tcp: move tcp_verify_retransmit_hint
[safe/jmp/linux-2.6] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* RFC: This is from the original, I doubt that this is necessary at all:
983  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
984  * retransmitted past LOST markings in the first place? I'm not fully sure
985  * about undo and end of connection cases, which can cause R without L?
986  */
987 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
988 {
989         if ((tp->retransmit_skb_hint != NULL) &&
990             before(TCP_SKB_CB(skb)->seq,
991                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
992                 tp->retransmit_skb_hint = NULL;
993 }
994
995 /* This procedure tags the retransmission queue when SACKs arrive.
996  *
997  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
998  * Packets in queue with these bits set are counted in variables
999  * sacked_out, retrans_out and lost_out, correspondingly.
1000  *
1001  * Valid combinations are:
1002  * Tag  InFlight        Description
1003  * 0    1               - orig segment is in flight.
1004  * S    0               - nothing flies, orig reached receiver.
1005  * L    0               - nothing flies, orig lost by net.
1006  * R    2               - both orig and retransmit are in flight.
1007  * L|R  1               - orig is lost, retransmit is in flight.
1008  * S|R  1               - orig reached receiver, retrans is still in flight.
1009  * (L|S|R is logically valid, it could occur when L|R is sacked,
1010  *  but it is equivalent to plain S and code short-curcuits it to S.
1011  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1012  *
1013  * These 6 states form finite state machine, controlled by the following events:
1014  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1015  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1016  * 3. Loss detection event of one of three flavors:
1017  *      A. Scoreboard estimator decided the packet is lost.
1018  *         A'. Reno "three dupacks" marks head of queue lost.
1019  *         A''. Its FACK modfication, head until snd.fack is lost.
1020  *      B. SACK arrives sacking data transmitted after never retransmitted
1021  *         hole was sent out.
1022  *      C. SACK arrives sacking SND.NXT at the moment, when the
1023  *         segment was retransmitted.
1024  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1025  *
1026  * It is pleasant to note, that state diagram turns out to be commutative,
1027  * so that we are allowed not to be bothered by order of our actions,
1028  * when multiple events arrive simultaneously. (see the function below).
1029  *
1030  * Reordering detection.
1031  * --------------------
1032  * Reordering metric is maximal distance, which a packet can be displaced
1033  * in packet stream. With SACKs we can estimate it:
1034  *
1035  * 1. SACK fills old hole and the corresponding segment was not
1036  *    ever retransmitted -> reordering. Alas, we cannot use it
1037  *    when segment was retransmitted.
1038  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1039  *    for retransmitted and already SACKed segment -> reordering..
1040  * Both of these heuristics are not used in Loss state, when we cannot
1041  * account for retransmits accurately.
1042  *
1043  * SACK block validation.
1044  * ----------------------
1045  *
1046  * SACK block range validation checks that the received SACK block fits to
1047  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1048  * Note that SND.UNA is not included to the range though being valid because
1049  * it means that the receiver is rather inconsistent with itself reporting
1050  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1051  * perfectly valid, however, in light of RFC2018 which explicitly states
1052  * that "SACK block MUST reflect the newest segment.  Even if the newest
1053  * segment is going to be discarded ...", not that it looks very clever
1054  * in case of head skb. Due to potentional receiver driven attacks, we
1055  * choose to avoid immediate execution of a walk in write queue due to
1056  * reneging and defer head skb's loss recovery to standard loss recovery
1057  * procedure that will eventually trigger (nothing forbids us doing this).
1058  *
1059  * Implements also blockage to start_seq wrap-around. Problem lies in the
1060  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1061  * there's no guarantee that it will be before snd_nxt (n). The problem
1062  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1063  * wrap (s_w):
1064  *
1065  *         <- outs wnd ->                          <- wrapzone ->
1066  *         u     e      n                         u_w   e_w  s n_w
1067  *         |     |      |                          |     |   |  |
1068  * |<------------+------+----- TCP seqno space --------------+---------->|
1069  * ...-- <2^31 ->|                                           |<--------...
1070  * ...---- >2^31 ------>|                                    |<--------...
1071  *
1072  * Current code wouldn't be vulnerable but it's better still to discard such
1073  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1074  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1075  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1076  * equal to the ideal case (infinite seqno space without wrap caused issues).
1077  *
1078  * With D-SACK the lower bound is extended to cover sequence space below
1079  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1080  * again, D-SACK block must not to go across snd_una (for the same reason as
1081  * for the normal SACK blocks, explained above). But there all simplicity
1082  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1083  * fully below undo_marker they do not affect behavior in anyway and can
1084  * therefore be safely ignored. In rare cases (which are more or less
1085  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1086  * fragmentation and packet reordering past skb's retransmission. To consider
1087  * them correctly, the acceptable range must be extended even more though
1088  * the exact amount is rather hard to quantify. However, tp->max_window can
1089  * be used as an exaggerated estimate.
1090  */
1091 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1092                                   u32 start_seq, u32 end_seq)
1093 {
1094         /* Too far in future, or reversed (interpretation is ambiguous) */
1095         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1096                 return 0;
1097
1098         /* Nasty start_seq wrap-around check (see comments above) */
1099         if (!before(start_seq, tp->snd_nxt))
1100                 return 0;
1101
1102         /* In outstanding window? ...This is valid exit for D-SACKs too.
1103          * start_seq == snd_una is non-sensical (see comments above)
1104          */
1105         if (after(start_seq, tp->snd_una))
1106                 return 1;
1107
1108         if (!is_dsack || !tp->undo_marker)
1109                 return 0;
1110
1111         /* ...Then it's D-SACK, and must reside below snd_una completely */
1112         if (!after(end_seq, tp->snd_una))
1113                 return 0;
1114
1115         if (!before(start_seq, tp->undo_marker))
1116                 return 1;
1117
1118         /* Too old */
1119         if (!after(end_seq, tp->undo_marker))
1120                 return 0;
1121
1122         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1123          *   start_seq < undo_marker and end_seq >= undo_marker.
1124          */
1125         return !before(start_seq, end_seq - tp->max_window);
1126 }
1127
1128 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1129  * Event "C". Later note: FACK people cheated me again 8), we have to account
1130  * for reordering! Ugly, but should help.
1131  *
1132  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1133  * less than what is now known to be received by the other end (derived from
1134  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1135  * retransmitted skbs to avoid some costly processing per ACKs.
1136  */
1137 static void tcp_mark_lost_retrans(struct sock *sk)
1138 {
1139         const struct inet_connection_sock *icsk = inet_csk(sk);
1140         struct tcp_sock *tp = tcp_sk(sk);
1141         struct sk_buff *skb;
1142         int cnt = 0;
1143         u32 new_low_seq = tp->snd_nxt;
1144         u32 received_upto = tcp_highest_sack_seq(tp);
1145
1146         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1147             !after(received_upto, tp->lost_retrans_low) ||
1148             icsk->icsk_ca_state != TCP_CA_Recovery)
1149                 return;
1150
1151         tcp_for_write_queue(skb, sk) {
1152                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1153
1154                 if (skb == tcp_send_head(sk))
1155                         break;
1156                 if (cnt == tp->retrans_out)
1157                         break;
1158                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1159                         continue;
1160
1161                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1162                         continue;
1163
1164                 if (after(received_upto, ack_seq) &&
1165                     (tcp_is_fack(tp) ||
1166                      !before(received_upto,
1167                              ack_seq + tp->reordering * tp->mss_cache))) {
1168                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1169                         tp->retrans_out -= tcp_skb_pcount(skb);
1170
1171                         /* clear lost hint */
1172                         tp->retransmit_skb_hint = NULL;
1173
1174                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1175                                 tp->lost_out += tcp_skb_pcount(skb);
1176                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1177                         }
1178                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1179                 } else {
1180                         if (before(ack_seq, new_low_seq))
1181                                 new_low_seq = ack_seq;
1182                         cnt += tcp_skb_pcount(skb);
1183                 }
1184         }
1185
1186         if (tp->retrans_out)
1187                 tp->lost_retrans_low = new_low_seq;
1188 }
1189
1190 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1191                            struct tcp_sack_block_wire *sp, int num_sacks,
1192                            u32 prior_snd_una)
1193 {
1194         struct tcp_sock *tp = tcp_sk(sk);
1195         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1196         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1197         int dup_sack = 0;
1198
1199         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1200                 dup_sack = 1;
1201                 tcp_dsack_seen(tp);
1202                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1203         } else if (num_sacks > 1) {
1204                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1205                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1206
1207                 if (!after(end_seq_0, end_seq_1) &&
1208                     !before(start_seq_0, start_seq_1)) {
1209                         dup_sack = 1;
1210                         tcp_dsack_seen(tp);
1211                         NET_INC_STATS_BH(sock_net(sk),
1212                                         LINUX_MIB_TCPDSACKOFORECV);
1213                 }
1214         }
1215
1216         /* D-SACK for already forgotten data... Do dumb counting. */
1217         if (dup_sack &&
1218             !after(end_seq_0, prior_snd_una) &&
1219             after(end_seq_0, tp->undo_marker))
1220                 tp->undo_retrans--;
1221
1222         return dup_sack;
1223 }
1224
1225 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1226  * the incoming SACK may not exactly match but we can find smaller MSS
1227  * aligned portion of it that matches. Therefore we might need to fragment
1228  * which may fail and creates some hassle (caller must handle error case
1229  * returns).
1230  */
1231 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1232                                  u32 start_seq, u32 end_seq)
1233 {
1234         int in_sack, err;
1235         unsigned int pkt_len;
1236
1237         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1238                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1239
1240         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1241             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1242
1243                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1244
1245                 if (!in_sack)
1246                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1247                 else
1248                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1249                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1250                 if (err < 0)
1251                         return err;
1252         }
1253
1254         return in_sack;
1255 }
1256
1257 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1258                            int *reord, int dup_sack, int fack_count)
1259 {
1260         struct tcp_sock *tp = tcp_sk(sk);
1261         u8 sacked = TCP_SKB_CB(skb)->sacked;
1262         int flag = 0;
1263
1264         /* Account D-SACK for retransmitted packet. */
1265         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1266                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1267                         tp->undo_retrans--;
1268                 if (sacked & TCPCB_SACKED_ACKED)
1269                         *reord = min(fack_count, *reord);
1270         }
1271
1272         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1273         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1274                 return flag;
1275
1276         if (!(sacked & TCPCB_SACKED_ACKED)) {
1277                 if (sacked & TCPCB_SACKED_RETRANS) {
1278                         /* If the segment is not tagged as lost,
1279                          * we do not clear RETRANS, believing
1280                          * that retransmission is still in flight.
1281                          */
1282                         if (sacked & TCPCB_LOST) {
1283                                 TCP_SKB_CB(skb)->sacked &=
1284                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1285                                 tp->lost_out -= tcp_skb_pcount(skb);
1286                                 tp->retrans_out -= tcp_skb_pcount(skb);
1287
1288                                 /* clear lost hint */
1289                                 tp->retransmit_skb_hint = NULL;
1290                         }
1291                 } else {
1292                         if (!(sacked & TCPCB_RETRANS)) {
1293                                 /* New sack for not retransmitted frame,
1294                                  * which was in hole. It is reordering.
1295                                  */
1296                                 if (before(TCP_SKB_CB(skb)->seq,
1297                                            tcp_highest_sack_seq(tp)))
1298                                         *reord = min(fack_count, *reord);
1299
1300                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1301                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1302                                         flag |= FLAG_ONLY_ORIG_SACKED;
1303                         }
1304
1305                         if (sacked & TCPCB_LOST) {
1306                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1307                                 tp->lost_out -= tcp_skb_pcount(skb);
1308
1309                                 /* clear lost hint */
1310                                 tp->retransmit_skb_hint = NULL;
1311                         }
1312                 }
1313
1314                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1315                 flag |= FLAG_DATA_SACKED;
1316                 tp->sacked_out += tcp_skb_pcount(skb);
1317
1318                 fack_count += tcp_skb_pcount(skb);
1319
1320                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1321                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1322                     before(TCP_SKB_CB(skb)->seq,
1323                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1324                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1325
1326                 if (fack_count > tp->fackets_out)
1327                         tp->fackets_out = fack_count;
1328
1329                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1330                         tcp_advance_highest_sack(sk, skb);
1331         }
1332
1333         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1334          * frames and clear it. undo_retrans is decreased above, L|R frames
1335          * are accounted above as well.
1336          */
1337         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1338                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1339                 tp->retrans_out -= tcp_skb_pcount(skb);
1340                 tp->retransmit_skb_hint = NULL;
1341         }
1342
1343         return flag;
1344 }
1345
1346 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1347                                         struct tcp_sack_block *next_dup,
1348                                         u32 start_seq, u32 end_seq,
1349                                         int dup_sack_in, int *fack_count,
1350                                         int *reord, int *flag)
1351 {
1352         tcp_for_write_queue_from(skb, sk) {
1353                 int in_sack = 0;
1354                 int dup_sack = dup_sack_in;
1355
1356                 if (skb == tcp_send_head(sk))
1357                         break;
1358
1359                 /* queue is in-order => we can short-circuit the walk early */
1360                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1361                         break;
1362
1363                 if ((next_dup != NULL) &&
1364                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1365                         in_sack = tcp_match_skb_to_sack(sk, skb,
1366                                                         next_dup->start_seq,
1367                                                         next_dup->end_seq);
1368                         if (in_sack > 0)
1369                                 dup_sack = 1;
1370                 }
1371
1372                 if (in_sack <= 0)
1373                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1374                                                         end_seq);
1375                 if (unlikely(in_sack < 0))
1376                         break;
1377
1378                 if (in_sack)
1379                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1380                                                  *fack_count);
1381
1382                 *fack_count += tcp_skb_pcount(skb);
1383         }
1384         return skb;
1385 }
1386
1387 /* Avoid all extra work that is being done by sacktag while walking in
1388  * a normal way
1389  */
1390 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1391                                         u32 skip_to_seq, int *fack_count)
1392 {
1393         tcp_for_write_queue_from(skb, sk) {
1394                 if (skb == tcp_send_head(sk))
1395                         break;
1396
1397                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1398                         break;
1399
1400                 *fack_count += tcp_skb_pcount(skb);
1401         }
1402         return skb;
1403 }
1404
1405 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1406                                                 struct sock *sk,
1407                                                 struct tcp_sack_block *next_dup,
1408                                                 u32 skip_to_seq,
1409                                                 int *fack_count, int *reord,
1410                                                 int *flag)
1411 {
1412         if (next_dup == NULL)
1413                 return skb;
1414
1415         if (before(next_dup->start_seq, skip_to_seq)) {
1416                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1417                 skb = tcp_sacktag_walk(skb, sk, NULL,
1418                                      next_dup->start_seq, next_dup->end_seq,
1419                                      1, fack_count, reord, flag);
1420         }
1421
1422         return skb;
1423 }
1424
1425 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1426 {
1427         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1428 }
1429
1430 static int
1431 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1432                         u32 prior_snd_una)
1433 {
1434         const struct inet_connection_sock *icsk = inet_csk(sk);
1435         struct tcp_sock *tp = tcp_sk(sk);
1436         unsigned char *ptr = (skb_transport_header(ack_skb) +
1437                               TCP_SKB_CB(ack_skb)->sacked);
1438         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1439         struct tcp_sack_block sp[TCP_NUM_SACKS];
1440         struct tcp_sack_block *cache;
1441         struct sk_buff *skb;
1442         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1443         int used_sacks;
1444         int reord = tp->packets_out;
1445         int flag = 0;
1446         int found_dup_sack = 0;
1447         int fack_count;
1448         int i, j;
1449         int first_sack_index;
1450
1451         if (!tp->sacked_out) {
1452                 if (WARN_ON(tp->fackets_out))
1453                         tp->fackets_out = 0;
1454                 tcp_highest_sack_reset(sk);
1455         }
1456
1457         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1458                                          num_sacks, prior_snd_una);
1459         if (found_dup_sack)
1460                 flag |= FLAG_DSACKING_ACK;
1461
1462         /* Eliminate too old ACKs, but take into
1463          * account more or less fresh ones, they can
1464          * contain valid SACK info.
1465          */
1466         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1467                 return 0;
1468
1469         if (!tp->packets_out)
1470                 goto out;
1471
1472         used_sacks = 0;
1473         first_sack_index = 0;
1474         for (i = 0; i < num_sacks; i++) {
1475                 int dup_sack = !i && found_dup_sack;
1476
1477                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1478                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1479
1480                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1481                                             sp[used_sacks].start_seq,
1482                                             sp[used_sacks].end_seq)) {
1483                         int mib_idx;
1484
1485                         if (dup_sack) {
1486                                 if (!tp->undo_marker)
1487                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1488                                 else
1489                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1490                         } else {
1491                                 /* Don't count olds caused by ACK reordering */
1492                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1493                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1494                                         continue;
1495                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1496                         }
1497
1498                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1499                         if (i == 0)
1500                                 first_sack_index = -1;
1501                         continue;
1502                 }
1503
1504                 /* Ignore very old stuff early */
1505                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1506                         continue;
1507
1508                 used_sacks++;
1509         }
1510
1511         /* order SACK blocks to allow in order walk of the retrans queue */
1512         for (i = used_sacks - 1; i > 0; i--) {
1513                 for (j = 0; j < i; j++) {
1514                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1515                                 struct tcp_sack_block tmp;
1516
1517                                 tmp = sp[j];
1518                                 sp[j] = sp[j + 1];
1519                                 sp[j + 1] = tmp;
1520
1521                                 /* Track where the first SACK block goes to */
1522                                 if (j == first_sack_index)
1523                                         first_sack_index = j + 1;
1524                         }
1525                 }
1526         }
1527
1528         skb = tcp_write_queue_head(sk);
1529         fack_count = 0;
1530         i = 0;
1531
1532         if (!tp->sacked_out) {
1533                 /* It's already past, so skip checking against it */
1534                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1535         } else {
1536                 cache = tp->recv_sack_cache;
1537                 /* Skip empty blocks in at head of the cache */
1538                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1539                        !cache->end_seq)
1540                         cache++;
1541         }
1542
1543         while (i < used_sacks) {
1544                 u32 start_seq = sp[i].start_seq;
1545                 u32 end_seq = sp[i].end_seq;
1546                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1547                 struct tcp_sack_block *next_dup = NULL;
1548
1549                 if (found_dup_sack && ((i + 1) == first_sack_index))
1550                         next_dup = &sp[i + 1];
1551
1552                 /* Event "B" in the comment above. */
1553                 if (after(end_seq, tp->high_seq))
1554                         flag |= FLAG_DATA_LOST;
1555
1556                 /* Skip too early cached blocks */
1557                 while (tcp_sack_cache_ok(tp, cache) &&
1558                        !before(start_seq, cache->end_seq))
1559                         cache++;
1560
1561                 /* Can skip some work by looking recv_sack_cache? */
1562                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1563                     after(end_seq, cache->start_seq)) {
1564
1565                         /* Head todo? */
1566                         if (before(start_seq, cache->start_seq)) {
1567                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1568                                                        &fack_count);
1569                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1570                                                        start_seq,
1571                                                        cache->start_seq,
1572                                                        dup_sack, &fack_count,
1573                                                        &reord, &flag);
1574                         }
1575
1576                         /* Rest of the block already fully processed? */
1577                         if (!after(end_seq, cache->end_seq))
1578                                 goto advance_sp;
1579
1580                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1581                                                        cache->end_seq,
1582                                                        &fack_count, &reord,
1583                                                        &flag);
1584
1585                         /* ...tail remains todo... */
1586                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1587                                 /* ...but better entrypoint exists! */
1588                                 skb = tcp_highest_sack(sk);
1589                                 if (skb == NULL)
1590                                         break;
1591                                 fack_count = tp->fackets_out;
1592                                 cache++;
1593                                 goto walk;
1594                         }
1595
1596                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1597                                                &fack_count);
1598                         /* Check overlap against next cached too (past this one already) */
1599                         cache++;
1600                         continue;
1601                 }
1602
1603                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1604                         skb = tcp_highest_sack(sk);
1605                         if (skb == NULL)
1606                                 break;
1607                         fack_count = tp->fackets_out;
1608                 }
1609                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1610
1611 walk:
1612                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1613                                        dup_sack, &fack_count, &reord, &flag);
1614
1615 advance_sp:
1616                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1617                  * due to in-order walk
1618                  */
1619                 if (after(end_seq, tp->frto_highmark))
1620                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1621
1622                 i++;
1623         }
1624
1625         /* Clear the head of the cache sack blocks so we can skip it next time */
1626         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1627                 tp->recv_sack_cache[i].start_seq = 0;
1628                 tp->recv_sack_cache[i].end_seq = 0;
1629         }
1630         for (j = 0; j < used_sacks; j++)
1631                 tp->recv_sack_cache[i++] = sp[j];
1632
1633         tcp_mark_lost_retrans(sk);
1634
1635         tcp_verify_left_out(tp);
1636
1637         if ((reord < tp->fackets_out) &&
1638             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1639             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1640                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1641
1642 out:
1643
1644 #if FASTRETRANS_DEBUG > 0
1645         WARN_ON((int)tp->sacked_out < 0);
1646         WARN_ON((int)tp->lost_out < 0);
1647         WARN_ON((int)tp->retrans_out < 0);
1648         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1649 #endif
1650         return flag;
1651 }
1652
1653 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1654  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1655  */
1656 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1657 {
1658         u32 holes;
1659
1660         holes = max(tp->lost_out, 1U);
1661         holes = min(holes, tp->packets_out);
1662
1663         if ((tp->sacked_out + holes) > tp->packets_out) {
1664                 tp->sacked_out = tp->packets_out - holes;
1665                 return 1;
1666         }
1667         return 0;
1668 }
1669
1670 /* If we receive more dupacks than we expected counting segments
1671  * in assumption of absent reordering, interpret this as reordering.
1672  * The only another reason could be bug in receiver TCP.
1673  */
1674 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1675 {
1676         struct tcp_sock *tp = tcp_sk(sk);
1677         if (tcp_limit_reno_sacked(tp))
1678                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1679 }
1680
1681 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1682
1683 static void tcp_add_reno_sack(struct sock *sk)
1684 {
1685         struct tcp_sock *tp = tcp_sk(sk);
1686         tp->sacked_out++;
1687         tcp_check_reno_reordering(sk, 0);
1688         tcp_verify_left_out(tp);
1689 }
1690
1691 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1692
1693 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1694 {
1695         struct tcp_sock *tp = tcp_sk(sk);
1696
1697         if (acked > 0) {
1698                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1699                 if (acked - 1 >= tp->sacked_out)
1700                         tp->sacked_out = 0;
1701                 else
1702                         tp->sacked_out -= acked - 1;
1703         }
1704         tcp_check_reno_reordering(sk, acked);
1705         tcp_verify_left_out(tp);
1706 }
1707
1708 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1709 {
1710         tp->sacked_out = 0;
1711 }
1712
1713 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1714 {
1715         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1716 }
1717
1718 /* F-RTO can only be used if TCP has never retransmitted anything other than
1719  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1720  */
1721 int tcp_use_frto(struct sock *sk)
1722 {
1723         const struct tcp_sock *tp = tcp_sk(sk);
1724         const struct inet_connection_sock *icsk = inet_csk(sk);
1725         struct sk_buff *skb;
1726
1727         if (!sysctl_tcp_frto)
1728                 return 0;
1729
1730         /* MTU probe and F-RTO won't really play nicely along currently */
1731         if (icsk->icsk_mtup.probe_size)
1732                 return 0;
1733
1734         if (tcp_is_sackfrto(tp))
1735                 return 1;
1736
1737         /* Avoid expensive walking of rexmit queue if possible */
1738         if (tp->retrans_out > 1)
1739                 return 0;
1740
1741         skb = tcp_write_queue_head(sk);
1742         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1743         tcp_for_write_queue_from(skb, sk) {
1744                 if (skb == tcp_send_head(sk))
1745                         break;
1746                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1747                         return 0;
1748                 /* Short-circuit when first non-SACKed skb has been checked */
1749                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1750                         break;
1751         }
1752         return 1;
1753 }
1754
1755 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1756  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1757  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1758  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1759  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1760  * bits are handled if the Loss state is really to be entered (in
1761  * tcp_enter_frto_loss).
1762  *
1763  * Do like tcp_enter_loss() would; when RTO expires the second time it
1764  * does:
1765  *  "Reduce ssthresh if it has not yet been made inside this window."
1766  */
1767 void tcp_enter_frto(struct sock *sk)
1768 {
1769         const struct inet_connection_sock *icsk = inet_csk(sk);
1770         struct tcp_sock *tp = tcp_sk(sk);
1771         struct sk_buff *skb;
1772
1773         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1774             tp->snd_una == tp->high_seq ||
1775             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1776              !icsk->icsk_retransmits)) {
1777                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1778                 /* Our state is too optimistic in ssthresh() call because cwnd
1779                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1780                  * recovery has not yet completed. Pattern would be this: RTO,
1781                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1782                  * up here twice).
1783                  * RFC4138 should be more specific on what to do, even though
1784                  * RTO is quite unlikely to occur after the first Cumulative ACK
1785                  * due to back-off and complexity of triggering events ...
1786                  */
1787                 if (tp->frto_counter) {
1788                         u32 stored_cwnd;
1789                         stored_cwnd = tp->snd_cwnd;
1790                         tp->snd_cwnd = 2;
1791                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1792                         tp->snd_cwnd = stored_cwnd;
1793                 } else {
1794                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1795                 }
1796                 /* ... in theory, cong.control module could do "any tricks" in
1797                  * ssthresh(), which means that ca_state, lost bits and lost_out
1798                  * counter would have to be faked before the call occurs. We
1799                  * consider that too expensive, unlikely and hacky, so modules
1800                  * using these in ssthresh() must deal these incompatibility
1801                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1802                  */
1803                 tcp_ca_event(sk, CA_EVENT_FRTO);
1804         }
1805
1806         tp->undo_marker = tp->snd_una;
1807         tp->undo_retrans = 0;
1808
1809         skb = tcp_write_queue_head(sk);
1810         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1811                 tp->undo_marker = 0;
1812         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1813                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1814                 tp->retrans_out -= tcp_skb_pcount(skb);
1815         }
1816         tcp_verify_left_out(tp);
1817
1818         /* Too bad if TCP was application limited */
1819         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1820
1821         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1822          * The last condition is necessary at least in tp->frto_counter case.
1823          */
1824         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1825             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1826             after(tp->high_seq, tp->snd_una)) {
1827                 tp->frto_highmark = tp->high_seq;
1828         } else {
1829                 tp->frto_highmark = tp->snd_nxt;
1830         }
1831         tcp_set_ca_state(sk, TCP_CA_Disorder);
1832         tp->high_seq = tp->snd_nxt;
1833         tp->frto_counter = 1;
1834 }
1835
1836 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1837  * which indicates that we should follow the traditional RTO recovery,
1838  * i.e. mark everything lost and do go-back-N retransmission.
1839  */
1840 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1841 {
1842         struct tcp_sock *tp = tcp_sk(sk);
1843         struct sk_buff *skb;
1844
1845         tp->lost_out = 0;
1846         tp->retrans_out = 0;
1847         if (tcp_is_reno(tp))
1848                 tcp_reset_reno_sack(tp);
1849
1850         tcp_for_write_queue(skb, sk) {
1851                 if (skb == tcp_send_head(sk))
1852                         break;
1853
1854                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1855                 /*
1856                  * Count the retransmission made on RTO correctly (only when
1857                  * waiting for the first ACK and did not get it)...
1858                  */
1859                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1860                         /* For some reason this R-bit might get cleared? */
1861                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1862                                 tp->retrans_out += tcp_skb_pcount(skb);
1863                         /* ...enter this if branch just for the first segment */
1864                         flag |= FLAG_DATA_ACKED;
1865                 } else {
1866                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1867                                 tp->undo_marker = 0;
1868                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1869                 }
1870
1871                 /* Marking forward transmissions that were made after RTO lost
1872                  * can cause unnecessary retransmissions in some scenarios,
1873                  * SACK blocks will mitigate that in some but not in all cases.
1874                  * We used to not mark them but it was causing break-ups with
1875                  * receivers that do only in-order receival.
1876                  *
1877                  * TODO: we could detect presence of such receiver and select
1878                  * different behavior per flow.
1879                  */
1880                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1881                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1882                         tp->lost_out += tcp_skb_pcount(skb);
1883                 }
1884         }
1885         tcp_verify_left_out(tp);
1886
1887         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1888         tp->snd_cwnd_cnt = 0;
1889         tp->snd_cwnd_stamp = tcp_time_stamp;
1890         tp->frto_counter = 0;
1891         tp->bytes_acked = 0;
1892
1893         tp->reordering = min_t(unsigned int, tp->reordering,
1894                                sysctl_tcp_reordering);
1895         tcp_set_ca_state(sk, TCP_CA_Loss);
1896         tp->high_seq = tp->snd_nxt;
1897         TCP_ECN_queue_cwr(tp);
1898
1899         tcp_clear_all_retrans_hints(tp);
1900 }
1901
1902 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1903 {
1904         tp->retrans_out = 0;
1905         tp->lost_out = 0;
1906
1907         tp->undo_marker = 0;
1908         tp->undo_retrans = 0;
1909 }
1910
1911 void tcp_clear_retrans(struct tcp_sock *tp)
1912 {
1913         tcp_clear_retrans_partial(tp);
1914
1915         tp->fackets_out = 0;
1916         tp->sacked_out = 0;
1917 }
1918
1919 /* Enter Loss state. If "how" is not zero, forget all SACK information
1920  * and reset tags completely, otherwise preserve SACKs. If receiver
1921  * dropped its ofo queue, we will know this due to reneging detection.
1922  */
1923 void tcp_enter_loss(struct sock *sk, int how)
1924 {
1925         const struct inet_connection_sock *icsk = inet_csk(sk);
1926         struct tcp_sock *tp = tcp_sk(sk);
1927         struct sk_buff *skb;
1928
1929         /* Reduce ssthresh if it has not yet been made inside this window. */
1930         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1931             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1932                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1933                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1934                 tcp_ca_event(sk, CA_EVENT_LOSS);
1935         }
1936         tp->snd_cwnd       = 1;
1937         tp->snd_cwnd_cnt   = 0;
1938         tp->snd_cwnd_stamp = tcp_time_stamp;
1939
1940         tp->bytes_acked = 0;
1941         tcp_clear_retrans_partial(tp);
1942
1943         if (tcp_is_reno(tp))
1944                 tcp_reset_reno_sack(tp);
1945
1946         if (!how) {
1947                 /* Push undo marker, if it was plain RTO and nothing
1948                  * was retransmitted. */
1949                 tp->undo_marker = tp->snd_una;
1950         } else {
1951                 tp->sacked_out = 0;
1952                 tp->fackets_out = 0;
1953         }
1954         tcp_clear_all_retrans_hints(tp);
1955
1956         tcp_for_write_queue(skb, sk) {
1957                 if (skb == tcp_send_head(sk))
1958                         break;
1959
1960                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1961                         tp->undo_marker = 0;
1962                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1963                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1964                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1965                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1966                         tp->lost_out += tcp_skb_pcount(skb);
1967                 }
1968         }
1969         tcp_verify_left_out(tp);
1970
1971         tp->reordering = min_t(unsigned int, tp->reordering,
1972                                sysctl_tcp_reordering);
1973         tcp_set_ca_state(sk, TCP_CA_Loss);
1974         tp->high_seq = tp->snd_nxt;
1975         TCP_ECN_queue_cwr(tp);
1976         /* Abort F-RTO algorithm if one is in progress */
1977         tp->frto_counter = 0;
1978 }
1979
1980 /* If ACK arrived pointing to a remembered SACK, it means that our
1981  * remembered SACKs do not reflect real state of receiver i.e.
1982  * receiver _host_ is heavily congested (or buggy).
1983  *
1984  * Do processing similar to RTO timeout.
1985  */
1986 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1987 {
1988         if (flag & FLAG_SACK_RENEGING) {
1989                 struct inet_connection_sock *icsk = inet_csk(sk);
1990                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1991
1992                 tcp_enter_loss(sk, 1);
1993                 icsk->icsk_retransmits++;
1994                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1995                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1996                                           icsk->icsk_rto, TCP_RTO_MAX);
1997                 return 1;
1998         }
1999         return 0;
2000 }
2001
2002 static inline int tcp_fackets_out(struct tcp_sock *tp)
2003 {
2004         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2005 }
2006
2007 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2008  * counter when SACK is enabled (without SACK, sacked_out is used for
2009  * that purpose).
2010  *
2011  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2012  * segments up to the highest received SACK block so far and holes in
2013  * between them.
2014  *
2015  * With reordering, holes may still be in flight, so RFC3517 recovery
2016  * uses pure sacked_out (total number of SACKed segments) even though
2017  * it violates the RFC that uses duplicate ACKs, often these are equal
2018  * but when e.g. out-of-window ACKs or packet duplication occurs,
2019  * they differ. Since neither occurs due to loss, TCP should really
2020  * ignore them.
2021  */
2022 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2023 {
2024         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2025 }
2026
2027 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2028 {
2029         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2030 }
2031
2032 static inline int tcp_head_timedout(struct sock *sk)
2033 {
2034         struct tcp_sock *tp = tcp_sk(sk);
2035
2036         return tp->packets_out &&
2037                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2038 }
2039
2040 /* Linux NewReno/SACK/FACK/ECN state machine.
2041  * --------------------------------------
2042  *
2043  * "Open"       Normal state, no dubious events, fast path.
2044  * "Disorder"   In all the respects it is "Open",
2045  *              but requires a bit more attention. It is entered when
2046  *              we see some SACKs or dupacks. It is split of "Open"
2047  *              mainly to move some processing from fast path to slow one.
2048  * "CWR"        CWND was reduced due to some Congestion Notification event.
2049  *              It can be ECN, ICMP source quench, local device congestion.
2050  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2051  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2052  *
2053  * tcp_fastretrans_alert() is entered:
2054  * - each incoming ACK, if state is not "Open"
2055  * - when arrived ACK is unusual, namely:
2056  *      * SACK
2057  *      * Duplicate ACK.
2058  *      * ECN ECE.
2059  *
2060  * Counting packets in flight is pretty simple.
2061  *
2062  *      in_flight = packets_out - left_out + retrans_out
2063  *
2064  *      packets_out is SND.NXT-SND.UNA counted in packets.
2065  *
2066  *      retrans_out is number of retransmitted segments.
2067  *
2068  *      left_out is number of segments left network, but not ACKed yet.
2069  *
2070  *              left_out = sacked_out + lost_out
2071  *
2072  *     sacked_out: Packets, which arrived to receiver out of order
2073  *                 and hence not ACKed. With SACKs this number is simply
2074  *                 amount of SACKed data. Even without SACKs
2075  *                 it is easy to give pretty reliable estimate of this number,
2076  *                 counting duplicate ACKs.
2077  *
2078  *       lost_out: Packets lost by network. TCP has no explicit
2079  *                 "loss notification" feedback from network (for now).
2080  *                 It means that this number can be only _guessed_.
2081  *                 Actually, it is the heuristics to predict lossage that
2082  *                 distinguishes different algorithms.
2083  *
2084  *      F.e. after RTO, when all the queue is considered as lost,
2085  *      lost_out = packets_out and in_flight = retrans_out.
2086  *
2087  *              Essentially, we have now two algorithms counting
2088  *              lost packets.
2089  *
2090  *              FACK: It is the simplest heuristics. As soon as we decided
2091  *              that something is lost, we decide that _all_ not SACKed
2092  *              packets until the most forward SACK are lost. I.e.
2093  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2094  *              It is absolutely correct estimate, if network does not reorder
2095  *              packets. And it loses any connection to reality when reordering
2096  *              takes place. We use FACK by default until reordering
2097  *              is suspected on the path to this destination.
2098  *
2099  *              NewReno: when Recovery is entered, we assume that one segment
2100  *              is lost (classic Reno). While we are in Recovery and
2101  *              a partial ACK arrives, we assume that one more packet
2102  *              is lost (NewReno). This heuristics are the same in NewReno
2103  *              and SACK.
2104  *
2105  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2106  *  deflation etc. CWND is real congestion window, never inflated, changes
2107  *  only according to classic VJ rules.
2108  *
2109  * Really tricky (and requiring careful tuning) part of algorithm
2110  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2111  * The first determines the moment _when_ we should reduce CWND and,
2112  * hence, slow down forward transmission. In fact, it determines the moment
2113  * when we decide that hole is caused by loss, rather than by a reorder.
2114  *
2115  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2116  * holes, caused by lost packets.
2117  *
2118  * And the most logically complicated part of algorithm is undo
2119  * heuristics. We detect false retransmits due to both too early
2120  * fast retransmit (reordering) and underestimated RTO, analyzing
2121  * timestamps and D-SACKs. When we detect that some segments were
2122  * retransmitted by mistake and CWND reduction was wrong, we undo
2123  * window reduction and abort recovery phase. This logic is hidden
2124  * inside several functions named tcp_try_undo_<something>.
2125  */
2126
2127 /* This function decides, when we should leave Disordered state
2128  * and enter Recovery phase, reducing congestion window.
2129  *
2130  * Main question: may we further continue forward transmission
2131  * with the same cwnd?
2132  */
2133 static int tcp_time_to_recover(struct sock *sk)
2134 {
2135         struct tcp_sock *tp = tcp_sk(sk);
2136         __u32 packets_out;
2137
2138         /* Do not perform any recovery during F-RTO algorithm */
2139         if (tp->frto_counter)
2140                 return 0;
2141
2142         /* Trick#1: The loss is proven. */
2143         if (tp->lost_out)
2144                 return 1;
2145
2146         /* Not-A-Trick#2 : Classic rule... */
2147         if (tcp_dupack_heurestics(tp) > tp->reordering)
2148                 return 1;
2149
2150         /* Trick#3 : when we use RFC2988 timer restart, fast
2151          * retransmit can be triggered by timeout of queue head.
2152          */
2153         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2154                 return 1;
2155
2156         /* Trick#4: It is still not OK... But will it be useful to delay
2157          * recovery more?
2158          */
2159         packets_out = tp->packets_out;
2160         if (packets_out <= tp->reordering &&
2161             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2162             !tcp_may_send_now(sk)) {
2163                 /* We have nothing to send. This connection is limited
2164                  * either by receiver window or by application.
2165                  */
2166                 return 1;
2167         }
2168
2169         return 0;
2170 }
2171
2172 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2173  * is against sacked "cnt", otherwise it's against facked "cnt"
2174  */
2175 static void tcp_mark_head_lost(struct sock *sk, int packets)
2176 {
2177         struct tcp_sock *tp = tcp_sk(sk);
2178         struct sk_buff *skb;
2179         int cnt, oldcnt;
2180         int err;
2181         unsigned int mss;
2182
2183         WARN_ON(packets > tp->packets_out);
2184         if (tp->lost_skb_hint) {
2185                 skb = tp->lost_skb_hint;
2186                 cnt = tp->lost_cnt_hint;
2187         } else {
2188                 skb = tcp_write_queue_head(sk);
2189                 cnt = 0;
2190         }
2191
2192         tcp_for_write_queue_from(skb, sk) {
2193                 if (skb == tcp_send_head(sk))
2194                         break;
2195                 /* TODO: do this better */
2196                 /* this is not the most efficient way to do this... */
2197                 tp->lost_skb_hint = skb;
2198                 tp->lost_cnt_hint = cnt;
2199
2200                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2201                         break;
2202
2203                 oldcnt = cnt;
2204                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2205                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2206                         cnt += tcp_skb_pcount(skb);
2207
2208                 if (cnt > packets) {
2209                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2210                                 break;
2211
2212                         mss = skb_shinfo(skb)->gso_size;
2213                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2214                         if (err < 0)
2215                                 break;
2216                         cnt = packets;
2217                 }
2218
2219                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2220                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2221                         tp->lost_out += tcp_skb_pcount(skb);
2222                         tcp_verify_retransmit_hint(tp, skb);
2223                 }
2224         }
2225         tcp_verify_left_out(tp);
2226 }
2227
2228 /* Account newly detected lost packet(s) */
2229
2230 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2231 {
2232         struct tcp_sock *tp = tcp_sk(sk);
2233
2234         if (tcp_is_reno(tp)) {
2235                 tcp_mark_head_lost(sk, 1);
2236         } else if (tcp_is_fack(tp)) {
2237                 int lost = tp->fackets_out - tp->reordering;
2238                 if (lost <= 0)
2239                         lost = 1;
2240                 tcp_mark_head_lost(sk, lost);
2241         } else {
2242                 int sacked_upto = tp->sacked_out - tp->reordering;
2243                 if (sacked_upto < fast_rexmit)
2244                         sacked_upto = fast_rexmit;
2245                 tcp_mark_head_lost(sk, sacked_upto);
2246         }
2247
2248         /* New heuristics: it is possible only after we switched
2249          * to restart timer each time when something is ACKed.
2250          * Hence, we can detect timed out packets during fast
2251          * retransmit without falling to slow start.
2252          */
2253         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2254                 struct sk_buff *skb;
2255
2256                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2257                         : tcp_write_queue_head(sk);
2258
2259                 tcp_for_write_queue_from(skb, sk) {
2260                         if (skb == tcp_send_head(sk))
2261                                 break;
2262                         if (!tcp_skb_timedout(sk, skb))
2263                                 break;
2264
2265                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2266                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2267                                 tp->lost_out += tcp_skb_pcount(skb);
2268                                 tcp_verify_retransmit_hint(tp, skb);
2269                         }
2270                 }
2271
2272                 tp->scoreboard_skb_hint = skb;
2273
2274                 tcp_verify_left_out(tp);
2275         }
2276 }
2277
2278 /* CWND moderation, preventing bursts due to too big ACKs
2279  * in dubious situations.
2280  */
2281 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2282 {
2283         tp->snd_cwnd = min(tp->snd_cwnd,
2284                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2285         tp->snd_cwnd_stamp = tcp_time_stamp;
2286 }
2287
2288 /* Lower bound on congestion window is slow start threshold
2289  * unless congestion avoidance choice decides to overide it.
2290  */
2291 static inline u32 tcp_cwnd_min(const struct sock *sk)
2292 {
2293         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2294
2295         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2296 }
2297
2298 /* Decrease cwnd each second ack. */
2299 static void tcp_cwnd_down(struct sock *sk, int flag)
2300 {
2301         struct tcp_sock *tp = tcp_sk(sk);
2302         int decr = tp->snd_cwnd_cnt + 1;
2303
2304         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2305             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2306                 tp->snd_cwnd_cnt = decr & 1;
2307                 decr >>= 1;
2308
2309                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2310                         tp->snd_cwnd -= decr;
2311
2312                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2313                 tp->snd_cwnd_stamp = tcp_time_stamp;
2314         }
2315 }
2316
2317 /* Nothing was retransmitted or returned timestamp is less
2318  * than timestamp of the first retransmission.
2319  */
2320 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2321 {
2322         return !tp->retrans_stamp ||
2323                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2324                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2325 }
2326
2327 /* Undo procedures. */
2328
2329 #if FASTRETRANS_DEBUG > 1
2330 static void DBGUNDO(struct sock *sk, const char *msg)
2331 {
2332         struct tcp_sock *tp = tcp_sk(sk);
2333         struct inet_sock *inet = inet_sk(sk);
2334
2335         if (sk->sk_family == AF_INET) {
2336                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2337                        msg,
2338                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2339                        tp->snd_cwnd, tcp_left_out(tp),
2340                        tp->snd_ssthresh, tp->prior_ssthresh,
2341                        tp->packets_out);
2342         }
2343 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2344         else if (sk->sk_family == AF_INET6) {
2345                 struct ipv6_pinfo *np = inet6_sk(sk);
2346                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2347                        msg,
2348                        NIP6(np->daddr), ntohs(inet->dport),
2349                        tp->snd_cwnd, tcp_left_out(tp),
2350                        tp->snd_ssthresh, tp->prior_ssthresh,
2351                        tp->packets_out);
2352         }
2353 #endif
2354 }
2355 #else
2356 #define DBGUNDO(x...) do { } while (0)
2357 #endif
2358
2359 static void tcp_undo_cwr(struct sock *sk, const int undo)
2360 {
2361         struct tcp_sock *tp = tcp_sk(sk);
2362
2363         if (tp->prior_ssthresh) {
2364                 const struct inet_connection_sock *icsk = inet_csk(sk);
2365
2366                 if (icsk->icsk_ca_ops->undo_cwnd)
2367                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2368                 else
2369                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2370
2371                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2372                         tp->snd_ssthresh = tp->prior_ssthresh;
2373                         TCP_ECN_withdraw_cwr(tp);
2374                 }
2375         } else {
2376                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2377         }
2378         tcp_moderate_cwnd(tp);
2379         tp->snd_cwnd_stamp = tcp_time_stamp;
2380
2381         /* There is something screwy going on with the retrans hints after
2382            an undo */
2383         tcp_clear_all_retrans_hints(tp);
2384 }
2385
2386 static inline int tcp_may_undo(struct tcp_sock *tp)
2387 {
2388         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2389 }
2390
2391 /* People celebrate: "We love our President!" */
2392 static int tcp_try_undo_recovery(struct sock *sk)
2393 {
2394         struct tcp_sock *tp = tcp_sk(sk);
2395
2396         if (tcp_may_undo(tp)) {
2397                 int mib_idx;
2398
2399                 /* Happy end! We did not retransmit anything
2400                  * or our original transmission succeeded.
2401                  */
2402                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2403                 tcp_undo_cwr(sk, 1);
2404                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2405                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2406                 else
2407                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2408
2409                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2410                 tp->undo_marker = 0;
2411         }
2412         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2413                 /* Hold old state until something *above* high_seq
2414                  * is ACKed. For Reno it is MUST to prevent false
2415                  * fast retransmits (RFC2582). SACK TCP is safe. */
2416                 tcp_moderate_cwnd(tp);
2417                 return 1;
2418         }
2419         tcp_set_ca_state(sk, TCP_CA_Open);
2420         return 0;
2421 }
2422
2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424 static void tcp_try_undo_dsack(struct sock *sk)
2425 {
2426         struct tcp_sock *tp = tcp_sk(sk);
2427
2428         if (tp->undo_marker && !tp->undo_retrans) {
2429                 DBGUNDO(sk, "D-SACK");
2430                 tcp_undo_cwr(sk, 1);
2431                 tp->undo_marker = 0;
2432                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2433         }
2434 }
2435
2436 /* Undo during fast recovery after partial ACK. */
2437
2438 static int tcp_try_undo_partial(struct sock *sk, int acked)
2439 {
2440         struct tcp_sock *tp = tcp_sk(sk);
2441         /* Partial ACK arrived. Force Hoe's retransmit. */
2442         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2443
2444         if (tcp_may_undo(tp)) {
2445                 /* Plain luck! Hole if filled with delayed
2446                  * packet, rather than with a retransmit.
2447                  */
2448                 if (tp->retrans_out == 0)
2449                         tp->retrans_stamp = 0;
2450
2451                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2452
2453                 DBGUNDO(sk, "Hoe");
2454                 tcp_undo_cwr(sk, 0);
2455                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2456
2457                 /* So... Do not make Hoe's retransmit yet.
2458                  * If the first packet was delayed, the rest
2459                  * ones are most probably delayed as well.
2460                  */
2461                 failed = 0;
2462         }
2463         return failed;
2464 }
2465
2466 /* Undo during loss recovery after partial ACK. */
2467 static int tcp_try_undo_loss(struct sock *sk)
2468 {
2469         struct tcp_sock *tp = tcp_sk(sk);
2470
2471         if (tcp_may_undo(tp)) {
2472                 struct sk_buff *skb;
2473                 tcp_for_write_queue(skb, sk) {
2474                         if (skb == tcp_send_head(sk))
2475                                 break;
2476                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2477                 }
2478
2479                 tcp_clear_all_retrans_hints(tp);
2480
2481                 DBGUNDO(sk, "partial loss");
2482                 tp->lost_out = 0;
2483                 tcp_undo_cwr(sk, 1);
2484                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2485                 inet_csk(sk)->icsk_retransmits = 0;
2486                 tp->undo_marker = 0;
2487                 if (tcp_is_sack(tp))
2488                         tcp_set_ca_state(sk, TCP_CA_Open);
2489                 return 1;
2490         }
2491         return 0;
2492 }
2493
2494 static inline void tcp_complete_cwr(struct sock *sk)
2495 {
2496         struct tcp_sock *tp = tcp_sk(sk);
2497         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2498         tp->snd_cwnd_stamp = tcp_time_stamp;
2499         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2500 }
2501
2502 static void tcp_try_keep_open(struct sock *sk)
2503 {
2504         struct tcp_sock *tp = tcp_sk(sk);
2505         int state = TCP_CA_Open;
2506
2507         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2508                 state = TCP_CA_Disorder;
2509
2510         if (inet_csk(sk)->icsk_ca_state != state) {
2511                 tcp_set_ca_state(sk, state);
2512                 tp->high_seq = tp->snd_nxt;
2513         }
2514 }
2515
2516 static void tcp_try_to_open(struct sock *sk, int flag)
2517 {
2518         struct tcp_sock *tp = tcp_sk(sk);
2519
2520         tcp_verify_left_out(tp);
2521
2522         if (!tp->frto_counter && tp->retrans_out == 0)
2523                 tp->retrans_stamp = 0;
2524
2525         if (flag & FLAG_ECE)
2526                 tcp_enter_cwr(sk, 1);
2527
2528         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2529                 tcp_try_keep_open(sk);
2530                 tcp_moderate_cwnd(tp);
2531         } else {
2532                 tcp_cwnd_down(sk, flag);
2533         }
2534 }
2535
2536 static void tcp_mtup_probe_failed(struct sock *sk)
2537 {
2538         struct inet_connection_sock *icsk = inet_csk(sk);
2539
2540         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2541         icsk->icsk_mtup.probe_size = 0;
2542 }
2543
2544 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2545 {
2546         struct tcp_sock *tp = tcp_sk(sk);
2547         struct inet_connection_sock *icsk = inet_csk(sk);
2548
2549         /* FIXME: breaks with very large cwnd */
2550         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2551         tp->snd_cwnd = tp->snd_cwnd *
2552                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2553                        icsk->icsk_mtup.probe_size;
2554         tp->snd_cwnd_cnt = 0;
2555         tp->snd_cwnd_stamp = tcp_time_stamp;
2556         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2557
2558         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2559         icsk->icsk_mtup.probe_size = 0;
2560         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2561 }
2562
2563 /* Process an event, which can update packets-in-flight not trivially.
2564  * Main goal of this function is to calculate new estimate for left_out,
2565  * taking into account both packets sitting in receiver's buffer and
2566  * packets lost by network.
2567  *
2568  * Besides that it does CWND reduction, when packet loss is detected
2569  * and changes state of machine.
2570  *
2571  * It does _not_ decide what to send, it is made in function
2572  * tcp_xmit_retransmit_queue().
2573  */
2574 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2575 {
2576         struct inet_connection_sock *icsk = inet_csk(sk);
2577         struct tcp_sock *tp = tcp_sk(sk);
2578         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2579         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2580                                     (tcp_fackets_out(tp) > tp->reordering));
2581         int fast_rexmit = 0, mib_idx;
2582
2583         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2584                 tp->sacked_out = 0;
2585         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2586                 tp->fackets_out = 0;
2587
2588         /* Now state machine starts.
2589          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2590         if (flag & FLAG_ECE)
2591                 tp->prior_ssthresh = 0;
2592
2593         /* B. In all the states check for reneging SACKs. */
2594         if (tcp_check_sack_reneging(sk, flag))
2595                 return;
2596
2597         /* C. Process data loss notification, provided it is valid. */
2598         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2599             before(tp->snd_una, tp->high_seq) &&
2600             icsk->icsk_ca_state != TCP_CA_Open &&
2601             tp->fackets_out > tp->reordering) {
2602                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2603                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2604         }
2605
2606         /* D. Check consistency of the current state. */
2607         tcp_verify_left_out(tp);
2608
2609         /* E. Check state exit conditions. State can be terminated
2610          *    when high_seq is ACKed. */
2611         if (icsk->icsk_ca_state == TCP_CA_Open) {
2612                 WARN_ON(tp->retrans_out != 0);
2613                 tp->retrans_stamp = 0;
2614         } else if (!before(tp->snd_una, tp->high_seq)) {
2615                 switch (icsk->icsk_ca_state) {
2616                 case TCP_CA_Loss:
2617                         icsk->icsk_retransmits = 0;
2618                         if (tcp_try_undo_recovery(sk))
2619                                 return;
2620                         break;
2621
2622                 case TCP_CA_CWR:
2623                         /* CWR is to be held something *above* high_seq
2624                          * is ACKed for CWR bit to reach receiver. */
2625                         if (tp->snd_una != tp->high_seq) {
2626                                 tcp_complete_cwr(sk);
2627                                 tcp_set_ca_state(sk, TCP_CA_Open);
2628                         }
2629                         break;
2630
2631                 case TCP_CA_Disorder:
2632                         tcp_try_undo_dsack(sk);
2633                         if (!tp->undo_marker ||
2634                             /* For SACK case do not Open to allow to undo
2635                              * catching for all duplicate ACKs. */
2636                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2637                                 tp->undo_marker = 0;
2638                                 tcp_set_ca_state(sk, TCP_CA_Open);
2639                         }
2640                         break;
2641
2642                 case TCP_CA_Recovery:
2643                         if (tcp_is_reno(tp))
2644                                 tcp_reset_reno_sack(tp);
2645                         if (tcp_try_undo_recovery(sk))
2646                                 return;
2647                         tcp_complete_cwr(sk);
2648                         break;
2649                 }
2650         }
2651
2652         /* F. Process state. */
2653         switch (icsk->icsk_ca_state) {
2654         case TCP_CA_Recovery:
2655                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2656                         if (tcp_is_reno(tp) && is_dupack)
2657                                 tcp_add_reno_sack(sk);
2658                 } else
2659                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2660                 break;
2661         case TCP_CA_Loss:
2662                 if (flag & FLAG_DATA_ACKED)
2663                         icsk->icsk_retransmits = 0;
2664                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2665                         tcp_reset_reno_sack(tp);
2666                 if (!tcp_try_undo_loss(sk)) {
2667                         tcp_moderate_cwnd(tp);
2668                         tcp_xmit_retransmit_queue(sk);
2669                         return;
2670                 }
2671                 if (icsk->icsk_ca_state != TCP_CA_Open)
2672                         return;
2673                 /* Loss is undone; fall through to processing in Open state. */
2674         default:
2675                 if (tcp_is_reno(tp)) {
2676                         if (flag & FLAG_SND_UNA_ADVANCED)
2677                                 tcp_reset_reno_sack(tp);
2678                         if (is_dupack)
2679                                 tcp_add_reno_sack(sk);
2680                 }
2681
2682                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2683                         tcp_try_undo_dsack(sk);
2684
2685                 if (!tcp_time_to_recover(sk)) {
2686                         tcp_try_to_open(sk, flag);
2687                         return;
2688                 }
2689
2690                 /* MTU probe failure: don't reduce cwnd */
2691                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2692                     icsk->icsk_mtup.probe_size &&
2693                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2694                         tcp_mtup_probe_failed(sk);
2695                         /* Restores the reduction we did in tcp_mtup_probe() */
2696                         tp->snd_cwnd++;
2697                         tcp_simple_retransmit(sk);
2698                         return;
2699                 }
2700
2701                 /* Otherwise enter Recovery state */
2702
2703                 if (tcp_is_reno(tp))
2704                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
2705                 else
2706                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2707
2708                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2709
2710                 tp->high_seq = tp->snd_nxt;
2711                 tp->prior_ssthresh = 0;
2712                 tp->undo_marker = tp->snd_una;
2713                 tp->undo_retrans = tp->retrans_out;
2714
2715                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2716                         if (!(flag & FLAG_ECE))
2717                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2718                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2719                         TCP_ECN_queue_cwr(tp);
2720                 }
2721
2722                 tp->bytes_acked = 0;
2723                 tp->snd_cwnd_cnt = 0;
2724                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2725                 fast_rexmit = 1;
2726         }
2727
2728         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2729                 tcp_update_scoreboard(sk, fast_rexmit);
2730         tcp_cwnd_down(sk, flag);
2731         tcp_xmit_retransmit_queue(sk);
2732 }
2733
2734 /* Read draft-ietf-tcplw-high-performance before mucking
2735  * with this code. (Supersedes RFC1323)
2736  */
2737 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2738 {
2739         /* RTTM Rule: A TSecr value received in a segment is used to
2740          * update the averaged RTT measurement only if the segment
2741          * acknowledges some new data, i.e., only if it advances the
2742          * left edge of the send window.
2743          *
2744          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2745          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2746          *
2747          * Changed: reset backoff as soon as we see the first valid sample.
2748          * If we do not, we get strongly overestimated rto. With timestamps
2749          * samples are accepted even from very old segments: f.e., when rtt=1
2750          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2751          * answer arrives rto becomes 120 seconds! If at least one of segments
2752          * in window is lost... Voila.                          --ANK (010210)
2753          */
2754         struct tcp_sock *tp = tcp_sk(sk);
2755         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2756         tcp_rtt_estimator(sk, seq_rtt);
2757         tcp_set_rto(sk);
2758         inet_csk(sk)->icsk_backoff = 0;
2759         tcp_bound_rto(sk);
2760 }
2761
2762 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2763 {
2764         /* We don't have a timestamp. Can only use
2765          * packets that are not retransmitted to determine
2766          * rtt estimates. Also, we must not reset the
2767          * backoff for rto until we get a non-retransmitted
2768          * packet. This allows us to deal with a situation
2769          * where the network delay has increased suddenly.
2770          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2771          */
2772
2773         if (flag & FLAG_RETRANS_DATA_ACKED)
2774                 return;
2775
2776         tcp_rtt_estimator(sk, seq_rtt);
2777         tcp_set_rto(sk);
2778         inet_csk(sk)->icsk_backoff = 0;
2779         tcp_bound_rto(sk);
2780 }
2781
2782 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2783                                       const s32 seq_rtt)
2784 {
2785         const struct tcp_sock *tp = tcp_sk(sk);
2786         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2787         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2788                 tcp_ack_saw_tstamp(sk, flag);
2789         else if (seq_rtt >= 0)
2790                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2791 }
2792
2793 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2794 {
2795         const struct inet_connection_sock *icsk = inet_csk(sk);
2796         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2797         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2798 }
2799
2800 /* Restart timer after forward progress on connection.
2801  * RFC2988 recommends to restart timer to now+rto.
2802  */
2803 static void tcp_rearm_rto(struct sock *sk)
2804 {
2805         struct tcp_sock *tp = tcp_sk(sk);
2806
2807         if (!tp->packets_out) {
2808                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2809         } else {
2810                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2811                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2812         }
2813 }
2814
2815 /* If we get here, the whole TSO packet has not been acked. */
2816 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2817 {
2818         struct tcp_sock *tp = tcp_sk(sk);
2819         u32 packets_acked;
2820
2821         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2822
2823         packets_acked = tcp_skb_pcount(skb);
2824         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2825                 return 0;
2826         packets_acked -= tcp_skb_pcount(skb);
2827
2828         if (packets_acked) {
2829                 BUG_ON(tcp_skb_pcount(skb) == 0);
2830                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2831         }
2832
2833         return packets_acked;
2834 }
2835
2836 /* Remove acknowledged frames from the retransmission queue. If our packet
2837  * is before the ack sequence we can discard it as it's confirmed to have
2838  * arrived at the other end.
2839  */
2840 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2841 {
2842         struct tcp_sock *tp = tcp_sk(sk);
2843         const struct inet_connection_sock *icsk = inet_csk(sk);
2844         struct sk_buff *skb;
2845         u32 now = tcp_time_stamp;
2846         int fully_acked = 1;
2847         int flag = 0;
2848         u32 pkts_acked = 0;
2849         u32 reord = tp->packets_out;
2850         s32 seq_rtt = -1;
2851         s32 ca_seq_rtt = -1;
2852         ktime_t last_ackt = net_invalid_timestamp();
2853
2854         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2855                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2856                 u32 end_seq;
2857                 u32 acked_pcount;
2858                 u8 sacked = scb->sacked;
2859
2860                 /* Determine how many packets and what bytes were acked, tso and else */
2861                 if (after(scb->end_seq, tp->snd_una)) {
2862                         if (tcp_skb_pcount(skb) == 1 ||
2863                             !after(tp->snd_una, scb->seq))
2864                                 break;
2865
2866                         acked_pcount = tcp_tso_acked(sk, skb);
2867                         if (!acked_pcount)
2868                                 break;
2869
2870                         fully_acked = 0;
2871                         end_seq = tp->snd_una;
2872                 } else {
2873                         acked_pcount = tcp_skb_pcount(skb);
2874                         end_seq = scb->end_seq;
2875                 }
2876
2877                 /* MTU probing checks */
2878                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2879                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2880                         tcp_mtup_probe_success(sk, skb);
2881                 }
2882
2883                 if (sacked & TCPCB_RETRANS) {
2884                         if (sacked & TCPCB_SACKED_RETRANS)
2885                                 tp->retrans_out -= acked_pcount;
2886                         flag |= FLAG_RETRANS_DATA_ACKED;
2887                         ca_seq_rtt = -1;
2888                         seq_rtt = -1;
2889                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2890                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2891                 } else {
2892                         ca_seq_rtt = now - scb->when;
2893                         last_ackt = skb->tstamp;
2894                         if (seq_rtt < 0) {
2895                                 seq_rtt = ca_seq_rtt;
2896                         }
2897                         if (!(sacked & TCPCB_SACKED_ACKED))
2898                                 reord = min(pkts_acked, reord);
2899                 }
2900
2901                 if (sacked & TCPCB_SACKED_ACKED)
2902                         tp->sacked_out -= acked_pcount;
2903                 if (sacked & TCPCB_LOST)
2904                         tp->lost_out -= acked_pcount;
2905
2906                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2907                         tp->urg_mode = 0;
2908
2909                 tp->packets_out -= acked_pcount;
2910                 pkts_acked += acked_pcount;
2911
2912                 /* Initial outgoing SYN's get put onto the write_queue
2913                  * just like anything else we transmit.  It is not
2914                  * true data, and if we misinform our callers that
2915                  * this ACK acks real data, we will erroneously exit
2916                  * connection startup slow start one packet too
2917                  * quickly.  This is severely frowned upon behavior.
2918                  */
2919                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2920                         flag |= FLAG_DATA_ACKED;
2921                 } else {
2922                         flag |= FLAG_SYN_ACKED;
2923                         tp->retrans_stamp = 0;
2924                 }
2925
2926                 if (!fully_acked)
2927                         break;
2928
2929                 tcp_unlink_write_queue(skb, sk);
2930                 sk_wmem_free_skb(sk, skb);
2931                 tcp_clear_all_retrans_hints(tp);
2932         }
2933
2934         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2935                 flag |= FLAG_SACK_RENEGING;
2936
2937         if (flag & FLAG_ACKED) {
2938                 const struct tcp_congestion_ops *ca_ops
2939                         = inet_csk(sk)->icsk_ca_ops;
2940
2941                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2942                 tcp_rearm_rto(sk);
2943
2944                 if (tcp_is_reno(tp)) {
2945                         tcp_remove_reno_sacks(sk, pkts_acked);
2946                 } else {
2947                         /* Non-retransmitted hole got filled? That's reordering */
2948                         if (reord < prior_fackets)
2949                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2950                 }
2951
2952                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2953
2954                 if (ca_ops->pkts_acked) {
2955                         s32 rtt_us = -1;
2956
2957                         /* Is the ACK triggering packet unambiguous? */
2958                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2959                                 /* High resolution needed and available? */
2960                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2961                                     !ktime_equal(last_ackt,
2962                                                  net_invalid_timestamp()))
2963                                         rtt_us = ktime_us_delta(ktime_get_real(),
2964                                                                 last_ackt);
2965                                 else if (ca_seq_rtt > 0)
2966                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2967                         }
2968
2969                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2970                 }
2971         }
2972
2973 #if FASTRETRANS_DEBUG > 0
2974         WARN_ON((int)tp->sacked_out < 0);
2975         WARN_ON((int)tp->lost_out < 0);
2976         WARN_ON((int)tp->retrans_out < 0);
2977         if (!tp->packets_out && tcp_is_sack(tp)) {
2978                 icsk = inet_csk(sk);
2979                 if (tp->lost_out) {
2980                         printk(KERN_DEBUG "Leak l=%u %d\n",
2981                                tp->lost_out, icsk->icsk_ca_state);
2982                         tp->lost_out = 0;
2983                 }
2984                 if (tp->sacked_out) {
2985                         printk(KERN_DEBUG "Leak s=%u %d\n",
2986                                tp->sacked_out, icsk->icsk_ca_state);
2987                         tp->sacked_out = 0;
2988                 }
2989                 if (tp->retrans_out) {
2990                         printk(KERN_DEBUG "Leak r=%u %d\n",
2991                                tp->retrans_out, icsk->icsk_ca_state);
2992                         tp->retrans_out = 0;
2993                 }
2994         }
2995 #endif
2996         return flag;
2997 }
2998
2999 static void tcp_ack_probe(struct sock *sk)
3000 {
3001         const struct tcp_sock *tp = tcp_sk(sk);
3002         struct inet_connection_sock *icsk = inet_csk(sk);
3003
3004         /* Was it a usable window open? */
3005
3006         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3007                 icsk->icsk_backoff = 0;
3008                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3009                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3010                  * This function is not for random using!
3011                  */
3012         } else {
3013                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3014                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3015                                           TCP_RTO_MAX);
3016         }
3017 }
3018
3019 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3020 {
3021         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3022                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3023 }
3024
3025 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3026 {
3027         const struct tcp_sock *tp = tcp_sk(sk);
3028         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3029                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3030 }
3031
3032 /* Check that window update is acceptable.
3033  * The function assumes that snd_una<=ack<=snd_next.
3034  */
3035 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3036                                         const u32 ack, const u32 ack_seq,
3037                                         const u32 nwin)
3038 {
3039         return (after(ack, tp->snd_una) ||
3040                 after(ack_seq, tp->snd_wl1) ||
3041                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3042 }
3043
3044 /* Update our send window.
3045  *
3046  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3047  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3048  */
3049 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3050                                  u32 ack_seq)
3051 {
3052         struct tcp_sock *tp = tcp_sk(sk);
3053         int flag = 0;
3054         u32 nwin = ntohs(tcp_hdr(skb)->window);
3055
3056         if (likely(!tcp_hdr(skb)->syn))
3057                 nwin <<= tp->rx_opt.snd_wscale;
3058
3059         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3060                 flag |= FLAG_WIN_UPDATE;
3061                 tcp_update_wl(tp, ack, ack_seq);
3062
3063                 if (tp->snd_wnd != nwin) {
3064                         tp->snd_wnd = nwin;
3065
3066                         /* Note, it is the only place, where
3067                          * fast path is recovered for sending TCP.
3068                          */
3069                         tp->pred_flags = 0;
3070                         tcp_fast_path_check(sk);
3071
3072                         if (nwin > tp->max_window) {
3073                                 tp->max_window = nwin;
3074                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3075                         }
3076                 }
3077         }
3078
3079         tp->snd_una = ack;
3080
3081         return flag;
3082 }
3083
3084 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3085  * continue in congestion avoidance.
3086  */
3087 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3088 {
3089         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3090         tp->snd_cwnd_cnt = 0;
3091         tp->bytes_acked = 0;
3092         TCP_ECN_queue_cwr(tp);
3093         tcp_moderate_cwnd(tp);
3094 }
3095
3096 /* A conservative spurious RTO response algorithm: reduce cwnd using
3097  * rate halving and continue in congestion avoidance.
3098  */
3099 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3100 {
3101         tcp_enter_cwr(sk, 0);
3102 }
3103
3104 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3105 {
3106         if (flag & FLAG_ECE)
3107                 tcp_ratehalving_spur_to_response(sk);
3108         else
3109                 tcp_undo_cwr(sk, 1);
3110 }
3111
3112 /* F-RTO spurious RTO detection algorithm (RFC4138)
3113  *
3114  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3115  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3116  * window (but not to or beyond highest sequence sent before RTO):
3117  *   On First ACK,  send two new segments out.
3118  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3119  *                  algorithm is not part of the F-RTO detection algorithm
3120  *                  given in RFC4138 but can be selected separately).
3121  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3122  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3123  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3124  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3125  *
3126  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3127  * original window even after we transmit two new data segments.
3128  *
3129  * SACK version:
3130  *   on first step, wait until first cumulative ACK arrives, then move to
3131  *   the second step. In second step, the next ACK decides.
3132  *
3133  * F-RTO is implemented (mainly) in four functions:
3134  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3135  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3136  *     called when tcp_use_frto() showed green light
3137  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3138  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3139  *     to prove that the RTO is indeed spurious. It transfers the control
3140  *     from F-RTO to the conventional RTO recovery
3141  */
3142 static int tcp_process_frto(struct sock *sk, int flag)
3143 {
3144         struct tcp_sock *tp = tcp_sk(sk);
3145
3146         tcp_verify_left_out(tp);
3147
3148         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3149         if (flag & FLAG_DATA_ACKED)
3150                 inet_csk(sk)->icsk_retransmits = 0;
3151
3152         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3153             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3154                 tp->undo_marker = 0;
3155
3156         if (!before(tp->snd_una, tp->frto_highmark)) {
3157                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3158                 return 1;
3159         }
3160
3161         if (!tcp_is_sackfrto(tp)) {
3162                 /* RFC4138 shortcoming in step 2; should also have case c):
3163                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3164                  * data, winupdate
3165                  */
3166                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3167                         return 1;
3168
3169                 if (!(flag & FLAG_DATA_ACKED)) {
3170                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3171                                             flag);
3172                         return 1;
3173                 }
3174         } else {
3175                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3176                         /* Prevent sending of new data. */
3177                         tp->snd_cwnd = min(tp->snd_cwnd,
3178                                            tcp_packets_in_flight(tp));
3179                         return 1;
3180                 }
3181
3182                 if ((tp->frto_counter >= 2) &&
3183                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3184                      ((flag & FLAG_DATA_SACKED) &&
3185                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3186                         /* RFC4138 shortcoming (see comment above) */
3187                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3188                             (flag & FLAG_NOT_DUP))
3189                                 return 1;
3190
3191                         tcp_enter_frto_loss(sk, 3, flag);
3192                         return 1;
3193                 }
3194         }
3195
3196         if (tp->frto_counter == 1) {
3197                 /* tcp_may_send_now needs to see updated state */
3198                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3199                 tp->frto_counter = 2;
3200
3201                 if (!tcp_may_send_now(sk))
3202                         tcp_enter_frto_loss(sk, 2, flag);
3203
3204                 return 1;
3205         } else {
3206                 switch (sysctl_tcp_frto_response) {
3207                 case 2:
3208                         tcp_undo_spur_to_response(sk, flag);
3209                         break;
3210                 case 1:
3211                         tcp_conservative_spur_to_response(tp);
3212                         break;
3213                 default:
3214                         tcp_ratehalving_spur_to_response(sk);
3215                         break;
3216                 }
3217                 tp->frto_counter = 0;
3218                 tp->undo_marker = 0;
3219                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3220         }
3221         return 0;
3222 }
3223
3224 /* This routine deals with incoming acks, but not outgoing ones. */
3225 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3226 {
3227         struct inet_connection_sock *icsk = inet_csk(sk);
3228         struct tcp_sock *tp = tcp_sk(sk);
3229         u32 prior_snd_una = tp->snd_una;
3230         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3231         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3232         u32 prior_in_flight;
3233         u32 prior_fackets;
3234         int prior_packets;
3235         int frto_cwnd = 0;
3236
3237         /* If the ack is newer than sent or older than previous acks
3238          * then we can probably ignore it.
3239          */
3240         if (after(ack, tp->snd_nxt))
3241                 goto uninteresting_ack;
3242
3243         if (before(ack, prior_snd_una))
3244                 goto old_ack;
3245
3246         if (after(ack, prior_snd_una))
3247                 flag |= FLAG_SND_UNA_ADVANCED;
3248
3249         if (sysctl_tcp_abc) {
3250                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3251                         tp->bytes_acked += ack - prior_snd_una;
3252                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3253                         /* we assume just one segment left network */
3254                         tp->bytes_acked += min(ack - prior_snd_una,
3255                                                tp->mss_cache);
3256         }
3257
3258         prior_fackets = tp->fackets_out;
3259         prior_in_flight = tcp_packets_in_flight(tp);
3260
3261         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3262                 /* Window is constant, pure forward advance.
3263                  * No more checks are required.
3264                  * Note, we use the fact that SND.UNA>=SND.WL2.
3265                  */
3266                 tcp_update_wl(tp, ack, ack_seq);
3267                 tp->snd_una = ack;
3268                 flag |= FLAG_WIN_UPDATE;
3269
3270                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3271
3272                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3273         } else {
3274                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3275                         flag |= FLAG_DATA;
3276                 else
3277                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3278
3279                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3280
3281                 if (TCP_SKB_CB(skb)->sacked)
3282                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3283
3284                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3285                         flag |= FLAG_ECE;
3286
3287                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3288         }
3289
3290         /* We passed data and got it acked, remove any soft error
3291          * log. Something worked...
3292          */
3293         sk->sk_err_soft = 0;
3294         icsk->icsk_probes_out = 0;
3295         tp->rcv_tstamp = tcp_time_stamp;
3296         prior_packets = tp->packets_out;
3297         if (!prior_packets)
3298                 goto no_queue;
3299
3300         /* See if we can take anything off of the retransmit queue. */
3301         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3302
3303         if (tp->frto_counter)
3304                 frto_cwnd = tcp_process_frto(sk, flag);
3305         /* Guarantee sacktag reordering detection against wrap-arounds */
3306         if (before(tp->frto_highmark, tp->snd_una))
3307                 tp->frto_highmark = 0;
3308
3309         if (tcp_ack_is_dubious(sk, flag)) {
3310                 /* Advance CWND, if state allows this. */
3311                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3312                     tcp_may_raise_cwnd(sk, flag))
3313                         tcp_cong_avoid(sk, ack, prior_in_flight);
3314                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3315                                       flag);
3316         } else {
3317                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3318                         tcp_cong_avoid(sk, ack, prior_in_flight);
3319         }
3320
3321         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3322                 dst_confirm(sk->sk_dst_cache);
3323
3324         return 1;
3325
3326 no_queue:
3327         /* If this ack opens up a zero window, clear backoff.  It was
3328          * being used to time the probes, and is probably far higher than
3329          * it needs to be for normal retransmission.
3330          */
3331         if (tcp_send_head(sk))
3332                 tcp_ack_probe(sk);
3333         return 1;
3334
3335 old_ack:
3336         if (TCP_SKB_CB(skb)->sacked) {
3337                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3338                 if (icsk->icsk_ca_state == TCP_CA_Open)
3339                         tcp_try_keep_open(sk);
3340         }
3341
3342 uninteresting_ack:
3343         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3344         return 0;
3345 }
3346
3347 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3348  * But, this can also be called on packets in the established flow when
3349  * the fast version below fails.
3350  */
3351 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3352                        int estab)
3353 {
3354         unsigned char *ptr;
3355         struct tcphdr *th = tcp_hdr(skb);
3356         int length = (th->doff * 4) - sizeof(struct tcphdr);
3357
3358         ptr = (unsigned char *)(th + 1);
3359         opt_rx->saw_tstamp = 0;
3360
3361         while (length > 0) {
3362                 int opcode = *ptr++;
3363                 int opsize;
3364
3365                 switch (opcode) {
3366                 case TCPOPT_EOL:
3367                         return;
3368                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3369                         length--;
3370                         continue;
3371                 default:
3372                         opsize = *ptr++;
3373                         if (opsize < 2) /* "silly options" */
3374                                 return;
3375                         if (opsize > length)
3376                                 return; /* don't parse partial options */
3377                         switch (opcode) {
3378                         case TCPOPT_MSS:
3379                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3380                                         u16 in_mss = get_unaligned_be16(ptr);
3381                                         if (in_mss) {
3382                                                 if (opt_rx->user_mss &&
3383                                                     opt_rx->user_mss < in_mss)
3384                                                         in_mss = opt_rx->user_mss;
3385                                                 opt_rx->mss_clamp = in_mss;
3386                                         }
3387                                 }
3388                                 break;
3389                         case TCPOPT_WINDOW:
3390                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3391                                     !estab && sysctl_tcp_window_scaling) {
3392                                         __u8 snd_wscale = *(__u8 *)ptr;
3393                                         opt_rx->wscale_ok = 1;
3394                                         if (snd_wscale > 14) {
3395                                                 if (net_ratelimit())
3396                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3397                                                                "scaling value %d >14 received.\n",
3398                                                                snd_wscale);
3399                                                 snd_wscale = 14;
3400                                         }
3401                                         opt_rx->snd_wscale = snd_wscale;
3402                                 }
3403                                 break;
3404                         case TCPOPT_TIMESTAMP:
3405                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3406                                     ((estab && opt_rx->tstamp_ok) ||
3407                                      (!estab && sysctl_tcp_timestamps))) {
3408                                         opt_rx->saw_tstamp = 1;
3409                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3410                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3411                                 }
3412                                 break;
3413                         case TCPOPT_SACK_PERM:
3414                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3415                                     !estab && sysctl_tcp_sack) {
3416                                         opt_rx->sack_ok = 1;
3417                                         tcp_sack_reset(opt_rx);
3418                                 }
3419                                 break;
3420
3421                         case TCPOPT_SACK:
3422                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3423                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3424                                    opt_rx->sack_ok) {
3425                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3426                                 }
3427                                 break;
3428 #ifdef CONFIG_TCP_MD5SIG
3429                         case TCPOPT_MD5SIG:
3430                                 /*
3431                                  * The MD5 Hash has already been
3432                                  * checked (see tcp_v{4,6}_do_rcv()).
3433                                  */
3434                                 break;
3435 #endif
3436                         }
3437
3438                         ptr += opsize-2;
3439                         length -= opsize;
3440                 }
3441         }
3442 }
3443
3444 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3445 {
3446         __be32 *ptr = (__be32 *)(th + 1);
3447
3448         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3449                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3450                 tp->rx_opt.saw_tstamp = 1;
3451                 ++ptr;
3452                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3453                 ++ptr;
3454                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3455                 return 1;
3456         }
3457         return 0;
3458 }
3459
3460 /* Fast parse options. This hopes to only see timestamps.
3461  * If it is wrong it falls back on tcp_parse_options().
3462  */
3463 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3464                                   struct tcp_sock *tp)
3465 {
3466         if (th->doff == sizeof(struct tcphdr) >> 2) {
3467                 tp->rx_opt.saw_tstamp = 0;
3468                 return 0;
3469         } else if (tp->rx_opt.tstamp_ok &&
3470                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3471                 if (tcp_parse_aligned_timestamp(tp, th))
3472                         return 1;
3473         }
3474         tcp_parse_options(skb, &tp->rx_opt, 1);
3475         return 1;
3476 }
3477
3478 #ifdef CONFIG_TCP_MD5SIG
3479 /*
3480  * Parse MD5 Signature option
3481  */
3482 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3483 {
3484         int length = (th->doff << 2) - sizeof (*th);
3485         u8 *ptr = (u8*)(th + 1);
3486
3487         /* If the TCP option is too short, we can short cut */
3488         if (length < TCPOLEN_MD5SIG)
3489                 return NULL;
3490
3491         while (length > 0) {
3492                 int opcode = *ptr++;
3493                 int opsize;
3494
3495                 switch(opcode) {
3496                 case TCPOPT_EOL:
3497                         return NULL;
3498                 case TCPOPT_NOP:
3499                         length--;
3500                         continue;
3501                 default:
3502                         opsize = *ptr++;
3503                         if (opsize < 2 || opsize > length)
3504                                 return NULL;
3505                         if (opcode == TCPOPT_MD5SIG)
3506                                 return ptr;
3507                 }
3508                 ptr += opsize - 2;
3509                 length -= opsize;
3510         }
3511         return NULL;
3512 }
3513 #endif
3514
3515 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3516 {
3517         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3518         tp->rx_opt.ts_recent_stamp = get_seconds();
3519 }
3520
3521 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3522 {
3523         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3524                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3525                  * extra check below makes sure this can only happen
3526                  * for pure ACK frames.  -DaveM
3527                  *
3528                  * Not only, also it occurs for expired timestamps.
3529                  */
3530
3531                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3532                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3533                         tcp_store_ts_recent(tp);
3534         }
3535 }
3536
3537 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3538  *
3539  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3540  * it can pass through stack. So, the following predicate verifies that
3541  * this segment is not used for anything but congestion avoidance or
3542  * fast retransmit. Moreover, we even are able to eliminate most of such
3543  * second order effects, if we apply some small "replay" window (~RTO)
3544  * to timestamp space.
3545  *
3546  * All these measures still do not guarantee that we reject wrapped ACKs
3547  * on networks with high bandwidth, when sequence space is recycled fastly,
3548  * but it guarantees that such events will be very rare and do not affect
3549  * connection seriously. This doesn't look nice, but alas, PAWS is really
3550  * buggy extension.
3551  *
3552  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3553  * states that events when retransmit arrives after original data are rare.
3554  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3555  * the biggest problem on large power networks even with minor reordering.
3556  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3557  * up to bandwidth of 18Gigabit/sec. 8) ]
3558  */
3559
3560 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3561 {
3562         struct tcp_sock *tp = tcp_sk(sk);
3563         struct tcphdr *th = tcp_hdr(skb);
3564         u32 seq = TCP_SKB_CB(skb)->seq;
3565         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3566
3567         return (/* 1. Pure ACK with correct sequence number. */
3568                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3569
3570                 /* 2. ... and duplicate ACK. */
3571                 ack == tp->snd_una &&
3572
3573                 /* 3. ... and does not update window. */
3574                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3575
3576                 /* 4. ... and sits in replay window. */
3577                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3578 }
3579
3580 static inline int tcp_paws_discard(const struct sock *sk,
3581                                    const struct sk_buff *skb)
3582 {
3583         const struct tcp_sock *tp = tcp_sk(sk);
3584         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3585                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3586                 !tcp_disordered_ack(sk, skb));
3587 }
3588
3589 /* Check segment sequence number for validity.
3590  *
3591  * Segment controls are considered valid, if the segment
3592  * fits to the window after truncation to the window. Acceptability
3593  * of data (and SYN, FIN, of course) is checked separately.
3594  * See tcp_data_queue(), for example.
3595  *
3596  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3597  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3598  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3599  * (borrowed from freebsd)
3600  */
3601
3602 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3603 {
3604         return  !before(end_seq, tp->rcv_wup) &&
3605                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3606 }
3607
3608 /* When we get a reset we do this. */
3609 static void tcp_reset(struct sock *sk)
3610 {
3611         /* We want the right error as BSD sees it (and indeed as we do). */
3612         switch (sk->sk_state) {
3613         case TCP_SYN_SENT:
3614                 sk->sk_err = ECONNREFUSED;
3615                 break;
3616         case TCP_CLOSE_WAIT:
3617                 sk->sk_err = EPIPE;
3618                 break;
3619         case TCP_CLOSE:
3620                 return;
3621         default:
3622                 sk->sk_err = ECONNRESET;
3623         }
3624
3625         if (!sock_flag(sk, SOCK_DEAD))
3626                 sk->sk_error_report(sk);
3627
3628         tcp_done(sk);
3629 }
3630
3631 /*
3632  *      Process the FIN bit. This now behaves as it is supposed to work
3633  *      and the FIN takes effect when it is validly part of sequence
3634  *      space. Not before when we get holes.
3635  *
3636  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3637  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3638  *      TIME-WAIT)
3639  *
3640  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3641  *      close and we go into CLOSING (and later onto TIME-WAIT)
3642  *
3643  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3644  */
3645 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3646 {
3647         struct tcp_sock *tp = tcp_sk(sk);
3648
3649         inet_csk_schedule_ack(sk);
3650
3651         sk->sk_shutdown |= RCV_SHUTDOWN;
3652         sock_set_flag(sk, SOCK_DONE);
3653
3654         switch (sk->sk_state) {
3655         case TCP_SYN_RECV:
3656         case TCP_ESTABLISHED:
3657                 /* Move to CLOSE_WAIT */
3658                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3659                 inet_csk(sk)->icsk_ack.pingpong = 1;
3660                 break;
3661
3662         case TCP_CLOSE_WAIT:
3663         case TCP_CLOSING:
3664                 /* Received a retransmission of the FIN, do
3665                  * nothing.
3666                  */
3667                 break;
3668         case TCP_LAST_ACK:
3669                 /* RFC793: Remain in the LAST-ACK state. */
3670                 break;
3671
3672         case TCP_FIN_WAIT1:
3673                 /* This case occurs when a simultaneous close
3674                  * happens, we must ack the received FIN and
3675                  * enter the CLOSING state.
3676                  */
3677                 tcp_send_ack(sk);
3678                 tcp_set_state(sk, TCP_CLOSING);
3679                 break;
3680         case TCP_FIN_WAIT2:
3681                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3682                 tcp_send_ack(sk);
3683                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3684                 break;
3685         default:
3686                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3687                  * cases we should never reach this piece of code.
3688                  */
3689                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3690                        __func__, sk->sk_state);
3691                 break;
3692         }
3693
3694         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3695          * Probably, we should reset in this case. For now drop them.
3696          */
3697         __skb_queue_purge(&tp->out_of_order_queue);
3698         if (tcp_is_sack(tp))
3699                 tcp_sack_reset(&tp->rx_opt);
3700         sk_mem_reclaim(sk);
3701
3702         if (!sock_flag(sk, SOCK_DEAD)) {
3703                 sk->sk_state_change(sk);
3704
3705                 /* Do not send POLL_HUP for half duplex close. */
3706                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3707                     sk->sk_state == TCP_CLOSE)
3708                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3709                 else
3710                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3711         }
3712 }
3713
3714 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3715                                   u32 end_seq)
3716 {
3717         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3718                 if (before(seq, sp->start_seq))
3719                         sp->start_seq = seq;
3720                 if (after(end_seq, sp->end_seq))
3721                         sp->end_seq = end_seq;
3722                 return 1;
3723         }
3724         return 0;
3725 }
3726
3727 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3728 {
3729         struct tcp_sock *tp = tcp_sk(sk);
3730
3731         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3732                 int mib_idx;
3733
3734                 if (before(seq, tp->rcv_nxt))
3735                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3736                 else
3737                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3738
3739                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3740
3741                 tp->rx_opt.dsack = 1;
3742                 tp->duplicate_sack[0].start_seq = seq;
3743                 tp->duplicate_sack[0].end_seq = end_seq;
3744                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3745         }
3746 }
3747
3748 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3749 {
3750         struct tcp_sock *tp = tcp_sk(sk);
3751
3752         if (!tp->rx_opt.dsack)
3753                 tcp_dsack_set(sk, seq, end_seq);
3754         else
3755                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3756 }
3757
3758 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3759 {
3760         struct tcp_sock *tp = tcp_sk(sk);
3761
3762         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3763             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3764                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3765                 tcp_enter_quickack_mode(sk);
3766
3767                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3768                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3769
3770                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3771                                 end_seq = tp->rcv_nxt;
3772                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3773                 }
3774         }
3775
3776         tcp_send_ack(sk);
3777 }
3778
3779 /* These routines update the SACK block as out-of-order packets arrive or
3780  * in-order packets close up the sequence space.
3781  */
3782 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3783 {
3784         int this_sack;
3785         struct tcp_sack_block *sp = &tp->selective_acks[0];
3786         struct tcp_sack_block *swalk = sp + 1;
3787
3788         /* See if the recent change to the first SACK eats into
3789          * or hits the sequence space of other SACK blocks, if so coalesce.
3790          */
3791         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3792                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3793                         int i;
3794
3795                         /* Zap SWALK, by moving every further SACK up by one slot.
3796                          * Decrease num_sacks.
3797                          */
3798                         tp->rx_opt.num_sacks--;
3799                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3800                                                tp->rx_opt.dsack;
3801                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3802                                 sp[i] = sp[i + 1];
3803                         continue;
3804                 }
3805                 this_sack++, swalk++;
3806         }
3807 }
3808
3809 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3810                                  struct tcp_sack_block *sack2)
3811 {
3812         __u32 tmp;
3813
3814         tmp = sack1->start_seq;
3815         sack1->start_seq = sack2->start_seq;
3816         sack2->start_seq = tmp;
3817
3818         tmp = sack1->end_seq;
3819         sack1->end_seq = sack2->end_seq;
3820         sack2->end_seq = tmp;
3821 }
3822
3823 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3824 {
3825         struct tcp_sock *tp = tcp_sk(sk);
3826         struct tcp_sack_block *sp = &tp->selective_acks[0];
3827         int cur_sacks = tp->rx_opt.num_sacks;
3828         int this_sack;
3829
3830         if (!cur_sacks)
3831                 goto new_sack;
3832
3833         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3834                 if (tcp_sack_extend(sp, seq, end_seq)) {
3835                         /* Rotate this_sack to the first one. */
3836                         for (; this_sack > 0; this_sack--, sp--)
3837                                 tcp_sack_swap(sp, sp - 1);
3838                         if (cur_sacks > 1)
3839                                 tcp_sack_maybe_coalesce(tp);
3840                         return;
3841                 }
3842         }
3843
3844         /* Could not find an adjacent existing SACK, build a new one,
3845          * put it at the front, and shift everyone else down.  We
3846          * always know there is at least one SACK present already here.
3847          *
3848          * If the sack array is full, forget about the last one.
3849          */
3850         if (this_sack >= TCP_NUM_SACKS) {
3851                 this_sack--;
3852                 tp->rx_opt.num_sacks--;
3853                 sp--;
3854         }
3855         for (; this_sack > 0; this_sack--, sp--)
3856                 *sp = *(sp - 1);
3857
3858 new_sack:
3859         /* Build the new head SACK, and we're done. */
3860         sp->start_seq = seq;
3861         sp->end_seq = end_seq;
3862         tp->rx_opt.num_sacks++;
3863         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3864 }
3865
3866 /* RCV.NXT advances, some SACKs should be eaten. */
3867
3868 static void tcp_sack_remove(struct tcp_sock *tp)
3869 {
3870         struct tcp_sack_block *sp = &tp->selective_acks[0];
3871         int num_sacks = tp->rx_opt.num_sacks;
3872         int this_sack;
3873
3874         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3875         if (skb_queue_empty(&tp->out_of_order_queue)) {
3876                 tp->rx_opt.num_sacks = 0;
3877                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3878                 return;
3879         }
3880
3881         for (this_sack = 0; this_sack < num_sacks;) {
3882                 /* Check if the start of the sack is covered by RCV.NXT. */
3883                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3884                         int i;
3885
3886                         /* RCV.NXT must cover all the block! */
3887                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3888
3889                         /* Zap this SACK, by moving forward any other SACKS. */
3890                         for (i=this_sack+1; i < num_sacks; i++)
3891                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3892                         num_sacks--;
3893                         continue;
3894                 }
3895                 this_sack++;
3896                 sp++;
3897         }
3898         if (num_sacks != tp->rx_opt.num_sacks) {
3899                 tp->rx_opt.num_sacks = num_sacks;
3900                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3901                                        tp->rx_opt.dsack;
3902         }
3903 }
3904
3905 /* This one checks to see if we can put data from the
3906  * out_of_order queue into the receive_queue.
3907  */
3908 static void tcp_ofo_queue(struct sock *sk)
3909 {
3910         struct tcp_sock *tp = tcp_sk(sk);
3911         __u32 dsack_high = tp->rcv_nxt;
3912         struct sk_buff *skb;
3913
3914         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3915                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3916                         break;
3917
3918                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3919                         __u32 dsack = dsack_high;
3920                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3921                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3922                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3923                 }
3924
3925                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3926                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3927                         __skb_unlink(skb, &tp->out_of_order_queue);
3928                         __kfree_skb(skb);
3929                         continue;
3930                 }
3931                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3932                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3933                            TCP_SKB_CB(skb)->end_seq);
3934
3935                 __skb_unlink(skb, &tp->out_of_order_queue);
3936                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3937                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3938                 if (tcp_hdr(skb)->fin)
3939                         tcp_fin(skb, sk, tcp_hdr(skb));
3940         }
3941 }
3942
3943 static int tcp_prune_ofo_queue(struct sock *sk);
3944 static int tcp_prune_queue(struct sock *sk);
3945
3946 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3947 {
3948         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3949             !sk_rmem_schedule(sk, size)) {
3950
3951                 if (tcp_prune_queue(sk) < 0)
3952                         return -1;
3953
3954                 if (!sk_rmem_schedule(sk, size)) {
3955                         if (!tcp_prune_ofo_queue(sk))
3956                                 return -1;
3957
3958                         if (!sk_rmem_schedule(sk, size))
3959                                 return -1;
3960                 }
3961         }
3962         return 0;
3963 }
3964
3965 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3966 {
3967         struct tcphdr *th = tcp_hdr(skb);
3968         struct tcp_sock *tp = tcp_sk(sk);
3969         int eaten = -1;
3970
3971         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3972                 goto drop;
3973
3974         __skb_pull(skb, th->doff * 4);
3975
3976         TCP_ECN_accept_cwr(tp, skb);
3977
3978         if (tp->rx_opt.dsack) {
3979                 tp->rx_opt.dsack = 0;
3980                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3981         }
3982
3983         /*  Queue data for delivery to the user.
3984          *  Packets in sequence go to the receive queue.
3985          *  Out of sequence packets to the out_of_order_queue.
3986          */
3987         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3988                 if (tcp_receive_window(tp) == 0)
3989                         goto out_of_window;
3990
3991                 /* Ok. In sequence. In window. */
3992                 if (tp->ucopy.task == current &&
3993                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3994                     sock_owned_by_user(sk) && !tp->urg_data) {
3995                         int chunk = min_t(unsigned int, skb->len,
3996                                           tp->ucopy.len);
3997
3998                         __set_current_state(TASK_RUNNING);
3999
4000                         local_bh_enable();
4001                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4002                                 tp->ucopy.len -= chunk;
4003                                 tp->copied_seq += chunk;
4004                                 eaten = (chunk == skb->len && !th->fin);
4005                                 tcp_rcv_space_adjust(sk);
4006                         }
4007                         local_bh_disable();
4008                 }
4009
4010                 if (eaten <= 0) {
4011 queue_and_out:
4012                         if (eaten < 0 &&
4013                             tcp_try_rmem_schedule(sk, skb->truesize))
4014                                 goto drop;
4015
4016                         skb_set_owner_r(skb, sk);
4017                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4018                 }
4019                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4020                 if (skb->len)
4021                         tcp_event_data_recv(sk, skb);
4022                 if (th->fin)
4023                         tcp_fin(skb, sk, th);
4024
4025                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4026                         tcp_ofo_queue(sk);
4027
4028                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4029                          * gap in queue is filled.
4030                          */
4031                         if (skb_queue_empty(&tp->out_of_order_queue))
4032                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4033                 }
4034
4035                 if (tp->rx_opt.num_sacks)
4036                         tcp_sack_remove(tp);
4037
4038                 tcp_fast_path_check(sk);
4039
4040                 if (eaten > 0)
4041                         __kfree_skb(skb);
4042                 else if (!sock_flag(sk, SOCK_DEAD))
4043                         sk->sk_data_ready(sk, 0);
4044                 return;
4045         }
4046
4047         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4048                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4049                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4050                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4051
4052 out_of_window:
4053                 tcp_enter_quickack_mode(sk);
4054                 inet_csk_schedule_ack(sk);
4055 drop:
4056                 __kfree_skb(skb);
4057                 return;
4058         }
4059
4060         /* Out of window. F.e. zero window probe. */
4061         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4062                 goto out_of_window;
4063
4064         tcp_enter_quickack_mode(sk);
4065
4066         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4067                 /* Partial packet, seq < rcv_next < end_seq */
4068                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4069                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4070                            TCP_SKB_CB(skb)->end_seq);
4071
4072                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4073
4074                 /* If window is closed, drop tail of packet. But after
4075                  * remembering D-SACK for its head made in previous line.
4076                  */
4077                 if (!tcp_receive_window(tp))
4078                         goto out_of_window;
4079                 goto queue_and_out;
4080         }
4081
4082         TCP_ECN_check_ce(tp, skb);
4083
4084         if (tcp_try_rmem_schedule(sk, skb->truesize))
4085                 goto drop;
4086
4087         /* Disable header prediction. */
4088         tp->pred_flags = 0;
4089         inet_csk_schedule_ack(sk);
4090
4091         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4092                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4093
4094         skb_set_owner_r(skb, sk);
4095
4096         if (!skb_peek(&tp->out_of_order_queue)) {
4097                 /* Initial out of order segment, build 1 SACK. */
4098                 if (tcp_is_sack(tp)) {
4099                         tp->rx_opt.num_sacks = 1;
4100                         tp->rx_opt.dsack     = 0;
4101                         tp->rx_opt.eff_sacks = 1;
4102                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4103                         tp->selective_acks[0].end_seq =
4104                                                 TCP_SKB_CB(skb)->end_seq;
4105                 }
4106                 __skb_queue_head(&tp->out_of_order_queue, skb);
4107         } else {
4108                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4109                 u32 seq = TCP_SKB_CB(skb)->seq;
4110                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4111
4112                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4113                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4114
4115                         if (!tp->rx_opt.num_sacks ||
4116                             tp->selective_acks[0].end_seq != seq)
4117                                 goto add_sack;
4118
4119                         /* Common case: data arrive in order after hole. */
4120                         tp->selective_acks[0].end_seq = end_seq;
4121                         return;
4122                 }
4123
4124                 /* Find place to insert this segment. */
4125                 do {
4126                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4127                                 break;
4128                 } while ((skb1 = skb1->prev) !=
4129                          (struct sk_buff *)&tp->out_of_order_queue);
4130
4131                 /* Do skb overlap to previous one? */
4132                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4133                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4134                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4135                                 /* All the bits are present. Drop. */
4136                                 __kfree_skb(skb);
4137                                 tcp_dsack_set(sk, seq, end_seq);
4138                                 goto add_sack;
4139                         }
4140                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4141                                 /* Partial overlap. */
4142                                 tcp_dsack_set(sk, seq,
4143                                               TCP_SKB_CB(skb1)->end_seq);
4144                         } else {
4145                                 skb1 = skb1->prev;
4146                         }
4147                 }
4148                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4149
4150                 /* And clean segments covered by new one as whole. */
4151                 while ((skb1 = skb->next) !=
4152                        (struct sk_buff *)&tp->out_of_order_queue &&
4153                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4154                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4155                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4156                                                  end_seq);
4157                                 break;
4158                         }
4159                         __skb_unlink(skb1, &tp->out_of_order_queue);
4160                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4161                                          TCP_SKB_CB(skb1)->end_seq);
4162                         __kfree_skb(skb1);
4163                 }
4164
4165 add_sack:
4166                 if (tcp_is_sack(tp))
4167                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4168         }
4169 }
4170
4171 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4172                                         struct sk_buff_head *list)
4173 {
4174         struct sk_buff *next = skb->next;
4175
4176         __skb_unlink(skb, list);
4177         __kfree_skb(skb);
4178         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4179
4180         return next;
4181 }
4182
4183 /* Collapse contiguous sequence of skbs head..tail with
4184  * sequence numbers start..end.
4185  * Segments with FIN/SYN are not collapsed (only because this
4186  * simplifies code)
4187  */
4188 static void
4189 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4190              struct sk_buff *head, struct sk_buff *tail,
4191              u32 start, u32 end)
4192 {
4193         struct sk_buff *skb;
4194
4195         /* First, check that queue is collapsible and find
4196          * the point where collapsing can be useful. */
4197         for (skb = head; skb != tail;) {
4198                 /* No new bits? It is possible on ofo queue. */
4199                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4200                         skb = tcp_collapse_one(sk, skb, list);
4201                         continue;
4202                 }
4203
4204                 /* The first skb to collapse is:
4205                  * - not SYN/FIN and
4206                  * - bloated or contains data before "start" or
4207                  *   overlaps to the next one.
4208                  */
4209                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4210                     (tcp_win_from_space(skb->truesize) > skb->len ||
4211                      before(TCP_SKB_CB(skb)->seq, start) ||
4212                      (skb->next != tail &&
4213                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4214                         break;
4215
4216                 /* Decided to skip this, advance start seq. */
4217                 start = TCP_SKB_CB(skb)->end_seq;
4218                 skb = skb->next;
4219         }
4220         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4221                 return;
4222
4223         while (before(start, end)) {
4224                 struct sk_buff *nskb;
4225                 unsigned int header = skb_headroom(skb);
4226                 int copy = SKB_MAX_ORDER(header, 0);
4227
4228                 /* Too big header? This can happen with IPv6. */
4229                 if (copy < 0)
4230                         return;
4231                 if (end - start < copy)
4232                         copy = end - start;
4233                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4234                 if (!nskb)
4235                         return;
4236
4237                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4238                 skb_set_network_header(nskb, (skb_network_header(skb) -
4239                                               skb->head));
4240                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4241                                                 skb->head));
4242                 skb_reserve(nskb, header);
4243                 memcpy(nskb->head, skb->head, header);
4244                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4245                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4246                 __skb_insert(nskb, skb->prev, skb, list);
4247                 skb_set_owner_r(nskb, sk);
4248
4249                 /* Copy data, releasing collapsed skbs. */
4250                 while (copy > 0) {
4251                         int offset = start - TCP_SKB_CB(skb)->seq;
4252                         int size = TCP_SKB_CB(skb)->end_seq - start;
4253
4254                         BUG_ON(offset < 0);
4255                         if (size > 0) {
4256                                 size = min(copy, size);
4257                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4258                                         BUG();
4259                                 TCP_SKB_CB(nskb)->end_seq += size;
4260                                 copy -= size;
4261                                 start += size;
4262                         }
4263                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4264                                 skb = tcp_collapse_one(sk, skb, list);
4265                                 if (skb == tail ||
4266                                     tcp_hdr(skb)->syn ||
4267                                     tcp_hdr(skb)->fin)
4268                                         return;
4269                         }
4270                 }
4271         }
4272 }
4273
4274 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4275  * and tcp_collapse() them until all the queue is collapsed.
4276  */
4277 static void tcp_collapse_ofo_queue(struct sock *sk)
4278 {
4279         struct tcp_sock *tp = tcp_sk(sk);
4280         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4281         struct sk_buff *head;
4282         u32 start, end;
4283
4284         if (skb == NULL)
4285                 return;
4286
4287         start = TCP_SKB_CB(skb)->seq;
4288         end = TCP_SKB_CB(skb)->end_seq;
4289         head = skb;
4290
4291         for (;;) {
4292                 skb = skb->next;
4293
4294                 /* Segment is terminated when we see gap or when
4295                  * we are at the end of all the queue. */
4296                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4297                     after(TCP_SKB_CB(skb)->seq, end) ||
4298                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4299                         tcp_collapse(sk, &tp->out_of_order_queue,
4300                                      head, skb, start, end);
4301                         head = skb;
4302                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4303                                 break;
4304                         /* Start new segment */
4305                         start = TCP_SKB_CB(skb)->seq;
4306                         end = TCP_SKB_CB(skb)->end_seq;
4307                 } else {
4308                         if (before(TCP_SKB_CB(skb)->seq, start))
4309                                 start = TCP_SKB_CB(skb)->seq;
4310                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4311                                 end = TCP_SKB_CB(skb)->end_seq;
4312                 }
4313         }
4314 }
4315
4316 /*
4317  * Purge the out-of-order queue.
4318  * Return true if queue was pruned.
4319  */
4320 static int tcp_prune_ofo_queue(struct sock *sk)
4321 {
4322         struct tcp_sock *tp = tcp_sk(sk);
4323         int res = 0;
4324
4325         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4326                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4327                 __skb_queue_purge(&tp->out_of_order_queue);
4328
4329                 /* Reset SACK state.  A conforming SACK implementation will
4330                  * do the same at a timeout based retransmit.  When a connection
4331                  * is in a sad state like this, we care only about integrity
4332                  * of the connection not performance.
4333                  */
4334                 if (tp->rx_opt.sack_ok)
4335                         tcp_sack_reset(&tp->rx_opt);
4336                 sk_mem_reclaim(sk);
4337                 res = 1;
4338         }
4339         return res;
4340 }
4341
4342 /* Reduce allocated memory if we can, trying to get
4343  * the socket within its memory limits again.
4344  *
4345  * Return less than zero if we should start dropping frames
4346  * until the socket owning process reads some of the data
4347  * to stabilize the situation.
4348  */
4349 static int tcp_prune_queue(struct sock *sk)
4350 {
4351         struct tcp_sock *tp = tcp_sk(sk);
4352
4353         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4354
4355         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4356
4357         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4358                 tcp_clamp_window(sk);
4359         else if (tcp_memory_pressure)
4360                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4361
4362         tcp_collapse_ofo_queue(sk);
4363         tcp_collapse(sk, &sk->sk_receive_queue,
4364                      sk->sk_receive_queue.next,
4365                      (struct sk_buff *)&sk->sk_receive_queue,
4366                      tp->copied_seq, tp->rcv_nxt);
4367         sk_mem_reclaim(sk);
4368
4369         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4370                 return 0;
4371
4372         /* Collapsing did not help, destructive actions follow.
4373          * This must not ever occur. */
4374
4375         tcp_prune_ofo_queue(sk);
4376
4377         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4378                 return 0;
4379
4380         /* If we are really being abused, tell the caller to silently
4381          * drop receive data on the floor.  It will get retransmitted
4382          * and hopefully then we'll have sufficient space.
4383          */
4384         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4385
4386         /* Massive buffer overcommit. */
4387         tp->pred_flags = 0;
4388         return -1;
4389 }
4390
4391 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4392  * As additional protections, we do not touch cwnd in retransmission phases,
4393  * and if application hit its sndbuf limit recently.
4394  */
4395 void tcp_cwnd_application_limited(struct sock *sk)
4396 {
4397         struct tcp_sock *tp = tcp_sk(sk);
4398
4399         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4400             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4401                 /* Limited by application or receiver window. */
4402                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4403                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4404                 if (win_used < tp->snd_cwnd) {
4405                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4406                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4407                 }
4408                 tp->snd_cwnd_used = 0;
4409         }
4410         tp->snd_cwnd_stamp = tcp_time_stamp;
4411 }
4412
4413 static int tcp_should_expand_sndbuf(struct sock *sk)
4414 {
4415         struct tcp_sock *tp = tcp_sk(sk);
4416
4417         /* If the user specified a specific send buffer setting, do
4418          * not modify it.
4419          */
4420         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4421                 return 0;
4422
4423         /* If we are under global TCP memory pressure, do not expand.  */
4424         if (tcp_memory_pressure)
4425                 return 0;
4426
4427         /* If we are under soft global TCP memory pressure, do not expand.  */
4428         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4429                 return 0;
4430
4431         /* If we filled the congestion window, do not expand.  */
4432         if (tp->packets_out >= tp->snd_cwnd)
4433                 return 0;
4434
4435         return 1;
4436 }
4437
4438 /* When incoming ACK allowed to free some skb from write_queue,
4439  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4440  * on the exit from tcp input handler.
4441  *
4442  * PROBLEM: sndbuf expansion does not work well with largesend.
4443  */
4444 static void tcp_new_space(struct sock *sk)
4445 {
4446         struct tcp_sock *tp = tcp_sk(sk);
4447
4448         if (tcp_should_expand_sndbuf(sk)) {
4449                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4450                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4451                     demanded = max_t(unsigned int, tp->snd_cwnd,
4452                                      tp->reordering + 1);
4453                 sndmem *= 2 * demanded;
4454                 if (sndmem > sk->sk_sndbuf)
4455                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4456                 tp->snd_cwnd_stamp = tcp_time_stamp;
4457         }
4458
4459         sk->sk_write_space(sk);
4460 }
4461
4462 static void tcp_check_space(struct sock *sk)
4463 {
4464         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4465                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4466                 if (sk->sk_socket &&
4467                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4468                         tcp_new_space(sk);
4469         }
4470 }
4471
4472 static inline void tcp_data_snd_check(struct sock *sk)
4473 {
4474         tcp_push_pending_frames(sk);
4475         tcp_check_space(sk);
4476 }
4477
4478 /*
4479  * Check if sending an ack is needed.
4480  */
4481 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4482 {
4483         struct tcp_sock *tp = tcp_sk(sk);
4484
4485             /* More than one full frame received... */
4486         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4487              /* ... and right edge of window advances far enough.
4488               * (tcp_recvmsg() will send ACK otherwise). Or...
4489               */
4490              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4491             /* We ACK each frame or... */
4492             tcp_in_quickack_mode(sk) ||
4493             /* We have out of order data. */
4494             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4495                 /* Then ack it now */
4496                 tcp_send_ack(sk);
4497         } else {
4498                 /* Else, send delayed ack. */
4499                 tcp_send_delayed_ack(sk);
4500         }
4501 }
4502
4503 static inline void tcp_ack_snd_check(struct sock *sk)
4504 {
4505         if (!inet_csk_ack_scheduled(sk)) {
4506                 /* We sent a data segment already. */
4507                 return;
4508         }
4509         __tcp_ack_snd_check(sk, 1);
4510 }
4511
4512 /*
4513  *      This routine is only called when we have urgent data
4514  *      signaled. Its the 'slow' part of tcp_urg. It could be
4515  *      moved inline now as tcp_urg is only called from one
4516  *      place. We handle URGent data wrong. We have to - as
4517  *      BSD still doesn't use the correction from RFC961.
4518  *      For 1003.1g we should support a new option TCP_STDURG to permit
4519  *      either form (or just set the sysctl tcp_stdurg).
4520  */
4521
4522 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4523 {
4524         struct tcp_sock *tp = tcp_sk(sk);
4525         u32 ptr = ntohs(th->urg_ptr);
4526
4527         if (ptr && !sysctl_tcp_stdurg)
4528                 ptr--;
4529         ptr += ntohl(th->seq);
4530
4531         /* Ignore urgent data that we've already seen and read. */
4532         if (after(tp->copied_seq, ptr))
4533                 return;
4534
4535         /* Do not replay urg ptr.
4536          *
4537          * NOTE: interesting situation not covered by specs.
4538          * Misbehaving sender may send urg ptr, pointing to segment,
4539          * which we already have in ofo queue. We are not able to fetch
4540          * such data and will stay in TCP_URG_NOTYET until will be eaten
4541          * by recvmsg(). Seems, we are not obliged to handle such wicked
4542          * situations. But it is worth to think about possibility of some
4543          * DoSes using some hypothetical application level deadlock.
4544          */
4545         if (before(ptr, tp->rcv_nxt))
4546                 return;
4547
4548         /* Do we already have a newer (or duplicate) urgent pointer? */
4549         if (tp->urg_data && !after(ptr, tp->urg_seq))
4550                 return;
4551
4552         /* Tell the world about our new urgent pointer. */
4553         sk_send_sigurg(sk);
4554
4555         /* We may be adding urgent data when the last byte read was
4556          * urgent. To do this requires some care. We cannot just ignore
4557          * tp->copied_seq since we would read the last urgent byte again
4558          * as data, nor can we alter copied_seq until this data arrives
4559          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4560          *
4561          * NOTE. Double Dutch. Rendering to plain English: author of comment
4562          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4563          * and expect that both A and B disappear from stream. This is _wrong_.
4564          * Though this happens in BSD with high probability, this is occasional.
4565          * Any application relying on this is buggy. Note also, that fix "works"
4566          * only in this artificial test. Insert some normal data between A and B and we will
4567          * decline of BSD again. Verdict: it is better to remove to trap
4568          * buggy users.
4569          */
4570         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4571             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4572                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4573                 tp->copied_seq++;
4574                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4575                         __skb_unlink(skb, &sk->sk_receive_queue);
4576                         __kfree_skb(skb);
4577                 }
4578         }
4579
4580         tp->urg_data = TCP_URG_NOTYET;
4581         tp->urg_seq = ptr;
4582
4583         /* Disable header prediction. */
4584         tp->pred_flags = 0;
4585 }
4586
4587 /* This is the 'fast' part of urgent handling. */
4588 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4589 {
4590         struct tcp_sock *tp = tcp_sk(sk);
4591
4592         /* Check if we get a new urgent pointer - normally not. */
4593         if (th->urg)
4594                 tcp_check_urg(sk, th);
4595
4596         /* Do we wait for any urgent data? - normally not... */
4597         if (tp->urg_data == TCP_URG_NOTYET) {
4598                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4599                           th->syn;
4600
4601                 /* Is the urgent pointer pointing into this packet? */
4602                 if (ptr < skb->len) {
4603                         u8 tmp;
4604                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4605                                 BUG();
4606                         tp->urg_data = TCP_URG_VALID | tmp;
4607                         if (!sock_flag(sk, SOCK_DEAD))
4608                                 sk->sk_data_ready(sk, 0);
4609                 }
4610         }
4611 }
4612
4613 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4614 {
4615         struct tcp_sock *tp = tcp_sk(sk);
4616         int chunk = skb->len - hlen;
4617         int err;
4618
4619         local_bh_enable();
4620         if (skb_csum_unnecessary(skb))
4621                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4622         else
4623                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4624                                                        tp->ucopy.iov);
4625
4626         if (!err) {
4627                 tp->ucopy.len -= chunk;
4628                 tp->copied_seq += chunk;
4629                 tcp_rcv_space_adjust(sk);
4630         }
4631
4632         local_bh_disable();
4633         return err;
4634 }
4635
4636 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4637                                             struct sk_buff *skb)
4638 {
4639         __sum16 result;
4640
4641         if (sock_owned_by_user(sk)) {
4642                 local_bh_enable();
4643                 result = __tcp_checksum_complete(skb);
4644                 local_bh_disable();
4645         } else {
4646                 result = __tcp_checksum_complete(skb);
4647         }
4648         return result;
4649 }
4650
4651 static inline int tcp_checksum_complete_user(struct sock *sk,
4652                                              struct sk_buff *skb)
4653 {
4654         return !skb_csum_unnecessary(skb) &&
4655                __tcp_checksum_complete_user(sk, skb);
4656 }
4657
4658 #ifdef CONFIG_NET_DMA
4659 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4660                                   int hlen)
4661 {
4662         struct tcp_sock *tp = tcp_sk(sk);
4663         int chunk = skb->len - hlen;
4664         int dma_cookie;
4665         int copied_early = 0;
4666
4667         if (tp->ucopy.wakeup)
4668                 return 0;
4669
4670         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4671                 tp->ucopy.dma_chan = get_softnet_dma();
4672
4673         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4674
4675                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4676                                                          skb, hlen,
4677                                                          tp->ucopy.iov, chunk,
4678                                                          tp->ucopy.pinned_list);
4679
4680                 if (dma_cookie < 0)
4681                         goto out;
4682
4683                 tp->ucopy.dma_cookie = dma_cookie;
4684                 copied_early = 1;
4685
4686                 tp->ucopy.len -= chunk;
4687                 tp->copied_seq += chunk;
4688                 tcp_rcv_space_adjust(sk);
4689
4690                 if ((tp->ucopy.len == 0) ||
4691                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4692                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4693                         tp->ucopy.wakeup = 1;
4694                         sk->sk_data_ready(sk, 0);
4695                 }
4696         } else if (chunk > 0) {
4697                 tp->ucopy.wakeup = 1;
4698                 sk->sk_data_ready(sk, 0);
4699         }
4700 out:
4701         return copied_early;
4702 }
4703 #endif /* CONFIG_NET_DMA */
4704
4705 /* Does PAWS and seqno based validation of an incoming segment, flags will
4706  * play significant role here.
4707  */
4708 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4709                               struct tcphdr *th, int syn_inerr)
4710 {
4711         struct tcp_sock *tp = tcp_sk(sk);
4712
4713         /* RFC1323: H1. Apply PAWS check first. */
4714         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4715             tcp_paws_discard(sk, skb)) {
4716                 if (!th->rst) {
4717                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4718                         tcp_send_dupack(sk, skb);
4719                         goto discard;
4720                 }
4721                 /* Reset is accepted even if it did not pass PAWS. */
4722         }
4723
4724         /* Step 1: check sequence number */
4725         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4726                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4727                  * (RST) segments are validated by checking their SEQ-fields."
4728                  * And page 69: "If an incoming segment is not acceptable,
4729                  * an acknowledgment should be sent in reply (unless the RST
4730                  * bit is set, if so drop the segment and return)".
4731                  */
4732                 if (!th->rst)
4733                         tcp_send_dupack(sk, skb);
4734                 goto discard;
4735         }
4736
4737         /* Step 2: check RST bit */
4738         if (th->rst) {
4739                 tcp_reset(sk);
4740                 goto discard;
4741         }
4742
4743         /* ts_recent update must be made after we are sure that the packet
4744          * is in window.
4745          */
4746         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4747
4748         /* step 3: check security and precedence [ignored] */
4749
4750         /* step 4: Check for a SYN in window. */
4751         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4752                 if (syn_inerr)
4753                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4754                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4755                 tcp_reset(sk);
4756                 return -1;
4757         }
4758
4759         return 1;
4760
4761 discard:
4762         __kfree_skb(skb);
4763         return 0;
4764 }
4765
4766 /*
4767  *      TCP receive function for the ESTABLISHED state.
4768  *
4769  *      It is split into a fast path and a slow path. The fast path is
4770  *      disabled when:
4771  *      - A zero window was announced from us - zero window probing
4772  *        is only handled properly in the slow path.
4773  *      - Out of order segments arrived.
4774  *      - Urgent data is expected.
4775  *      - There is no buffer space left
4776  *      - Unexpected TCP flags/window values/header lengths are received
4777  *        (detected by checking the TCP header against pred_flags)
4778  *      - Data is sent in both directions. Fast path only supports pure senders
4779  *        or pure receivers (this means either the sequence number or the ack
4780  *        value must stay constant)
4781  *      - Unexpected TCP option.
4782  *
4783  *      When these conditions are not satisfied it drops into a standard
4784  *      receive procedure patterned after RFC793 to handle all cases.
4785  *      The first three cases are guaranteed by proper pred_flags setting,
4786  *      the rest is checked inline. Fast processing is turned on in
4787  *      tcp_data_queue when everything is OK.
4788  */
4789 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4790                         struct tcphdr *th, unsigned len)
4791 {
4792         struct tcp_sock *tp = tcp_sk(sk);
4793         int res;
4794
4795         /*
4796          *      Header prediction.
4797          *      The code loosely follows the one in the famous
4798          *      "30 instruction TCP receive" Van Jacobson mail.
4799          *
4800          *      Van's trick is to deposit buffers into socket queue
4801          *      on a device interrupt, to call tcp_recv function
4802          *      on the receive process context and checksum and copy
4803          *      the buffer to user space. smart...
4804          *
4805          *      Our current scheme is not silly either but we take the
4806          *      extra cost of the net_bh soft interrupt processing...
4807          *      We do checksum and copy also but from device to kernel.
4808          */
4809
4810         tp->rx_opt.saw_tstamp = 0;
4811
4812         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4813          *      if header_prediction is to be made
4814          *      'S' will always be tp->tcp_header_len >> 2
4815          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4816          *  turn it off (when there are holes in the receive
4817          *       space for instance)
4818          *      PSH flag is ignored.
4819          */
4820
4821         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4822             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4823                 int tcp_header_len = tp->tcp_header_len;
4824
4825                 /* Timestamp header prediction: tcp_header_len
4826                  * is automatically equal to th->doff*4 due to pred_flags
4827                  * match.
4828                  */
4829
4830                 /* Check timestamp */
4831                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4832                         /* No? Slow path! */
4833                         if (!tcp_parse_aligned_timestamp(tp, th))
4834                                 goto slow_path;
4835
4836                         /* If PAWS failed, check it more carefully in slow path */
4837                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4838                                 goto slow_path;
4839
4840                         /* DO NOT update ts_recent here, if checksum fails
4841                          * and timestamp was corrupted part, it will result
4842                          * in a hung connection since we will drop all
4843                          * future packets due to the PAWS test.
4844                          */
4845                 }
4846
4847                 if (len <= tcp_header_len) {
4848                         /* Bulk data transfer: sender */
4849                         if (len == tcp_header_len) {
4850                                 /* Predicted packet is in window by definition.
4851                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4852                                  * Hence, check seq<=rcv_wup reduces to:
4853                                  */
4854                                 if (tcp_header_len ==
4855                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4856                                     tp->rcv_nxt == tp->rcv_wup)
4857                                         tcp_store_ts_recent(tp);
4858
4859                                 /* We know that such packets are checksummed
4860                                  * on entry.
4861                                  */
4862                                 tcp_ack(sk, skb, 0);
4863                                 __kfree_skb(skb);
4864                                 tcp_data_snd_check(sk);
4865                                 return 0;
4866                         } else { /* Header too small */
4867                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4868                                 goto discard;
4869                         }
4870                 } else {
4871                         int eaten = 0;
4872                         int copied_early = 0;
4873
4874                         if (tp->copied_seq == tp->rcv_nxt &&
4875                             len - tcp_header_len <= tp->ucopy.len) {
4876 #ifdef CONFIG_NET_DMA
4877                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4878                                         copied_early = 1;
4879                                         eaten = 1;
4880                                 }
4881 #endif
4882                                 if (tp->ucopy.task == current &&
4883                                     sock_owned_by_user(sk) && !copied_early) {
4884                                         __set_current_state(TASK_RUNNING);
4885
4886                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4887                                                 eaten = 1;
4888                                 }
4889                                 if (eaten) {
4890                                         /* Predicted packet is in window by definition.
4891                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4892                                          * Hence, check seq<=rcv_wup reduces to:
4893                                          */
4894                                         if (tcp_header_len ==
4895                                             (sizeof(struct tcphdr) +
4896                                              TCPOLEN_TSTAMP_ALIGNED) &&
4897                                             tp->rcv_nxt == tp->rcv_wup)
4898                                                 tcp_store_ts_recent(tp);
4899
4900                                         tcp_rcv_rtt_measure_ts(sk, skb);
4901
4902                                         __skb_pull(skb, tcp_header_len);
4903                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4904                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4905                                 }
4906                                 if (copied_early)
4907                                         tcp_cleanup_rbuf(sk, skb->len);
4908                         }
4909                         if (!eaten) {
4910                                 if (tcp_checksum_complete_user(sk, skb))
4911                                         goto csum_error;
4912
4913                                 /* Predicted packet is in window by definition.
4914                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4915                                  * Hence, check seq<=rcv_wup reduces to:
4916                                  */
4917                                 if (tcp_header_len ==
4918                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4919                                     tp->rcv_nxt == tp->rcv_wup)
4920                                         tcp_store_ts_recent(tp);
4921
4922                                 tcp_rcv_rtt_measure_ts(sk, skb);
4923
4924                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4925                                         goto step5;
4926
4927                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4928
4929                                 /* Bulk data transfer: receiver */
4930                                 __skb_pull(skb, tcp_header_len);
4931                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4932                                 skb_set_owner_r(skb, sk);
4933                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4934                         }
4935
4936                         tcp_event_data_recv(sk, skb);
4937
4938                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4939                                 /* Well, only one small jumplet in fast path... */
4940                                 tcp_ack(sk, skb, FLAG_DATA);
4941                                 tcp_data_snd_check(sk);
4942                                 if (!inet_csk_ack_scheduled(sk))
4943                                         goto no_ack;
4944                         }
4945
4946                         __tcp_ack_snd_check(sk, 0);
4947 no_ack:
4948 #ifdef CONFIG_NET_DMA
4949                         if (copied_early)
4950                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4951                         else
4952 #endif
4953                         if (eaten)
4954                                 __kfree_skb(skb);
4955                         else
4956                                 sk->sk_data_ready(sk, 0);
4957                         return 0;
4958                 }
4959         }
4960
4961 slow_path:
4962         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4963                 goto csum_error;
4964
4965         /*
4966          *      Standard slow path.
4967          */
4968
4969         res = tcp_validate_incoming(sk, skb, th, 1);
4970         if (res <= 0)
4971                 return -res;
4972
4973 step5:
4974         if (th->ack)
4975                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4976
4977         tcp_rcv_rtt_measure_ts(sk, skb);
4978
4979         /* Process urgent data. */
4980         tcp_urg(sk, skb, th);
4981
4982         /* step 7: process the segment text */
4983         tcp_data_queue(sk, skb);
4984
4985         tcp_data_snd_check(sk);
4986         tcp_ack_snd_check(sk);
4987         return 0;
4988
4989 csum_error:
4990         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4991
4992 discard:
4993         __kfree_skb(skb);
4994         return 0;
4995 }
4996
4997 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4998                                          struct tcphdr *th, unsigned len)
4999 {
5000         struct tcp_sock *tp = tcp_sk(sk);
5001         struct inet_connection_sock *icsk = inet_csk(sk);
5002         int saved_clamp = tp->rx_opt.mss_clamp;
5003
5004         tcp_parse_options(skb, &tp->rx_opt, 0);
5005
5006         if (th->ack) {
5007                 /* rfc793:
5008                  * "If the state is SYN-SENT then
5009                  *    first check the ACK bit
5010                  *      If the ACK bit is set
5011                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5012                  *        a reset (unless the RST bit is set, if so drop
5013                  *        the segment and return)"
5014                  *
5015                  *  We do not send data with SYN, so that RFC-correct
5016                  *  test reduces to:
5017                  */
5018                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5019                         goto reset_and_undo;
5020
5021                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5022                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5023                              tcp_time_stamp)) {
5024                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5025                         goto reset_and_undo;
5026                 }
5027
5028                 /* Now ACK is acceptable.
5029                  *
5030                  * "If the RST bit is set
5031                  *    If the ACK was acceptable then signal the user "error:
5032                  *    connection reset", drop the segment, enter CLOSED state,
5033                  *    delete TCB, and return."
5034                  */
5035
5036                 if (th->rst) {
5037                         tcp_reset(sk);
5038                         goto discard;
5039                 }
5040
5041                 /* rfc793:
5042                  *   "fifth, if neither of the SYN or RST bits is set then
5043                  *    drop the segment and return."
5044                  *
5045                  *    See note below!
5046                  *                                        --ANK(990513)
5047                  */
5048                 if (!th->syn)
5049                         goto discard_and_undo;
5050
5051                 /* rfc793:
5052                  *   "If the SYN bit is on ...
5053                  *    are acceptable then ...
5054                  *    (our SYN has been ACKed), change the connection
5055                  *    state to ESTABLISHED..."
5056                  */
5057
5058                 TCP_ECN_rcv_synack(tp, th);
5059
5060                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5061                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5062
5063                 /* Ok.. it's good. Set up sequence numbers and
5064                  * move to established.
5065                  */
5066                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5067                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5068
5069                 /* RFC1323: The window in SYN & SYN/ACK segments is
5070                  * never scaled.
5071                  */
5072                 tp->snd_wnd = ntohs(th->window);
5073                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5074
5075                 if (!tp->rx_opt.wscale_ok) {
5076                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5077                         tp->window_clamp = min(tp->window_clamp, 65535U);
5078                 }
5079
5080                 if (tp->rx_opt.saw_tstamp) {
5081                         tp->rx_opt.tstamp_ok       = 1;
5082                         tp->tcp_header_len =
5083                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5084                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5085                         tcp_store_ts_recent(tp);
5086                 } else {
5087                         tp->tcp_header_len = sizeof(struct tcphdr);
5088                 }
5089
5090                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5091                         tcp_enable_fack(tp);
5092
5093                 tcp_mtup_init(sk);
5094                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5095                 tcp_initialize_rcv_mss(sk);
5096
5097                 /* Remember, tcp_poll() does not lock socket!
5098                  * Change state from SYN-SENT only after copied_seq
5099                  * is initialized. */
5100                 tp->copied_seq = tp->rcv_nxt;
5101                 smp_mb();
5102                 tcp_set_state(sk, TCP_ESTABLISHED);
5103
5104                 security_inet_conn_established(sk, skb);
5105
5106                 /* Make sure socket is routed, for correct metrics.  */
5107                 icsk->icsk_af_ops->rebuild_header(sk);
5108
5109                 tcp_init_metrics(sk);
5110
5111                 tcp_init_congestion_control(sk);
5112
5113                 /* Prevent spurious tcp_cwnd_restart() on first data
5114                  * packet.
5115                  */
5116                 tp->lsndtime = tcp_time_stamp;
5117
5118                 tcp_init_buffer_space(sk);
5119
5120                 if (sock_flag(sk, SOCK_KEEPOPEN))
5121                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5122
5123                 if (!tp->rx_opt.snd_wscale)
5124                         __tcp_fast_path_on(tp, tp->snd_wnd);
5125                 else
5126                         tp->pred_flags = 0;
5127
5128                 if (!sock_flag(sk, SOCK_DEAD)) {
5129                         sk->sk_state_change(sk);
5130                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5131                 }
5132
5133                 if (sk->sk_write_pending ||
5134                     icsk->icsk_accept_queue.rskq_defer_accept ||
5135                     icsk->icsk_ack.pingpong) {
5136                         /* Save one ACK. Data will be ready after
5137                          * several ticks, if write_pending is set.
5138                          *
5139                          * It may be deleted, but with this feature tcpdumps
5140                          * look so _wonderfully_ clever, that I was not able
5141                          * to stand against the temptation 8)     --ANK
5142                          */
5143                         inet_csk_schedule_ack(sk);
5144                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5145                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5146                         tcp_incr_quickack(sk);
5147                         tcp_enter_quickack_mode(sk);
5148                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5149                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5150
5151 discard:
5152                         __kfree_skb(skb);
5153                         return 0;
5154                 } else {
5155                         tcp_send_ack(sk);
5156                 }
5157                 return -1;
5158         }
5159
5160         /* No ACK in the segment */
5161
5162         if (th->rst) {
5163                 /* rfc793:
5164                  * "If the RST bit is set
5165                  *
5166                  *      Otherwise (no ACK) drop the segment and return."
5167                  */
5168
5169                 goto discard_and_undo;
5170         }
5171
5172         /* PAWS check. */
5173         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5174             tcp_paws_check(&tp->rx_opt, 0))
5175                 goto discard_and_undo;
5176
5177         if (th->syn) {
5178                 /* We see SYN without ACK. It is attempt of
5179                  * simultaneous connect with crossed SYNs.
5180                  * Particularly, it can be connect to self.
5181                  */
5182                 tcp_set_state(sk, TCP_SYN_RECV);
5183
5184                 if (tp->rx_opt.saw_tstamp) {
5185                         tp->rx_opt.tstamp_ok = 1;
5186                         tcp_store_ts_recent(tp);
5187                         tp->tcp_header_len =
5188                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5189                 } else {
5190                         tp->tcp_header_len = sizeof(struct tcphdr);
5191                 }
5192
5193                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5194                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5195
5196                 /* RFC1323: The window in SYN & SYN/ACK segments is
5197                  * never scaled.
5198                  */
5199                 tp->snd_wnd    = ntohs(th->window);
5200                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5201                 tp->max_window = tp->snd_wnd;
5202
5203                 TCP_ECN_rcv_syn(tp, th);
5204
5205                 tcp_mtup_init(sk);
5206                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5207                 tcp_initialize_rcv_mss(sk);
5208
5209                 tcp_send_synack(sk);
5210 #if 0
5211                 /* Note, we could accept data and URG from this segment.
5212                  * There are no obstacles to make this.
5213                  *
5214                  * However, if we ignore data in ACKless segments sometimes,
5215                  * we have no reasons to accept it sometimes.
5216                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5217                  * is not flawless. So, discard packet for sanity.
5218                  * Uncomment this return to process the data.
5219                  */
5220                 return -1;
5221 #else
5222                 goto discard;
5223 #endif
5224         }
5225         /* "fifth, if neither of the SYN or RST bits is set then
5226          * drop the segment and return."
5227          */
5228
5229 discard_and_undo:
5230         tcp_clear_options(&tp->rx_opt);
5231         tp->rx_opt.mss_clamp = saved_clamp;
5232         goto discard;
5233
5234 reset_and_undo:
5235         tcp_clear_options(&tp->rx_opt);
5236         tp->rx_opt.mss_clamp = saved_clamp;
5237         return 1;
5238 }
5239
5240 /*
5241  *      This function implements the receiving procedure of RFC 793 for
5242  *      all states except ESTABLISHED and TIME_WAIT.
5243  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5244  *      address independent.
5245  */
5246
5247 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5248                           struct tcphdr *th, unsigned len)
5249 {
5250         struct tcp_sock *tp = tcp_sk(sk);
5251         struct inet_connection_sock *icsk = inet_csk(sk);
5252         int queued = 0;
5253         int res;
5254
5255         tp->rx_opt.saw_tstamp = 0;
5256
5257         switch (sk->sk_state) {
5258         case TCP_CLOSE:
5259                 goto discard;
5260
5261         case TCP_LISTEN:
5262                 if (th->ack)
5263                         return 1;
5264
5265                 if (th->rst)
5266                         goto discard;
5267
5268                 if (th->syn) {
5269                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5270                                 return 1;
5271
5272                         /* Now we have several options: In theory there is
5273                          * nothing else in the frame. KA9Q has an option to
5274                          * send data with the syn, BSD accepts data with the
5275                          * syn up to the [to be] advertised window and
5276                          * Solaris 2.1 gives you a protocol error. For now
5277                          * we just ignore it, that fits the spec precisely
5278                          * and avoids incompatibilities. It would be nice in
5279                          * future to drop through and process the data.
5280                          *
5281                          * Now that TTCP is starting to be used we ought to
5282                          * queue this data.
5283                          * But, this leaves one open to an easy denial of
5284                          * service attack, and SYN cookies can't defend
5285                          * against this problem. So, we drop the data
5286                          * in the interest of security over speed unless
5287                          * it's still in use.
5288                          */
5289                         kfree_skb(skb);
5290                         return 0;
5291                 }
5292                 goto discard;
5293
5294         case TCP_SYN_SENT:
5295                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5296                 if (queued >= 0)
5297                         return queued;
5298
5299                 /* Do step6 onward by hand. */
5300                 tcp_urg(sk, skb, th);
5301                 __kfree_skb(skb);
5302                 tcp_data_snd_check(sk);
5303                 return 0;
5304         }
5305
5306         res = tcp_validate_incoming(sk, skb, th, 0);
5307         if (res <= 0)
5308                 return -res;
5309
5310         /* step 5: check the ACK field */
5311         if (th->ack) {
5312                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5313
5314                 switch (sk->sk_state) {
5315                 case TCP_SYN_RECV:
5316                         if (acceptable) {
5317                                 tp->copied_seq = tp->rcv_nxt;
5318                                 smp_mb();
5319                                 tcp_set_state(sk, TCP_ESTABLISHED);
5320                                 sk->sk_state_change(sk);
5321
5322                                 /* Note, that this wakeup is only for marginal
5323                                  * crossed SYN case. Passively open sockets
5324                                  * are not waked up, because sk->sk_sleep ==
5325                                  * NULL and sk->sk_socket == NULL.
5326                                  */
5327                                 if (sk->sk_socket)
5328                                         sk_wake_async(sk,
5329                                                       SOCK_WAKE_IO, POLL_OUT);
5330
5331                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5332                                 tp->snd_wnd = ntohs(th->window) <<
5333                                               tp->rx_opt.snd_wscale;
5334                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5335                                             TCP_SKB_CB(skb)->seq);
5336
5337                                 /* tcp_ack considers this ACK as duplicate
5338                                  * and does not calculate rtt.
5339                                  * Fix it at least with timestamps.
5340                                  */
5341                                 if (tp->rx_opt.saw_tstamp &&
5342                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5343                                         tcp_ack_saw_tstamp(sk, 0);
5344
5345                                 if (tp->rx_opt.tstamp_ok)
5346                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5347
5348                                 /* Make sure socket is routed, for
5349                                  * correct metrics.
5350                                  */
5351                                 icsk->icsk_af_ops->rebuild_header(sk);
5352
5353                                 tcp_init_metrics(sk);
5354
5355                                 tcp_init_congestion_control(sk);
5356
5357                                 /* Prevent spurious tcp_cwnd_restart() on
5358                                  * first data packet.
5359                                  */
5360                                 tp->lsndtime = tcp_time_stamp;
5361
5362                                 tcp_mtup_init(sk);
5363                                 tcp_initialize_rcv_mss(sk);
5364                                 tcp_init_buffer_space(sk);
5365                                 tcp_fast_path_on(tp);
5366                         } else {
5367                                 return 1;
5368                         }
5369                         break;
5370
5371                 case TCP_FIN_WAIT1:
5372                         if (tp->snd_una == tp->write_seq) {
5373                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5374                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5375                                 dst_confirm(sk->sk_dst_cache);
5376
5377                                 if (!sock_flag(sk, SOCK_DEAD))
5378                                         /* Wake up lingering close() */
5379                                         sk->sk_state_change(sk);
5380                                 else {
5381                                         int tmo;
5382
5383                                         if (tp->linger2 < 0 ||
5384                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5385                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5386                                                 tcp_done(sk);
5387                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5388                                                 return 1;
5389                                         }
5390
5391                                         tmo = tcp_fin_time(sk);
5392                                         if (tmo > TCP_TIMEWAIT_LEN) {
5393                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5394                                         } else if (th->fin || sock_owned_by_user(sk)) {
5395                                                 /* Bad case. We could lose such FIN otherwise.
5396                                                  * It is not a big problem, but it looks confusing
5397                                                  * and not so rare event. We still can lose it now,
5398                                                  * if it spins in bh_lock_sock(), but it is really
5399                                                  * marginal case.
5400                                                  */
5401                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5402                                         } else {
5403                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5404                                                 goto discard;
5405                                         }
5406                                 }
5407                         }
5408                         break;
5409
5410                 case TCP_CLOSING:
5411                         if (tp->snd_una == tp->write_seq) {
5412                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5413                                 goto discard;
5414                         }
5415                         break;
5416
5417                 case TCP_LAST_ACK:
5418                         if (tp->snd_una == tp->write_seq) {
5419                                 tcp_update_metrics(sk);
5420                                 tcp_done(sk);
5421                                 goto discard;
5422                         }
5423                         break;
5424                 }
5425         } else
5426                 goto discard;
5427
5428         /* step 6: check the URG bit */
5429         tcp_urg(sk, skb, th);
5430
5431         /* step 7: process the segment text */
5432         switch (sk->sk_state) {
5433         case TCP_CLOSE_WAIT:
5434         case TCP_CLOSING:
5435         case TCP_LAST_ACK:
5436                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5437                         break;
5438         case TCP_FIN_WAIT1:
5439         case TCP_FIN_WAIT2:
5440                 /* RFC 793 says to queue data in these states,
5441                  * RFC 1122 says we MUST send a reset.
5442                  * BSD 4.4 also does reset.
5443                  */
5444                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5445                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5446                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5447                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5448                                 tcp_reset(sk);
5449                                 return 1;
5450                         }
5451                 }
5452                 /* Fall through */
5453         case TCP_ESTABLISHED:
5454                 tcp_data_queue(sk, skb);
5455                 queued = 1;
5456                 break;
5457         }
5458
5459         /* tcp_data could move socket to TIME-WAIT */
5460         if (sk->sk_state != TCP_CLOSE) {
5461                 tcp_data_snd_check(sk);
5462                 tcp_ack_snd_check(sk);
5463         }
5464
5465         if (!queued) {
5466 discard:
5467                 __kfree_skb(skb);
5468         }
5469         return 0;
5470 }
5471
5472 EXPORT_SYMBOL(sysctl_tcp_ecn);
5473 EXPORT_SYMBOL(sysctl_tcp_reordering);
5474 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5475 EXPORT_SYMBOL(tcp_parse_options);
5476 #ifdef CONFIG_TCP_MD5SIG
5477 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5478 #endif
5479 EXPORT_SYMBOL(tcp_rcv_established);
5480 EXPORT_SYMBOL(tcp_rcv_state_process);
5481 EXPORT_SYMBOL(tcp_initialize_rcv_mss);