tcp: introduce struct tcp_sacktag_state to reduce arg pressure
[safe/jmp/linux-2.6] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006                                             struct sk_buff *skb)
1007 {
1008         tcp_verify_retransmit_hint(tp, skb);
1009
1010         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight        Description
1024  * 0    1               - orig segment is in flight.
1025  * S    0               - nothing flies, orig reached receiver.
1026  * L    0               - nothing flies, orig lost by net.
1027  * R    2               - both orig and retransmit are in flight.
1028  * L|R  1               - orig is lost, retransmit is in flight.
1029  * S|R  1               - orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of one of three flavors:
1038  *      A. Scoreboard estimator decided the packet is lost.
1039  *         A'. Reno "three dupacks" marks head of queue lost.
1040  *         A''. Its FACK modfication, head until snd.fack is lost.
1041  *      B. SACK arrives sacking data transmitted after never retransmitted
1042  *         hole was sent out.
1043  *      C. SACK arrives sacking SND.NXT at the moment, when the
1044  *         segment was retransmitted.
1045  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046  *
1047  * It is pleasant to note, that state diagram turns out to be commutative,
1048  * so that we are allowed not to be bothered by order of our actions,
1049  * when multiple events arrive simultaneously. (see the function below).
1050  *
1051  * Reordering detection.
1052  * --------------------
1053  * Reordering metric is maximal distance, which a packet can be displaced
1054  * in packet stream. With SACKs we can estimate it:
1055  *
1056  * 1. SACK fills old hole and the corresponding segment was not
1057  *    ever retransmitted -> reordering. Alas, we cannot use it
1058  *    when segment was retransmitted.
1059  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060  *    for retransmitted and already SACKed segment -> reordering..
1061  * Both of these heuristics are not used in Loss state, when we cannot
1062  * account for retransmits accurately.
1063  *
1064  * SACK block validation.
1065  * ----------------------
1066  *
1067  * SACK block range validation checks that the received SACK block fits to
1068  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069  * Note that SND.UNA is not included to the range though being valid because
1070  * it means that the receiver is rather inconsistent with itself reporting
1071  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072  * perfectly valid, however, in light of RFC2018 which explicitly states
1073  * that "SACK block MUST reflect the newest segment.  Even if the newest
1074  * segment is going to be discarded ...", not that it looks very clever
1075  * in case of head skb. Due to potentional receiver driven attacks, we
1076  * choose to avoid immediate execution of a walk in write queue due to
1077  * reneging and defer head skb's loss recovery to standard loss recovery
1078  * procedure that will eventually trigger (nothing forbids us doing this).
1079  *
1080  * Implements also blockage to start_seq wrap-around. Problem lies in the
1081  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082  * there's no guarantee that it will be before snd_nxt (n). The problem
1083  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084  * wrap (s_w):
1085  *
1086  *         <- outs wnd ->                          <- wrapzone ->
1087  *         u     e      n                         u_w   e_w  s n_w
1088  *         |     |      |                          |     |   |  |
1089  * |<------------+------+----- TCP seqno space --------------+---------->|
1090  * ...-- <2^31 ->|                                           |<--------...
1091  * ...---- >2^31 ------>|                                    |<--------...
1092  *
1093  * Current code wouldn't be vulnerable but it's better still to discard such
1094  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097  * equal to the ideal case (infinite seqno space without wrap caused issues).
1098  *
1099  * With D-SACK the lower bound is extended to cover sequence space below
1100  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101  * again, D-SACK block must not to go across snd_una (for the same reason as
1102  * for the normal SACK blocks, explained above). But there all simplicity
1103  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104  * fully below undo_marker they do not affect behavior in anyway and can
1105  * therefore be safely ignored. In rare cases (which are more or less
1106  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107  * fragmentation and packet reordering past skb's retransmission. To consider
1108  * them correctly, the acceptable range must be extended even more though
1109  * the exact amount is rather hard to quantify. However, tp->max_window can
1110  * be used as an exaggerated estimate.
1111  */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113                                   u32 start_seq, u32 end_seq)
1114 {
1115         /* Too far in future, or reversed (interpretation is ambiguous) */
1116         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117                 return 0;
1118
1119         /* Nasty start_seq wrap-around check (see comments above) */
1120         if (!before(start_seq, tp->snd_nxt))
1121                 return 0;
1122
1123         /* In outstanding window? ...This is valid exit for D-SACKs too.
1124          * start_seq == snd_una is non-sensical (see comments above)
1125          */
1126         if (after(start_seq, tp->snd_una))
1127                 return 1;
1128
1129         if (!is_dsack || !tp->undo_marker)
1130                 return 0;
1131
1132         /* ...Then it's D-SACK, and must reside below snd_una completely */
1133         if (!after(end_seq, tp->snd_una))
1134                 return 0;
1135
1136         if (!before(start_seq, tp->undo_marker))
1137                 return 1;
1138
1139         /* Too old */
1140         if (!after(end_seq, tp->undo_marker))
1141                 return 0;
1142
1143         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144          *   start_seq < undo_marker and end_seq >= undo_marker.
1145          */
1146         return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150  * Event "C". Later note: FACK people cheated me again 8), we have to account
1151  * for reordering! Ugly, but should help.
1152  *
1153  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154  * less than what is now known to be received by the other end (derived from
1155  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156  * retransmitted skbs to avoid some costly processing per ACKs.
1157  */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160         const struct inet_connection_sock *icsk = inet_csk(sk);
1161         struct tcp_sock *tp = tcp_sk(sk);
1162         struct sk_buff *skb;
1163         int cnt = 0;
1164         u32 new_low_seq = tp->snd_nxt;
1165         u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168             !after(received_upto, tp->lost_retrans_low) ||
1169             icsk->icsk_ca_state != TCP_CA_Recovery)
1170                 return;
1171
1172         tcp_for_write_queue(skb, sk) {
1173                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175                 if (skb == tcp_send_head(sk))
1176                         break;
1177                 if (cnt == tp->retrans_out)
1178                         break;
1179                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180                         continue;
1181
1182                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183                         continue;
1184
1185                 if (after(received_upto, ack_seq) &&
1186                     (tcp_is_fack(tp) ||
1187                      !before(received_upto,
1188                              ack_seq + tp->reordering * tp->mss_cache))) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 struct tcp_sacktag_state {
1241         int reord;
1242         int fack_count;
1243         int flag;
1244 };
1245
1246 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1247  * the incoming SACK may not exactly match but we can find smaller MSS
1248  * aligned portion of it that matches. Therefore we might need to fragment
1249  * which may fail and creates some hassle (caller must handle error case
1250  * returns).
1251  *
1252  * FIXME: this could be merged to shift decision code
1253  */
1254 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1255                                  u32 start_seq, u32 end_seq)
1256 {
1257         int in_sack, err;
1258         unsigned int pkt_len;
1259         unsigned int mss;
1260
1261         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1262                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1263
1264         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1265             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1266                 mss = tcp_skb_mss(skb);
1267                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1268
1269                 if (!in_sack) {
1270                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1271                         if (pkt_len < mss)
1272                                 pkt_len = mss;
1273                 } else {
1274                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1275                         if (pkt_len < mss)
1276                                 return -EINVAL;
1277                 }
1278
1279                 /* Round if necessary so that SACKs cover only full MSSes
1280                  * and/or the remaining small portion (if present)
1281                  */
1282                 if (pkt_len > mss) {
1283                         unsigned int new_len = (pkt_len / mss) * mss;
1284                         if (!in_sack && new_len < pkt_len) {
1285                                 new_len += mss;
1286                                 if (new_len > skb->len)
1287                                         return 0;
1288                         }
1289                         pkt_len = new_len;
1290                 }
1291                 err = tcp_fragment(sk, skb, pkt_len, mss);
1292                 if (err < 0)
1293                         return err;
1294         }
1295
1296         return in_sack;
1297 }
1298
1299 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1300                           struct tcp_sacktag_state *state,
1301                           int dup_sack, int pcount)
1302 {
1303         struct tcp_sock *tp = tcp_sk(sk);
1304         u8 sacked = TCP_SKB_CB(skb)->sacked;
1305         int fack_count = state->fack_count;
1306
1307         /* Account D-SACK for retransmitted packet. */
1308         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1309                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1310                         tp->undo_retrans--;
1311                 if (sacked & TCPCB_SACKED_ACKED)
1312                         state->reord = min(fack_count, state->reord);
1313         }
1314
1315         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1316         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1317                 return sacked;
1318
1319         if (!(sacked & TCPCB_SACKED_ACKED)) {
1320                 if (sacked & TCPCB_SACKED_RETRANS) {
1321                         /* If the segment is not tagged as lost,
1322                          * we do not clear RETRANS, believing
1323                          * that retransmission is still in flight.
1324                          */
1325                         if (sacked & TCPCB_LOST) {
1326                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1327                                 tp->lost_out -= pcount;
1328                                 tp->retrans_out -= pcount;
1329                         }
1330                 } else {
1331                         if (!(sacked & TCPCB_RETRANS)) {
1332                                 /* New sack for not retransmitted frame,
1333                                  * which was in hole. It is reordering.
1334                                  */
1335                                 if (before(TCP_SKB_CB(skb)->seq,
1336                                            tcp_highest_sack_seq(tp)))
1337                                         state->reord = min(fack_count,
1338                                                            state->reord);
1339
1340                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1341                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1342                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1343                         }
1344
1345                         if (sacked & TCPCB_LOST) {
1346                                 sacked &= ~TCPCB_LOST;
1347                                 tp->lost_out -= pcount;
1348                         }
1349                 }
1350
1351                 sacked |= TCPCB_SACKED_ACKED;
1352                 state->flag |= FLAG_DATA_SACKED;
1353                 tp->sacked_out += pcount;
1354
1355                 fack_count += pcount;
1356
1357                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1358                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1359                     before(TCP_SKB_CB(skb)->seq,
1360                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1361                         tp->lost_cnt_hint += pcount;
1362
1363                 if (fack_count > tp->fackets_out)
1364                         tp->fackets_out = fack_count;
1365         }
1366
1367         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1368          * frames and clear it. undo_retrans is decreased above, L|R frames
1369          * are accounted above as well.
1370          */
1371         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1372                 sacked &= ~TCPCB_SACKED_RETRANS;
1373                 tp->retrans_out -= pcount;
1374         }
1375
1376         return sacked;
1377 }
1378
1379 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1380                            struct sk_buff *skb,
1381                            struct tcp_sacktag_state *state,
1382                            unsigned int pcount, int shifted, int mss)
1383 {
1384         struct tcp_sock *tp = tcp_sk(sk);
1385
1386         BUG_ON(!pcount);
1387
1388         /* Tweak before seqno plays */
1389         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1390             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1391                 tp->lost_cnt_hint += pcount;
1392
1393         TCP_SKB_CB(prev)->end_seq += shifted;
1394         TCP_SKB_CB(skb)->seq += shifted;
1395
1396         skb_shinfo(prev)->gso_segs += pcount;
1397         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1398         skb_shinfo(skb)->gso_segs -= pcount;
1399
1400         /* When we're adding to gso_segs == 1, gso_size will be zero,
1401          * in theory this shouldn't be necessary but as long as DSACK
1402          * code can come after this skb later on it's better to keep
1403          * setting gso_size to something.
1404          */
1405         if (!skb_shinfo(prev)->gso_size) {
1406                 skb_shinfo(prev)->gso_size = mss;
1407                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1408         }
1409
1410         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1411         if (skb_shinfo(skb)->gso_segs <= 1) {
1412                 skb_shinfo(skb)->gso_size = 0;
1413                 skb_shinfo(skb)->gso_type = 0;
1414         }
1415
1416         /* We discard results */
1417         tcp_sacktag_one(skb, sk, state, 0, pcount);
1418
1419         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1420         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1421
1422         if (skb->len > 0) {
1423                 BUG_ON(!tcp_skb_pcount(skb));
1424                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1425                 return 0;
1426         }
1427
1428         /* Whole SKB was eaten :-) */
1429
1430         if (skb == tp->retransmit_skb_hint)
1431                 tp->retransmit_skb_hint = prev;
1432         if (skb == tp->scoreboard_skb_hint)
1433                 tp->scoreboard_skb_hint = prev;
1434         if (skb == tp->lost_skb_hint) {
1435                 tp->lost_skb_hint = prev;
1436                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1437         }
1438
1439         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1440         if (skb == tcp_highest_sack(sk))
1441                 tcp_advance_highest_sack(sk, skb);
1442
1443         tcp_unlink_write_queue(skb, sk);
1444         sk_wmem_free_skb(sk, skb);
1445
1446         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1447
1448         return 1;
1449 }
1450
1451 /* I wish gso_size would have a bit more sane initialization than
1452  * something-or-zero which complicates things
1453  */
1454 static int tcp_skb_seglen(struct sk_buff *skb)
1455 {
1456         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1457 }
1458
1459 /* Shifting pages past head area doesn't work */
1460 static int skb_can_shift(struct sk_buff *skb)
1461 {
1462         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1463 }
1464
1465 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1466  * skb.
1467  */
1468 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1469                                           struct tcp_sacktag_state *state,
1470                                           u32 start_seq, u32 end_seq,
1471                                           int dup_sack)
1472 {
1473         struct tcp_sock *tp = tcp_sk(sk);
1474         struct sk_buff *prev;
1475         int mss;
1476         int pcount = 0;
1477         int len;
1478         int in_sack;
1479
1480         if (!sk_can_gso(sk))
1481                 goto fallback;
1482
1483         /* Normally R but no L won't result in plain S */
1484         if (!dup_sack &&
1485             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1486                 goto fallback;
1487         if (!skb_can_shift(skb))
1488                 goto fallback;
1489         /* This frame is about to be dropped (was ACKed). */
1490         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1491                 goto fallback;
1492
1493         /* Can only happen with delayed DSACK + discard craziness */
1494         if (unlikely(skb == tcp_write_queue_head(sk)))
1495                 goto fallback;
1496         prev = tcp_write_queue_prev(sk, skb);
1497
1498         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1499                 goto fallback;
1500
1501         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1502                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1503
1504         if (in_sack) {
1505                 len = skb->len;
1506                 pcount = tcp_skb_pcount(skb);
1507                 mss = tcp_skb_seglen(skb);
1508
1509                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1510                  * drop this restriction as unnecessary
1511                  */
1512                 if (mss != tcp_skb_seglen(prev))
1513                         goto fallback;
1514         } else {
1515                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1516                         goto noop;
1517                 /* CHECKME: This is non-MSS split case only?, this will
1518                  * cause skipped skbs due to advancing loop btw, original
1519                  * has that feature too
1520                  */
1521                 if (tcp_skb_pcount(skb) <= 1)
1522                         goto noop;
1523
1524                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1525                 if (!in_sack) {
1526                         /* TODO: head merge to next could be attempted here
1527                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1528                          * though it might not be worth of the additional hassle
1529                          *
1530                          * ...we can probably just fallback to what was done
1531                          * previously. We could try merging non-SACKed ones
1532                          * as well but it probably isn't going to buy off
1533                          * because later SACKs might again split them, and
1534                          * it would make skb timestamp tracking considerably
1535                          * harder problem.
1536                          */
1537                         goto fallback;
1538                 }
1539
1540                 len = end_seq - TCP_SKB_CB(skb)->seq;
1541                 BUG_ON(len < 0);
1542                 BUG_ON(len > skb->len);
1543
1544                 /* MSS boundaries should be honoured or else pcount will
1545                  * severely break even though it makes things bit trickier.
1546                  * Optimize common case to avoid most of the divides
1547                  */
1548                 mss = tcp_skb_mss(skb);
1549
1550                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1551                  * drop this restriction as unnecessary
1552                  */
1553                 if (mss != tcp_skb_seglen(prev))
1554                         goto fallback;
1555
1556                 if (len == mss) {
1557                         pcount = 1;
1558                 } else if (len < mss) {
1559                         goto noop;
1560                 } else {
1561                         pcount = len / mss;
1562                         len = pcount * mss;
1563                 }
1564         }
1565
1566         if (!skb_shift(prev, skb, len))
1567                 goto fallback;
1568         if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss))
1569                 goto out;
1570
1571         /* Hole filled allows collapsing with the next as well, this is very
1572          * useful when hole on every nth skb pattern happens
1573          */
1574         if (prev == tcp_write_queue_tail(sk))
1575                 goto out;
1576         skb = tcp_write_queue_next(sk, prev);
1577
1578         if (!skb_can_shift(skb) ||
1579             (skb == tcp_send_head(sk)) ||
1580             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1581             (mss != tcp_skb_seglen(skb)))
1582                 goto out;
1583
1584         len = skb->len;
1585         if (skb_shift(prev, skb, len)) {
1586                 pcount += tcp_skb_pcount(skb);
1587                 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), len,
1588                                 mss);
1589         }
1590
1591 out:
1592         state->fack_count += pcount;
1593         return prev;
1594
1595 noop:
1596         return skb;
1597
1598 fallback:
1599         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1600         return NULL;
1601 }
1602
1603 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1604                                         struct tcp_sack_block *next_dup,
1605                                         struct tcp_sacktag_state *state,
1606                                         u32 start_seq, u32 end_seq,
1607                                         int dup_sack_in)
1608 {
1609         struct tcp_sock *tp = tcp_sk(sk);
1610         struct sk_buff *tmp;
1611
1612         tcp_for_write_queue_from(skb, sk) {
1613                 int in_sack = 0;
1614                 int dup_sack = dup_sack_in;
1615
1616                 if (skb == tcp_send_head(sk))
1617                         break;
1618
1619                 /* queue is in-order => we can short-circuit the walk early */
1620                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1621                         break;
1622
1623                 if ((next_dup != NULL) &&
1624                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1625                         in_sack = tcp_match_skb_to_sack(sk, skb,
1626                                                         next_dup->start_seq,
1627                                                         next_dup->end_seq);
1628                         if (in_sack > 0)
1629                                 dup_sack = 1;
1630                 }
1631
1632                 /* skb reference here is a bit tricky to get right, since
1633                  * shifting can eat and free both this skb and the next,
1634                  * so not even _safe variant of the loop is enough.
1635                  */
1636                 if (in_sack <= 0) {
1637                         tmp = tcp_shift_skb_data(sk, skb, state,
1638                                                  start_seq, end_seq, dup_sack);
1639                         if (tmp != NULL) {
1640                                 if (tmp != skb) {
1641                                         skb = tmp;
1642                                         continue;
1643                                 }
1644
1645                                 in_sack = 0;
1646                         } else {
1647                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1648                                                                 start_seq,
1649                                                                 end_seq);
1650                         }
1651                 }
1652
1653                 if (unlikely(in_sack < 0))
1654                         break;
1655
1656                 if (in_sack) {
1657                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1658                                                                   state,
1659                                                                   dup_sack,
1660                                                                   tcp_skb_pcount(skb));
1661
1662                         if (!before(TCP_SKB_CB(skb)->seq,
1663                                     tcp_highest_sack_seq(tp)))
1664                                 tcp_advance_highest_sack(sk, skb);
1665                 }
1666
1667                 state->fack_count += tcp_skb_pcount(skb);
1668         }
1669         return skb;
1670 }
1671
1672 /* Avoid all extra work that is being done by sacktag while walking in
1673  * a normal way
1674  */
1675 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1676                                         struct tcp_sacktag_state *state,
1677                                         u32 skip_to_seq)
1678 {
1679         tcp_for_write_queue_from(skb, sk) {
1680                 if (skb == tcp_send_head(sk))
1681                         break;
1682
1683                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1684                         break;
1685
1686                 state->fack_count += tcp_skb_pcount(skb);
1687         }
1688         return skb;
1689 }
1690
1691 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1692                                                 struct sock *sk,
1693                                                 struct tcp_sack_block *next_dup,
1694                                                 struct tcp_sacktag_state *state,
1695                                                 u32 skip_to_seq)
1696 {
1697         if (next_dup == NULL)
1698                 return skb;
1699
1700         if (before(next_dup->start_seq, skip_to_seq)) {
1701                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1702                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1703                                        next_dup->start_seq, next_dup->end_seq,
1704                                        1);
1705         }
1706
1707         return skb;
1708 }
1709
1710 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1711 {
1712         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1713 }
1714
1715 static int
1716 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1717                         u32 prior_snd_una)
1718 {
1719         const struct inet_connection_sock *icsk = inet_csk(sk);
1720         struct tcp_sock *tp = tcp_sk(sk);
1721         unsigned char *ptr = (skb_transport_header(ack_skb) +
1722                               TCP_SKB_CB(ack_skb)->sacked);
1723         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1724         struct tcp_sack_block sp[TCP_NUM_SACKS];
1725         struct tcp_sack_block *cache;
1726         struct tcp_sacktag_state state;
1727         struct sk_buff *skb;
1728         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1729         int used_sacks;
1730         int found_dup_sack = 0;
1731         int i, j;
1732         int first_sack_index;
1733
1734         state.flag = 0;
1735         state.reord = tp->packets_out;
1736
1737         if (!tp->sacked_out) {
1738                 if (WARN_ON(tp->fackets_out))
1739                         tp->fackets_out = 0;
1740                 tcp_highest_sack_reset(sk);
1741         }
1742
1743         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1744                                          num_sacks, prior_snd_una);
1745         if (found_dup_sack)
1746                 state.flag |= FLAG_DSACKING_ACK;
1747
1748         /* Eliminate too old ACKs, but take into
1749          * account more or less fresh ones, they can
1750          * contain valid SACK info.
1751          */
1752         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1753                 return 0;
1754
1755         if (!tp->packets_out)
1756                 goto out;
1757
1758         used_sacks = 0;
1759         first_sack_index = 0;
1760         for (i = 0; i < num_sacks; i++) {
1761                 int dup_sack = !i && found_dup_sack;
1762
1763                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1764                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1765
1766                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1767                                             sp[used_sacks].start_seq,
1768                                             sp[used_sacks].end_seq)) {
1769                         int mib_idx;
1770
1771                         if (dup_sack) {
1772                                 if (!tp->undo_marker)
1773                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1774                                 else
1775                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1776                         } else {
1777                                 /* Don't count olds caused by ACK reordering */
1778                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1779                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1780                                         continue;
1781                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1782                         }
1783
1784                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1785                         if (i == 0)
1786                                 first_sack_index = -1;
1787                         continue;
1788                 }
1789
1790                 /* Ignore very old stuff early */
1791                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1792                         continue;
1793
1794                 used_sacks++;
1795         }
1796
1797         /* order SACK blocks to allow in order walk of the retrans queue */
1798         for (i = used_sacks - 1; i > 0; i--) {
1799                 for (j = 0; j < i; j++) {
1800                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1801                                 struct tcp_sack_block tmp;
1802
1803                                 tmp = sp[j];
1804                                 sp[j] = sp[j + 1];
1805                                 sp[j + 1] = tmp;
1806
1807                                 /* Track where the first SACK block goes to */
1808                                 if (j == first_sack_index)
1809                                         first_sack_index = j + 1;
1810                         }
1811                 }
1812         }
1813
1814         skb = tcp_write_queue_head(sk);
1815         state.fack_count = 0;
1816         i = 0;
1817
1818         if (!tp->sacked_out) {
1819                 /* It's already past, so skip checking against it */
1820                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1821         } else {
1822                 cache = tp->recv_sack_cache;
1823                 /* Skip empty blocks in at head of the cache */
1824                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1825                        !cache->end_seq)
1826                         cache++;
1827         }
1828
1829         while (i < used_sacks) {
1830                 u32 start_seq = sp[i].start_seq;
1831                 u32 end_seq = sp[i].end_seq;
1832                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1833                 struct tcp_sack_block *next_dup = NULL;
1834
1835                 if (found_dup_sack && ((i + 1) == first_sack_index))
1836                         next_dup = &sp[i + 1];
1837
1838                 /* Event "B" in the comment above. */
1839                 if (after(end_seq, tp->high_seq))
1840                         state.flag |= FLAG_DATA_LOST;
1841
1842                 /* Skip too early cached blocks */
1843                 while (tcp_sack_cache_ok(tp, cache) &&
1844                        !before(start_seq, cache->end_seq))
1845                         cache++;
1846
1847                 /* Can skip some work by looking recv_sack_cache? */
1848                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1849                     after(end_seq, cache->start_seq)) {
1850
1851                         /* Head todo? */
1852                         if (before(start_seq, cache->start_seq)) {
1853                                 skb = tcp_sacktag_skip(skb, sk, &state,
1854                                                        start_seq);
1855                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1856                                                        &state,
1857                                                        start_seq,
1858                                                        cache->start_seq,
1859                                                        dup_sack);
1860                         }
1861
1862                         /* Rest of the block already fully processed? */
1863                         if (!after(end_seq, cache->end_seq))
1864                                 goto advance_sp;
1865
1866                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1867                                                        &state,
1868                                                        cache->end_seq);
1869
1870                         /* ...tail remains todo... */
1871                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1872                                 /* ...but better entrypoint exists! */
1873                                 skb = tcp_highest_sack(sk);
1874                                 if (skb == NULL)
1875                                         break;
1876                                 state.fack_count = tp->fackets_out;
1877                                 cache++;
1878                                 goto walk;
1879                         }
1880
1881                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1882                         /* Check overlap against next cached too (past this one already) */
1883                         cache++;
1884                         continue;
1885                 }
1886
1887                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1888                         skb = tcp_highest_sack(sk);
1889                         if (skb == NULL)
1890                                 break;
1891                         state.fack_count = tp->fackets_out;
1892                 }
1893                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1894
1895 walk:
1896                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1897                                        start_seq, end_seq, dup_sack);
1898
1899 advance_sp:
1900                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1901                  * due to in-order walk
1902                  */
1903                 if (after(end_seq, tp->frto_highmark))
1904                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1905
1906                 i++;
1907         }
1908
1909         /* Clear the head of the cache sack blocks so we can skip it next time */
1910         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1911                 tp->recv_sack_cache[i].start_seq = 0;
1912                 tp->recv_sack_cache[i].end_seq = 0;
1913         }
1914         for (j = 0; j < used_sacks; j++)
1915                 tp->recv_sack_cache[i++] = sp[j];
1916
1917         tcp_mark_lost_retrans(sk);
1918
1919         tcp_verify_left_out(tp);
1920
1921         if ((state.reord < tp->fackets_out) &&
1922             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1923             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1924                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1925
1926 out:
1927
1928 #if FASTRETRANS_DEBUG > 0
1929         WARN_ON((int)tp->sacked_out < 0);
1930         WARN_ON((int)tp->lost_out < 0);
1931         WARN_ON((int)tp->retrans_out < 0);
1932         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1933 #endif
1934         return state.flag;
1935 }
1936
1937 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1938  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1939  */
1940 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1941 {
1942         u32 holes;
1943
1944         holes = max(tp->lost_out, 1U);
1945         holes = min(holes, tp->packets_out);
1946
1947         if ((tp->sacked_out + holes) > tp->packets_out) {
1948                 tp->sacked_out = tp->packets_out - holes;
1949                 return 1;
1950         }
1951         return 0;
1952 }
1953
1954 /* If we receive more dupacks than we expected counting segments
1955  * in assumption of absent reordering, interpret this as reordering.
1956  * The only another reason could be bug in receiver TCP.
1957  */
1958 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1959 {
1960         struct tcp_sock *tp = tcp_sk(sk);
1961         if (tcp_limit_reno_sacked(tp))
1962                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1963 }
1964
1965 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1966
1967 static void tcp_add_reno_sack(struct sock *sk)
1968 {
1969         struct tcp_sock *tp = tcp_sk(sk);
1970         tp->sacked_out++;
1971         tcp_check_reno_reordering(sk, 0);
1972         tcp_verify_left_out(tp);
1973 }
1974
1975 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1976
1977 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1978 {
1979         struct tcp_sock *tp = tcp_sk(sk);
1980
1981         if (acked > 0) {
1982                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1983                 if (acked - 1 >= tp->sacked_out)
1984                         tp->sacked_out = 0;
1985                 else
1986                         tp->sacked_out -= acked - 1;
1987         }
1988         tcp_check_reno_reordering(sk, acked);
1989         tcp_verify_left_out(tp);
1990 }
1991
1992 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1993 {
1994         tp->sacked_out = 0;
1995 }
1996
1997 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1998 {
1999         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2000 }
2001
2002 /* F-RTO can only be used if TCP has never retransmitted anything other than
2003  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2004  */
2005 int tcp_use_frto(struct sock *sk)
2006 {
2007         const struct tcp_sock *tp = tcp_sk(sk);
2008         const struct inet_connection_sock *icsk = inet_csk(sk);
2009         struct sk_buff *skb;
2010
2011         if (!sysctl_tcp_frto)
2012                 return 0;
2013
2014         /* MTU probe and F-RTO won't really play nicely along currently */
2015         if (icsk->icsk_mtup.probe_size)
2016                 return 0;
2017
2018         if (tcp_is_sackfrto(tp))
2019                 return 1;
2020
2021         /* Avoid expensive walking of rexmit queue if possible */
2022         if (tp->retrans_out > 1)
2023                 return 0;
2024
2025         skb = tcp_write_queue_head(sk);
2026         if (tcp_skb_is_last(sk, skb))
2027                 return 1;
2028         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2029         tcp_for_write_queue_from(skb, sk) {
2030                 if (skb == tcp_send_head(sk))
2031                         break;
2032                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2033                         return 0;
2034                 /* Short-circuit when first non-SACKed skb has been checked */
2035                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2036                         break;
2037         }
2038         return 1;
2039 }
2040
2041 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2042  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2043  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2044  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2045  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2046  * bits are handled if the Loss state is really to be entered (in
2047  * tcp_enter_frto_loss).
2048  *
2049  * Do like tcp_enter_loss() would; when RTO expires the second time it
2050  * does:
2051  *  "Reduce ssthresh if it has not yet been made inside this window."
2052  */
2053 void tcp_enter_frto(struct sock *sk)
2054 {
2055         const struct inet_connection_sock *icsk = inet_csk(sk);
2056         struct tcp_sock *tp = tcp_sk(sk);
2057         struct sk_buff *skb;
2058
2059         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2060             tp->snd_una == tp->high_seq ||
2061             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2062              !icsk->icsk_retransmits)) {
2063                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2064                 /* Our state is too optimistic in ssthresh() call because cwnd
2065                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2066                  * recovery has not yet completed. Pattern would be this: RTO,
2067                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2068                  * up here twice).
2069                  * RFC4138 should be more specific on what to do, even though
2070                  * RTO is quite unlikely to occur after the first Cumulative ACK
2071                  * due to back-off and complexity of triggering events ...
2072                  */
2073                 if (tp->frto_counter) {
2074                         u32 stored_cwnd;
2075                         stored_cwnd = tp->snd_cwnd;
2076                         tp->snd_cwnd = 2;
2077                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2078                         tp->snd_cwnd = stored_cwnd;
2079                 } else {
2080                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081                 }
2082                 /* ... in theory, cong.control module could do "any tricks" in
2083                  * ssthresh(), which means that ca_state, lost bits and lost_out
2084                  * counter would have to be faked before the call occurs. We
2085                  * consider that too expensive, unlikely and hacky, so modules
2086                  * using these in ssthresh() must deal these incompatibility
2087                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2088                  */
2089                 tcp_ca_event(sk, CA_EVENT_FRTO);
2090         }
2091
2092         tp->undo_marker = tp->snd_una;
2093         tp->undo_retrans = 0;
2094
2095         skb = tcp_write_queue_head(sk);
2096         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2097                 tp->undo_marker = 0;
2098         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2099                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2100                 tp->retrans_out -= tcp_skb_pcount(skb);
2101         }
2102         tcp_verify_left_out(tp);
2103
2104         /* Too bad if TCP was application limited */
2105         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2106
2107         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2108          * The last condition is necessary at least in tp->frto_counter case.
2109          */
2110         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2111             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2112             after(tp->high_seq, tp->snd_una)) {
2113                 tp->frto_highmark = tp->high_seq;
2114         } else {
2115                 tp->frto_highmark = tp->snd_nxt;
2116         }
2117         tcp_set_ca_state(sk, TCP_CA_Disorder);
2118         tp->high_seq = tp->snd_nxt;
2119         tp->frto_counter = 1;
2120 }
2121
2122 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2123  * which indicates that we should follow the traditional RTO recovery,
2124  * i.e. mark everything lost and do go-back-N retransmission.
2125  */
2126 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2127 {
2128         struct tcp_sock *tp = tcp_sk(sk);
2129         struct sk_buff *skb;
2130
2131         tp->lost_out = 0;
2132         tp->retrans_out = 0;
2133         if (tcp_is_reno(tp))
2134                 tcp_reset_reno_sack(tp);
2135
2136         tcp_for_write_queue(skb, sk) {
2137                 if (skb == tcp_send_head(sk))
2138                         break;
2139
2140                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2141                 /*
2142                  * Count the retransmission made on RTO correctly (only when
2143                  * waiting for the first ACK and did not get it)...
2144                  */
2145                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2146                         /* For some reason this R-bit might get cleared? */
2147                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2148                                 tp->retrans_out += tcp_skb_pcount(skb);
2149                         /* ...enter this if branch just for the first segment */
2150                         flag |= FLAG_DATA_ACKED;
2151                 } else {
2152                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2153                                 tp->undo_marker = 0;
2154                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2155                 }
2156
2157                 /* Marking forward transmissions that were made after RTO lost
2158                  * can cause unnecessary retransmissions in some scenarios,
2159                  * SACK blocks will mitigate that in some but not in all cases.
2160                  * We used to not mark them but it was causing break-ups with
2161                  * receivers that do only in-order receival.
2162                  *
2163                  * TODO: we could detect presence of such receiver and select
2164                  * different behavior per flow.
2165                  */
2166                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2167                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2168                         tp->lost_out += tcp_skb_pcount(skb);
2169                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2170                 }
2171         }
2172         tcp_verify_left_out(tp);
2173
2174         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2175         tp->snd_cwnd_cnt = 0;
2176         tp->snd_cwnd_stamp = tcp_time_stamp;
2177         tp->frto_counter = 0;
2178         tp->bytes_acked = 0;
2179
2180         tp->reordering = min_t(unsigned int, tp->reordering,
2181                                sysctl_tcp_reordering);
2182         tcp_set_ca_state(sk, TCP_CA_Loss);
2183         tp->high_seq = tp->snd_nxt;
2184         TCP_ECN_queue_cwr(tp);
2185
2186         tcp_clear_all_retrans_hints(tp);
2187 }
2188
2189 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2190 {
2191         tp->retrans_out = 0;
2192         tp->lost_out = 0;
2193
2194         tp->undo_marker = 0;
2195         tp->undo_retrans = 0;
2196 }
2197
2198 void tcp_clear_retrans(struct tcp_sock *tp)
2199 {
2200         tcp_clear_retrans_partial(tp);
2201
2202         tp->fackets_out = 0;
2203         tp->sacked_out = 0;
2204 }
2205
2206 /* Enter Loss state. If "how" is not zero, forget all SACK information
2207  * and reset tags completely, otherwise preserve SACKs. If receiver
2208  * dropped its ofo queue, we will know this due to reneging detection.
2209  */
2210 void tcp_enter_loss(struct sock *sk, int how)
2211 {
2212         const struct inet_connection_sock *icsk = inet_csk(sk);
2213         struct tcp_sock *tp = tcp_sk(sk);
2214         struct sk_buff *skb;
2215
2216         /* Reduce ssthresh if it has not yet been made inside this window. */
2217         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2218             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2219                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2220                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2221                 tcp_ca_event(sk, CA_EVENT_LOSS);
2222         }
2223         tp->snd_cwnd       = 1;
2224         tp->snd_cwnd_cnt   = 0;
2225         tp->snd_cwnd_stamp = tcp_time_stamp;
2226
2227         tp->bytes_acked = 0;
2228         tcp_clear_retrans_partial(tp);
2229
2230         if (tcp_is_reno(tp))
2231                 tcp_reset_reno_sack(tp);
2232
2233         if (!how) {
2234                 /* Push undo marker, if it was plain RTO and nothing
2235                  * was retransmitted. */
2236                 tp->undo_marker = tp->snd_una;
2237         } else {
2238                 tp->sacked_out = 0;
2239                 tp->fackets_out = 0;
2240         }
2241         tcp_clear_all_retrans_hints(tp);
2242
2243         tcp_for_write_queue(skb, sk) {
2244                 if (skb == tcp_send_head(sk))
2245                         break;
2246
2247                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2248                         tp->undo_marker = 0;
2249                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2250                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2251                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2252                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2253                         tp->lost_out += tcp_skb_pcount(skb);
2254                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2255                 }
2256         }
2257         tcp_verify_left_out(tp);
2258
2259         tp->reordering = min_t(unsigned int, tp->reordering,
2260                                sysctl_tcp_reordering);
2261         tcp_set_ca_state(sk, TCP_CA_Loss);
2262         tp->high_seq = tp->snd_nxt;
2263         TCP_ECN_queue_cwr(tp);
2264         /* Abort F-RTO algorithm if one is in progress */
2265         tp->frto_counter = 0;
2266 }
2267
2268 /* If ACK arrived pointing to a remembered SACK, it means that our
2269  * remembered SACKs do not reflect real state of receiver i.e.
2270  * receiver _host_ is heavily congested (or buggy).
2271  *
2272  * Do processing similar to RTO timeout.
2273  */
2274 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2275 {
2276         if (flag & FLAG_SACK_RENEGING) {
2277                 struct inet_connection_sock *icsk = inet_csk(sk);
2278                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2279
2280                 tcp_enter_loss(sk, 1);
2281                 icsk->icsk_retransmits++;
2282                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2283                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2284                                           icsk->icsk_rto, TCP_RTO_MAX);
2285                 return 1;
2286         }
2287         return 0;
2288 }
2289
2290 static inline int tcp_fackets_out(struct tcp_sock *tp)
2291 {
2292         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2293 }
2294
2295 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2296  * counter when SACK is enabled (without SACK, sacked_out is used for
2297  * that purpose).
2298  *
2299  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2300  * segments up to the highest received SACK block so far and holes in
2301  * between them.
2302  *
2303  * With reordering, holes may still be in flight, so RFC3517 recovery
2304  * uses pure sacked_out (total number of SACKed segments) even though
2305  * it violates the RFC that uses duplicate ACKs, often these are equal
2306  * but when e.g. out-of-window ACKs or packet duplication occurs,
2307  * they differ. Since neither occurs due to loss, TCP should really
2308  * ignore them.
2309  */
2310 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2311 {
2312         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2313 }
2314
2315 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2316 {
2317         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2318 }
2319
2320 static inline int tcp_head_timedout(struct sock *sk)
2321 {
2322         struct tcp_sock *tp = tcp_sk(sk);
2323
2324         return tp->packets_out &&
2325                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2326 }
2327
2328 /* Linux NewReno/SACK/FACK/ECN state machine.
2329  * --------------------------------------
2330  *
2331  * "Open"       Normal state, no dubious events, fast path.
2332  * "Disorder"   In all the respects it is "Open",
2333  *              but requires a bit more attention. It is entered when
2334  *              we see some SACKs or dupacks. It is split of "Open"
2335  *              mainly to move some processing from fast path to slow one.
2336  * "CWR"        CWND was reduced due to some Congestion Notification event.
2337  *              It can be ECN, ICMP source quench, local device congestion.
2338  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2339  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2340  *
2341  * tcp_fastretrans_alert() is entered:
2342  * - each incoming ACK, if state is not "Open"
2343  * - when arrived ACK is unusual, namely:
2344  *      * SACK
2345  *      * Duplicate ACK.
2346  *      * ECN ECE.
2347  *
2348  * Counting packets in flight is pretty simple.
2349  *
2350  *      in_flight = packets_out - left_out + retrans_out
2351  *
2352  *      packets_out is SND.NXT-SND.UNA counted in packets.
2353  *
2354  *      retrans_out is number of retransmitted segments.
2355  *
2356  *      left_out is number of segments left network, but not ACKed yet.
2357  *
2358  *              left_out = sacked_out + lost_out
2359  *
2360  *     sacked_out: Packets, which arrived to receiver out of order
2361  *                 and hence not ACKed. With SACKs this number is simply
2362  *                 amount of SACKed data. Even without SACKs
2363  *                 it is easy to give pretty reliable estimate of this number,
2364  *                 counting duplicate ACKs.
2365  *
2366  *       lost_out: Packets lost by network. TCP has no explicit
2367  *                 "loss notification" feedback from network (for now).
2368  *                 It means that this number can be only _guessed_.
2369  *                 Actually, it is the heuristics to predict lossage that
2370  *                 distinguishes different algorithms.
2371  *
2372  *      F.e. after RTO, when all the queue is considered as lost,
2373  *      lost_out = packets_out and in_flight = retrans_out.
2374  *
2375  *              Essentially, we have now two algorithms counting
2376  *              lost packets.
2377  *
2378  *              FACK: It is the simplest heuristics. As soon as we decided
2379  *              that something is lost, we decide that _all_ not SACKed
2380  *              packets until the most forward SACK are lost. I.e.
2381  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2382  *              It is absolutely correct estimate, if network does not reorder
2383  *              packets. And it loses any connection to reality when reordering
2384  *              takes place. We use FACK by default until reordering
2385  *              is suspected on the path to this destination.
2386  *
2387  *              NewReno: when Recovery is entered, we assume that one segment
2388  *              is lost (classic Reno). While we are in Recovery and
2389  *              a partial ACK arrives, we assume that one more packet
2390  *              is lost (NewReno). This heuristics are the same in NewReno
2391  *              and SACK.
2392  *
2393  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2394  *  deflation etc. CWND is real congestion window, never inflated, changes
2395  *  only according to classic VJ rules.
2396  *
2397  * Really tricky (and requiring careful tuning) part of algorithm
2398  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2399  * The first determines the moment _when_ we should reduce CWND and,
2400  * hence, slow down forward transmission. In fact, it determines the moment
2401  * when we decide that hole is caused by loss, rather than by a reorder.
2402  *
2403  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2404  * holes, caused by lost packets.
2405  *
2406  * And the most logically complicated part of algorithm is undo
2407  * heuristics. We detect false retransmits due to both too early
2408  * fast retransmit (reordering) and underestimated RTO, analyzing
2409  * timestamps and D-SACKs. When we detect that some segments were
2410  * retransmitted by mistake and CWND reduction was wrong, we undo
2411  * window reduction and abort recovery phase. This logic is hidden
2412  * inside several functions named tcp_try_undo_<something>.
2413  */
2414
2415 /* This function decides, when we should leave Disordered state
2416  * and enter Recovery phase, reducing congestion window.
2417  *
2418  * Main question: may we further continue forward transmission
2419  * with the same cwnd?
2420  */
2421 static int tcp_time_to_recover(struct sock *sk)
2422 {
2423         struct tcp_sock *tp = tcp_sk(sk);
2424         __u32 packets_out;
2425
2426         /* Do not perform any recovery during F-RTO algorithm */
2427         if (tp->frto_counter)
2428                 return 0;
2429
2430         /* Trick#1: The loss is proven. */
2431         if (tp->lost_out)
2432                 return 1;
2433
2434         /* Not-A-Trick#2 : Classic rule... */
2435         if (tcp_dupack_heurestics(tp) > tp->reordering)
2436                 return 1;
2437
2438         /* Trick#3 : when we use RFC2988 timer restart, fast
2439          * retransmit can be triggered by timeout of queue head.
2440          */
2441         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2442                 return 1;
2443
2444         /* Trick#4: It is still not OK... But will it be useful to delay
2445          * recovery more?
2446          */
2447         packets_out = tp->packets_out;
2448         if (packets_out <= tp->reordering &&
2449             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2450             !tcp_may_send_now(sk)) {
2451                 /* We have nothing to send. This connection is limited
2452                  * either by receiver window or by application.
2453                  */
2454                 return 1;
2455         }
2456
2457         return 0;
2458 }
2459
2460 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2461  * is against sacked "cnt", otherwise it's against facked "cnt"
2462  */
2463 static void tcp_mark_head_lost(struct sock *sk, int packets)
2464 {
2465         struct tcp_sock *tp = tcp_sk(sk);
2466         struct sk_buff *skb;
2467         int cnt, oldcnt;
2468         int err;
2469         unsigned int mss;
2470
2471         WARN_ON(packets > tp->packets_out);
2472         if (tp->lost_skb_hint) {
2473                 skb = tp->lost_skb_hint;
2474                 cnt = tp->lost_cnt_hint;
2475         } else {
2476                 skb = tcp_write_queue_head(sk);
2477                 cnt = 0;
2478         }
2479
2480         tcp_for_write_queue_from(skb, sk) {
2481                 if (skb == tcp_send_head(sk))
2482                         break;
2483                 /* TODO: do this better */
2484                 /* this is not the most efficient way to do this... */
2485                 tp->lost_skb_hint = skb;
2486                 tp->lost_cnt_hint = cnt;
2487
2488                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2489                         break;
2490
2491                 oldcnt = cnt;
2492                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2493                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2494                         cnt += tcp_skb_pcount(skb);
2495
2496                 if (cnt > packets) {
2497                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2498                                 break;
2499
2500                         mss = skb_shinfo(skb)->gso_size;
2501                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2502                         if (err < 0)
2503                                 break;
2504                         cnt = packets;
2505                 }
2506
2507                 tcp_skb_mark_lost(tp, skb);
2508         }
2509         tcp_verify_left_out(tp);
2510 }
2511
2512 /* Account newly detected lost packet(s) */
2513
2514 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2515 {
2516         struct tcp_sock *tp = tcp_sk(sk);
2517
2518         if (tcp_is_reno(tp)) {
2519                 tcp_mark_head_lost(sk, 1);
2520         } else if (tcp_is_fack(tp)) {
2521                 int lost = tp->fackets_out - tp->reordering;
2522                 if (lost <= 0)
2523                         lost = 1;
2524                 tcp_mark_head_lost(sk, lost);
2525         } else {
2526                 int sacked_upto = tp->sacked_out - tp->reordering;
2527                 if (sacked_upto < fast_rexmit)
2528                         sacked_upto = fast_rexmit;
2529                 tcp_mark_head_lost(sk, sacked_upto);
2530         }
2531
2532         /* New heuristics: it is possible only after we switched
2533          * to restart timer each time when something is ACKed.
2534          * Hence, we can detect timed out packets during fast
2535          * retransmit without falling to slow start.
2536          */
2537         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2538                 struct sk_buff *skb;
2539
2540                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2541                         : tcp_write_queue_head(sk);
2542
2543                 tcp_for_write_queue_from(skb, sk) {
2544                         if (skb == tcp_send_head(sk))
2545                                 break;
2546                         if (!tcp_skb_timedout(sk, skb))
2547                                 break;
2548
2549                         tcp_skb_mark_lost(tp, skb);
2550                 }
2551
2552                 tp->scoreboard_skb_hint = skb;
2553
2554                 tcp_verify_left_out(tp);
2555         }
2556 }
2557
2558 /* CWND moderation, preventing bursts due to too big ACKs
2559  * in dubious situations.
2560  */
2561 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2562 {
2563         tp->snd_cwnd = min(tp->snd_cwnd,
2564                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2565         tp->snd_cwnd_stamp = tcp_time_stamp;
2566 }
2567
2568 /* Lower bound on congestion window is slow start threshold
2569  * unless congestion avoidance choice decides to overide it.
2570  */
2571 static inline u32 tcp_cwnd_min(const struct sock *sk)
2572 {
2573         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2574
2575         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2576 }
2577
2578 /* Decrease cwnd each second ack. */
2579 static void tcp_cwnd_down(struct sock *sk, int flag)
2580 {
2581         struct tcp_sock *tp = tcp_sk(sk);
2582         int decr = tp->snd_cwnd_cnt + 1;
2583
2584         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2585             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2586                 tp->snd_cwnd_cnt = decr & 1;
2587                 decr >>= 1;
2588
2589                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2590                         tp->snd_cwnd -= decr;
2591
2592                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2593                 tp->snd_cwnd_stamp = tcp_time_stamp;
2594         }
2595 }
2596
2597 /* Nothing was retransmitted or returned timestamp is less
2598  * than timestamp of the first retransmission.
2599  */
2600 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2601 {
2602         return !tp->retrans_stamp ||
2603                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2604                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2605 }
2606
2607 /* Undo procedures. */
2608
2609 #if FASTRETRANS_DEBUG > 1
2610 static void DBGUNDO(struct sock *sk, const char *msg)
2611 {
2612         struct tcp_sock *tp = tcp_sk(sk);
2613         struct inet_sock *inet = inet_sk(sk);
2614
2615         if (sk->sk_family == AF_INET) {
2616                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2617                        msg,
2618                        &inet->daddr, ntohs(inet->dport),
2619                        tp->snd_cwnd, tcp_left_out(tp),
2620                        tp->snd_ssthresh, tp->prior_ssthresh,
2621                        tp->packets_out);
2622         }
2623 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2624         else if (sk->sk_family == AF_INET6) {
2625                 struct ipv6_pinfo *np = inet6_sk(sk);
2626                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2627                        msg,
2628                        &np->daddr, ntohs(inet->dport),
2629                        tp->snd_cwnd, tcp_left_out(tp),
2630                        tp->snd_ssthresh, tp->prior_ssthresh,
2631                        tp->packets_out);
2632         }
2633 #endif
2634 }
2635 #else
2636 #define DBGUNDO(x...) do { } while (0)
2637 #endif
2638
2639 static void tcp_undo_cwr(struct sock *sk, const int undo)
2640 {
2641         struct tcp_sock *tp = tcp_sk(sk);
2642
2643         if (tp->prior_ssthresh) {
2644                 const struct inet_connection_sock *icsk = inet_csk(sk);
2645
2646                 if (icsk->icsk_ca_ops->undo_cwnd)
2647                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2648                 else
2649                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2650
2651                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2652                         tp->snd_ssthresh = tp->prior_ssthresh;
2653                         TCP_ECN_withdraw_cwr(tp);
2654                 }
2655         } else {
2656                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2657         }
2658         tcp_moderate_cwnd(tp);
2659         tp->snd_cwnd_stamp = tcp_time_stamp;
2660 }
2661
2662 static inline int tcp_may_undo(struct tcp_sock *tp)
2663 {
2664         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2665 }
2666
2667 /* People celebrate: "We love our President!" */
2668 static int tcp_try_undo_recovery(struct sock *sk)
2669 {
2670         struct tcp_sock *tp = tcp_sk(sk);
2671
2672         if (tcp_may_undo(tp)) {
2673                 int mib_idx;
2674
2675                 /* Happy end! We did not retransmit anything
2676                  * or our original transmission succeeded.
2677                  */
2678                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2679                 tcp_undo_cwr(sk, 1);
2680                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2681                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2682                 else
2683                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2684
2685                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2686                 tp->undo_marker = 0;
2687         }
2688         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2689                 /* Hold old state until something *above* high_seq
2690                  * is ACKed. For Reno it is MUST to prevent false
2691                  * fast retransmits (RFC2582). SACK TCP is safe. */
2692                 tcp_moderate_cwnd(tp);
2693                 return 1;
2694         }
2695         tcp_set_ca_state(sk, TCP_CA_Open);
2696         return 0;
2697 }
2698
2699 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2700 static void tcp_try_undo_dsack(struct sock *sk)
2701 {
2702         struct tcp_sock *tp = tcp_sk(sk);
2703
2704         if (tp->undo_marker && !tp->undo_retrans) {
2705                 DBGUNDO(sk, "D-SACK");
2706                 tcp_undo_cwr(sk, 1);
2707                 tp->undo_marker = 0;
2708                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2709         }
2710 }
2711
2712 /* Undo during fast recovery after partial ACK. */
2713
2714 static int tcp_try_undo_partial(struct sock *sk, int acked)
2715 {
2716         struct tcp_sock *tp = tcp_sk(sk);
2717         /* Partial ACK arrived. Force Hoe's retransmit. */
2718         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2719
2720         if (tcp_may_undo(tp)) {
2721                 /* Plain luck! Hole if filled with delayed
2722                  * packet, rather than with a retransmit.
2723                  */
2724                 if (tp->retrans_out == 0)
2725                         tp->retrans_stamp = 0;
2726
2727                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2728
2729                 DBGUNDO(sk, "Hoe");
2730                 tcp_undo_cwr(sk, 0);
2731                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2732
2733                 /* So... Do not make Hoe's retransmit yet.
2734                  * If the first packet was delayed, the rest
2735                  * ones are most probably delayed as well.
2736                  */
2737                 failed = 0;
2738         }
2739         return failed;
2740 }
2741
2742 /* Undo during loss recovery after partial ACK. */
2743 static int tcp_try_undo_loss(struct sock *sk)
2744 {
2745         struct tcp_sock *tp = tcp_sk(sk);
2746
2747         if (tcp_may_undo(tp)) {
2748                 struct sk_buff *skb;
2749                 tcp_for_write_queue(skb, sk) {
2750                         if (skb == tcp_send_head(sk))
2751                                 break;
2752                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2753                 }
2754
2755                 tcp_clear_all_retrans_hints(tp);
2756
2757                 DBGUNDO(sk, "partial loss");
2758                 tp->lost_out = 0;
2759                 tcp_undo_cwr(sk, 1);
2760                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2761                 inet_csk(sk)->icsk_retransmits = 0;
2762                 tp->undo_marker = 0;
2763                 if (tcp_is_sack(tp))
2764                         tcp_set_ca_state(sk, TCP_CA_Open);
2765                 return 1;
2766         }
2767         return 0;
2768 }
2769
2770 static inline void tcp_complete_cwr(struct sock *sk)
2771 {
2772         struct tcp_sock *tp = tcp_sk(sk);
2773         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2774         tp->snd_cwnd_stamp = tcp_time_stamp;
2775         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2776 }
2777
2778 static void tcp_try_keep_open(struct sock *sk)
2779 {
2780         struct tcp_sock *tp = tcp_sk(sk);
2781         int state = TCP_CA_Open;
2782
2783         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2784                 state = TCP_CA_Disorder;
2785
2786         if (inet_csk(sk)->icsk_ca_state != state) {
2787                 tcp_set_ca_state(sk, state);
2788                 tp->high_seq = tp->snd_nxt;
2789         }
2790 }
2791
2792 static void tcp_try_to_open(struct sock *sk, int flag)
2793 {
2794         struct tcp_sock *tp = tcp_sk(sk);
2795
2796         tcp_verify_left_out(tp);
2797
2798         if (!tp->frto_counter && tp->retrans_out == 0)
2799                 tp->retrans_stamp = 0;
2800
2801         if (flag & FLAG_ECE)
2802                 tcp_enter_cwr(sk, 1);
2803
2804         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2805                 tcp_try_keep_open(sk);
2806                 tcp_moderate_cwnd(tp);
2807         } else {
2808                 tcp_cwnd_down(sk, flag);
2809         }
2810 }
2811
2812 static void tcp_mtup_probe_failed(struct sock *sk)
2813 {
2814         struct inet_connection_sock *icsk = inet_csk(sk);
2815
2816         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2817         icsk->icsk_mtup.probe_size = 0;
2818 }
2819
2820 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2821 {
2822         struct tcp_sock *tp = tcp_sk(sk);
2823         struct inet_connection_sock *icsk = inet_csk(sk);
2824
2825         /* FIXME: breaks with very large cwnd */
2826         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2827         tp->snd_cwnd = tp->snd_cwnd *
2828                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2829                        icsk->icsk_mtup.probe_size;
2830         tp->snd_cwnd_cnt = 0;
2831         tp->snd_cwnd_stamp = tcp_time_stamp;
2832         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2833
2834         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2835         icsk->icsk_mtup.probe_size = 0;
2836         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2837 }
2838
2839 /* Do a simple retransmit without using the backoff mechanisms in
2840  * tcp_timer. This is used for path mtu discovery.
2841  * The socket is already locked here.
2842  */
2843 void tcp_simple_retransmit(struct sock *sk)
2844 {
2845         const struct inet_connection_sock *icsk = inet_csk(sk);
2846         struct tcp_sock *tp = tcp_sk(sk);
2847         struct sk_buff *skb;
2848         unsigned int mss = tcp_current_mss(sk, 0);
2849         u32 prior_lost = tp->lost_out;
2850
2851         tcp_for_write_queue(skb, sk) {
2852                 if (skb == tcp_send_head(sk))
2853                         break;
2854                 if (tcp_skb_seglen(skb) > mss &&
2855                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2856                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2857                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2858                                 tp->retrans_out -= tcp_skb_pcount(skb);
2859                         }
2860                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2861                 }
2862         }
2863
2864         tcp_clear_retrans_hints_partial(tp);
2865
2866         if (prior_lost == tp->lost_out)
2867                 return;
2868
2869         if (tcp_is_reno(tp))
2870                 tcp_limit_reno_sacked(tp);
2871
2872         tcp_verify_left_out(tp);
2873
2874         /* Don't muck with the congestion window here.
2875          * Reason is that we do not increase amount of _data_
2876          * in network, but units changed and effective
2877          * cwnd/ssthresh really reduced now.
2878          */
2879         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2880                 tp->high_seq = tp->snd_nxt;
2881                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2882                 tp->prior_ssthresh = 0;
2883                 tp->undo_marker = 0;
2884                 tcp_set_ca_state(sk, TCP_CA_Loss);
2885         }
2886         tcp_xmit_retransmit_queue(sk);
2887 }
2888
2889 /* Process an event, which can update packets-in-flight not trivially.
2890  * Main goal of this function is to calculate new estimate for left_out,
2891  * taking into account both packets sitting in receiver's buffer and
2892  * packets lost by network.
2893  *
2894  * Besides that it does CWND reduction, when packet loss is detected
2895  * and changes state of machine.
2896  *
2897  * It does _not_ decide what to send, it is made in function
2898  * tcp_xmit_retransmit_queue().
2899  */
2900 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2901 {
2902         struct inet_connection_sock *icsk = inet_csk(sk);
2903         struct tcp_sock *tp = tcp_sk(sk);
2904         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2905         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2906                                     (tcp_fackets_out(tp) > tp->reordering));
2907         int fast_rexmit = 0, mib_idx;
2908
2909         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2910                 tp->sacked_out = 0;
2911         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2912                 tp->fackets_out = 0;
2913
2914         /* Now state machine starts.
2915          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2916         if (flag & FLAG_ECE)
2917                 tp->prior_ssthresh = 0;
2918
2919         /* B. In all the states check for reneging SACKs. */
2920         if (tcp_check_sack_reneging(sk, flag))
2921                 return;
2922
2923         /* C. Process data loss notification, provided it is valid. */
2924         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2925             before(tp->snd_una, tp->high_seq) &&
2926             icsk->icsk_ca_state != TCP_CA_Open &&
2927             tp->fackets_out > tp->reordering) {
2928                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2929                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2930         }
2931
2932         /* D. Check consistency of the current state. */
2933         tcp_verify_left_out(tp);
2934
2935         /* E. Check state exit conditions. State can be terminated
2936          *    when high_seq is ACKed. */
2937         if (icsk->icsk_ca_state == TCP_CA_Open) {
2938                 WARN_ON(tp->retrans_out != 0);
2939                 tp->retrans_stamp = 0;
2940         } else if (!before(tp->snd_una, tp->high_seq)) {
2941                 switch (icsk->icsk_ca_state) {
2942                 case TCP_CA_Loss:
2943                         icsk->icsk_retransmits = 0;
2944                         if (tcp_try_undo_recovery(sk))
2945                                 return;
2946                         break;
2947
2948                 case TCP_CA_CWR:
2949                         /* CWR is to be held something *above* high_seq
2950                          * is ACKed for CWR bit to reach receiver. */
2951                         if (tp->snd_una != tp->high_seq) {
2952                                 tcp_complete_cwr(sk);
2953                                 tcp_set_ca_state(sk, TCP_CA_Open);
2954                         }
2955                         break;
2956
2957                 case TCP_CA_Disorder:
2958                         tcp_try_undo_dsack(sk);
2959                         if (!tp->undo_marker ||
2960                             /* For SACK case do not Open to allow to undo
2961                              * catching for all duplicate ACKs. */
2962                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2963                                 tp->undo_marker = 0;
2964                                 tcp_set_ca_state(sk, TCP_CA_Open);
2965                         }
2966                         break;
2967
2968                 case TCP_CA_Recovery:
2969                         if (tcp_is_reno(tp))
2970                                 tcp_reset_reno_sack(tp);
2971                         if (tcp_try_undo_recovery(sk))
2972                                 return;
2973                         tcp_complete_cwr(sk);
2974                         break;
2975                 }
2976         }
2977
2978         /* F. Process state. */
2979         switch (icsk->icsk_ca_state) {
2980         case TCP_CA_Recovery:
2981                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2982                         if (tcp_is_reno(tp) && is_dupack)
2983                                 tcp_add_reno_sack(sk);
2984                 } else
2985                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2986                 break;
2987         case TCP_CA_Loss:
2988                 if (flag & FLAG_DATA_ACKED)
2989                         icsk->icsk_retransmits = 0;
2990                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2991                         tcp_reset_reno_sack(tp);
2992                 if (!tcp_try_undo_loss(sk)) {
2993                         tcp_moderate_cwnd(tp);
2994                         tcp_xmit_retransmit_queue(sk);
2995                         return;
2996                 }
2997                 if (icsk->icsk_ca_state != TCP_CA_Open)
2998                         return;
2999                 /* Loss is undone; fall through to processing in Open state. */
3000         default:
3001                 if (tcp_is_reno(tp)) {
3002                         if (flag & FLAG_SND_UNA_ADVANCED)
3003                                 tcp_reset_reno_sack(tp);
3004                         if (is_dupack)
3005                                 tcp_add_reno_sack(sk);
3006                 }
3007
3008                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3009                         tcp_try_undo_dsack(sk);
3010
3011                 if (!tcp_time_to_recover(sk)) {
3012                         tcp_try_to_open(sk, flag);
3013                         return;
3014                 }
3015
3016                 /* MTU probe failure: don't reduce cwnd */
3017                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3018                     icsk->icsk_mtup.probe_size &&
3019                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3020                         tcp_mtup_probe_failed(sk);
3021                         /* Restores the reduction we did in tcp_mtup_probe() */
3022                         tp->snd_cwnd++;
3023                         tcp_simple_retransmit(sk);
3024                         return;
3025                 }
3026
3027                 /* Otherwise enter Recovery state */
3028
3029                 if (tcp_is_reno(tp))
3030                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3031                 else
3032                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3033
3034                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3035
3036                 tp->high_seq = tp->snd_nxt;
3037                 tp->prior_ssthresh = 0;
3038                 tp->undo_marker = tp->snd_una;
3039                 tp->undo_retrans = tp->retrans_out;
3040
3041                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3042                         if (!(flag & FLAG_ECE))
3043                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3044                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3045                         TCP_ECN_queue_cwr(tp);
3046                 }
3047
3048                 tp->bytes_acked = 0;
3049                 tp->snd_cwnd_cnt = 0;
3050                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3051                 fast_rexmit = 1;
3052         }
3053
3054         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3055                 tcp_update_scoreboard(sk, fast_rexmit);
3056         tcp_cwnd_down(sk, flag);
3057         tcp_xmit_retransmit_queue(sk);
3058 }
3059
3060 /* Read draft-ietf-tcplw-high-performance before mucking
3061  * with this code. (Supersedes RFC1323)
3062  */
3063 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3064 {
3065         /* RTTM Rule: A TSecr value received in a segment is used to
3066          * update the averaged RTT measurement only if the segment
3067          * acknowledges some new data, i.e., only if it advances the
3068          * left edge of the send window.
3069          *
3070          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3071          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3072          *
3073          * Changed: reset backoff as soon as we see the first valid sample.
3074          * If we do not, we get strongly overestimated rto. With timestamps
3075          * samples are accepted even from very old segments: f.e., when rtt=1
3076          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3077          * answer arrives rto becomes 120 seconds! If at least one of segments
3078          * in window is lost... Voila.                          --ANK (010210)
3079          */
3080         struct tcp_sock *tp = tcp_sk(sk);
3081         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
3082         tcp_rtt_estimator(sk, seq_rtt);
3083         tcp_set_rto(sk);
3084         inet_csk(sk)->icsk_backoff = 0;
3085         tcp_bound_rto(sk);
3086 }
3087
3088 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3089 {
3090         /* We don't have a timestamp. Can only use
3091          * packets that are not retransmitted to determine
3092          * rtt estimates. Also, we must not reset the
3093          * backoff for rto until we get a non-retransmitted
3094          * packet. This allows us to deal with a situation
3095          * where the network delay has increased suddenly.
3096          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3097          */
3098
3099         if (flag & FLAG_RETRANS_DATA_ACKED)
3100                 return;
3101
3102         tcp_rtt_estimator(sk, seq_rtt);
3103         tcp_set_rto(sk);
3104         inet_csk(sk)->icsk_backoff = 0;
3105         tcp_bound_rto(sk);
3106 }
3107
3108 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3109                                       const s32 seq_rtt)
3110 {
3111         const struct tcp_sock *tp = tcp_sk(sk);
3112         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3113         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3114                 tcp_ack_saw_tstamp(sk, flag);
3115         else if (seq_rtt >= 0)
3116                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3117 }
3118
3119 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3120 {
3121         const struct inet_connection_sock *icsk = inet_csk(sk);
3122         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3123         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3124 }
3125
3126 /* Restart timer after forward progress on connection.
3127  * RFC2988 recommends to restart timer to now+rto.
3128  */
3129 static void tcp_rearm_rto(struct sock *sk)
3130 {
3131         struct tcp_sock *tp = tcp_sk(sk);
3132
3133         if (!tp->packets_out) {
3134                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3135         } else {
3136                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3137                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3138         }
3139 }
3140
3141 /* If we get here, the whole TSO packet has not been acked. */
3142 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3143 {
3144         struct tcp_sock *tp = tcp_sk(sk);
3145         u32 packets_acked;
3146
3147         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3148
3149         packets_acked = tcp_skb_pcount(skb);
3150         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3151                 return 0;
3152         packets_acked -= tcp_skb_pcount(skb);
3153
3154         if (packets_acked) {
3155                 BUG_ON(tcp_skb_pcount(skb) == 0);
3156                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3157         }
3158
3159         return packets_acked;
3160 }
3161
3162 /* Remove acknowledged frames from the retransmission queue. If our packet
3163  * is before the ack sequence we can discard it as it's confirmed to have
3164  * arrived at the other end.
3165  */
3166 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3167                                u32 prior_snd_una)
3168 {
3169         struct tcp_sock *tp = tcp_sk(sk);
3170         const struct inet_connection_sock *icsk = inet_csk(sk);
3171         struct sk_buff *skb;
3172         u32 now = tcp_time_stamp;
3173         int fully_acked = 1;
3174         int flag = 0;
3175         u32 pkts_acked = 0;
3176         u32 reord = tp->packets_out;
3177         u32 prior_sacked = tp->sacked_out;
3178         s32 seq_rtt = -1;
3179         s32 ca_seq_rtt = -1;
3180         ktime_t last_ackt = net_invalid_timestamp();
3181
3182         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3183                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3184                 u32 end_seq;
3185                 u32 acked_pcount;
3186                 u8 sacked = scb->sacked;
3187
3188                 /* Determine how many packets and what bytes were acked, tso and else */
3189                 if (after(scb->end_seq, tp->snd_una)) {
3190                         if (tcp_skb_pcount(skb) == 1 ||
3191                             !after(tp->snd_una, scb->seq))
3192                                 break;
3193
3194                         acked_pcount = tcp_tso_acked(sk, skb);
3195                         if (!acked_pcount)
3196                                 break;
3197
3198                         fully_acked = 0;
3199                         end_seq = tp->snd_una;
3200                 } else {
3201                         acked_pcount = tcp_skb_pcount(skb);
3202                         end_seq = scb->end_seq;
3203                 }
3204
3205                 /* MTU probing checks */
3206                 if (fully_acked && icsk->icsk_mtup.probe_size &&
3207                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3208                         tcp_mtup_probe_success(sk, skb);
3209                 }
3210
3211                 if (sacked & TCPCB_RETRANS) {
3212                         if (sacked & TCPCB_SACKED_RETRANS)
3213                                 tp->retrans_out -= acked_pcount;
3214                         flag |= FLAG_RETRANS_DATA_ACKED;
3215                         ca_seq_rtt = -1;
3216                         seq_rtt = -1;
3217                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3218                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3219                 } else {
3220                         ca_seq_rtt = now - scb->when;
3221                         last_ackt = skb->tstamp;
3222                         if (seq_rtt < 0) {
3223                                 seq_rtt = ca_seq_rtt;
3224                         }
3225                         if (!(sacked & TCPCB_SACKED_ACKED))
3226                                 reord = min(pkts_acked, reord);
3227                 }
3228
3229                 if (sacked & TCPCB_SACKED_ACKED)
3230                         tp->sacked_out -= acked_pcount;
3231                 if (sacked & TCPCB_LOST)
3232                         tp->lost_out -= acked_pcount;
3233
3234                 tp->packets_out -= acked_pcount;
3235                 pkts_acked += acked_pcount;
3236
3237                 /* Initial outgoing SYN's get put onto the write_queue
3238                  * just like anything else we transmit.  It is not
3239                  * true data, and if we misinform our callers that
3240                  * this ACK acks real data, we will erroneously exit
3241                  * connection startup slow start one packet too
3242                  * quickly.  This is severely frowned upon behavior.
3243                  */
3244                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3245                         flag |= FLAG_DATA_ACKED;
3246                 } else {
3247                         flag |= FLAG_SYN_ACKED;
3248                         tp->retrans_stamp = 0;
3249                 }
3250
3251                 if (!fully_acked)
3252                         break;
3253
3254                 tcp_unlink_write_queue(skb, sk);
3255                 sk_wmem_free_skb(sk, skb);
3256                 tp->scoreboard_skb_hint = NULL;
3257                 if (skb == tp->retransmit_skb_hint)
3258                         tp->retransmit_skb_hint = NULL;
3259                 if (skb == tp->lost_skb_hint)
3260                         tp->lost_skb_hint = NULL;
3261         }
3262
3263         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3264                 tp->snd_up = tp->snd_una;
3265
3266         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3267                 flag |= FLAG_SACK_RENEGING;
3268
3269         if (flag & FLAG_ACKED) {
3270                 const struct tcp_congestion_ops *ca_ops
3271                         = inet_csk(sk)->icsk_ca_ops;
3272
3273                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3274                 tcp_rearm_rto(sk);
3275
3276                 if (tcp_is_reno(tp)) {
3277                         tcp_remove_reno_sacks(sk, pkts_acked);
3278                 } else {
3279                         /* Non-retransmitted hole got filled? That's reordering */
3280                         if (reord < prior_fackets)
3281                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3282
3283                         /* No need to care for underflows here because
3284                          * the lost_skb_hint gets NULLed if we're past it
3285                          * (or something non-trivial happened)
3286                          */
3287                         if (tcp_is_fack(tp))
3288                                 tp->lost_cnt_hint -= pkts_acked;
3289                         else
3290                                 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3291                 }
3292
3293                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3294
3295                 if (ca_ops->pkts_acked) {
3296                         s32 rtt_us = -1;
3297
3298                         /* Is the ACK triggering packet unambiguous? */
3299                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3300                                 /* High resolution needed and available? */
3301                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3302                                     !ktime_equal(last_ackt,
3303                                                  net_invalid_timestamp()))
3304                                         rtt_us = ktime_us_delta(ktime_get_real(),
3305                                                                 last_ackt);
3306                                 else if (ca_seq_rtt > 0)
3307                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3308                         }
3309
3310                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3311                 }
3312         }
3313
3314 #if FASTRETRANS_DEBUG > 0
3315         WARN_ON((int)tp->sacked_out < 0);
3316         WARN_ON((int)tp->lost_out < 0);
3317         WARN_ON((int)tp->retrans_out < 0);
3318         if (!tp->packets_out && tcp_is_sack(tp)) {
3319                 icsk = inet_csk(sk);
3320                 if (tp->lost_out) {
3321                         printk(KERN_DEBUG "Leak l=%u %d\n",
3322                                tp->lost_out, icsk->icsk_ca_state);
3323                         tp->lost_out = 0;
3324                 }
3325                 if (tp->sacked_out) {
3326                         printk(KERN_DEBUG "Leak s=%u %d\n",
3327                                tp->sacked_out, icsk->icsk_ca_state);
3328                         tp->sacked_out = 0;
3329                 }
3330                 if (tp->retrans_out) {
3331                         printk(KERN_DEBUG "Leak r=%u %d\n",
3332                                tp->retrans_out, icsk->icsk_ca_state);
3333                         tp->retrans_out = 0;
3334                 }
3335         }
3336 #endif
3337         return flag;
3338 }
3339
3340 static void tcp_ack_probe(struct sock *sk)
3341 {
3342         const struct tcp_sock *tp = tcp_sk(sk);
3343         struct inet_connection_sock *icsk = inet_csk(sk);
3344
3345         /* Was it a usable window open? */
3346
3347         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3348                 icsk->icsk_backoff = 0;
3349                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3350                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3351                  * This function is not for random using!
3352                  */
3353         } else {
3354                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3355                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3356                                           TCP_RTO_MAX);
3357         }
3358 }
3359
3360 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3361 {
3362         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3363                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3364 }
3365
3366 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3367 {
3368         const struct tcp_sock *tp = tcp_sk(sk);
3369         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3370                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3371 }
3372
3373 /* Check that window update is acceptable.
3374  * The function assumes that snd_una<=ack<=snd_next.
3375  */
3376 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3377                                         const u32 ack, const u32 ack_seq,
3378                                         const u32 nwin)
3379 {
3380         return (after(ack, tp->snd_una) ||
3381                 after(ack_seq, tp->snd_wl1) ||
3382                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3383 }
3384
3385 /* Update our send window.
3386  *
3387  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3388  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3389  */
3390 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3391                                  u32 ack_seq)
3392 {
3393         struct tcp_sock *tp = tcp_sk(sk);
3394         int flag = 0;
3395         u32 nwin = ntohs(tcp_hdr(skb)->window);
3396
3397         if (likely(!tcp_hdr(skb)->syn))
3398                 nwin <<= tp->rx_opt.snd_wscale;
3399
3400         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3401                 flag |= FLAG_WIN_UPDATE;
3402                 tcp_update_wl(tp, ack, ack_seq);
3403
3404                 if (tp->snd_wnd != nwin) {
3405                         tp->snd_wnd = nwin;
3406
3407                         /* Note, it is the only place, where
3408                          * fast path is recovered for sending TCP.
3409                          */
3410                         tp->pred_flags = 0;
3411                         tcp_fast_path_check(sk);
3412
3413                         if (nwin > tp->max_window) {
3414                                 tp->max_window = nwin;
3415                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3416                         }
3417                 }
3418         }
3419
3420         tp->snd_una = ack;
3421
3422         return flag;
3423 }
3424
3425 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3426  * continue in congestion avoidance.
3427  */
3428 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3429 {
3430         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3431         tp->snd_cwnd_cnt = 0;
3432         tp->bytes_acked = 0;
3433         TCP_ECN_queue_cwr(tp);
3434         tcp_moderate_cwnd(tp);
3435 }
3436
3437 /* A conservative spurious RTO response algorithm: reduce cwnd using
3438  * rate halving and continue in congestion avoidance.
3439  */
3440 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3441 {
3442         tcp_enter_cwr(sk, 0);
3443 }
3444
3445 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3446 {
3447         if (flag & FLAG_ECE)
3448                 tcp_ratehalving_spur_to_response(sk);
3449         else
3450                 tcp_undo_cwr(sk, 1);
3451 }
3452
3453 /* F-RTO spurious RTO detection algorithm (RFC4138)
3454  *
3455  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3456  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3457  * window (but not to or beyond highest sequence sent before RTO):
3458  *   On First ACK,  send two new segments out.
3459  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3460  *                  algorithm is not part of the F-RTO detection algorithm
3461  *                  given in RFC4138 but can be selected separately).
3462  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3463  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3464  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3465  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3466  *
3467  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3468  * original window even after we transmit two new data segments.
3469  *
3470  * SACK version:
3471  *   on first step, wait until first cumulative ACK arrives, then move to
3472  *   the second step. In second step, the next ACK decides.
3473  *
3474  * F-RTO is implemented (mainly) in four functions:
3475  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3476  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3477  *     called when tcp_use_frto() showed green light
3478  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3479  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3480  *     to prove that the RTO is indeed spurious. It transfers the control
3481  *     from F-RTO to the conventional RTO recovery
3482  */
3483 static int tcp_process_frto(struct sock *sk, int flag)
3484 {
3485         struct tcp_sock *tp = tcp_sk(sk);
3486
3487         tcp_verify_left_out(tp);
3488
3489         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3490         if (flag & FLAG_DATA_ACKED)
3491                 inet_csk(sk)->icsk_retransmits = 0;
3492
3493         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3494             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3495                 tp->undo_marker = 0;
3496
3497         if (!before(tp->snd_una, tp->frto_highmark)) {
3498                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3499                 return 1;
3500         }
3501
3502         if (!tcp_is_sackfrto(tp)) {
3503                 /* RFC4138 shortcoming in step 2; should also have case c):
3504                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3505                  * data, winupdate
3506                  */
3507                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3508                         return 1;
3509
3510                 if (!(flag & FLAG_DATA_ACKED)) {
3511                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3512                                             flag);
3513                         return 1;
3514                 }
3515         } else {
3516                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3517                         /* Prevent sending of new data. */
3518                         tp->snd_cwnd = min(tp->snd_cwnd,
3519                                            tcp_packets_in_flight(tp));
3520                         return 1;
3521                 }
3522
3523                 if ((tp->frto_counter >= 2) &&
3524                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3525                      ((flag & FLAG_DATA_SACKED) &&
3526                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3527                         /* RFC4138 shortcoming (see comment above) */
3528                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3529                             (flag & FLAG_NOT_DUP))
3530                                 return 1;
3531
3532                         tcp_enter_frto_loss(sk, 3, flag);
3533                         return 1;
3534                 }
3535         }
3536
3537         if (tp->frto_counter == 1) {
3538                 /* tcp_may_send_now needs to see updated state */
3539                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3540                 tp->frto_counter = 2;
3541
3542                 if (!tcp_may_send_now(sk))
3543                         tcp_enter_frto_loss(sk, 2, flag);
3544
3545                 return 1;
3546         } else {
3547                 switch (sysctl_tcp_frto_response) {
3548                 case 2:
3549                         tcp_undo_spur_to_response(sk, flag);
3550                         break;
3551                 case 1:
3552                         tcp_conservative_spur_to_response(tp);
3553                         break;
3554                 default:
3555                         tcp_ratehalving_spur_to_response(sk);
3556                         break;
3557                 }
3558                 tp->frto_counter = 0;
3559                 tp->undo_marker = 0;
3560                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3561         }
3562         return 0;
3563 }
3564
3565 /* This routine deals with incoming acks, but not outgoing ones. */
3566 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3567 {
3568         struct inet_connection_sock *icsk = inet_csk(sk);
3569         struct tcp_sock *tp = tcp_sk(sk);
3570         u32 prior_snd_una = tp->snd_una;
3571         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3572         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3573         u32 prior_in_flight;
3574         u32 prior_fackets;
3575         int prior_packets;
3576         int frto_cwnd = 0;
3577
3578         /* If the ack is newer than sent or older than previous acks
3579          * then we can probably ignore it.
3580          */
3581         if (after(ack, tp->snd_nxt))
3582                 goto uninteresting_ack;
3583
3584         if (before(ack, prior_snd_una))
3585                 goto old_ack;
3586
3587         if (after(ack, prior_snd_una))
3588                 flag |= FLAG_SND_UNA_ADVANCED;
3589
3590         if (sysctl_tcp_abc) {
3591                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3592                         tp->bytes_acked += ack - prior_snd_una;
3593                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3594                         /* we assume just one segment left network */
3595                         tp->bytes_acked += min(ack - prior_snd_una,
3596                                                tp->mss_cache);
3597         }
3598
3599         prior_fackets = tp->fackets_out;
3600         prior_in_flight = tcp_packets_in_flight(tp);
3601
3602         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3603                 /* Window is constant, pure forward advance.
3604                  * No more checks are required.
3605                  * Note, we use the fact that SND.UNA>=SND.WL2.
3606                  */
3607                 tcp_update_wl(tp, ack, ack_seq);
3608                 tp->snd_una = ack;
3609                 flag |= FLAG_WIN_UPDATE;
3610
3611                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3612
3613                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3614         } else {
3615                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3616                         flag |= FLAG_DATA;
3617                 else
3618                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3619
3620                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3621
3622                 if (TCP_SKB_CB(skb)->sacked)
3623                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3624
3625                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3626                         flag |= FLAG_ECE;
3627
3628                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3629         }
3630
3631         /* We passed data and got it acked, remove any soft error
3632          * log. Something worked...
3633          */
3634         sk->sk_err_soft = 0;
3635         icsk->icsk_probes_out = 0;
3636         tp->rcv_tstamp = tcp_time_stamp;
3637         prior_packets = tp->packets_out;
3638         if (!prior_packets)
3639                 goto no_queue;
3640
3641         /* See if we can take anything off of the retransmit queue. */
3642         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3643
3644         if (tp->frto_counter)
3645                 frto_cwnd = tcp_process_frto(sk, flag);
3646         /* Guarantee sacktag reordering detection against wrap-arounds */
3647         if (before(tp->frto_highmark, tp->snd_una))
3648                 tp->frto_highmark = 0;
3649
3650         if (tcp_ack_is_dubious(sk, flag)) {
3651                 /* Advance CWND, if state allows this. */
3652                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3653                     tcp_may_raise_cwnd(sk, flag))
3654                         tcp_cong_avoid(sk, ack, prior_in_flight);
3655                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3656                                       flag);
3657         } else {
3658                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3659                         tcp_cong_avoid(sk, ack, prior_in_flight);
3660         }
3661
3662         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3663                 dst_confirm(sk->sk_dst_cache);
3664
3665         return 1;
3666
3667 no_queue:
3668         /* If this ack opens up a zero window, clear backoff.  It was
3669          * being used to time the probes, and is probably far higher than
3670          * it needs to be for normal retransmission.
3671          */
3672         if (tcp_send_head(sk))
3673                 tcp_ack_probe(sk);
3674         return 1;
3675
3676 old_ack:
3677         if (TCP_SKB_CB(skb)->sacked) {
3678                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3679                 if (icsk->icsk_ca_state == TCP_CA_Open)
3680                         tcp_try_keep_open(sk);
3681         }
3682
3683 uninteresting_ack:
3684         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3685         return 0;
3686 }
3687
3688 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3689  * But, this can also be called on packets in the established flow when
3690  * the fast version below fails.
3691  */
3692 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3693                        int estab)
3694 {
3695         unsigned char *ptr;
3696         struct tcphdr *th = tcp_hdr(skb);
3697         int length = (th->doff * 4) - sizeof(struct tcphdr);
3698
3699         ptr = (unsigned char *)(th + 1);
3700         opt_rx->saw_tstamp = 0;
3701
3702         while (length > 0) {
3703                 int opcode = *ptr++;
3704                 int opsize;
3705
3706                 switch (opcode) {
3707                 case TCPOPT_EOL:
3708                         return;
3709                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3710                         length--;
3711                         continue;
3712                 default:
3713                         opsize = *ptr++;
3714                         if (opsize < 2) /* "silly options" */
3715                                 return;
3716                         if (opsize > length)
3717                                 return; /* don't parse partial options */
3718                         switch (opcode) {
3719                         case TCPOPT_MSS:
3720                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3721                                         u16 in_mss = get_unaligned_be16(ptr);
3722                                         if (in_mss) {
3723                                                 if (opt_rx->user_mss &&
3724                                                     opt_rx->user_mss < in_mss)
3725                                                         in_mss = opt_rx->user_mss;
3726                                                 opt_rx->mss_clamp = in_mss;
3727                                         }
3728                                 }
3729                                 break;
3730                         case TCPOPT_WINDOW:
3731                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3732                                     !estab && sysctl_tcp_window_scaling) {
3733                                         __u8 snd_wscale = *(__u8 *)ptr;
3734                                         opt_rx->wscale_ok = 1;
3735                                         if (snd_wscale > 14) {
3736                                                 if (net_ratelimit())
3737                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3738                                                                "scaling value %d >14 received.\n",
3739                                                                snd_wscale);
3740                                                 snd_wscale = 14;
3741                                         }
3742                                         opt_rx->snd_wscale = snd_wscale;
3743                                 }
3744                                 break;
3745                         case TCPOPT_TIMESTAMP:
3746                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3747                                     ((estab && opt_rx->tstamp_ok) ||
3748                                      (!estab && sysctl_tcp_timestamps))) {
3749                                         opt_rx->saw_tstamp = 1;
3750                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3751                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3752                                 }
3753                                 break;
3754                         case TCPOPT_SACK_PERM:
3755                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3756                                     !estab && sysctl_tcp_sack) {
3757                                         opt_rx->sack_ok = 1;
3758                                         tcp_sack_reset(opt_rx);
3759                                 }
3760                                 break;
3761
3762                         case TCPOPT_SACK:
3763                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3764                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3765                                    opt_rx->sack_ok) {
3766                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3767                                 }
3768                                 break;
3769 #ifdef CONFIG_TCP_MD5SIG
3770                         case TCPOPT_MD5SIG:
3771                                 /*
3772                                  * The MD5 Hash has already been
3773                                  * checked (see tcp_v{4,6}_do_rcv()).
3774                                  */
3775                                 break;
3776 #endif
3777                         }
3778
3779                         ptr += opsize-2;
3780                         length -= opsize;
3781                 }
3782         }
3783 }
3784
3785 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3786 {
3787         __be32 *ptr = (__be32 *)(th + 1);
3788
3789         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3790                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3791                 tp->rx_opt.saw_tstamp = 1;
3792                 ++ptr;
3793                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3794                 ++ptr;
3795                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3796                 return 1;
3797         }
3798         return 0;
3799 }
3800
3801 /* Fast parse options. This hopes to only see timestamps.
3802  * If it is wrong it falls back on tcp_parse_options().
3803  */
3804 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3805                                   struct tcp_sock *tp)
3806 {
3807         if (th->doff == sizeof(struct tcphdr) >> 2) {
3808                 tp->rx_opt.saw_tstamp = 0;
3809                 return 0;
3810         } else if (tp->rx_opt.tstamp_ok &&
3811                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3812                 if (tcp_parse_aligned_timestamp(tp, th))
3813                         return 1;
3814         }
3815         tcp_parse_options(skb, &tp->rx_opt, 1);
3816         return 1;
3817 }
3818
3819 #ifdef CONFIG_TCP_MD5SIG
3820 /*
3821  * Parse MD5 Signature option
3822  */
3823 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3824 {
3825         int length = (th->doff << 2) - sizeof (*th);
3826         u8 *ptr = (u8*)(th + 1);
3827
3828         /* If the TCP option is too short, we can short cut */
3829         if (length < TCPOLEN_MD5SIG)
3830                 return NULL;
3831
3832         while (length > 0) {
3833                 int opcode = *ptr++;
3834                 int opsize;
3835
3836                 switch(opcode) {
3837                 case TCPOPT_EOL:
3838                         return NULL;
3839                 case TCPOPT_NOP:
3840                         length--;
3841                         continue;
3842                 default:
3843                         opsize = *ptr++;
3844                         if (opsize < 2 || opsize > length)
3845                                 return NULL;
3846                         if (opcode == TCPOPT_MD5SIG)
3847                                 return ptr;
3848                 }
3849                 ptr += opsize - 2;
3850                 length -= opsize;
3851         }
3852         return NULL;
3853 }
3854 #endif
3855
3856 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3857 {
3858         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3859         tp->rx_opt.ts_recent_stamp = get_seconds();
3860 }
3861
3862 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3863 {
3864         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3865                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3866                  * extra check below makes sure this can only happen
3867                  * for pure ACK frames.  -DaveM
3868                  *
3869                  * Not only, also it occurs for expired timestamps.
3870                  */
3871
3872                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3873                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3874                         tcp_store_ts_recent(tp);
3875         }
3876 }
3877
3878 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3879  *
3880  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3881  * it can pass through stack. So, the following predicate verifies that
3882  * this segment is not used for anything but congestion avoidance or
3883  * fast retransmit. Moreover, we even are able to eliminate most of such
3884  * second order effects, if we apply some small "replay" window (~RTO)
3885  * to timestamp space.
3886  *
3887  * All these measures still do not guarantee that we reject wrapped ACKs
3888  * on networks with high bandwidth, when sequence space is recycled fastly,
3889  * but it guarantees that such events will be very rare and do not affect
3890  * connection seriously. This doesn't look nice, but alas, PAWS is really
3891  * buggy extension.
3892  *
3893  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3894  * states that events when retransmit arrives after original data are rare.
3895  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3896  * the biggest problem on large power networks even with minor reordering.
3897  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3898  * up to bandwidth of 18Gigabit/sec. 8) ]
3899  */
3900
3901 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3902 {
3903         struct tcp_sock *tp = tcp_sk(sk);
3904         struct tcphdr *th = tcp_hdr(skb);
3905         u32 seq = TCP_SKB_CB(skb)->seq;
3906         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3907
3908         return (/* 1. Pure ACK with correct sequence number. */
3909                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3910
3911                 /* 2. ... and duplicate ACK. */
3912                 ack == tp->snd_una &&
3913
3914                 /* 3. ... and does not update window. */
3915                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3916
3917                 /* 4. ... and sits in replay window. */
3918                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3919 }
3920
3921 static inline int tcp_paws_discard(const struct sock *sk,
3922                                    const struct sk_buff *skb)
3923 {
3924         const struct tcp_sock *tp = tcp_sk(sk);
3925         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3926                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3927                 !tcp_disordered_ack(sk, skb));
3928 }
3929
3930 /* Check segment sequence number for validity.
3931  *
3932  * Segment controls are considered valid, if the segment
3933  * fits to the window after truncation to the window. Acceptability
3934  * of data (and SYN, FIN, of course) is checked separately.
3935  * See tcp_data_queue(), for example.
3936  *
3937  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3938  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3939  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3940  * (borrowed from freebsd)
3941  */
3942
3943 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3944 {
3945         return  !before(end_seq, tp->rcv_wup) &&
3946                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3947 }
3948
3949 /* When we get a reset we do this. */
3950 static void tcp_reset(struct sock *sk)
3951 {
3952         /* We want the right error as BSD sees it (and indeed as we do). */
3953         switch (sk->sk_state) {
3954         case TCP_SYN_SENT:
3955                 sk->sk_err = ECONNREFUSED;
3956                 break;
3957         case TCP_CLOSE_WAIT:
3958                 sk->sk_err = EPIPE;
3959                 break;
3960         case TCP_CLOSE:
3961                 return;
3962         default:
3963                 sk->sk_err = ECONNRESET;
3964         }
3965
3966         if (!sock_flag(sk, SOCK_DEAD))
3967                 sk->sk_error_report(sk);
3968
3969         tcp_done(sk);
3970 }
3971
3972 /*
3973  *      Process the FIN bit. This now behaves as it is supposed to work
3974  *      and the FIN takes effect when it is validly part of sequence
3975  *      space. Not before when we get holes.
3976  *
3977  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3978  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3979  *      TIME-WAIT)
3980  *
3981  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3982  *      close and we go into CLOSING (and later onto TIME-WAIT)
3983  *
3984  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3985  */
3986 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3987 {
3988         struct tcp_sock *tp = tcp_sk(sk);
3989
3990         inet_csk_schedule_ack(sk);
3991
3992         sk->sk_shutdown |= RCV_SHUTDOWN;
3993         sock_set_flag(sk, SOCK_DONE);
3994
3995         switch (sk->sk_state) {
3996         case TCP_SYN_RECV:
3997         case TCP_ESTABLISHED:
3998                 /* Move to CLOSE_WAIT */
3999                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4000                 inet_csk(sk)->icsk_ack.pingpong = 1;
4001                 break;
4002
4003         case TCP_CLOSE_WAIT:
4004         case TCP_CLOSING:
4005                 /* Received a retransmission of the FIN, do
4006                  * nothing.
4007                  */
4008                 break;
4009         case TCP_LAST_ACK:
4010                 /* RFC793: Remain in the LAST-ACK state. */
4011                 break;
4012
4013         case TCP_FIN_WAIT1:
4014                 /* This case occurs when a simultaneous close
4015                  * happens, we must ack the received FIN and
4016                  * enter the CLOSING state.
4017                  */
4018                 tcp_send_ack(sk);
4019                 tcp_set_state(sk, TCP_CLOSING);
4020                 break;
4021         case TCP_FIN_WAIT2:
4022                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4023                 tcp_send_ack(sk);
4024                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4025                 break;
4026         default:
4027                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4028                  * cases we should never reach this piece of code.
4029                  */
4030                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4031                        __func__, sk->sk_state);
4032                 break;
4033         }
4034
4035         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4036          * Probably, we should reset in this case. For now drop them.
4037          */
4038         __skb_queue_purge(&tp->out_of_order_queue);
4039         if (tcp_is_sack(tp))
4040                 tcp_sack_reset(&tp->rx_opt);
4041         sk_mem_reclaim(sk);
4042
4043         if (!sock_flag(sk, SOCK_DEAD)) {
4044                 sk->sk_state_change(sk);
4045
4046                 /* Do not send POLL_HUP for half duplex close. */
4047                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4048                     sk->sk_state == TCP_CLOSE)
4049                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4050                 else
4051                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4052         }
4053 }
4054
4055 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4056                                   u32 end_seq)
4057 {
4058         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4059                 if (before(seq, sp->start_seq))
4060                         sp->start_seq = seq;
4061                 if (after(end_seq, sp->end_seq))
4062                         sp->end_seq = end_seq;
4063                 return 1;
4064         }
4065         return 0;
4066 }
4067
4068 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4069 {
4070         struct tcp_sock *tp = tcp_sk(sk);
4071
4072         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4073                 int mib_idx;
4074
4075                 if (before(seq, tp->rcv_nxt))
4076                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4077                 else
4078                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4079
4080                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4081
4082                 tp->rx_opt.dsack = 1;
4083                 tp->duplicate_sack[0].start_seq = seq;
4084                 tp->duplicate_sack[0].end_seq = end_seq;
4085                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4086         }
4087 }
4088
4089 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4090 {
4091         struct tcp_sock *tp = tcp_sk(sk);
4092
4093         if (!tp->rx_opt.dsack)
4094                 tcp_dsack_set(sk, seq, end_seq);
4095         else
4096                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4097 }
4098
4099 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4100 {
4101         struct tcp_sock *tp = tcp_sk(sk);
4102
4103         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4104             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4105                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4106                 tcp_enter_quickack_mode(sk);
4107
4108                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4109                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4110
4111                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4112                                 end_seq = tp->rcv_nxt;
4113                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4114                 }
4115         }
4116
4117         tcp_send_ack(sk);
4118 }
4119
4120 /* These routines update the SACK block as out-of-order packets arrive or
4121  * in-order packets close up the sequence space.
4122  */
4123 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4124 {
4125         int this_sack;
4126         struct tcp_sack_block *sp = &tp->selective_acks[0];
4127         struct tcp_sack_block *swalk = sp + 1;
4128
4129         /* See if the recent change to the first SACK eats into
4130          * or hits the sequence space of other SACK blocks, if so coalesce.
4131          */
4132         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4133                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4134                         int i;
4135
4136                         /* Zap SWALK, by moving every further SACK up by one slot.
4137                          * Decrease num_sacks.
4138                          */
4139                         tp->rx_opt.num_sacks--;
4140                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4141                                                tp->rx_opt.dsack;
4142                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4143                                 sp[i] = sp[i + 1];
4144                         continue;
4145                 }
4146                 this_sack++, swalk++;
4147         }
4148 }
4149
4150 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4151                                  struct tcp_sack_block *sack2)
4152 {
4153         __u32 tmp;
4154
4155         tmp = sack1->start_seq;
4156         sack1->start_seq = sack2->start_seq;
4157         sack2->start_seq = tmp;
4158
4159         tmp = sack1->end_seq;
4160         sack1->end_seq = sack2->end_seq;
4161         sack2->end_seq = tmp;
4162 }
4163
4164 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4165 {
4166         struct tcp_sock *tp = tcp_sk(sk);
4167         struct tcp_sack_block *sp = &tp->selective_acks[0];
4168         int cur_sacks = tp->rx_opt.num_sacks;
4169         int this_sack;
4170
4171         if (!cur_sacks)
4172                 goto new_sack;
4173
4174         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4175                 if (tcp_sack_extend(sp, seq, end_seq)) {
4176                         /* Rotate this_sack to the first one. */
4177                         for (; this_sack > 0; this_sack--, sp--)
4178                                 tcp_sack_swap(sp, sp - 1);
4179                         if (cur_sacks > 1)
4180                                 tcp_sack_maybe_coalesce(tp);
4181                         return;
4182                 }
4183         }
4184
4185         /* Could not find an adjacent existing SACK, build a new one,
4186          * put it at the front, and shift everyone else down.  We
4187          * always know there is at least one SACK present already here.
4188          *
4189          * If the sack array is full, forget about the last one.
4190          */
4191         if (this_sack >= TCP_NUM_SACKS) {
4192                 this_sack--;
4193                 tp->rx_opt.num_sacks--;
4194                 sp--;
4195         }
4196         for (; this_sack > 0; this_sack--, sp--)
4197                 *sp = *(sp - 1);
4198
4199 new_sack:
4200         /* Build the new head SACK, and we're done. */
4201         sp->start_seq = seq;
4202         sp->end_seq = end_seq;
4203         tp->rx_opt.num_sacks++;
4204         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4205 }
4206
4207 /* RCV.NXT advances, some SACKs should be eaten. */
4208
4209 static void tcp_sack_remove(struct tcp_sock *tp)
4210 {
4211         struct tcp_sack_block *sp = &tp->selective_acks[0];
4212         int num_sacks = tp->rx_opt.num_sacks;
4213         int this_sack;
4214
4215         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4216         if (skb_queue_empty(&tp->out_of_order_queue)) {
4217                 tp->rx_opt.num_sacks = 0;
4218                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4219                 return;
4220         }
4221
4222         for (this_sack = 0; this_sack < num_sacks;) {
4223                 /* Check if the start of the sack is covered by RCV.NXT. */
4224                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4225                         int i;
4226
4227                         /* RCV.NXT must cover all the block! */
4228                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4229
4230                         /* Zap this SACK, by moving forward any other SACKS. */
4231                         for (i=this_sack+1; i < num_sacks; i++)
4232                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4233                         num_sacks--;
4234                         continue;
4235                 }
4236                 this_sack++;
4237                 sp++;
4238         }
4239         if (num_sacks != tp->rx_opt.num_sacks) {
4240                 tp->rx_opt.num_sacks = num_sacks;
4241                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4242                                        tp->rx_opt.dsack;
4243         }
4244 }
4245
4246 /* This one checks to see if we can put data from the
4247  * out_of_order queue into the receive_queue.
4248  */
4249 static void tcp_ofo_queue(struct sock *sk)
4250 {
4251         struct tcp_sock *tp = tcp_sk(sk);
4252         __u32 dsack_high = tp->rcv_nxt;
4253         struct sk_buff *skb;
4254
4255         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4256                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4257                         break;
4258
4259                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4260                         __u32 dsack = dsack_high;
4261                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4262                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4263                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4264                 }
4265
4266                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4267                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4268                         __skb_unlink(skb, &tp->out_of_order_queue);
4269                         __kfree_skb(skb);
4270                         continue;
4271                 }
4272                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4273                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4274                            TCP_SKB_CB(skb)->end_seq);
4275
4276                 __skb_unlink(skb, &tp->out_of_order_queue);
4277                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4278                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4279                 if (tcp_hdr(skb)->fin)
4280                         tcp_fin(skb, sk, tcp_hdr(skb));
4281         }
4282 }
4283
4284 static int tcp_prune_ofo_queue(struct sock *sk);
4285 static int tcp_prune_queue(struct sock *sk);
4286
4287 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4288 {
4289         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4290             !sk_rmem_schedule(sk, size)) {
4291
4292                 if (tcp_prune_queue(sk) < 0)
4293                         return -1;
4294
4295                 if (!sk_rmem_schedule(sk, size)) {
4296                         if (!tcp_prune_ofo_queue(sk))
4297                                 return -1;
4298
4299                         if (!sk_rmem_schedule(sk, size))
4300                                 return -1;
4301                 }
4302         }
4303         return 0;
4304 }
4305
4306 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4307 {
4308         struct tcphdr *th = tcp_hdr(skb);
4309         struct tcp_sock *tp = tcp_sk(sk);
4310         int eaten = -1;
4311
4312         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4313                 goto drop;
4314
4315         __skb_pull(skb, th->doff * 4);
4316
4317         TCP_ECN_accept_cwr(tp, skb);
4318
4319         if (tp->rx_opt.dsack) {
4320                 tp->rx_opt.dsack = 0;
4321                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4322         }
4323
4324         /*  Queue data for delivery to the user.
4325          *  Packets in sequence go to the receive queue.
4326          *  Out of sequence packets to the out_of_order_queue.
4327          */
4328         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4329                 if (tcp_receive_window(tp) == 0)
4330                         goto out_of_window;
4331
4332                 /* Ok. In sequence. In window. */
4333                 if (tp->ucopy.task == current &&
4334                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4335                     sock_owned_by_user(sk) && !tp->urg_data) {
4336                         int chunk = min_t(unsigned int, skb->len,
4337                                           tp->ucopy.len);
4338
4339                         __set_current_state(TASK_RUNNING);
4340
4341                         local_bh_enable();
4342                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4343                                 tp->ucopy.len -= chunk;
4344                                 tp->copied_seq += chunk;
4345                                 eaten = (chunk == skb->len && !th->fin);
4346                                 tcp_rcv_space_adjust(sk);
4347                         }
4348                         local_bh_disable();
4349                 }
4350
4351                 if (eaten <= 0) {
4352 queue_and_out:
4353                         if (eaten < 0 &&
4354                             tcp_try_rmem_schedule(sk, skb->truesize))
4355                                 goto drop;
4356
4357                         skb_set_owner_r(skb, sk);
4358                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4359                 }
4360                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4361                 if (skb->len)
4362                         tcp_event_data_recv(sk, skb);
4363                 if (th->fin)
4364                         tcp_fin(skb, sk, th);
4365
4366                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4367                         tcp_ofo_queue(sk);
4368
4369                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4370                          * gap in queue is filled.
4371                          */
4372                         if (skb_queue_empty(&tp->out_of_order_queue))
4373                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4374                 }
4375
4376                 if (tp->rx_opt.num_sacks)
4377                         tcp_sack_remove(tp);
4378
4379                 tcp_fast_path_check(sk);
4380
4381                 if (eaten > 0)
4382                         __kfree_skb(skb);
4383                 else if (!sock_flag(sk, SOCK_DEAD))
4384                         sk->sk_data_ready(sk, 0);
4385                 return;
4386         }
4387
4388         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4389                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4390                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4391                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4392
4393 out_of_window:
4394                 tcp_enter_quickack_mode(sk);
4395                 inet_csk_schedule_ack(sk);
4396 drop:
4397                 __kfree_skb(skb);
4398                 return;
4399         }
4400
4401         /* Out of window. F.e. zero window probe. */
4402         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4403                 goto out_of_window;
4404
4405         tcp_enter_quickack_mode(sk);
4406
4407         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4408                 /* Partial packet, seq < rcv_next < end_seq */
4409                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4410                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4411                            TCP_SKB_CB(skb)->end_seq);
4412
4413                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4414
4415                 /* If window is closed, drop tail of packet. But after
4416                  * remembering D-SACK for its head made in previous line.
4417                  */
4418                 if (!tcp_receive_window(tp))
4419                         goto out_of_window;
4420                 goto queue_and_out;
4421         }
4422
4423         TCP_ECN_check_ce(tp, skb);
4424
4425         if (tcp_try_rmem_schedule(sk, skb->truesize))
4426                 goto drop;
4427
4428         /* Disable header prediction. */
4429         tp->pred_flags = 0;
4430         inet_csk_schedule_ack(sk);
4431
4432         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4433                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4434
4435         skb_set_owner_r(skb, sk);
4436
4437         if (!skb_peek(&tp->out_of_order_queue)) {
4438                 /* Initial out of order segment, build 1 SACK. */
4439                 if (tcp_is_sack(tp)) {
4440                         tp->rx_opt.num_sacks = 1;
4441                         tp->rx_opt.dsack     = 0;
4442                         tp->rx_opt.eff_sacks = 1;
4443                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4444                         tp->selective_acks[0].end_seq =
4445                                                 TCP_SKB_CB(skb)->end_seq;
4446                 }
4447                 __skb_queue_head(&tp->out_of_order_queue, skb);
4448         } else {
4449                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4450                 u32 seq = TCP_SKB_CB(skb)->seq;
4451                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4452
4453                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4454                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4455
4456                         if (!tp->rx_opt.num_sacks ||
4457                             tp->selective_acks[0].end_seq != seq)
4458                                 goto add_sack;
4459
4460                         /* Common case: data arrive in order after hole. */
4461                         tp->selective_acks[0].end_seq = end_seq;
4462                         return;
4463                 }
4464
4465                 /* Find place to insert this segment. */
4466                 do {
4467                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4468                                 break;
4469                 } while ((skb1 = skb1->prev) !=
4470                          (struct sk_buff *)&tp->out_of_order_queue);
4471
4472                 /* Do skb overlap to previous one? */
4473                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4474                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4475                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4476                                 /* All the bits are present. Drop. */
4477                                 __kfree_skb(skb);
4478                                 tcp_dsack_set(sk, seq, end_seq);
4479                                 goto add_sack;
4480                         }
4481                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4482                                 /* Partial overlap. */
4483                                 tcp_dsack_set(sk, seq,
4484                                               TCP_SKB_CB(skb1)->end_seq);
4485                         } else {
4486                                 skb1 = skb1->prev;
4487                         }
4488                 }
4489                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4490
4491                 /* And clean segments covered by new one as whole. */
4492                 while ((skb1 = skb->next) !=
4493                        (struct sk_buff *)&tp->out_of_order_queue &&
4494                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4495                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4496                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4497                                                  end_seq);
4498                                 break;
4499                         }
4500                         __skb_unlink(skb1, &tp->out_of_order_queue);
4501                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4502                                          TCP_SKB_CB(skb1)->end_seq);
4503                         __kfree_skb(skb1);
4504                 }
4505
4506 add_sack:
4507                 if (tcp_is_sack(tp))
4508                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4509         }
4510 }
4511
4512 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4513                                         struct sk_buff_head *list)
4514 {
4515         struct sk_buff *next = skb->next;
4516
4517         __skb_unlink(skb, list);
4518         __kfree_skb(skb);
4519         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4520
4521         return next;
4522 }
4523
4524 /* Collapse contiguous sequence of skbs head..tail with
4525  * sequence numbers start..end.
4526  * Segments with FIN/SYN are not collapsed (only because this
4527  * simplifies code)
4528  */
4529 static void
4530 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4531              struct sk_buff *head, struct sk_buff *tail,
4532              u32 start, u32 end)
4533 {
4534         struct sk_buff *skb;
4535
4536         /* First, check that queue is collapsible and find
4537          * the point where collapsing can be useful. */
4538         for (skb = head; skb != tail;) {
4539                 /* No new bits? It is possible on ofo queue. */
4540                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4541                         skb = tcp_collapse_one(sk, skb, list);
4542                         continue;
4543                 }
4544
4545                 /* The first skb to collapse is:
4546                  * - not SYN/FIN and
4547                  * - bloated or contains data before "start" or
4548                  *   overlaps to the next one.
4549                  */
4550                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4551                     (tcp_win_from_space(skb->truesize) > skb->len ||
4552                      before(TCP_SKB_CB(skb)->seq, start) ||
4553                      (skb->next != tail &&
4554                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4555                         break;
4556
4557                 /* Decided to skip this, advance start seq. */
4558                 start = TCP_SKB_CB(skb)->end_seq;
4559                 skb = skb->next;
4560         }
4561         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4562                 return;
4563
4564         while (before(start, end)) {
4565                 struct sk_buff *nskb;
4566                 unsigned int header = skb_headroom(skb);
4567                 int copy = SKB_MAX_ORDER(header, 0);
4568
4569                 /* Too big header? This can happen with IPv6. */
4570                 if (copy < 0)
4571                         return;
4572                 if (end - start < copy)
4573                         copy = end - start;
4574                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4575                 if (!nskb)
4576                         return;
4577
4578                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4579                 skb_set_network_header(nskb, (skb_network_header(skb) -
4580                                               skb->head));
4581                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4582                                                 skb->head));
4583                 skb_reserve(nskb, header);
4584                 memcpy(nskb->head, skb->head, header);
4585                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4586                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4587                 __skb_queue_before(list, skb, nskb);
4588                 skb_set_owner_r(nskb, sk);
4589
4590                 /* Copy data, releasing collapsed skbs. */
4591                 while (copy > 0) {
4592                         int offset = start - TCP_SKB_CB(skb)->seq;
4593                         int size = TCP_SKB_CB(skb)->end_seq - start;
4594
4595                         BUG_ON(offset < 0);
4596                         if (size > 0) {
4597                                 size = min(copy, size);
4598                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4599                                         BUG();
4600                                 TCP_SKB_CB(nskb)->end_seq += size;
4601                                 copy -= size;
4602                                 start += size;
4603                         }
4604                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4605                                 skb = tcp_collapse_one(sk, skb, list);
4606                                 if (skb == tail ||
4607                                     tcp_hdr(skb)->syn ||
4608                                     tcp_hdr(skb)->fin)
4609                                         return;
4610                         }
4611                 }
4612         }
4613 }
4614
4615 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4616  * and tcp_collapse() them until all the queue is collapsed.
4617  */
4618 static void tcp_collapse_ofo_queue(struct sock *sk)
4619 {
4620         struct tcp_sock *tp = tcp_sk(sk);
4621         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4622         struct sk_buff *head;
4623         u32 start, end;
4624
4625         if (skb == NULL)
4626                 return;
4627
4628         start = TCP_SKB_CB(skb)->seq;
4629         end = TCP_SKB_CB(skb)->end_seq;
4630         head = skb;
4631
4632         for (;;) {
4633                 skb = skb->next;
4634
4635                 /* Segment is terminated when we see gap or when
4636                  * we are at the end of all the queue. */
4637                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4638                     after(TCP_SKB_CB(skb)->seq, end) ||
4639                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4640                         tcp_collapse(sk, &tp->out_of_order_queue,
4641                                      head, skb, start, end);
4642                         head = skb;
4643                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4644                                 break;
4645                         /* Start new segment */
4646                         start = TCP_SKB_CB(skb)->seq;
4647                         end = TCP_SKB_CB(skb)->end_seq;
4648                 } else {
4649                         if (before(TCP_SKB_CB(skb)->seq, start))
4650                                 start = TCP_SKB_CB(skb)->seq;
4651                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4652                                 end = TCP_SKB_CB(skb)->end_seq;
4653                 }
4654         }
4655 }
4656
4657 /*
4658  * Purge the out-of-order queue.
4659  * Return true if queue was pruned.
4660  */
4661 static int tcp_prune_ofo_queue(struct sock *sk)
4662 {
4663         struct tcp_sock *tp = tcp_sk(sk);
4664         int res = 0;
4665
4666         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4667                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4668                 __skb_queue_purge(&tp->out_of_order_queue);
4669
4670                 /* Reset SACK state.  A conforming SACK implementation will
4671                  * do the same at a timeout based retransmit.  When a connection
4672                  * is in a sad state like this, we care only about integrity
4673                  * of the connection not performance.
4674                  */
4675                 if (tp->rx_opt.sack_ok)
4676                         tcp_sack_reset(&tp->rx_opt);
4677                 sk_mem_reclaim(sk);
4678                 res = 1;
4679         }
4680         return res;
4681 }
4682
4683 /* Reduce allocated memory if we can, trying to get
4684  * the socket within its memory limits again.
4685  *
4686  * Return less than zero if we should start dropping frames
4687  * until the socket owning process reads some of the data
4688  * to stabilize the situation.
4689  */
4690 static int tcp_prune_queue(struct sock *sk)
4691 {
4692         struct tcp_sock *tp = tcp_sk(sk);
4693
4694         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4695
4696         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4697
4698         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4699                 tcp_clamp_window(sk);
4700         else if (tcp_memory_pressure)
4701                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4702
4703         tcp_collapse_ofo_queue(sk);
4704         tcp_collapse(sk, &sk->sk_receive_queue,
4705                      sk->sk_receive_queue.next,
4706                      (struct sk_buff *)&sk->sk_receive_queue,
4707                      tp->copied_seq, tp->rcv_nxt);
4708         sk_mem_reclaim(sk);
4709
4710         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4711                 return 0;
4712
4713         /* Collapsing did not help, destructive actions follow.
4714          * This must not ever occur. */
4715
4716         tcp_prune_ofo_queue(sk);
4717
4718         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4719                 return 0;
4720
4721         /* If we are really being abused, tell the caller to silently
4722          * drop receive data on the floor.  It will get retransmitted
4723          * and hopefully then we'll have sufficient space.
4724          */
4725         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4726
4727         /* Massive buffer overcommit. */
4728         tp->pred_flags = 0;
4729         return -1;
4730 }
4731
4732 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4733  * As additional protections, we do not touch cwnd in retransmission phases,
4734  * and if application hit its sndbuf limit recently.
4735  */
4736 void tcp_cwnd_application_limited(struct sock *sk)
4737 {
4738         struct tcp_sock *tp = tcp_sk(sk);
4739
4740         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4741             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4742                 /* Limited by application or receiver window. */
4743                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4744                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4745                 if (win_used < tp->snd_cwnd) {
4746                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4747                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4748                 }
4749                 tp->snd_cwnd_used = 0;
4750         }
4751         tp->snd_cwnd_stamp = tcp_time_stamp;
4752 }
4753
4754 static int tcp_should_expand_sndbuf(struct sock *sk)
4755 {
4756         struct tcp_sock *tp = tcp_sk(sk);
4757
4758         /* If the user specified a specific send buffer setting, do
4759          * not modify it.
4760          */
4761         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4762                 return 0;
4763
4764         /* If we are under global TCP memory pressure, do not expand.  */
4765         if (tcp_memory_pressure)
4766                 return 0;
4767
4768         /* If we are under soft global TCP memory pressure, do not expand.  */
4769         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4770                 return 0;
4771
4772         /* If we filled the congestion window, do not expand.  */
4773         if (tp->packets_out >= tp->snd_cwnd)
4774                 return 0;
4775
4776         return 1;
4777 }
4778
4779 /* When incoming ACK allowed to free some skb from write_queue,
4780  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4781  * on the exit from tcp input handler.
4782  *
4783  * PROBLEM: sndbuf expansion does not work well with largesend.
4784  */
4785 static void tcp_new_space(struct sock *sk)
4786 {
4787         struct tcp_sock *tp = tcp_sk(sk);
4788
4789         if (tcp_should_expand_sndbuf(sk)) {
4790                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4791                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4792                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4793                                      tp->reordering + 1);
4794                 sndmem *= 2 * demanded;
4795                 if (sndmem > sk->sk_sndbuf)
4796                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4797                 tp->snd_cwnd_stamp = tcp_time_stamp;
4798         }
4799
4800         sk->sk_write_space(sk);
4801 }
4802
4803 static void tcp_check_space(struct sock *sk)
4804 {
4805         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4806                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4807                 if (sk->sk_socket &&
4808                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4809                         tcp_new_space(sk);
4810         }
4811 }
4812
4813 static inline void tcp_data_snd_check(struct sock *sk)
4814 {
4815         tcp_push_pending_frames(sk);
4816         tcp_check_space(sk);
4817 }
4818
4819 /*
4820  * Check if sending an ack is needed.
4821  */
4822 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4823 {
4824         struct tcp_sock *tp = tcp_sk(sk);
4825
4826             /* More than one full frame received... */
4827         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4828              /* ... and right edge of window advances far enough.
4829               * (tcp_recvmsg() will send ACK otherwise). Or...
4830               */
4831              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4832             /* We ACK each frame or... */
4833             tcp_in_quickack_mode(sk) ||
4834             /* We have out of order data. */
4835             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4836                 /* Then ack it now */
4837                 tcp_send_ack(sk);
4838         } else {
4839                 /* Else, send delayed ack. */
4840                 tcp_send_delayed_ack(sk);
4841         }
4842 }
4843
4844 static inline void tcp_ack_snd_check(struct sock *sk)
4845 {
4846         if (!inet_csk_ack_scheduled(sk)) {
4847                 /* We sent a data segment already. */
4848                 return;
4849         }
4850         __tcp_ack_snd_check(sk, 1);
4851 }
4852
4853 /*
4854  *      This routine is only called when we have urgent data
4855  *      signaled. Its the 'slow' part of tcp_urg. It could be
4856  *      moved inline now as tcp_urg is only called from one
4857  *      place. We handle URGent data wrong. We have to - as
4858  *      BSD still doesn't use the correction from RFC961.
4859  *      For 1003.1g we should support a new option TCP_STDURG to permit
4860  *      either form (or just set the sysctl tcp_stdurg).
4861  */
4862
4863 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4864 {
4865         struct tcp_sock *tp = tcp_sk(sk);
4866         u32 ptr = ntohs(th->urg_ptr);
4867
4868         if (ptr && !sysctl_tcp_stdurg)
4869                 ptr--;
4870         ptr += ntohl(th->seq);
4871
4872         /* Ignore urgent data that we've already seen and read. */
4873         if (after(tp->copied_seq, ptr))
4874                 return;
4875
4876         /* Do not replay urg ptr.
4877          *
4878          * NOTE: interesting situation not covered by specs.
4879          * Misbehaving sender may send urg ptr, pointing to segment,
4880          * which we already have in ofo queue. We are not able to fetch
4881          * such data and will stay in TCP_URG_NOTYET until will be eaten
4882          * by recvmsg(). Seems, we are not obliged to handle such wicked
4883          * situations. But it is worth to think about possibility of some
4884          * DoSes using some hypothetical application level deadlock.
4885          */
4886         if (before(ptr, tp->rcv_nxt))
4887                 return;
4888
4889         /* Do we already have a newer (or duplicate) urgent pointer? */
4890         if (tp->urg_data && !after(ptr, tp->urg_seq))
4891                 return;
4892
4893         /* Tell the world about our new urgent pointer. */
4894         sk_send_sigurg(sk);
4895
4896         /* We may be adding urgent data when the last byte read was
4897          * urgent. To do this requires some care. We cannot just ignore
4898          * tp->copied_seq since we would read the last urgent byte again
4899          * as data, nor can we alter copied_seq until this data arrives
4900          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4901          *
4902          * NOTE. Double Dutch. Rendering to plain English: author of comment
4903          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4904          * and expect that both A and B disappear from stream. This is _wrong_.
4905          * Though this happens in BSD with high probability, this is occasional.
4906          * Any application relying on this is buggy. Note also, that fix "works"
4907          * only in this artificial test. Insert some normal data between A and B and we will
4908          * decline of BSD again. Verdict: it is better to remove to trap
4909          * buggy users.
4910          */
4911         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4912             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4913                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4914                 tp->copied_seq++;
4915                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4916                         __skb_unlink(skb, &sk->sk_receive_queue);
4917                         __kfree_skb(skb);
4918                 }
4919         }
4920
4921         tp->urg_data = TCP_URG_NOTYET;
4922         tp->urg_seq = ptr;
4923
4924         /* Disable header prediction. */
4925         tp->pred_flags = 0;
4926 }
4927
4928 /* This is the 'fast' part of urgent handling. */
4929 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4930 {
4931         struct tcp_sock *tp = tcp_sk(sk);
4932
4933         /* Check if we get a new urgent pointer - normally not. */
4934         if (th->urg)
4935                 tcp_check_urg(sk, th);
4936
4937         /* Do we wait for any urgent data? - normally not... */
4938         if (tp->urg_data == TCP_URG_NOTYET) {
4939                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4940                           th->syn;
4941
4942                 /* Is the urgent pointer pointing into this packet? */
4943                 if (ptr < skb->len) {
4944                         u8 tmp;
4945                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4946                                 BUG();
4947                         tp->urg_data = TCP_URG_VALID | tmp;
4948                         if (!sock_flag(sk, SOCK_DEAD))
4949                                 sk->sk_data_ready(sk, 0);
4950                 }
4951         }
4952 }
4953
4954 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4955 {
4956         struct tcp_sock *tp = tcp_sk(sk);
4957         int chunk = skb->len - hlen;
4958         int err;
4959
4960         local_bh_enable();
4961         if (skb_csum_unnecessary(skb))
4962                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4963         else
4964                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4965                                                        tp->ucopy.iov);
4966
4967         if (!err) {
4968                 tp->ucopy.len -= chunk;
4969                 tp->copied_seq += chunk;
4970                 tcp_rcv_space_adjust(sk);
4971         }
4972
4973         local_bh_disable();
4974         return err;
4975 }
4976
4977 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4978                                             struct sk_buff *skb)
4979 {
4980         __sum16 result;
4981
4982         if (sock_owned_by_user(sk)) {
4983                 local_bh_enable();
4984                 result = __tcp_checksum_complete(skb);
4985                 local_bh_disable();
4986         } else {
4987                 result = __tcp_checksum_complete(skb);
4988         }
4989         return result;
4990 }
4991
4992 static inline int tcp_checksum_complete_user(struct sock *sk,
4993                                              struct sk_buff *skb)
4994 {
4995         return !skb_csum_unnecessary(skb) &&
4996                __tcp_checksum_complete_user(sk, skb);
4997 }
4998
4999 #ifdef CONFIG_NET_DMA
5000 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5001                                   int hlen)
5002 {
5003         struct tcp_sock *tp = tcp_sk(sk);
5004         int chunk = skb->len - hlen;
5005         int dma_cookie;
5006         int copied_early = 0;
5007
5008         if (tp->ucopy.wakeup)
5009                 return 0;
5010
5011         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5012                 tp->ucopy.dma_chan = get_softnet_dma();
5013
5014         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5015
5016                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5017                                                          skb, hlen,
5018                                                          tp->ucopy.iov, chunk,
5019                                                          tp->ucopy.pinned_list);
5020
5021                 if (dma_cookie < 0)
5022                         goto out;
5023
5024                 tp->ucopy.dma_cookie = dma_cookie;
5025                 copied_early = 1;
5026
5027                 tp->ucopy.len -= chunk;
5028                 tp->copied_seq += chunk;
5029                 tcp_rcv_space_adjust(sk);
5030
5031                 if ((tp->ucopy.len == 0) ||
5032                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5033                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5034                         tp->ucopy.wakeup = 1;
5035                         sk->sk_data_ready(sk, 0);
5036                 }
5037         } else if (chunk > 0) {
5038                 tp->ucopy.wakeup = 1;
5039                 sk->sk_data_ready(sk, 0);
5040         }
5041 out:
5042         return copied_early;
5043 }
5044 #endif /* CONFIG_NET_DMA */
5045
5046 /* Does PAWS and seqno based validation of an incoming segment, flags will
5047  * play significant role here.
5048  */
5049 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5050                               struct tcphdr *th, int syn_inerr)
5051 {
5052         struct tcp_sock *tp = tcp_sk(sk);
5053
5054         /* RFC1323: H1. Apply PAWS check first. */
5055         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5056             tcp_paws_discard(sk, skb)) {
5057                 if (!th->rst) {
5058                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5059                         tcp_send_dupack(sk, skb);
5060                         goto discard;
5061                 }
5062                 /* Reset is accepted even if it did not pass PAWS. */
5063         }
5064
5065         /* Step 1: check sequence number */
5066         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5067                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5068                  * (RST) segments are validated by checking their SEQ-fields."
5069                  * And page 69: "If an incoming segment is not acceptable,
5070                  * an acknowledgment should be sent in reply (unless the RST
5071                  * bit is set, if so drop the segment and return)".
5072                  */
5073                 if (!th->rst)
5074                         tcp_send_dupack(sk, skb);
5075                 goto discard;
5076         }
5077
5078         /* Step 2: check RST bit */
5079         if (th->rst) {
5080                 tcp_reset(sk);
5081                 goto discard;
5082         }
5083
5084         /* ts_recent update must be made after we are sure that the packet
5085          * is in window.
5086          */
5087         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5088
5089         /* step 3: check security and precedence [ignored] */
5090
5091         /* step 4: Check for a SYN in window. */
5092         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5093                 if (syn_inerr)
5094                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5095                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5096                 tcp_reset(sk);
5097                 return -1;
5098         }
5099
5100         return 1;
5101
5102 discard:
5103         __kfree_skb(skb);
5104         return 0;
5105 }
5106
5107 /*
5108  *      TCP receive function for the ESTABLISHED state.
5109  *
5110  *      It is split into a fast path and a slow path. The fast path is
5111  *      disabled when:
5112  *      - A zero window was announced from us - zero window probing
5113  *        is only handled properly in the slow path.
5114  *      - Out of order segments arrived.
5115  *      - Urgent data is expected.
5116  *      - There is no buffer space left
5117  *      - Unexpected TCP flags/window values/header lengths are received
5118  *        (detected by checking the TCP header against pred_flags)
5119  *      - Data is sent in both directions. Fast path only supports pure senders
5120  *        or pure receivers (this means either the sequence number or the ack
5121  *        value must stay constant)
5122  *      - Unexpected TCP option.
5123  *
5124  *      When these conditions are not satisfied it drops into a standard
5125  *      receive procedure patterned after RFC793 to handle all cases.
5126  *      The first three cases are guaranteed by proper pred_flags setting,
5127  *      the rest is checked inline. Fast processing is turned on in
5128  *      tcp_data_queue when everything is OK.
5129  */
5130 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5131                         struct tcphdr *th, unsigned len)
5132 {
5133         struct tcp_sock *tp = tcp_sk(sk);
5134         int res;
5135
5136         /*
5137          *      Header prediction.
5138          *      The code loosely follows the one in the famous
5139          *      "30 instruction TCP receive" Van Jacobson mail.
5140          *
5141          *      Van's trick is to deposit buffers into socket queue
5142          *      on a device interrupt, to call tcp_recv function
5143          *      on the receive process context and checksum and copy
5144          *      the buffer to user space. smart...
5145          *
5146          *      Our current scheme is not silly either but we take the
5147          *      extra cost of the net_bh soft interrupt processing...
5148          *      We do checksum and copy also but from device to kernel.
5149          */
5150
5151         tp->rx_opt.saw_tstamp = 0;
5152
5153         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5154          *      if header_prediction is to be made
5155          *      'S' will always be tp->tcp_header_len >> 2
5156          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5157          *  turn it off (when there are holes in the receive
5158          *       space for instance)
5159          *      PSH flag is ignored.
5160          */
5161
5162         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5163             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5164                 int tcp_header_len = tp->tcp_header_len;
5165
5166                 /* Timestamp header prediction: tcp_header_len
5167                  * is automatically equal to th->doff*4 due to pred_flags
5168                  * match.
5169                  */
5170
5171                 /* Check timestamp */
5172                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5173                         /* No? Slow path! */
5174                         if (!tcp_parse_aligned_timestamp(tp, th))
5175                                 goto slow_path;
5176
5177                         /* If PAWS failed, check it more carefully in slow path */
5178                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5179                                 goto slow_path;
5180
5181                         /* DO NOT update ts_recent here, if checksum fails
5182                          * and timestamp was corrupted part, it will result
5183                          * in a hung connection since we will drop all
5184                          * future packets due to the PAWS test.
5185                          */
5186                 }
5187
5188                 if (len <= tcp_header_len) {
5189                         /* Bulk data transfer: sender */
5190                         if (len == tcp_header_len) {
5191                                 /* Predicted packet is in window by definition.
5192                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5193                                  * Hence, check seq<=rcv_wup reduces to:
5194                                  */
5195                                 if (tcp_header_len ==
5196                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5197                                     tp->rcv_nxt == tp->rcv_wup)
5198                                         tcp_store_ts_recent(tp);
5199
5200                                 /* We know that such packets are checksummed
5201                                  * on entry.
5202                                  */
5203                                 tcp_ack(sk, skb, 0);
5204                                 __kfree_skb(skb);
5205                                 tcp_data_snd_check(sk);
5206                                 return 0;
5207                         } else { /* Header too small */
5208                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5209                                 goto discard;
5210                         }
5211                 } else {
5212                         int eaten = 0;
5213                         int copied_early = 0;
5214
5215                         if (tp->copied_seq == tp->rcv_nxt &&
5216                             len - tcp_header_len <= tp->ucopy.len) {
5217 #ifdef CONFIG_NET_DMA
5218                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5219                                         copied_early = 1;
5220                                         eaten = 1;
5221                                 }
5222 #endif
5223                                 if (tp->ucopy.task == current &&
5224                                     sock_owned_by_user(sk) && !copied_early) {
5225                                         __set_current_state(TASK_RUNNING);
5226
5227                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5228                                                 eaten = 1;
5229                                 }
5230                                 if (eaten) {
5231                                         /* Predicted packet is in window by definition.
5232                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5233                                          * Hence, check seq<=rcv_wup reduces to:
5234                                          */
5235                                         if (tcp_header_len ==
5236                                             (sizeof(struct tcphdr) +
5237                                              TCPOLEN_TSTAMP_ALIGNED) &&
5238                                             tp->rcv_nxt == tp->rcv_wup)
5239                                                 tcp_store_ts_recent(tp);
5240
5241                                         tcp_rcv_rtt_measure_ts(sk, skb);
5242
5243                                         __skb_pull(skb, tcp_header_len);
5244                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5245                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5246                                 }
5247                                 if (copied_early)
5248                                         tcp_cleanup_rbuf(sk, skb->len);
5249                         }
5250                         if (!eaten) {
5251                                 if (tcp_checksum_complete_user(sk, skb))
5252                                         goto csum_error;
5253
5254                                 /* Predicted packet is in window by definition.
5255                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5256                                  * Hence, check seq<=rcv_wup reduces to:
5257                                  */
5258                                 if (tcp_header_len ==
5259                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5260                                     tp->rcv_nxt == tp->rcv_wup)
5261                                         tcp_store_ts_recent(tp);
5262
5263                                 tcp_rcv_rtt_measure_ts(sk, skb);
5264
5265                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5266                                         goto step5;
5267
5268                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5269
5270                                 /* Bulk data transfer: receiver */
5271                                 __skb_pull(skb, tcp_header_len);
5272                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5273                                 skb_set_owner_r(skb, sk);
5274                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5275                         }
5276
5277                         tcp_event_data_recv(sk, skb);
5278
5279                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5280                                 /* Well, only one small jumplet in fast path... */
5281                                 tcp_ack(sk, skb, FLAG_DATA);
5282                                 tcp_data_snd_check(sk);
5283                                 if (!inet_csk_ack_scheduled(sk))
5284                                         goto no_ack;
5285                         }
5286
5287                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5288                                 __tcp_ack_snd_check(sk, 0);
5289 no_ack:
5290 #ifdef CONFIG_NET_DMA
5291                         if (copied_early)
5292                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5293                         else
5294 #endif
5295                         if (eaten)
5296                                 __kfree_skb(skb);
5297                         else
5298                                 sk->sk_data_ready(sk, 0);
5299                         return 0;
5300                 }
5301         }
5302
5303 slow_path:
5304         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5305                 goto csum_error;
5306
5307         /*
5308          *      Standard slow path.
5309          */
5310
5311         res = tcp_validate_incoming(sk, skb, th, 1);
5312         if (res <= 0)
5313                 return -res;
5314
5315 step5:
5316         if (th->ack)
5317                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5318
5319         tcp_rcv_rtt_measure_ts(sk, skb);
5320
5321         /* Process urgent data. */
5322         tcp_urg(sk, skb, th);
5323
5324         /* step 7: process the segment text */
5325         tcp_data_queue(sk, skb);
5326
5327         tcp_data_snd_check(sk);
5328         tcp_ack_snd_check(sk);
5329         return 0;
5330
5331 csum_error:
5332         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5333
5334 discard:
5335         __kfree_skb(skb);
5336         return 0;
5337 }
5338
5339 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5340                                          struct tcphdr *th, unsigned len)
5341 {
5342         struct tcp_sock *tp = tcp_sk(sk);
5343         struct inet_connection_sock *icsk = inet_csk(sk);
5344         int saved_clamp = tp->rx_opt.mss_clamp;
5345
5346         tcp_parse_options(skb, &tp->rx_opt, 0);
5347
5348         if (th->ack) {
5349                 /* rfc793:
5350                  * "If the state is SYN-SENT then
5351                  *    first check the ACK bit
5352                  *      If the ACK bit is set
5353                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5354                  *        a reset (unless the RST bit is set, if so drop
5355                  *        the segment and return)"
5356                  *
5357                  *  We do not send data with SYN, so that RFC-correct
5358                  *  test reduces to:
5359                  */
5360                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5361                         goto reset_and_undo;
5362
5363                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5364                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5365                              tcp_time_stamp)) {
5366                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5367                         goto reset_and_undo;
5368                 }
5369
5370                 /* Now ACK is acceptable.
5371                  *
5372                  * "If the RST bit is set
5373                  *    If the ACK was acceptable then signal the user "error:
5374                  *    connection reset", drop the segment, enter CLOSED state,
5375                  *    delete TCB, and return."
5376                  */
5377
5378                 if (th->rst) {
5379                         tcp_reset(sk);
5380                         goto discard;
5381                 }
5382
5383                 /* rfc793:
5384                  *   "fifth, if neither of the SYN or RST bits is set then
5385                  *    drop the segment and return."
5386                  *
5387                  *    See note below!
5388                  *                                        --ANK(990513)
5389                  */
5390                 if (!th->syn)
5391                         goto discard_and_undo;
5392
5393                 /* rfc793:
5394                  *   "If the SYN bit is on ...
5395                  *    are acceptable then ...
5396                  *    (our SYN has been ACKed), change the connection
5397                  *    state to ESTABLISHED..."
5398                  */
5399
5400                 TCP_ECN_rcv_synack(tp, th);
5401
5402                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5403                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5404
5405                 /* Ok.. it's good. Set up sequence numbers and
5406                  * move to established.
5407                  */
5408                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5409                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5410
5411                 /* RFC1323: The window in SYN & SYN/ACK segments is
5412                  * never scaled.
5413                  */
5414                 tp->snd_wnd = ntohs(th->window);
5415                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5416
5417                 if (!tp->rx_opt.wscale_ok) {
5418                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5419                         tp->window_clamp = min(tp->window_clamp, 65535U);
5420                 }
5421
5422                 if (tp->rx_opt.saw_tstamp) {
5423                         tp->rx_opt.tstamp_ok       = 1;
5424                         tp->tcp_header_len =
5425                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5426                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5427                         tcp_store_ts_recent(tp);
5428                 } else {
5429                         tp->tcp_header_len = sizeof(struct tcphdr);
5430                 }
5431
5432                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5433                         tcp_enable_fack(tp);
5434
5435                 tcp_mtup_init(sk);
5436                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5437                 tcp_initialize_rcv_mss(sk);
5438
5439                 /* Remember, tcp_poll() does not lock socket!
5440                  * Change state from SYN-SENT only after copied_seq
5441                  * is initialized. */
5442                 tp->copied_seq = tp->rcv_nxt;
5443                 smp_mb();
5444                 tcp_set_state(sk, TCP_ESTABLISHED);
5445
5446                 security_inet_conn_established(sk, skb);
5447
5448                 /* Make sure socket is routed, for correct metrics.  */
5449                 icsk->icsk_af_ops->rebuild_header(sk);
5450
5451                 tcp_init_metrics(sk);
5452
5453                 tcp_init_congestion_control(sk);
5454
5455                 /* Prevent spurious tcp_cwnd_restart() on first data
5456                  * packet.
5457                  */
5458                 tp->lsndtime = tcp_time_stamp;
5459
5460                 tcp_init_buffer_space(sk);
5461
5462                 if (sock_flag(sk, SOCK_KEEPOPEN))
5463                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5464
5465                 if (!tp->rx_opt.snd_wscale)
5466                         __tcp_fast_path_on(tp, tp->snd_wnd);
5467                 else
5468                         tp->pred_flags = 0;
5469
5470                 if (!sock_flag(sk, SOCK_DEAD)) {
5471                         sk->sk_state_change(sk);
5472                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5473                 }
5474
5475                 if (sk->sk_write_pending ||
5476                     icsk->icsk_accept_queue.rskq_defer_accept ||
5477                     icsk->icsk_ack.pingpong) {
5478                         /* Save one ACK. Data will be ready after
5479                          * several ticks, if write_pending is set.
5480                          *
5481                          * It may be deleted, but with this feature tcpdumps
5482                          * look so _wonderfully_ clever, that I was not able
5483                          * to stand against the temptation 8)     --ANK
5484                          */
5485                         inet_csk_schedule_ack(sk);
5486                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5487                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5488                         tcp_incr_quickack(sk);
5489                         tcp_enter_quickack_mode(sk);
5490                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5491                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5492
5493 discard:
5494                         __kfree_skb(skb);
5495                         return 0;
5496                 } else {
5497                         tcp_send_ack(sk);
5498                 }
5499                 return -1;
5500         }
5501
5502         /* No ACK in the segment */
5503
5504         if (th->rst) {
5505                 /* rfc793:
5506                  * "If the RST bit is set
5507                  *
5508                  *      Otherwise (no ACK) drop the segment and return."
5509                  */
5510
5511                 goto discard_and_undo;
5512         }
5513
5514         /* PAWS check. */
5515         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5516             tcp_paws_check(&tp->rx_opt, 0))
5517                 goto discard_and_undo;
5518
5519         if (th->syn) {
5520                 /* We see SYN without ACK. It is attempt of
5521                  * simultaneous connect with crossed SYNs.
5522                  * Particularly, it can be connect to self.
5523                  */
5524                 tcp_set_state(sk, TCP_SYN_RECV);
5525
5526                 if (tp->rx_opt.saw_tstamp) {
5527                         tp->rx_opt.tstamp_ok = 1;
5528                         tcp_store_ts_recent(tp);
5529                         tp->tcp_header_len =
5530                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5531                 } else {
5532                         tp->tcp_header_len = sizeof(struct tcphdr);
5533                 }
5534
5535                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5536                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5537
5538                 /* RFC1323: The window in SYN & SYN/ACK segments is
5539                  * never scaled.
5540                  */
5541                 tp->snd_wnd    = ntohs(th->window);
5542                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5543                 tp->max_window = tp->snd_wnd;
5544
5545                 TCP_ECN_rcv_syn(tp, th);
5546
5547                 tcp_mtup_init(sk);
5548                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5549                 tcp_initialize_rcv_mss(sk);
5550
5551                 tcp_send_synack(sk);
5552 #if 0
5553                 /* Note, we could accept data and URG from this segment.
5554                  * There are no obstacles to make this.
5555                  *
5556                  * However, if we ignore data in ACKless segments sometimes,
5557                  * we have no reasons to accept it sometimes.
5558                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5559                  * is not flawless. So, discard packet for sanity.
5560                  * Uncomment this return to process the data.
5561                  */
5562                 return -1;
5563 #else
5564                 goto discard;
5565 #endif
5566         }
5567         /* "fifth, if neither of the SYN or RST bits is set then
5568          * drop the segment and return."
5569          */
5570
5571 discard_and_undo:
5572         tcp_clear_options(&tp->rx_opt);
5573         tp->rx_opt.mss_clamp = saved_clamp;
5574         goto discard;
5575
5576 reset_and_undo:
5577         tcp_clear_options(&tp->rx_opt);
5578         tp->rx_opt.mss_clamp = saved_clamp;
5579         return 1;
5580 }
5581
5582 /*
5583  *      This function implements the receiving procedure of RFC 793 for
5584  *      all states except ESTABLISHED and TIME_WAIT.
5585  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5586  *      address independent.
5587  */
5588
5589 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5590                           struct tcphdr *th, unsigned len)
5591 {
5592         struct tcp_sock *tp = tcp_sk(sk);
5593         struct inet_connection_sock *icsk = inet_csk(sk);
5594         int queued = 0;
5595         int res;
5596
5597         tp->rx_opt.saw_tstamp = 0;
5598
5599         switch (sk->sk_state) {
5600         case TCP_CLOSE:
5601                 goto discard;
5602
5603         case TCP_LISTEN:
5604                 if (th->ack)
5605                         return 1;
5606
5607                 if (th->rst)
5608                         goto discard;
5609
5610                 if (th->syn) {
5611                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5612                                 return 1;
5613
5614                         /* Now we have several options: In theory there is
5615                          * nothing else in the frame. KA9Q has an option to
5616                          * send data with the syn, BSD accepts data with the
5617                          * syn up to the [to be] advertised window and
5618                          * Solaris 2.1 gives you a protocol error. For now
5619                          * we just ignore it, that fits the spec precisely
5620                          * and avoids incompatibilities. It would be nice in
5621                          * future to drop through and process the data.
5622                          *
5623                          * Now that TTCP is starting to be used we ought to
5624                          * queue this data.
5625                          * But, this leaves one open to an easy denial of
5626                          * service attack, and SYN cookies can't defend
5627                          * against this problem. So, we drop the data
5628                          * in the interest of security over speed unless
5629                          * it's still in use.
5630                          */
5631                         kfree_skb(skb);
5632                         return 0;
5633                 }
5634                 goto discard;
5635
5636         case TCP_SYN_SENT:
5637                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5638                 if (queued >= 0)
5639                         return queued;
5640
5641                 /* Do step6 onward by hand. */
5642                 tcp_urg(sk, skb, th);
5643                 __kfree_skb(skb);
5644                 tcp_data_snd_check(sk);
5645                 return 0;
5646         }
5647
5648         res = tcp_validate_incoming(sk, skb, th, 0);
5649         if (res <= 0)
5650                 return -res;
5651
5652         /* step 5: check the ACK field */
5653         if (th->ack) {
5654                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5655
5656                 switch (sk->sk_state) {
5657                 case TCP_SYN_RECV:
5658                         if (acceptable) {
5659                                 tp->copied_seq = tp->rcv_nxt;
5660                                 smp_mb();
5661                                 tcp_set_state(sk, TCP_ESTABLISHED);
5662                                 sk->sk_state_change(sk);
5663
5664                                 /* Note, that this wakeup is only for marginal
5665                                  * crossed SYN case. Passively open sockets
5666                                  * are not waked up, because sk->sk_sleep ==
5667                                  * NULL and sk->sk_socket == NULL.
5668                                  */
5669                                 if (sk->sk_socket)
5670                                         sk_wake_async(sk,
5671                                                       SOCK_WAKE_IO, POLL_OUT);
5672
5673                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5674                                 tp->snd_wnd = ntohs(th->window) <<
5675                                               tp->rx_opt.snd_wscale;
5676                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5677                                             TCP_SKB_CB(skb)->seq);
5678
5679                                 /* tcp_ack considers this ACK as duplicate
5680                                  * and does not calculate rtt.
5681                                  * Fix it at least with timestamps.
5682                                  */
5683                                 if (tp->rx_opt.saw_tstamp &&
5684                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5685                                         tcp_ack_saw_tstamp(sk, 0);
5686
5687                                 if (tp->rx_opt.tstamp_ok)
5688                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5689
5690                                 /* Make sure socket is routed, for
5691                                  * correct metrics.
5692                                  */
5693                                 icsk->icsk_af_ops->rebuild_header(sk);
5694
5695                                 tcp_init_metrics(sk);
5696
5697                                 tcp_init_congestion_control(sk);
5698
5699                                 /* Prevent spurious tcp_cwnd_restart() on
5700                                  * first data packet.
5701                                  */
5702                                 tp->lsndtime = tcp_time_stamp;
5703
5704                                 tcp_mtup_init(sk);
5705                                 tcp_initialize_rcv_mss(sk);
5706                                 tcp_init_buffer_space(sk);
5707                                 tcp_fast_path_on(tp);
5708                         } else {
5709                                 return 1;
5710                         }
5711                         break;
5712
5713                 case TCP_FIN_WAIT1:
5714                         if (tp->snd_una == tp->write_seq) {
5715                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5716                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5717                                 dst_confirm(sk->sk_dst_cache);
5718
5719                                 if (!sock_flag(sk, SOCK_DEAD))
5720                                         /* Wake up lingering close() */
5721                                         sk->sk_state_change(sk);
5722                                 else {
5723                                         int tmo;
5724
5725                                         if (tp->linger2 < 0 ||
5726                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5727                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5728                                                 tcp_done(sk);
5729                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5730                                                 return 1;
5731                                         }
5732
5733                                         tmo = tcp_fin_time(sk);
5734                                         if (tmo > TCP_TIMEWAIT_LEN) {
5735                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5736                                         } else if (th->fin || sock_owned_by_user(sk)) {
5737                                                 /* Bad case. We could lose such FIN otherwise.
5738                                                  * It is not a big problem, but it looks confusing
5739                                                  * and not so rare event. We still can lose it now,
5740                                                  * if it spins in bh_lock_sock(), but it is really
5741                                                  * marginal case.
5742                                                  */
5743                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5744                                         } else {
5745                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5746                                                 goto discard;
5747                                         }
5748                                 }
5749                         }
5750                         break;
5751
5752                 case TCP_CLOSING:
5753                         if (tp->snd_una == tp->write_seq) {
5754                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5755                                 goto discard;
5756                         }
5757                         break;
5758
5759                 case TCP_LAST_ACK:
5760                         if (tp->snd_una == tp->write_seq) {
5761                                 tcp_update_metrics(sk);
5762                                 tcp_done(sk);
5763                                 goto discard;
5764                         }
5765                         break;
5766                 }
5767         } else
5768                 goto discard;
5769
5770         /* step 6: check the URG bit */
5771         tcp_urg(sk, skb, th);
5772
5773         /* step 7: process the segment text */
5774         switch (sk->sk_state) {
5775         case TCP_CLOSE_WAIT:
5776         case TCP_CLOSING:
5777         case TCP_LAST_ACK:
5778                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5779                         break;
5780         case TCP_FIN_WAIT1:
5781         case TCP_FIN_WAIT2:
5782                 /* RFC 793 says to queue data in these states,
5783                  * RFC 1122 says we MUST send a reset.
5784                  * BSD 4.4 also does reset.
5785                  */
5786                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5787                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5788                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5789                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5790                                 tcp_reset(sk);
5791                                 return 1;
5792                         }
5793                 }
5794                 /* Fall through */
5795         case TCP_ESTABLISHED:
5796                 tcp_data_queue(sk, skb);
5797                 queued = 1;
5798                 break;
5799         }
5800
5801         /* tcp_data could move socket to TIME-WAIT */
5802         if (sk->sk_state != TCP_CLOSE) {
5803                 tcp_data_snd_check(sk);
5804                 tcp_ack_snd_check(sk);
5805         }
5806
5807         if (!queued) {
5808 discard:
5809                 __kfree_skb(skb);
5810         }
5811         return 0;
5812 }
5813
5814 EXPORT_SYMBOL(sysctl_tcp_ecn);
5815 EXPORT_SYMBOL(sysctl_tcp_reordering);
5816 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5817 EXPORT_SYMBOL(tcp_parse_options);
5818 #ifdef CONFIG_TCP_MD5SIG
5819 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5820 #endif
5821 EXPORT_SYMBOL(tcp_rcv_established);
5822 EXPORT_SYMBOL(tcp_rcv_state_process);
5823 EXPORT_SYMBOL(tcp_initialize_rcv_mss);