffies),
1708                 icsk->icsk_retransmits,
1709                 sock_i_uid(sp),
1710                 icsk->icsk_probes_out,
1711                 sock_i_ino(sp),
1712                 atomic_read(&sp->sk_refcnt), sp,
1713                 icsk->icsk_rto,
1714                 icsk->icsk_ack.ato,
1715                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1716                 tp->snd_cwnd,
1717                 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1718 }
1719
1720 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1721 {
1722         unsigned int dest, src;
1723         __u16 destp, srcp;
1724         int ttd = tw->tw_ttd - jiffies;
1725
1726         if (ttd < 0)
1727                 ttd = 0;
1728
1729         dest  = tw->tw_daddr;
1730         src   = tw->tw_rcv_saddr;
1731         destp = ntohs(tw->tw_dport);
1732         srcp  = ntohs(tw->tw_sport);
1733
1734         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1735                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1736                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1737                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1738                 atomic_read(&tw->tw_refcnt), tw);
1739 }
1740
1741 #define TMPSZ 150
1742
1743 static int tcp4_seq_show(struct seq_file *seq, void *v)
1744 {
1745         struct tcp_iter_state* st;
1746         char tmpbuf[TMPSZ + 1];
1747
1748         if (v == SEQ_START_TOKEN) {
1749                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1750                            "  sl  local_address rem_address   st tx_queue "
1751                            "rx_queue tr tm->when retrnsmt   uid  timeout "
1752                            "inode");
1753                 goto out;
1754         }
1755         st = seq->private;
1756
1757         switch (st->state) {
1758         case TCP_SEQ_STATE_LISTENING:
1759         case TCP_SEQ_STATE_ESTABLISHED:
1760                 get_tcp4_sock(v, tmpbuf, st->num);
1761                 break;
1762         case TCP_SEQ_STATE_OPENREQ:
1763                 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1764                 break;
1765         case TCP_SEQ_STATE_TIME_WAIT:
1766                 get_timewait4_sock(v, tmpbuf, st->num);
1767                 break;
1768         }
1769         seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1770 out:
1771         return 0;
1772 }
1773
1774 static struct file_operations tcp4_seq_fops;
1775 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1776         .owner          = THIS_MODULE,
1777         .name           = "tcp",
1778         .family         = AF_INET,
1779         .seq_show       = tcp4_seq_show,
1780         .seq_fops       = &tcp4_seq_fops,
1781 };
1782
1783 int __init tcp4_proc_init(void)
1784 {
1785         return tcp_proc_register(&tcp4_seq_afinfo);
1786 }
1787
1788 void tcp4_proc_exit(void)
1789 {
1790         tcp_proc_unregister(&tcp4_seq_afinfo);
1791 }
1792 #endif /* CONFIG_PROC_FS */
1793
1794 struct proto tcp_prot = {
1795         .name                   = "TCP",
1796         .owner                  = THIS_MODULE,
1797         .close                  = tcp_close,
1798         .connect                = tcp_v4_connect,
1799         .disconnect             = tcp_disconnect,
1800         .accept                 = inet_csk_accept,
1801         .ioctl                  = tcp_ioctl,
1802         .init                   = tcp_v4_init_sock,
1803         .destroy                = tcp_v4_destroy_sock,
1804         .shutdown               = tcp_shutdown,
1805         .setsockopt             = tcp_setsockopt,
1806         .getsockopt             = tcp_getsockopt,
1807         .sendmsg                = tcp_sendmsg,
1808         .recvmsg                = tcp_recvmsg,
1809         .backlog_rcv            = tcp_v4_do_rcv,
1810         .hash                   = tcp_v4_hash,
1811         .unhash                 = tcp_unhash,
1812         .get_port               = tcp_v4_get_port,
1813         .enter_memory_pressure  = tcp_enter_memory_pressure,
1814         .sockets_allocated      = &tcp_sockets_allocated,
1815         .orphan_count           = &tcp_orphan_count,
1816         .memory_allocated       = &tcp_memory_allocated,
1817         .memory_pressure        = &tcp_memory_pressure,
1818         .sysctl_mem             = sysctl_tcp_mem,
1819         .sysctl_wmem            = sysctl_tcp_wmem,
1820         .sysctl_rmem            = sysctl_tcp_rmem,
1821         .max_header             = MAX_TCP_HEADER,
1822         .obj_size               = sizeof(struct tcp_sock),
1823         .twsk_prot              = &tcp_timewait_sock_ops,
1824         .rsk_prot               = &tcp_request_sock_ops,
1825 };
1826
1827
1828
1829 void __init tcp_v4_init(struct net_proto_family *ops)
1830 {
1831         int err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_TCP, &tcp_socket);
1832         if (err < 0)
1833                 panic("Failed to create the TCP control socket.\n");
1834         tcp_socket->sk->sk_allocation   = GFP_ATOMIC;
1835         inet_sk(tcp_socket->sk)->uc_ttl = -1;
1836
1837         /* Unhash it so that IP input processing does not even
1838          * see it, we do not wish this socket to see incoming
1839          * packets.
1840          */
1841         tcp_socket->sk->sk_prot->unhash(tcp_socket->sk);
1842 }
1843
1844 EXPORT_SYMBOL(ipv4_specific);
1845 EXPORT_SYMBOL(inet_bind_bucket_create);
1846 EXPORT_SYMBOL(tcp_hashinfo);
1847 EXPORT_SYMBOL(tcp_prot);
1848 EXPORT_SYMBOL(tcp_unhash);
1849 EXPORT_SYMBOL(tcp_v4_conn_request);
1850 EXPORT_SYMBOL(tcp_v4_connect);
1851 EXPORT_SYMBOL(tcp_v4_do_rcv);
1852 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1853 EXPORT_SYMBOL(tcp_v4_send_check);
1854 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1855
1856 #ifdef CONFIG_PROC_FS
1857 EXPORT_SYMBOL(tcp_proc_register);
1858 EXPORT_SYMBOL(tcp_proc_unregister);
1859 #endif
1860 EXPORT_SYMBOL(sysctl_local_port_range);
1861 EXPORT_SYMBOL(sysctl_tcp_low_latency);
1862 EXPORT_SYMBOL(sysctl_tcp_tw_reuse);
1863