Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[safe/jmp/linux-2.6] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732
733                 if (icsk->icsk_backoff || !tp->srtt) {
734                         /* This session failed to estimate rtt. Why?
735                          * Probably, no packets returned in time.
736                          * Reset our results.
737                          */
738                         if (!(dst_metric_locked(dst, RTAX_RTT)))
739                                 dst->metrics[RTAX_RTT - 1] = 0;
740                         return;
741                 }
742
743                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
744
745                 /* If newly calculated rtt larger than stored one,
746                  * store new one. Otherwise, use EWMA. Remember,
747                  * rtt overestimation is always better than underestimation.
748                  */
749                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
750                         if (m <= 0)
751                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
752                         else
753                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
754                 }
755
756                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757                         if (m < 0)
758                                 m = -m;
759
760                         /* Scale deviation to rttvar fixed point */
761                         m >>= 1;
762                         if (m < tp->mdev)
763                                 m = tp->mdev;
764
765                         if (m >= dst_metric(dst, RTAX_RTTVAR))
766                                 dst->metrics[RTAX_RTTVAR - 1] = m;
767                         else
768                                 dst->metrics[RTAX_RTTVAR-1] -=
769                                         (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
770                 }
771
772                 if (tp->snd_ssthresh >= 0xFFFF) {
773                         /* Slow start still did not finish. */
774                         if (dst_metric(dst, RTAX_SSTHRESH) &&
775                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
776                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
777                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
778                         if (!dst_metric_locked(dst, RTAX_CWND) &&
779                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
780                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
781                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
782                            icsk->icsk_ca_state == TCP_CA_Open) {
783                         /* Cong. avoidance phase, cwnd is reliable. */
784                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
785                                 dst->metrics[RTAX_SSTHRESH-1] =
786                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
787                         if (!dst_metric_locked(dst, RTAX_CWND))
788                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
789                 } else {
790                         /* Else slow start did not finish, cwnd is non-sense,
791                            ssthresh may be also invalid.
792                          */
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
795                         if (dst_metric(dst, RTAX_SSTHRESH) &&
796                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
798                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
799                 }
800
801                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
802                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
803                             tp->reordering != sysctl_tcp_reordering)
804                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
805                 }
806         }
807 }
808
809 /* Numbers are taken from RFC3390.
810  *
811  * John Heffner states:
812  *
813  *      The RFC specifies a window of no more than 4380 bytes
814  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
815  *      is a bit misleading because they use a clamp at 4380 bytes
816  *      rather than use a multiplier in the relevant range.
817  */
818 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
819 {
820         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
821
822         if (!cwnd) {
823                 if (tp->mss_cache > 1460)
824                         cwnd = 2;
825                 else
826                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
827         }
828         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
829 }
830
831 /* Set slow start threshold and cwnd not falling to slow start */
832 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
833 {
834         struct tcp_sock *tp = tcp_sk(sk);
835         const struct inet_connection_sock *icsk = inet_csk(sk);
836
837         tp->prior_ssthresh = 0;
838         tp->bytes_acked = 0;
839         if (icsk->icsk_ca_state < TCP_CA_CWR) {
840                 tp->undo_marker = 0;
841                 if (set_ssthresh)
842                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
843                 tp->snd_cwnd = min(tp->snd_cwnd,
844                                    tcp_packets_in_flight(tp) + 1U);
845                 tp->snd_cwnd_cnt = 0;
846                 tp->high_seq = tp->snd_nxt;
847                 tp->snd_cwnd_stamp = tcp_time_stamp;
848                 TCP_ECN_queue_cwr(tp);
849
850                 tcp_set_ca_state(sk, TCP_CA_CWR);
851         }
852 }
853
854 /*
855  * Packet counting of FACK is based on in-order assumptions, therefore TCP
856  * disables it when reordering is detected
857  */
858 static void tcp_disable_fack(struct tcp_sock *tp)
859 {
860         /* RFC3517 uses different metric in lost marker => reset on change */
861         if (tcp_is_fack(tp))
862                 tp->lost_skb_hint = NULL;
863         tp->rx_opt.sack_ok &= ~2;
864 }
865
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
868 {
869         tp->rx_opt.sack_ok |= 4;
870 }
871
872 /* Initialize metrics on socket. */
873
874 static void tcp_init_metrics(struct sock *sk)
875 {
876         struct tcp_sock *tp = tcp_sk(sk);
877         struct dst_entry *dst = __sk_dst_get(sk);
878
879         if (dst == NULL)
880                 goto reset;
881
882         dst_confirm(dst);
883
884         if (dst_metric_locked(dst, RTAX_CWND))
885                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
886         if (dst_metric(dst, RTAX_SSTHRESH)) {
887                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
888                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
889                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
890         }
891         if (dst_metric(dst, RTAX_REORDERING) &&
892             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
893                 tcp_disable_fack(tp);
894                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
895         }
896
897         if (dst_metric(dst, RTAX_RTT) == 0)
898                 goto reset;
899
900         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
901                 goto reset;
902
903         /* Initial rtt is determined from SYN,SYN-ACK.
904          * The segment is small and rtt may appear much
905          * less than real one. Use per-dst memory
906          * to make it more realistic.
907          *
908          * A bit of theory. RTT is time passed after "normal" sized packet
909          * is sent until it is ACKed. In normal circumstances sending small
910          * packets force peer to delay ACKs and calculation is correct too.
911          * The algorithm is adaptive and, provided we follow specs, it
912          * NEVER underestimate RTT. BUT! If peer tries to make some clever
913          * tricks sort of "quick acks" for time long enough to decrease RTT
914          * to low value, and then abruptly stops to do it and starts to delay
915          * ACKs, wait for troubles.
916          */
917         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
918                 tp->srtt = dst_metric(dst, RTAX_RTT);
919                 tp->rtt_seq = tp->snd_nxt;
920         }
921         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
922                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
923                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
924         }
925         tcp_set_rto(sk);
926         tcp_bound_rto(sk);
927         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
928                 goto reset;
929         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
930         tp->snd_cwnd_stamp = tcp_time_stamp;
931         return;
932
933 reset:
934         /* Play conservative. If timestamps are not
935          * supported, TCP will fail to recalculate correct
936          * rtt, if initial rto is too small. FORGET ALL AND RESET!
937          */
938         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
939                 tp->srtt = 0;
940                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
941                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
942         }
943 }
944
945 static void tcp_update_reordering(struct sock *sk, const int metric,
946                                   const int ts)
947 {
948         struct tcp_sock *tp = tcp_sk(sk);
949         if (metric > tp->reordering) {
950                 tp->reordering = min(TCP_MAX_REORDERING, metric);
951
952                 /* This exciting event is worth to be remembered. 8) */
953                 if (ts)
954                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
955                 else if (tcp_is_reno(tp))
956                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
957                 else if (tcp_is_fack(tp))
958                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
959                 else
960                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
961 #if FASTRETRANS_DEBUG > 1
962                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
963                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
964                        tp->reordering,
965                        tp->fackets_out,
966                        tp->sacked_out,
967                        tp->undo_marker ? tp->undo_retrans : 0);
968 #endif
969                 tcp_disable_fack(tp);
970         }
971 }
972
973 /* This procedure tags the retransmission queue when SACKs arrive.
974  *
975  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
976  * Packets in queue with these bits set are counted in variables
977  * sacked_out, retrans_out and lost_out, correspondingly.
978  *
979  * Valid combinations are:
980  * Tag  InFlight        Description
981  * 0    1               - orig segment is in flight.
982  * S    0               - nothing flies, orig reached receiver.
983  * L    0               - nothing flies, orig lost by net.
984  * R    2               - both orig and retransmit are in flight.
985  * L|R  1               - orig is lost, retransmit is in flight.
986  * S|R  1               - orig reached receiver, retrans is still in flight.
987  * (L|S|R is logically valid, it could occur when L|R is sacked,
988  *  but it is equivalent to plain S and code short-curcuits it to S.
989  *  L|S is logically invalid, it would mean -1 packet in flight 8))
990  *
991  * These 6 states form finite state machine, controlled by the following events:
992  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
993  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
994  * 3. Loss detection event of one of three flavors:
995  *      A. Scoreboard estimator decided the packet is lost.
996  *         A'. Reno "three dupacks" marks head of queue lost.
997  *         A''. Its FACK modfication, head until snd.fack is lost.
998  *      B. SACK arrives sacking data transmitted after never retransmitted
999  *         hole was sent out.
1000  *      C. SACK arrives sacking SND.NXT at the moment, when the
1001  *         segment was retransmitted.
1002  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1003  *
1004  * It is pleasant to note, that state diagram turns out to be commutative,
1005  * so that we are allowed not to be bothered by order of our actions,
1006  * when multiple events arrive simultaneously. (see the function below).
1007  *
1008  * Reordering detection.
1009  * --------------------
1010  * Reordering metric is maximal distance, which a packet can be displaced
1011  * in packet stream. With SACKs we can estimate it:
1012  *
1013  * 1. SACK fills old hole and the corresponding segment was not
1014  *    ever retransmitted -> reordering. Alas, we cannot use it
1015  *    when segment was retransmitted.
1016  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1017  *    for retransmitted and already SACKed segment -> reordering..
1018  * Both of these heuristics are not used in Loss state, when we cannot
1019  * account for retransmits accurately.
1020  *
1021  * SACK block validation.
1022  * ----------------------
1023  *
1024  * SACK block range validation checks that the received SACK block fits to
1025  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1026  * Note that SND.UNA is not included to the range though being valid because
1027  * it means that the receiver is rather inconsistent with itself reporting
1028  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1029  * perfectly valid, however, in light of RFC2018 which explicitly states
1030  * that "SACK block MUST reflect the newest segment.  Even if the newest
1031  * segment is going to be discarded ...", not that it looks very clever
1032  * in case of head skb. Due to potentional receiver driven attacks, we
1033  * choose to avoid immediate execution of a walk in write queue due to
1034  * reneging and defer head skb's loss recovery to standard loss recovery
1035  * procedure that will eventually trigger (nothing forbids us doing this).
1036  *
1037  * Implements also blockage to start_seq wrap-around. Problem lies in the
1038  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1039  * there's no guarantee that it will be before snd_nxt (n). The problem
1040  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1041  * wrap (s_w):
1042  *
1043  *         <- outs wnd ->                          <- wrapzone ->
1044  *         u     e      n                         u_w   e_w  s n_w
1045  *         |     |      |                          |     |   |  |
1046  * |<------------+------+----- TCP seqno space --------------+---------->|
1047  * ...-- <2^31 ->|                                           |<--------...
1048  * ...---- >2^31 ------>|                                    |<--------...
1049  *
1050  * Current code wouldn't be vulnerable but it's better still to discard such
1051  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1052  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1053  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1054  * equal to the ideal case (infinite seqno space without wrap caused issues).
1055  *
1056  * With D-SACK the lower bound is extended to cover sequence space below
1057  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1058  * again, D-SACK block must not to go across snd_una (for the same reason as
1059  * for the normal SACK blocks, explained above). But there all simplicity
1060  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1061  * fully below undo_marker they do not affect behavior in anyway and can
1062  * therefore be safely ignored. In rare cases (which are more or less
1063  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1064  * fragmentation and packet reordering past skb's retransmission. To consider
1065  * them correctly, the acceptable range must be extended even more though
1066  * the exact amount is rather hard to quantify. However, tp->max_window can
1067  * be used as an exaggerated estimate.
1068  */
1069 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1070                                   u32 start_seq, u32 end_seq)
1071 {
1072         /* Too far in future, or reversed (interpretation is ambiguous) */
1073         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1074                 return 0;
1075
1076         /* Nasty start_seq wrap-around check (see comments above) */
1077         if (!before(start_seq, tp->snd_nxt))
1078                 return 0;
1079
1080         /* In outstanding window? ...This is valid exit for D-SACKs too.
1081          * start_seq == snd_una is non-sensical (see comments above)
1082          */
1083         if (after(start_seq, tp->snd_una))
1084                 return 1;
1085
1086         if (!is_dsack || !tp->undo_marker)
1087                 return 0;
1088
1089         /* ...Then it's D-SACK, and must reside below snd_una completely */
1090         if (!after(end_seq, tp->snd_una))
1091                 return 0;
1092
1093         if (!before(start_seq, tp->undo_marker))
1094                 return 1;
1095
1096         /* Too old */
1097         if (!after(end_seq, tp->undo_marker))
1098                 return 0;
1099
1100         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1101          *   start_seq < undo_marker and end_seq >= undo_marker.
1102          */
1103         return !before(start_seq, end_seq - tp->max_window);
1104 }
1105
1106 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1107  * Event "C". Later note: FACK people cheated me again 8), we have to account
1108  * for reordering! Ugly, but should help.
1109  *
1110  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1111  * less than what is now known to be received by the other end (derived from
1112  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1113  * retransmitted skbs to avoid some costly processing per ACKs.
1114  */
1115 static void tcp_mark_lost_retrans(struct sock *sk)
1116 {
1117         const struct inet_connection_sock *icsk = inet_csk(sk);
1118         struct tcp_sock *tp = tcp_sk(sk);
1119         struct sk_buff *skb;
1120         int cnt = 0;
1121         u32 new_low_seq = tp->snd_nxt;
1122         u32 received_upto = tcp_highest_sack_seq(tp);
1123
1124         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1125             !after(received_upto, tp->lost_retrans_low) ||
1126             icsk->icsk_ca_state != TCP_CA_Recovery)
1127                 return;
1128
1129         tcp_for_write_queue(skb, sk) {
1130                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1131
1132                 if (skb == tcp_send_head(sk))
1133                         break;
1134                 if (cnt == tp->retrans_out)
1135                         break;
1136                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1137                         continue;
1138
1139                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1140                         continue;
1141
1142                 if (after(received_upto, ack_seq) &&
1143                     (tcp_is_fack(tp) ||
1144                      !before(received_upto,
1145                              ack_seq + tp->reordering * tp->mss_cache))) {
1146                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1147                         tp->retrans_out -= tcp_skb_pcount(skb);
1148
1149                         /* clear lost hint */
1150                         tp->retransmit_skb_hint = NULL;
1151
1152                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1153                                 tp->lost_out += tcp_skb_pcount(skb);
1154                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1155                         }
1156                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1157                 } else {
1158                         if (before(ack_seq, new_low_seq))
1159                                 new_low_seq = ack_seq;
1160                         cnt += tcp_skb_pcount(skb);
1161                 }
1162         }
1163
1164         if (tp->retrans_out)
1165                 tp->lost_retrans_low = new_low_seq;
1166 }
1167
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169                            struct tcp_sack_block_wire *sp, int num_sacks,
1170                            u32 prior_snd_una)
1171 {
1172         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1173         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1174         int dup_sack = 0;
1175
1176         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177                 dup_sack = 1;
1178                 tcp_dsack_seen(tp);
1179                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180         } else if (num_sacks > 1) {
1181                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1182                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1183
1184                 if (!after(end_seq_0, end_seq_1) &&
1185                     !before(start_seq_0, start_seq_1)) {
1186                         dup_sack = 1;
1187                         tcp_dsack_seen(tp);
1188                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1189                 }
1190         }
1191
1192         /* D-SACK for already forgotten data... Do dumb counting. */
1193         if (dup_sack &&
1194             !after(end_seq_0, prior_snd_una) &&
1195             after(end_seq_0, tp->undo_marker))
1196                 tp->undo_retrans--;
1197
1198         return dup_sack;
1199 }
1200
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202  * the incoming SACK may not exactly match but we can find smaller MSS
1203  * aligned portion of it that matches. Therefore we might need to fragment
1204  * which may fail and creates some hassle (caller must handle error case
1205  * returns).
1206  */
1207 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208                                  u32 start_seq, u32 end_seq)
1209 {
1210         int in_sack, err;
1211         unsigned int pkt_len;
1212
1213         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1215
1216         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1218
1219                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1220
1221                 if (!in_sack)
1222                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223                 else
1224                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226                 if (err < 0)
1227                         return err;
1228         }
1229
1230         return in_sack;
1231 }
1232
1233 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1234                            int *reord, int dup_sack, int fack_count)
1235 {
1236         struct tcp_sock *tp = tcp_sk(sk);
1237         u8 sacked = TCP_SKB_CB(skb)->sacked;
1238         int flag = 0;
1239
1240         /* Account D-SACK for retransmitted packet. */
1241         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1242                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1243                         tp->undo_retrans--;
1244                 if (sacked & TCPCB_SACKED_ACKED)
1245                         *reord = min(fack_count, *reord);
1246         }
1247
1248         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1249         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1250                 return flag;
1251
1252         if (!(sacked & TCPCB_SACKED_ACKED)) {
1253                 if (sacked & TCPCB_SACKED_RETRANS) {
1254                         /* If the segment is not tagged as lost,
1255                          * we do not clear RETRANS, believing
1256                          * that retransmission is still in flight.
1257                          */
1258                         if (sacked & TCPCB_LOST) {
1259                                 TCP_SKB_CB(skb)->sacked &=
1260                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1261                                 tp->lost_out -= tcp_skb_pcount(skb);
1262                                 tp->retrans_out -= tcp_skb_pcount(skb);
1263
1264                                 /* clear lost hint */
1265                                 tp->retransmit_skb_hint = NULL;
1266                         }
1267                 } else {
1268                         if (!(sacked & TCPCB_RETRANS)) {
1269                                 /* New sack for not retransmitted frame,
1270                                  * which was in hole. It is reordering.
1271                                  */
1272                                 if (before(TCP_SKB_CB(skb)->seq,
1273                                            tcp_highest_sack_seq(tp)))
1274                                         *reord = min(fack_count, *reord);
1275
1276                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1277                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1278                                         flag |= FLAG_ONLY_ORIG_SACKED;
1279                         }
1280
1281                         if (sacked & TCPCB_LOST) {
1282                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1283                                 tp->lost_out -= tcp_skb_pcount(skb);
1284
1285                                 /* clear lost hint */
1286                                 tp->retransmit_skb_hint = NULL;
1287                         }
1288                 }
1289
1290                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1291                 flag |= FLAG_DATA_SACKED;
1292                 tp->sacked_out += tcp_skb_pcount(skb);
1293
1294                 fack_count += tcp_skb_pcount(skb);
1295
1296                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1297                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1298                     before(TCP_SKB_CB(skb)->seq,
1299                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1300                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1301
1302                 if (fack_count > tp->fackets_out)
1303                         tp->fackets_out = fack_count;
1304
1305                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1306                         tcp_advance_highest_sack(sk, skb);
1307         }
1308
1309         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1310          * frames and clear it. undo_retrans is decreased above, L|R frames
1311          * are accounted above as well.
1312          */
1313         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1314                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1315                 tp->retrans_out -= tcp_skb_pcount(skb);
1316                 tp->retransmit_skb_hint = NULL;
1317         }
1318
1319         return flag;
1320 }
1321
1322 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1323                                         struct tcp_sack_block *next_dup,
1324                                         u32 start_seq, u32 end_seq,
1325                                         int dup_sack_in, int *fack_count,
1326                                         int *reord, int *flag)
1327 {
1328         tcp_for_write_queue_from(skb, sk) {
1329                 int in_sack = 0;
1330                 int dup_sack = dup_sack_in;
1331
1332                 if (skb == tcp_send_head(sk))
1333                         break;
1334
1335                 /* queue is in-order => we can short-circuit the walk early */
1336                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1337                         break;
1338
1339                 if ((next_dup != NULL) &&
1340                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1341                         in_sack = tcp_match_skb_to_sack(sk, skb,
1342                                                         next_dup->start_seq,
1343                                                         next_dup->end_seq);
1344                         if (in_sack > 0)
1345                                 dup_sack = 1;
1346                 }
1347
1348                 if (in_sack <= 0)
1349                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1350                                                         end_seq);
1351                 if (unlikely(in_sack < 0))
1352                         break;
1353
1354                 if (in_sack)
1355                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1356                                                  *fack_count);
1357
1358                 *fack_count += tcp_skb_pcount(skb);
1359         }
1360         return skb;
1361 }
1362
1363 /* Avoid all extra work that is being done by sacktag while walking in
1364  * a normal way
1365  */
1366 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1367                                         u32 skip_to_seq, int *fack_count)
1368 {
1369         tcp_for_write_queue_from(skb, sk) {
1370                 if (skb == tcp_send_head(sk))
1371                         break;
1372
1373                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1374                         break;
1375
1376                 *fack_count += tcp_skb_pcount(skb);
1377         }
1378         return skb;
1379 }
1380
1381 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1382                                                 struct sock *sk,
1383                                                 struct tcp_sack_block *next_dup,
1384                                                 u32 skip_to_seq,
1385                                                 int *fack_count, int *reord,
1386                                                 int *flag)
1387 {
1388         if (next_dup == NULL)
1389                 return skb;
1390
1391         if (before(next_dup->start_seq, skip_to_seq)) {
1392                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1393                 skb = tcp_sacktag_walk(skb, sk, NULL,
1394                                      next_dup->start_seq, next_dup->end_seq,
1395                                      1, fack_count, reord, flag);
1396         }
1397
1398         return skb;
1399 }
1400
1401 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1402 {
1403         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1404 }
1405
1406 static int
1407 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1408                         u32 prior_snd_una)
1409 {
1410         const struct inet_connection_sock *icsk = inet_csk(sk);
1411         struct tcp_sock *tp = tcp_sk(sk);
1412         unsigned char *ptr = (skb_transport_header(ack_skb) +
1413                               TCP_SKB_CB(ack_skb)->sacked);
1414         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1415         struct tcp_sack_block sp[4];
1416         struct tcp_sack_block *cache;
1417         struct sk_buff *skb;
1418         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1419         int used_sacks;
1420         int reord = tp->packets_out;
1421         int flag = 0;
1422         int found_dup_sack = 0;
1423         int fack_count;
1424         int i, j;
1425         int first_sack_index;
1426
1427         if (!tp->sacked_out) {
1428                 if (WARN_ON(tp->fackets_out))
1429                         tp->fackets_out = 0;
1430                 tcp_highest_sack_reset(sk);
1431         }
1432
1433         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1434                                          num_sacks, prior_snd_una);
1435         if (found_dup_sack)
1436                 flag |= FLAG_DSACKING_ACK;
1437
1438         /* Eliminate too old ACKs, but take into
1439          * account more or less fresh ones, they can
1440          * contain valid SACK info.
1441          */
1442         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1443                 return 0;
1444
1445         if (!tp->packets_out)
1446                 goto out;
1447
1448         used_sacks = 0;
1449         first_sack_index = 0;
1450         for (i = 0; i < num_sacks; i++) {
1451                 int dup_sack = !i && found_dup_sack;
1452
1453                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1454                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1455
1456                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1457                                             sp[used_sacks].start_seq,
1458                                             sp[used_sacks].end_seq)) {
1459                         if (dup_sack) {
1460                                 if (!tp->undo_marker)
1461                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1462                                 else
1463                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1464                         } else {
1465                                 /* Don't count olds caused by ACK reordering */
1466                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1467                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1468                                         continue;
1469                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1470                         }
1471                         if (i == 0)
1472                                 first_sack_index = -1;
1473                         continue;
1474                 }
1475
1476                 /* Ignore very old stuff early */
1477                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1478                         continue;
1479
1480                 used_sacks++;
1481         }
1482
1483         /* order SACK blocks to allow in order walk of the retrans queue */
1484         for (i = used_sacks - 1; i > 0; i--) {
1485                 for (j = 0; j < i; j++) {
1486                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1487                                 struct tcp_sack_block tmp;
1488
1489                                 tmp = sp[j];
1490                                 sp[j] = sp[j + 1];
1491                                 sp[j + 1] = tmp;
1492
1493                                 /* Track where the first SACK block goes to */
1494                                 if (j == first_sack_index)
1495                                         first_sack_index = j + 1;
1496                         }
1497                 }
1498         }
1499
1500         skb = tcp_write_queue_head(sk);
1501         fack_count = 0;
1502         i = 0;
1503
1504         if (!tp->sacked_out) {
1505                 /* It's already past, so skip checking against it */
1506                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1507         } else {
1508                 cache = tp->recv_sack_cache;
1509                 /* Skip empty blocks in at head of the cache */
1510                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1511                        !cache->end_seq)
1512                         cache++;
1513         }
1514
1515         while (i < used_sacks) {
1516                 u32 start_seq = sp[i].start_seq;
1517                 u32 end_seq = sp[i].end_seq;
1518                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1519                 struct tcp_sack_block *next_dup = NULL;
1520
1521                 if (found_dup_sack && ((i + 1) == first_sack_index))
1522                         next_dup = &sp[i + 1];
1523
1524                 /* Event "B" in the comment above. */
1525                 if (after(end_seq, tp->high_seq))
1526                         flag |= FLAG_DATA_LOST;
1527
1528                 /* Skip too early cached blocks */
1529                 while (tcp_sack_cache_ok(tp, cache) &&
1530                        !before(start_seq, cache->end_seq))
1531                         cache++;
1532
1533                 /* Can skip some work by looking recv_sack_cache? */
1534                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1535                     after(end_seq, cache->start_seq)) {
1536
1537                         /* Head todo? */
1538                         if (before(start_seq, cache->start_seq)) {
1539                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1540                                                        &fack_count);
1541                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1542                                                        start_seq,
1543                                                        cache->start_seq,
1544                                                        dup_sack, &fack_count,
1545                                                        &reord, &flag);
1546                         }
1547
1548                         /* Rest of the block already fully processed? */
1549                         if (!after(end_seq, cache->end_seq))
1550                                 goto advance_sp;
1551
1552                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1553                                                        cache->end_seq,
1554                                                        &fack_count, &reord,
1555                                                        &flag);
1556
1557                         /* ...tail remains todo... */
1558                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1559                                 /* ...but better entrypoint exists! */
1560                                 skb = tcp_highest_sack(sk);
1561                                 if (skb == NULL)
1562                                         break;
1563                                 fack_count = tp->fackets_out;
1564                                 cache++;
1565                                 goto walk;
1566                         }
1567
1568                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1569                                                &fack_count);
1570                         /* Check overlap against next cached too (past this one already) */
1571                         cache++;
1572                         continue;
1573                 }
1574
1575                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1576                         skb = tcp_highest_sack(sk);
1577                         if (skb == NULL)
1578                                 break;
1579                         fack_count = tp->fackets_out;
1580                 }
1581                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1582
1583 walk:
1584                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1585                                        dup_sack, &fack_count, &reord, &flag);
1586
1587 advance_sp:
1588                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1589                  * due to in-order walk
1590                  */
1591                 if (after(end_seq, tp->frto_highmark))
1592                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1593
1594                 i++;
1595         }
1596
1597         /* Clear the head of the cache sack blocks so we can skip it next time */
1598         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1599                 tp->recv_sack_cache[i].start_seq = 0;
1600                 tp->recv_sack_cache[i].end_seq = 0;
1601         }
1602         for (j = 0; j < used_sacks; j++)
1603                 tp->recv_sack_cache[i++] = sp[j];
1604
1605         tcp_mark_lost_retrans(sk);
1606
1607         tcp_verify_left_out(tp);
1608
1609         if ((reord < tp->fackets_out) &&
1610             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1611             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1612                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1613
1614 out:
1615
1616 #if FASTRETRANS_DEBUG > 0
1617         BUG_TRAP((int)tp->sacked_out >= 0);
1618         BUG_TRAP((int)tp->lost_out >= 0);
1619         BUG_TRAP((int)tp->retrans_out >= 0);
1620         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1621 #endif
1622         return flag;
1623 }
1624
1625 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1626  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1627  */
1628 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1629 {
1630         u32 holes;
1631
1632         holes = max(tp->lost_out, 1U);
1633         holes = min(holes, tp->packets_out);
1634
1635         if ((tp->sacked_out + holes) > tp->packets_out) {
1636                 tp->sacked_out = tp->packets_out - holes;
1637                 return 1;
1638         }
1639         return 0;
1640 }
1641
1642 /* If we receive more dupacks than we expected counting segments
1643  * in assumption of absent reordering, interpret this as reordering.
1644  * The only another reason could be bug in receiver TCP.
1645  */
1646 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1647 {
1648         struct tcp_sock *tp = tcp_sk(sk);
1649         if (tcp_limit_reno_sacked(tp))
1650                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1651 }
1652
1653 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1654
1655 static void tcp_add_reno_sack(struct sock *sk)
1656 {
1657         struct tcp_sock *tp = tcp_sk(sk);
1658         tp->sacked_out++;
1659         tcp_check_reno_reordering(sk, 0);
1660         tcp_verify_left_out(tp);
1661 }
1662
1663 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1664
1665 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1666 {
1667         struct tcp_sock *tp = tcp_sk(sk);
1668
1669         if (acked > 0) {
1670                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1671                 if (acked - 1 >= tp->sacked_out)
1672                         tp->sacked_out = 0;
1673                 else
1674                         tp->sacked_out -= acked - 1;
1675         }
1676         tcp_check_reno_reordering(sk, acked);
1677         tcp_verify_left_out(tp);
1678 }
1679
1680 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1681 {
1682         tp->sacked_out = 0;
1683 }
1684
1685 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1686 {
1687         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1688 }
1689
1690 /* F-RTO can only be used if TCP has never retransmitted anything other than
1691  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1692  */
1693 int tcp_use_frto(struct sock *sk)
1694 {
1695         const struct tcp_sock *tp = tcp_sk(sk);
1696         const struct inet_connection_sock *icsk = inet_csk(sk);
1697         struct sk_buff *skb;
1698
1699         if (!sysctl_tcp_frto)
1700                 return 0;
1701
1702         /* MTU probe and F-RTO won't really play nicely along currently */
1703         if (icsk->icsk_mtup.probe_size)
1704                 return 0;
1705
1706         if (tcp_is_sackfrto(tp))
1707                 return 1;
1708
1709         /* Avoid expensive walking of rexmit queue if possible */
1710         if (tp->retrans_out > 1)
1711                 return 0;
1712
1713         skb = tcp_write_queue_head(sk);
1714         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1715         tcp_for_write_queue_from(skb, sk) {
1716                 if (skb == tcp_send_head(sk))
1717                         break;
1718                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1719                         return 0;
1720                 /* Short-circuit when first non-SACKed skb has been checked */
1721                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1722                         break;
1723         }
1724         return 1;
1725 }
1726
1727 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1728  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1729  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1730  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1731  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1732  * bits are handled if the Loss state is really to be entered (in
1733  * tcp_enter_frto_loss).
1734  *
1735  * Do like tcp_enter_loss() would; when RTO expires the second time it
1736  * does:
1737  *  "Reduce ssthresh if it has not yet been made inside this window."
1738  */
1739 void tcp_enter_frto(struct sock *sk)
1740 {
1741         const struct inet_connection_sock *icsk = inet_csk(sk);
1742         struct tcp_sock *tp = tcp_sk(sk);
1743         struct sk_buff *skb;
1744
1745         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1746             tp->snd_una == tp->high_seq ||
1747             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1748              !icsk->icsk_retransmits)) {
1749                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1750                 /* Our state is too optimistic in ssthresh() call because cwnd
1751                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1752                  * recovery has not yet completed. Pattern would be this: RTO,
1753                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1754                  * up here twice).
1755                  * RFC4138 should be more specific on what to do, even though
1756                  * RTO is quite unlikely to occur after the first Cumulative ACK
1757                  * due to back-off and complexity of triggering events ...
1758                  */
1759                 if (tp->frto_counter) {
1760                         u32 stored_cwnd;
1761                         stored_cwnd = tp->snd_cwnd;
1762                         tp->snd_cwnd = 2;
1763                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1764                         tp->snd_cwnd = stored_cwnd;
1765                 } else {
1766                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1767                 }
1768                 /* ... in theory, cong.control module could do "any tricks" in
1769                  * ssthresh(), which means that ca_state, lost bits and lost_out
1770                  * counter would have to be faked before the call occurs. We
1771                  * consider that too expensive, unlikely and hacky, so modules
1772                  * using these in ssthresh() must deal these incompatibility
1773                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1774                  */
1775                 tcp_ca_event(sk, CA_EVENT_FRTO);
1776         }
1777
1778         tp->undo_marker = tp->snd_una;
1779         tp->undo_retrans = 0;
1780
1781         skb = tcp_write_queue_head(sk);
1782         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1783                 tp->undo_marker = 0;
1784         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1785                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1786                 tp->retrans_out -= tcp_skb_pcount(skb);
1787         }
1788         tcp_verify_left_out(tp);
1789
1790         /* Too bad if TCP was application limited */
1791         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1792
1793         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1794          * The last condition is necessary at least in tp->frto_counter case.
1795          */
1796         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1797             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1798             after(tp->high_seq, tp->snd_una)) {
1799                 tp->frto_highmark = tp->high_seq;
1800         } else {
1801                 tp->frto_highmark = tp->snd_nxt;
1802         }
1803         tcp_set_ca_state(sk, TCP_CA_Disorder);
1804         tp->high_seq = tp->snd_nxt;
1805         tp->frto_counter = 1;
1806 }
1807
1808 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1809  * which indicates that we should follow the traditional RTO recovery,
1810  * i.e. mark everything lost and do go-back-N retransmission.
1811  */
1812 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1813 {
1814         struct tcp_sock *tp = tcp_sk(sk);
1815         struct sk_buff *skb;
1816
1817         tp->lost_out = 0;
1818         tp->retrans_out = 0;
1819         if (tcp_is_reno(tp))
1820                 tcp_reset_reno_sack(tp);
1821
1822         tcp_for_write_queue(skb, sk) {
1823                 if (skb == tcp_send_head(sk))
1824                         break;
1825
1826                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1827                 /*
1828                  * Count the retransmission made on RTO correctly (only when
1829                  * waiting for the first ACK and did not get it)...
1830                  */
1831                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1832                         /* For some reason this R-bit might get cleared? */
1833                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1834                                 tp->retrans_out += tcp_skb_pcount(skb);
1835                         /* ...enter this if branch just for the first segment */
1836                         flag |= FLAG_DATA_ACKED;
1837                 } else {
1838                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1839                                 tp->undo_marker = 0;
1840                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1841                 }
1842
1843                 /* Marking forward transmissions that were made after RTO lost
1844                  * can cause unnecessary retransmissions in some scenarios,
1845                  * SACK blocks will mitigate that in some but not in all cases.
1846                  * We used to not mark them but it was causing break-ups with
1847                  * receivers that do only in-order receival.
1848                  *
1849                  * TODO: we could detect presence of such receiver and select
1850                  * different behavior per flow.
1851                  */
1852                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1853                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1854                         tp->lost_out += tcp_skb_pcount(skb);
1855                 }
1856         }
1857         tcp_verify_left_out(tp);
1858
1859         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1860         tp->snd_cwnd_cnt = 0;
1861         tp->snd_cwnd_stamp = tcp_time_stamp;
1862         tp->frto_counter = 0;
1863         tp->bytes_acked = 0;
1864
1865         tp->reordering = min_t(unsigned int, tp->reordering,
1866                                sysctl_tcp_reordering);
1867         tcp_set_ca_state(sk, TCP_CA_Loss);
1868         tp->high_seq = tp->snd_nxt;
1869         TCP_ECN_queue_cwr(tp);
1870
1871         tcp_clear_retrans_hints_partial(tp);
1872 }
1873
1874 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1875 {
1876         tp->retrans_out = 0;
1877         tp->lost_out = 0;
1878
1879         tp->undo_marker = 0;
1880         tp->undo_retrans = 0;
1881 }
1882
1883 void tcp_clear_retrans(struct tcp_sock *tp)
1884 {
1885         tcp_clear_retrans_partial(tp);
1886
1887         tp->fackets_out = 0;
1888         tp->sacked_out = 0;
1889 }
1890
1891 /* Enter Loss state. If "how" is not zero, forget all SACK information
1892  * and reset tags completely, otherwise preserve SACKs. If receiver
1893  * dropped its ofo queue, we will know this due to reneging detection.
1894  */
1895 void tcp_enter_loss(struct sock *sk, int how)
1896 {
1897         const struct inet_connection_sock *icsk = inet_csk(sk);
1898         struct tcp_sock *tp = tcp_sk(sk);
1899         struct sk_buff *skb;
1900
1901         /* Reduce ssthresh if it has not yet been made inside this window. */
1902         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1903             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1904                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1905                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1906                 tcp_ca_event(sk, CA_EVENT_LOSS);
1907         }
1908         tp->snd_cwnd       = 1;
1909         tp->snd_cwnd_cnt   = 0;
1910         tp->snd_cwnd_stamp = tcp_time_stamp;
1911
1912         tp->bytes_acked = 0;
1913         tcp_clear_retrans_partial(tp);
1914
1915         if (tcp_is_reno(tp))
1916                 tcp_reset_reno_sack(tp);
1917
1918         if (!how) {
1919                 /* Push undo marker, if it was plain RTO and nothing
1920                  * was retransmitted. */
1921                 tp->undo_marker = tp->snd_una;
1922                 tcp_clear_retrans_hints_partial(tp);
1923         } else {
1924                 tp->sacked_out = 0;
1925                 tp->fackets_out = 0;
1926                 tcp_clear_all_retrans_hints(tp);
1927         }
1928
1929         tcp_for_write_queue(skb, sk) {
1930                 if (skb == tcp_send_head(sk))
1931                         break;
1932
1933                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1934                         tp->undo_marker = 0;
1935                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1936                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1937                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1938                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1939                         tp->lost_out += tcp_skb_pcount(skb);
1940                 }
1941         }
1942         tcp_verify_left_out(tp);
1943
1944         tp->reordering = min_t(unsigned int, tp->reordering,
1945                                sysctl_tcp_reordering);
1946         tcp_set_ca_state(sk, TCP_CA_Loss);
1947         tp->high_seq = tp->snd_nxt;
1948         TCP_ECN_queue_cwr(tp);
1949         /* Abort F-RTO algorithm if one is in progress */
1950         tp->frto_counter = 0;
1951 }
1952
1953 /* If ACK arrived pointing to a remembered SACK, it means that our
1954  * remembered SACKs do not reflect real state of receiver i.e.
1955  * receiver _host_ is heavily congested (or buggy).
1956  *
1957  * Do processing similar to RTO timeout.
1958  */
1959 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1960 {
1961         if (flag & FLAG_SACK_RENEGING) {
1962                 struct inet_connection_sock *icsk = inet_csk(sk);
1963                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1964
1965                 tcp_enter_loss(sk, 1);
1966                 icsk->icsk_retransmits++;
1967                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1968                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1969                                           icsk->icsk_rto, TCP_RTO_MAX);
1970                 return 1;
1971         }
1972         return 0;
1973 }
1974
1975 static inline int tcp_fackets_out(struct tcp_sock *tp)
1976 {
1977         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1978 }
1979
1980 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1981  * counter when SACK is enabled (without SACK, sacked_out is used for
1982  * that purpose).
1983  *
1984  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1985  * segments up to the highest received SACK block so far and holes in
1986  * between them.
1987  *
1988  * With reordering, holes may still be in flight, so RFC3517 recovery
1989  * uses pure sacked_out (total number of SACKed segments) even though
1990  * it violates the RFC that uses duplicate ACKs, often these are equal
1991  * but when e.g. out-of-window ACKs or packet duplication occurs,
1992  * they differ. Since neither occurs due to loss, TCP should really
1993  * ignore them.
1994  */
1995 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1996 {
1997         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1998 }
1999
2000 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2001 {
2002         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2003 }
2004
2005 static inline int tcp_head_timedout(struct sock *sk)
2006 {
2007         struct tcp_sock *tp = tcp_sk(sk);
2008
2009         return tp->packets_out &&
2010                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2011 }
2012
2013 /* Linux NewReno/SACK/FACK/ECN state machine.
2014  * --------------------------------------
2015  *
2016  * "Open"       Normal state, no dubious events, fast path.
2017  * "Disorder"   In all the respects it is "Open",
2018  *              but requires a bit more attention. It is entered when
2019  *              we see some SACKs or dupacks. It is split of "Open"
2020  *              mainly to move some processing from fast path to slow one.
2021  * "CWR"        CWND was reduced due to some Congestion Notification event.
2022  *              It can be ECN, ICMP source quench, local device congestion.
2023  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2024  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2025  *
2026  * tcp_fastretrans_alert() is entered:
2027  * - each incoming ACK, if state is not "Open"
2028  * - when arrived ACK is unusual, namely:
2029  *      * SACK
2030  *      * Duplicate ACK.
2031  *      * ECN ECE.
2032  *
2033  * Counting packets in flight is pretty simple.
2034  *
2035  *      in_flight = packets_out - left_out + retrans_out
2036  *
2037  *      packets_out is SND.NXT-SND.UNA counted in packets.
2038  *
2039  *      retrans_out is number of retransmitted segments.
2040  *
2041  *      left_out is number of segments left network, but not ACKed yet.
2042  *
2043  *              left_out = sacked_out + lost_out
2044  *
2045  *     sacked_out: Packets, which arrived to receiver out of order
2046  *                 and hence not ACKed. With SACKs this number is simply
2047  *                 amount of SACKed data. Even without SACKs
2048  *                 it is easy to give pretty reliable estimate of this number,
2049  *                 counting duplicate ACKs.
2050  *
2051  *       lost_out: Packets lost by network. TCP has no explicit
2052  *                 "loss notification" feedback from network (for now).
2053  *                 It means that this number can be only _guessed_.
2054  *                 Actually, it is the heuristics to predict lossage that
2055  *                 distinguishes different algorithms.
2056  *
2057  *      F.e. after RTO, when all the queue is considered as lost,
2058  *      lost_out = packets_out and in_flight = retrans_out.
2059  *
2060  *              Essentially, we have now two algorithms counting
2061  *              lost packets.
2062  *
2063  *              FACK: It is the simplest heuristics. As soon as we decided
2064  *              that something is lost, we decide that _all_ not SACKed
2065  *              packets until the most forward SACK are lost. I.e.
2066  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2067  *              It is absolutely correct estimate, if network does not reorder
2068  *              packets. And it loses any connection to reality when reordering
2069  *              takes place. We use FACK by default until reordering
2070  *              is suspected on the path to this destination.
2071  *
2072  *              NewReno: when Recovery is entered, we assume that one segment
2073  *              is lost (classic Reno). While we are in Recovery and
2074  *              a partial ACK arrives, we assume that one more packet
2075  *              is lost (NewReno). This heuristics are the same in NewReno
2076  *              and SACK.
2077  *
2078  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2079  *  deflation etc. CWND is real congestion window, never inflated, changes
2080  *  only according to classic VJ rules.
2081  *
2082  * Really tricky (and requiring careful tuning) part of algorithm
2083  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2084  * The first determines the moment _when_ we should reduce CWND and,
2085  * hence, slow down forward transmission. In fact, it determines the moment
2086  * when we decide that hole is caused by loss, rather than by a reorder.
2087  *
2088  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2089  * holes, caused by lost packets.
2090  *
2091  * And the most logically complicated part of algorithm is undo
2092  * heuristics. We detect false retransmits due to both too early
2093  * fast retransmit (reordering) and underestimated RTO, analyzing
2094  * timestamps and D-SACKs. When we detect that some segments were
2095  * retransmitted by mistake and CWND reduction was wrong, we undo
2096  * window reduction and abort recovery phase. This logic is hidden
2097  * inside several functions named tcp_try_undo_<something>.
2098  */
2099
2100 /* This function decides, when we should leave Disordered state
2101  * and enter Recovery phase, reducing congestion window.
2102  *
2103  * Main question: may we further continue forward transmission
2104  * with the same cwnd?
2105  */
2106 static int tcp_time_to_recover(struct sock *sk)
2107 {
2108         struct tcp_sock *tp = tcp_sk(sk);
2109         __u32 packets_out;
2110
2111         /* Do not perform any recovery during F-RTO algorithm */
2112         if (tp->frto_counter)
2113                 return 0;
2114
2115         /* Trick#1: The loss is proven. */
2116         if (tp->lost_out)
2117                 return 1;
2118
2119         /* Not-A-Trick#2 : Classic rule... */
2120         if (tcp_dupack_heurestics(tp) > tp->reordering)
2121                 return 1;
2122
2123         /* Trick#3 : when we use RFC2988 timer restart, fast
2124          * retransmit can be triggered by timeout of queue head.
2125          */
2126         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2127                 return 1;
2128
2129         /* Trick#4: It is still not OK... But will it be useful to delay
2130          * recovery more?
2131          */
2132         packets_out = tp->packets_out;
2133         if (packets_out <= tp->reordering &&
2134             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2135             !tcp_may_send_now(sk)) {
2136                 /* We have nothing to send. This connection is limited
2137                  * either by receiver window or by application.
2138                  */
2139                 return 1;
2140         }
2141
2142         return 0;
2143 }
2144
2145 /* RFC: This is from the original, I doubt that this is necessary at all:
2146  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2147  * retransmitted past LOST markings in the first place? I'm not fully sure
2148  * about undo and end of connection cases, which can cause R without L?
2149  */
2150 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2151 {
2152         if ((tp->retransmit_skb_hint != NULL) &&
2153             before(TCP_SKB_CB(skb)->seq,
2154                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2155                 tp->retransmit_skb_hint = NULL;
2156 }
2157
2158 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2159  * is against sacked "cnt", otherwise it's against facked "cnt"
2160  */
2161 static void tcp_mark_head_lost(struct sock *sk, int packets)
2162 {
2163         struct tcp_sock *tp = tcp_sk(sk);
2164         struct sk_buff *skb;
2165         int cnt, oldcnt;
2166         int err;
2167         unsigned int mss;
2168
2169         BUG_TRAP(packets <= tp->packets_out);
2170         if (tp->lost_skb_hint) {
2171                 skb = tp->lost_skb_hint;
2172                 cnt = tp->lost_cnt_hint;
2173         } else {
2174                 skb = tcp_write_queue_head(sk);
2175                 cnt = 0;
2176         }
2177
2178         tcp_for_write_queue_from(skb, sk) {
2179                 if (skb == tcp_send_head(sk))
2180                         break;
2181                 /* TODO: do this better */
2182                 /* this is not the most efficient way to do this... */
2183                 tp->lost_skb_hint = skb;
2184                 tp->lost_cnt_hint = cnt;
2185
2186                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2187                         break;
2188
2189                 oldcnt = cnt;
2190                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2191                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2192                         cnt += tcp_skb_pcount(skb);
2193
2194                 if (cnt > packets) {
2195                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2196                                 break;
2197
2198                         mss = skb_shinfo(skb)->gso_size;
2199                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2200                         if (err < 0)
2201                                 break;
2202                         cnt = packets;
2203                 }
2204
2205                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2206                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2207                         tp->lost_out += tcp_skb_pcount(skb);
2208                         tcp_verify_retransmit_hint(tp, skb);
2209                 }
2210         }
2211         tcp_verify_left_out(tp);
2212 }
2213
2214 /* Account newly detected lost packet(s) */
2215
2216 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2217 {
2218         struct tcp_sock *tp = tcp_sk(sk);
2219
2220         if (tcp_is_reno(tp)) {
2221                 tcp_mark_head_lost(sk, 1);
2222         } else if (tcp_is_fack(tp)) {
2223                 int lost = tp->fackets_out - tp->reordering;
2224                 if (lost <= 0)
2225                         lost = 1;
2226                 tcp_mark_head_lost(sk, lost);
2227         } else {
2228                 int sacked_upto = tp->sacked_out - tp->reordering;
2229                 if (sacked_upto < fast_rexmit)
2230                         sacked_upto = fast_rexmit;
2231                 tcp_mark_head_lost(sk, sacked_upto);
2232         }
2233
2234         /* New heuristics: it is possible only after we switched
2235          * to restart timer each time when something is ACKed.
2236          * Hence, we can detect timed out packets during fast
2237          * retransmit without falling to slow start.
2238          */
2239         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2240                 struct sk_buff *skb;
2241
2242                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2243                         : tcp_write_queue_head(sk);
2244
2245                 tcp_for_write_queue_from(skb, sk) {
2246                         if (skb == tcp_send_head(sk))
2247                                 break;
2248                         if (!tcp_skb_timedout(sk, skb))
2249                                 break;
2250
2251                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2252                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2253                                 tp->lost_out += tcp_skb_pcount(skb);
2254                                 tcp_verify_retransmit_hint(tp, skb);
2255                         }
2256                 }
2257
2258                 tp->scoreboard_skb_hint = skb;
2259
2260                 tcp_verify_left_out(tp);
2261         }
2262 }
2263
2264 /* CWND moderation, preventing bursts due to too big ACKs
2265  * in dubious situations.
2266  */
2267 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2268 {
2269         tp->snd_cwnd = min(tp->snd_cwnd,
2270                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2271         tp->snd_cwnd_stamp = tcp_time_stamp;
2272 }
2273
2274 /* Lower bound on congestion window is slow start threshold
2275  * unless congestion avoidance choice decides to overide it.
2276  */
2277 static inline u32 tcp_cwnd_min(const struct sock *sk)
2278 {
2279         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2280
2281         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2282 }
2283
2284 /* Decrease cwnd each second ack. */
2285 static void tcp_cwnd_down(struct sock *sk, int flag)
2286 {
2287         struct tcp_sock *tp = tcp_sk(sk);
2288         int decr = tp->snd_cwnd_cnt + 1;
2289
2290         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2291             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2292                 tp->snd_cwnd_cnt = decr & 1;
2293                 decr >>= 1;
2294
2295                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2296                         tp->snd_cwnd -= decr;
2297
2298                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2299                 tp->snd_cwnd_stamp = tcp_time_stamp;
2300         }
2301 }
2302
2303 /* Nothing was retransmitted or returned timestamp is less
2304  * than timestamp of the first retransmission.
2305  */
2306 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2307 {
2308         return !tp->retrans_stamp ||
2309                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2310                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2311 }
2312
2313 /* Undo procedures. */
2314
2315 #if FASTRETRANS_DEBUG > 1
2316 static void DBGUNDO(struct sock *sk, const char *msg)
2317 {
2318         struct tcp_sock *tp = tcp_sk(sk);
2319         struct inet_sock *inet = inet_sk(sk);
2320
2321         if (sk->sk_family == AF_INET) {
2322                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2323                        msg,
2324                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2325                        tp->snd_cwnd, tcp_left_out(tp),
2326                        tp->snd_ssthresh, tp->prior_ssthresh,
2327                        tp->packets_out);
2328         }
2329 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2330         else if (sk->sk_family == AF_INET6) {
2331                 struct ipv6_pinfo *np = inet6_sk(sk);
2332                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2333                        msg,
2334                        NIP6(np->daddr), ntohs(inet->dport),
2335                        tp->snd_cwnd, tcp_left_out(tp),
2336                        tp->snd_ssthresh, tp->prior_ssthresh,
2337                        tp->packets_out);
2338         }
2339 #endif
2340 }
2341 #else
2342 #define DBGUNDO(x...) do { } while (0)
2343 #endif
2344
2345 static void tcp_undo_cwr(struct sock *sk, const int undo)
2346 {
2347         struct tcp_sock *tp = tcp_sk(sk);
2348
2349         if (tp->prior_ssthresh) {
2350                 const struct inet_connection_sock *icsk = inet_csk(sk);
2351
2352                 if (icsk->icsk_ca_ops->undo_cwnd)
2353                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2354                 else
2355                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2356
2357                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2358                         tp->snd_ssthresh = tp->prior_ssthresh;
2359                         TCP_ECN_withdraw_cwr(tp);
2360                 }
2361         } else {
2362                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2363         }
2364         tcp_moderate_cwnd(tp);
2365         tp->snd_cwnd_stamp = tcp_time_stamp;
2366
2367         /* There is something screwy going on with the retrans hints after
2368            an undo */
2369         tcp_clear_all_retrans_hints(tp);
2370 }
2371
2372 static inline int tcp_may_undo(struct tcp_sock *tp)
2373 {
2374         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2375 }
2376
2377 /* People celebrate: "We love our President!" */
2378 static int tcp_try_undo_recovery(struct sock *sk)
2379 {
2380         struct tcp_sock *tp = tcp_sk(sk);
2381
2382         if (tcp_may_undo(tp)) {
2383                 /* Happy end! We did not retransmit anything
2384                  * or our original transmission succeeded.
2385                  */
2386                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2387                 tcp_undo_cwr(sk, 1);
2388                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2389                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2390                 else
2391                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2392                 tp->undo_marker = 0;
2393         }
2394         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2395                 /* Hold old state until something *above* high_seq
2396                  * is ACKed. For Reno it is MUST to prevent false
2397                  * fast retransmits (RFC2582). SACK TCP is safe. */
2398                 tcp_moderate_cwnd(tp);
2399                 return 1;
2400         }
2401         tcp_set_ca_state(sk, TCP_CA_Open);
2402         return 0;
2403 }
2404
2405 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2406 static void tcp_try_undo_dsack(struct sock *sk)
2407 {
2408         struct tcp_sock *tp = tcp_sk(sk);
2409
2410         if (tp->undo_marker && !tp->undo_retrans) {
2411                 DBGUNDO(sk, "D-SACK");
2412                 tcp_undo_cwr(sk, 1);
2413                 tp->undo_marker = 0;
2414                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2415         }
2416 }
2417
2418 /* Undo during fast recovery after partial ACK. */
2419
2420 static int tcp_try_undo_partial(struct sock *sk, int acked)
2421 {
2422         struct tcp_sock *tp = tcp_sk(sk);
2423         /* Partial ACK arrived. Force Hoe's retransmit. */
2424         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2425
2426         if (tcp_may_undo(tp)) {
2427                 /* Plain luck! Hole if filled with delayed
2428                  * packet, rather than with a retransmit.
2429                  */
2430                 if (tp->retrans_out == 0)
2431                         tp->retrans_stamp = 0;
2432
2433                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2434
2435                 DBGUNDO(sk, "Hoe");
2436                 tcp_undo_cwr(sk, 0);
2437                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2438
2439                 /* So... Do not make Hoe's retransmit yet.
2440                  * If the first packet was delayed, the rest
2441                  * ones are most probably delayed as well.
2442                  */
2443                 failed = 0;
2444         }
2445         return failed;
2446 }
2447
2448 /* Undo during loss recovery after partial ACK. */
2449 static int tcp_try_undo_loss(struct sock *sk)
2450 {
2451         struct tcp_sock *tp = tcp_sk(sk);
2452
2453         if (tcp_may_undo(tp)) {
2454                 struct sk_buff *skb;
2455                 tcp_for_write_queue(skb, sk) {
2456                         if (skb == tcp_send_head(sk))
2457                                 break;
2458                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2459                 }
2460
2461                 tcp_clear_all_retrans_hints(tp);
2462
2463                 DBGUNDO(sk, "partial loss");
2464                 tp->lost_out = 0;
2465                 tcp_undo_cwr(sk, 1);
2466                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2467                 inet_csk(sk)->icsk_retransmits = 0;
2468                 tp->undo_marker = 0;
2469                 if (tcp_is_sack(tp))
2470                         tcp_set_ca_state(sk, TCP_CA_Open);
2471                 return 1;
2472         }
2473         return 0;
2474 }
2475
2476 static inline void tcp_complete_cwr(struct sock *sk)
2477 {
2478         struct tcp_sock *tp = tcp_sk(sk);
2479         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2480         tp->snd_cwnd_stamp = tcp_time_stamp;
2481         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2482 }
2483
2484 static void tcp_try_keep_open(struct sock *sk)
2485 {
2486         struct tcp_sock *tp = tcp_sk(sk);
2487         int state = TCP_CA_Open;
2488
2489         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2490                 state = TCP_CA_Disorder;
2491
2492         if (inet_csk(sk)->icsk_ca_state != state) {
2493                 tcp_set_ca_state(sk, state);
2494                 tp->high_seq = tp->snd_nxt;
2495         }
2496 }
2497
2498 static void tcp_try_to_open(struct sock *sk, int flag)
2499 {
2500         struct tcp_sock *tp = tcp_sk(sk);
2501
2502         tcp_verify_left_out(tp);
2503
2504         if (!tp->frto_counter && tp->retrans_out == 0)
2505                 tp->retrans_stamp = 0;
2506
2507         if (flag & FLAG_ECE)
2508                 tcp_enter_cwr(sk, 1);
2509
2510         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2511                 tcp_try_keep_open(sk);
2512                 tcp_moderate_cwnd(tp);
2513         } else {
2514                 tcp_cwnd_down(sk, flag);
2515         }
2516 }
2517
2518 static void tcp_mtup_probe_failed(struct sock *sk)
2519 {
2520         struct inet_connection_sock *icsk = inet_csk(sk);
2521
2522         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2523         icsk->icsk_mtup.probe_size = 0;
2524 }
2525
2526 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2527 {
2528         struct tcp_sock *tp = tcp_sk(sk);
2529         struct inet_connection_sock *icsk = inet_csk(sk);
2530
2531         /* FIXME: breaks with very large cwnd */
2532         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2533         tp->snd_cwnd = tp->snd_cwnd *
2534                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2535                        icsk->icsk_mtup.probe_size;
2536         tp->snd_cwnd_cnt = 0;
2537         tp->snd_cwnd_stamp = tcp_time_stamp;
2538         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2539
2540         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2541         icsk->icsk_mtup.probe_size = 0;
2542         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2543 }
2544
2545 /* Process an event, which can update packets-in-flight not trivially.
2546  * Main goal of this function is to calculate new estimate for left_out,
2547  * taking into account both packets sitting in receiver's buffer and
2548  * packets lost by network.
2549  *
2550  * Besides that it does CWND reduction, when packet loss is detected
2551  * and changes state of machine.
2552  *
2553  * It does _not_ decide what to send, it is made in function
2554  * tcp_xmit_retransmit_queue().
2555  */
2556 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2557 {
2558         struct inet_connection_sock *icsk = inet_csk(sk);
2559         struct tcp_sock *tp = tcp_sk(sk);
2560         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2561         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2562                                     (tcp_fackets_out(tp) > tp->reordering));
2563         int fast_rexmit = 0;
2564
2565         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2566                 tp->sacked_out = 0;
2567         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2568                 tp->fackets_out = 0;
2569
2570         /* Now state machine starts.
2571          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2572         if (flag & FLAG_ECE)
2573                 tp->prior_ssthresh = 0;
2574
2575         /* B. In all the states check for reneging SACKs. */
2576         if (tcp_check_sack_reneging(sk, flag))
2577                 return;
2578
2579         /* C. Process data loss notification, provided it is valid. */
2580         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2581             before(tp->snd_una, tp->high_seq) &&
2582             icsk->icsk_ca_state != TCP_CA_Open &&
2583             tp->fackets_out > tp->reordering) {
2584                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2585                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2586         }
2587
2588         /* D. Check consistency of the current state. */
2589         tcp_verify_left_out(tp);
2590
2591         /* E. Check state exit conditions. State can be terminated
2592          *    when high_seq is ACKed. */
2593         if (icsk->icsk_ca_state == TCP_CA_Open) {
2594                 BUG_TRAP(tp->retrans_out == 0);
2595                 tp->retrans_stamp = 0;
2596         } else if (!before(tp->snd_una, tp->high_seq)) {
2597                 switch (icsk->icsk_ca_state) {
2598                 case TCP_CA_Loss:
2599                         icsk->icsk_retransmits = 0;
2600                         if (tcp_try_undo_recovery(sk))
2601                                 return;
2602                         break;
2603
2604                 case TCP_CA_CWR:
2605                         /* CWR is to be held something *above* high_seq
2606                          * is ACKed for CWR bit to reach receiver. */
2607                         if (tp->snd_una != tp->high_seq) {
2608                                 tcp_complete_cwr(sk);
2609                                 tcp_set_ca_state(sk, TCP_CA_Open);
2610                         }
2611                         break;
2612
2613                 case TCP_CA_Disorder:
2614                         tcp_try_undo_dsack(sk);
2615                         if (!tp->undo_marker ||
2616                             /* For SACK case do not Open to allow to undo
2617                              * catching for all duplicate ACKs. */
2618                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2619                                 tp->undo_marker = 0;
2620                                 tcp_set_ca_state(sk, TCP_CA_Open);
2621                         }
2622                         break;
2623
2624                 case TCP_CA_Recovery:
2625                         if (tcp_is_reno(tp))
2626                                 tcp_reset_reno_sack(tp);
2627                         if (tcp_try_undo_recovery(sk))
2628                                 return;
2629                         tcp_complete_cwr(sk);
2630                         break;
2631                 }
2632         }
2633
2634         /* F. Process state. */
2635         switch (icsk->icsk_ca_state) {
2636         case TCP_CA_Recovery:
2637                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2638                         if (tcp_is_reno(tp) && is_dupack)
2639                                 tcp_add_reno_sack(sk);
2640                 } else
2641                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2642                 break;
2643         case TCP_CA_Loss:
2644                 if (flag & FLAG_DATA_ACKED)
2645                         icsk->icsk_retransmits = 0;
2646                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2647                         tcp_reset_reno_sack(tp);
2648                 if (!tcp_try_undo_loss(sk)) {
2649                         tcp_moderate_cwnd(tp);
2650                         tcp_xmit_retransmit_queue(sk);
2651                         return;
2652                 }
2653                 if (icsk->icsk_ca_state != TCP_CA_Open)
2654                         return;
2655                 /* Loss is undone; fall through to processing in Open state. */
2656         default:
2657                 if (tcp_is_reno(tp)) {
2658                         if (flag & FLAG_SND_UNA_ADVANCED)
2659                                 tcp_reset_reno_sack(tp);
2660                         if (is_dupack)
2661                                 tcp_add_reno_sack(sk);
2662                 }
2663
2664                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2665                         tcp_try_undo_dsack(sk);
2666
2667                 if (!tcp_time_to_recover(sk)) {
2668                         tcp_try_to_open(sk, flag);
2669                         return;
2670                 }
2671
2672                 /* MTU probe failure: don't reduce cwnd */
2673                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2674                     icsk->icsk_mtup.probe_size &&
2675                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2676                         tcp_mtup_probe_failed(sk);
2677                         /* Restores the reduction we did in tcp_mtup_probe() */
2678                         tp->snd_cwnd++;
2679                         tcp_simple_retransmit(sk);
2680                         return;
2681                 }
2682
2683                 /* Otherwise enter Recovery state */
2684
2685                 if (tcp_is_reno(tp))
2686                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2687                 else
2688                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2689
2690                 tp->high_seq = tp->snd_nxt;
2691                 tp->prior_ssthresh = 0;
2692                 tp->undo_marker = tp->snd_una;
2693                 tp->undo_retrans = tp->retrans_out;
2694
2695                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2696                         if (!(flag & FLAG_ECE))
2697                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2698                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2699                         TCP_ECN_queue_cwr(tp);
2700                 }
2701
2702                 tp->bytes_acked = 0;
2703                 tp->snd_cwnd_cnt = 0;
2704                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2705                 fast_rexmit = 1;
2706         }
2707
2708         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2709                 tcp_update_scoreboard(sk, fast_rexmit);
2710         tcp_cwnd_down(sk, flag);
2711         tcp_xmit_retransmit_queue(sk);
2712 }
2713
2714 /* Read draft-ietf-tcplw-high-performance before mucking
2715  * with this code. (Supersedes RFC1323)
2716  */
2717 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2718 {
2719         /* RTTM Rule: A TSecr value received in a segment is used to
2720          * update the averaged RTT measurement only if the segment
2721          * acknowledges some new data, i.e., only if it advances the
2722          * left edge of the send window.
2723          *
2724          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2725          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2726          *
2727          * Changed: reset backoff as soon as we see the first valid sample.
2728          * If we do not, we get strongly overestimated rto. With timestamps
2729          * samples are accepted even from very old segments: f.e., when rtt=1
2730          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2731          * answer arrives rto becomes 120 seconds! If at least one of segments
2732          * in window is lost... Voila.                          --ANK (010210)
2733          */
2734         struct tcp_sock *tp = tcp_sk(sk);
2735         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2736         tcp_rtt_estimator(sk, seq_rtt);
2737         tcp_set_rto(sk);
2738         inet_csk(sk)->icsk_backoff = 0;
2739         tcp_bound_rto(sk);
2740 }
2741
2742 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2743 {
2744         /* We don't have a timestamp. Can only use
2745          * packets that are not retransmitted to determine
2746          * rtt estimates. Also, we must not reset the
2747          * backoff for rto until we get a non-retransmitted
2748          * packet. This allows us to deal with a situation
2749          * where the network delay has increased suddenly.
2750          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2751          */
2752
2753         if (flag & FLAG_RETRANS_DATA_ACKED)
2754                 return;
2755
2756         tcp_rtt_estimator(sk, seq_rtt);
2757         tcp_set_rto(sk);
2758         inet_csk(sk)->icsk_backoff = 0;
2759         tcp_bound_rto(sk);
2760 }
2761
2762 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2763                                       const s32 seq_rtt)
2764 {
2765         const struct tcp_sock *tp = tcp_sk(sk);
2766         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2767         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2768                 tcp_ack_saw_tstamp(sk, flag);
2769         else if (seq_rtt >= 0)
2770                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2771 }
2772
2773 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2774 {
2775         const struct inet_connection_sock *icsk = inet_csk(sk);
2776         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2777         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2778 }
2779
2780 /* Restart timer after forward progress on connection.
2781  * RFC2988 recommends to restart timer to now+rto.
2782  */
2783 static void tcp_rearm_rto(struct sock *sk)
2784 {
2785         struct tcp_sock *tp = tcp_sk(sk);
2786
2787         if (!tp->packets_out) {
2788                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2789         } else {
2790                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2791                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2792         }
2793 }
2794
2795 /* If we get here, the whole TSO packet has not been acked. */
2796 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2797 {
2798         struct tcp_sock *tp = tcp_sk(sk);
2799         u32 packets_acked;
2800
2801         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2802
2803         packets_acked = tcp_skb_pcount(skb);
2804         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2805                 return 0;
2806         packets_acked -= tcp_skb_pcount(skb);
2807
2808         if (packets_acked) {
2809                 BUG_ON(tcp_skb_pcount(skb) == 0);
2810                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2811         }
2812
2813         return packets_acked;
2814 }
2815
2816 /* Remove acknowledged frames from the retransmission queue. If our packet
2817  * is before the ack sequence we can discard it as it's confirmed to have
2818  * arrived at the other end.
2819  */
2820 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2821 {
2822         struct tcp_sock *tp = tcp_sk(sk);
2823         const struct inet_connection_sock *icsk = inet_csk(sk);
2824         struct sk_buff *skb;
2825         u32 now = tcp_time_stamp;
2826         int fully_acked = 1;
2827         int flag = 0;
2828         u32 pkts_acked = 0;
2829         u32 reord = tp->packets_out;
2830         s32 seq_rtt = -1;
2831         s32 ca_seq_rtt = -1;
2832         ktime_t last_ackt = net_invalid_timestamp();
2833
2834         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2835                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2836                 u32 end_seq;
2837                 u32 acked_pcount;
2838                 u8 sacked = scb->sacked;
2839
2840                 /* Determine how many packets and what bytes were acked, tso and else */
2841                 if (after(scb->end_seq, tp->snd_una)) {
2842                         if (tcp_skb_pcount(skb) == 1 ||
2843                             !after(tp->snd_una, scb->seq))
2844                                 break;
2845
2846                         acked_pcount = tcp_tso_acked(sk, skb);
2847                         if (!acked_pcount)
2848                                 break;
2849
2850                         fully_acked = 0;
2851                         end_seq = tp->snd_una;
2852                 } else {
2853                         acked_pcount = tcp_skb_pcount(skb);
2854                         end_seq = scb->end_seq;
2855                 }
2856
2857                 /* MTU probing checks */
2858                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2859                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2860                         tcp_mtup_probe_success(sk, skb);
2861                 }
2862
2863                 if (sacked & TCPCB_RETRANS) {
2864                         if (sacked & TCPCB_SACKED_RETRANS)
2865                                 tp->retrans_out -= acked_pcount;
2866                         flag |= FLAG_RETRANS_DATA_ACKED;
2867                         ca_seq_rtt = -1;
2868                         seq_rtt = -1;
2869                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2870                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2871                 } else {
2872                         ca_seq_rtt = now - scb->when;
2873                         last_ackt = skb->tstamp;
2874                         if (seq_rtt < 0) {
2875                                 seq_rtt = ca_seq_rtt;
2876                         }
2877                         if (!(sacked & TCPCB_SACKED_ACKED))
2878                                 reord = min(pkts_acked, reord);
2879                 }
2880
2881                 if (sacked & TCPCB_SACKED_ACKED)
2882                         tp->sacked_out -= acked_pcount;
2883                 if (sacked & TCPCB_LOST)
2884                         tp->lost_out -= acked_pcount;
2885
2886                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2887                         tp->urg_mode = 0;
2888
2889                 tp->packets_out -= acked_pcount;
2890                 pkts_acked += acked_pcount;
2891
2892                 /* Initial outgoing SYN's get put onto the write_queue
2893                  * just like anything else we transmit.  It is not
2894                  * true data, and if we misinform our callers that
2895                  * this ACK acks real data, we will erroneously exit
2896                  * connection startup slow start one packet too
2897                  * quickly.  This is severely frowned upon behavior.
2898                  */
2899                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2900                         flag |= FLAG_DATA_ACKED;
2901                 } else {
2902                         flag |= FLAG_SYN_ACKED;
2903                         tp->retrans_stamp = 0;
2904                 }
2905
2906                 if (!fully_acked)
2907                         break;
2908
2909                 tcp_unlink_write_queue(skb, sk);
2910                 sk_wmem_free_skb(sk, skb);
2911                 tcp_clear_all_retrans_hints(tp);
2912         }
2913
2914         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2915                 flag |= FLAG_SACK_RENEGING;
2916
2917         if (flag & FLAG_ACKED) {
2918                 const struct tcp_congestion_ops *ca_ops
2919                         = inet_csk(sk)->icsk_ca_ops;
2920
2921                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2922                 tcp_rearm_rto(sk);
2923
2924                 if (tcp_is_reno(tp)) {
2925                         tcp_remove_reno_sacks(sk, pkts_acked);
2926                 } else {
2927                         /* Non-retransmitted hole got filled? That's reordering */
2928                         if (reord < prior_fackets)
2929                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2930                 }
2931
2932                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2933
2934                 if (ca_ops->pkts_acked) {
2935                         s32 rtt_us = -1;
2936
2937                         /* Is the ACK triggering packet unambiguous? */
2938                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2939                                 /* High resolution needed and available? */
2940                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2941                                     !ktime_equal(last_ackt,
2942                                                  net_invalid_timestamp()))
2943                                         rtt_us = ktime_us_delta(ktime_get_real(),
2944                                                                 last_ackt);
2945                                 else if (ca_seq_rtt > 0)
2946                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2947                         }
2948
2949                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2950                 }
2951         }
2952
2953 #if FASTRETRANS_DEBUG > 0
2954         BUG_TRAP((int)tp->sacked_out >= 0);
2955         BUG_TRAP((int)tp->lost_out >= 0);
2956         BUG_TRAP((int)tp->retrans_out >= 0);
2957         if (!tp->packets_out && tcp_is_sack(tp)) {
2958                 icsk = inet_csk(sk);
2959                 if (tp->lost_out) {
2960                         printk(KERN_DEBUG "Leak l=%u %d\n",
2961                                tp->lost_out, icsk->icsk_ca_state);
2962                         tp->lost_out = 0;
2963                 }
2964                 if (tp->sacked_out) {
2965                         printk(KERN_DEBUG "Leak s=%u %d\n",
2966                                tp->sacked_out, icsk->icsk_ca_state);
2967                         tp->sacked_out = 0;
2968                 }
2969                 if (tp->retrans_out) {
2970                         printk(KERN_DEBUG "Leak r=%u %d\n",
2971                                tp->retrans_out, icsk->icsk_ca_state);
2972                         tp->retrans_out = 0;
2973                 }
2974         }
2975 #endif
2976         return flag;
2977 }
2978
2979 static void tcp_ack_probe(struct sock *sk)
2980 {
2981         const struct tcp_sock *tp = tcp_sk(sk);
2982         struct inet_connection_sock *icsk = inet_csk(sk);
2983
2984         /* Was it a usable window open? */
2985
2986         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2987                 icsk->icsk_backoff = 0;
2988                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2989                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2990                  * This function is not for random using!
2991                  */
2992         } else {
2993                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2994                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2995                                           TCP_RTO_MAX);
2996         }
2997 }
2998
2999 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3000 {
3001         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3002                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3003 }
3004
3005 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3006 {
3007         const struct tcp_sock *tp = tcp_sk(sk);
3008         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3009                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3010 }
3011
3012 /* Check that window update is acceptable.
3013  * The function assumes that snd_una<=ack<=snd_next.
3014  */
3015 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3016                                         const u32 ack, const u32 ack_seq,
3017                                         const u32 nwin)
3018 {
3019         return (after(ack, tp->snd_una) ||
3020                 after(ack_seq, tp->snd_wl1) ||
3021                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3022 }
3023
3024 /* Update our send window.
3025  *
3026  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3027  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3028  */
3029 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3030                                  u32 ack_seq)
3031 {
3032         struct tcp_sock *tp = tcp_sk(sk);
3033         int flag = 0;
3034         u32 nwin = ntohs(tcp_hdr(skb)->window);
3035
3036         if (likely(!tcp_hdr(skb)->syn))
3037                 nwin <<= tp->rx_opt.snd_wscale;
3038
3039         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3040                 flag |= FLAG_WIN_UPDATE;
3041                 tcp_update_wl(tp, ack, ack_seq);
3042
3043                 if (tp->snd_wnd != nwin) {
3044                         tp->snd_wnd = nwin;
3045
3046                         /* Note, it is the only place, where
3047                          * fast path is recovered for sending TCP.
3048                          */
3049                         tp->pred_flags = 0;
3050                         tcp_fast_path_check(sk);
3051
3052                         if (nwin > tp->max_window) {
3053                                 tp->max_window = nwin;
3054                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3055                         }
3056                 }
3057         }
3058
3059         tp->snd_una = ack;
3060
3061         return flag;
3062 }
3063
3064 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3065  * continue in congestion avoidance.
3066  */
3067 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3068 {
3069         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3070         tp->snd_cwnd_cnt = 0;
3071         tp->bytes_acked = 0;
3072         TCP_ECN_queue_cwr(tp);
3073         tcp_moderate_cwnd(tp);
3074 }
3075
3076 /* A conservative spurious RTO response algorithm: reduce cwnd using
3077  * rate halving and continue in congestion avoidance.
3078  */
3079 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3080 {
3081         tcp_enter_cwr(sk, 0);
3082 }
3083
3084 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3085 {
3086         if (flag & FLAG_ECE)
3087                 tcp_ratehalving_spur_to_response(sk);
3088         else
3089                 tcp_undo_cwr(sk, 1);
3090 }
3091
3092 /* F-RTO spurious RTO detection algorithm (RFC4138)
3093  *
3094  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3095  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3096  * window (but not to or beyond highest sequence sent before RTO):
3097  *   On First ACK,  send two new segments out.
3098  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3099  *                  algorithm is not part of the F-RTO detection algorithm
3100  *                  given in RFC4138 but can be selected separately).
3101  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3102  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3103  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3104  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3105  *
3106  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3107  * original window even after we transmit two new data segments.
3108  *
3109  * SACK version:
3110  *   on first step, wait until first cumulative ACK arrives, then move to
3111  *   the second step. In second step, the next ACK decides.
3112  *
3113  * F-RTO is implemented (mainly) in four functions:
3114  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3115  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3116  *     called when tcp_use_frto() showed green light
3117  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3118  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3119  *     to prove that the RTO is indeed spurious. It transfers the control
3120  *     from F-RTO to the conventional RTO recovery
3121  */
3122 static int tcp_process_frto(struct sock *sk, int flag)
3123 {
3124         struct tcp_sock *tp = tcp_sk(sk);
3125
3126         tcp_verify_left_out(tp);
3127
3128         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3129         if (flag & FLAG_DATA_ACKED)
3130                 inet_csk(sk)->icsk_retransmits = 0;
3131
3132         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3133             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3134                 tp->undo_marker = 0;
3135
3136         if (!before(tp->snd_una, tp->frto_highmark)) {
3137                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3138                 return 1;
3139         }
3140
3141         if (!tcp_is_sackfrto(tp)) {
3142                 /* RFC4138 shortcoming in step 2; should also have case c):
3143                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3144                  * data, winupdate
3145                  */
3146                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3147                         return 1;
3148
3149                 if (!(flag & FLAG_DATA_ACKED)) {
3150                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3151                                             flag);
3152                         return 1;
3153                 }
3154         } else {
3155                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3156                         /* Prevent sending of new data. */
3157                         tp->snd_cwnd = min(tp->snd_cwnd,
3158                                            tcp_packets_in_flight(tp));
3159                         return 1;
3160                 }
3161
3162                 if ((tp->frto_counter >= 2) &&
3163                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3164                      ((flag & FLAG_DATA_SACKED) &&
3165                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3166                         /* RFC4138 shortcoming (see comment above) */
3167                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3168                             (flag & FLAG_NOT_DUP))
3169                                 return 1;
3170
3171                         tcp_enter_frto_loss(sk, 3, flag);
3172                         return 1;
3173                 }
3174         }
3175
3176         if (tp->frto_counter == 1) {
3177                 /* tcp_may_send_now needs to see updated state */
3178                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3179                 tp->frto_counter = 2;
3180
3181                 if (!tcp_may_send_now(sk))
3182                         tcp_enter_frto_loss(sk, 2, flag);
3183
3184                 return 1;
3185         } else {
3186                 switch (sysctl_tcp_frto_response) {
3187                 case 2:
3188                         tcp_undo_spur_to_response(sk, flag);
3189                         break;
3190                 case 1:
3191                         tcp_conservative_spur_to_response(tp);
3192                         break;
3193                 default:
3194                         tcp_ratehalving_spur_to_response(sk);
3195                         break;
3196                 }
3197                 tp->frto_counter = 0;
3198                 tp->undo_marker = 0;
3199                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3200         }
3201         return 0;
3202 }
3203
3204 /* This routine deals with incoming acks, but not outgoing ones. */
3205 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3206 {
3207         struct inet_connection_sock *icsk = inet_csk(sk);
3208         struct tcp_sock *tp = tcp_sk(sk);
3209         u32 prior_snd_una = tp->snd_una;
3210         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3211         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3212         u32 prior_in_flight;
3213         u32 prior_fackets;
3214         int prior_packets;
3215         int frto_cwnd = 0;
3216
3217         /* If the ack is newer than sent or older than previous acks
3218          * then we can probably ignore it.
3219          */
3220         if (after(ack, tp->snd_nxt))
3221                 goto uninteresting_ack;
3222
3223         if (before(ack, prior_snd_una))
3224                 goto old_ack;
3225
3226         if (after(ack, prior_snd_una))
3227                 flag |= FLAG_SND_UNA_ADVANCED;
3228
3229         if (sysctl_tcp_abc) {
3230                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3231                         tp->bytes_acked += ack - prior_snd_una;
3232                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3233                         /* we assume just one segment left network */
3234                         tp->bytes_acked += min(ack - prior_snd_una,
3235                                                tp->mss_cache);
3236         }
3237
3238         prior_fackets = tp->fackets_out;
3239         prior_in_flight = tcp_packets_in_flight(tp);
3240
3241         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3242                 /* Window is constant, pure forward advance.
3243                  * No more checks are required.
3244                  * Note, we use the fact that SND.UNA>=SND.WL2.
3245                  */
3246                 tcp_update_wl(tp, ack, ack_seq);
3247                 tp->snd_una = ack;
3248                 flag |= FLAG_WIN_UPDATE;
3249
3250                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3251
3252                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3253         } else {
3254                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3255                         flag |= FLAG_DATA;
3256                 else
3257                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3258
3259                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3260
3261                 if (TCP_SKB_CB(skb)->sacked)
3262                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3263
3264                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3265                         flag |= FLAG_ECE;
3266
3267                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3268         }
3269
3270         /* We passed data and got it acked, remove any soft error
3271          * log. Something worked...
3272          */
3273         sk->sk_err_soft = 0;
3274         tp->rcv_tstamp = tcp_time_stamp;
3275         prior_packets = tp->packets_out;
3276         if (!prior_packets)
3277                 goto no_queue;
3278
3279         /* See if we can take anything off of the retransmit queue. */
3280         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3281
3282         if (tp->frto_counter)
3283                 frto_cwnd = tcp_process_frto(sk, flag);
3284         /* Guarantee sacktag reordering detection against wrap-arounds */
3285         if (before(tp->frto_highmark, tp->snd_una))
3286                 tp->frto_highmark = 0;
3287
3288         if (tcp_ack_is_dubious(sk, flag)) {
3289                 /* Advance CWND, if state allows this. */
3290                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3291                     tcp_may_raise_cwnd(sk, flag))
3292                         tcp_cong_avoid(sk, ack, prior_in_flight);
3293                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3294                                       flag);
3295         } else {
3296                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3297                         tcp_cong_avoid(sk, ack, prior_in_flight);
3298         }
3299
3300         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3301                 dst_confirm(sk->sk_dst_cache);
3302
3303         return 1;
3304
3305 no_queue:
3306         icsk->icsk_probes_out = 0;
3307
3308         /* If this ack opens up a zero window, clear backoff.  It was
3309          * being used to time the probes, and is probably far higher than
3310          * it needs to be for normal retransmission.
3311          */
3312         if (tcp_send_head(sk))
3313                 tcp_ack_probe(sk);
3314         return 1;
3315
3316 old_ack:
3317         if (TCP_SKB_CB(skb)->sacked) {
3318                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3319                 if (icsk->icsk_ca_state == TCP_CA_Open)
3320                         tcp_try_keep_open(sk);
3321         }
3322
3323 uninteresting_ack:
3324         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3325         return 0;
3326 }
3327
3328 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3329  * But, this can also be called on packets in the established flow when
3330  * the fast version below fails.
3331  */
3332 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3333                        int estab)
3334 {
3335         unsigned char *ptr;
3336         struct tcphdr *th = tcp_hdr(skb);
3337         int length = (th->doff * 4) - sizeof(struct tcphdr);
3338
3339         ptr = (unsigned char *)(th + 1);
3340         opt_rx->saw_tstamp = 0;
3341
3342         while (length > 0) {
3343                 int opcode = *ptr++;
3344                 int opsize;
3345
3346                 switch (opcode) {
3347                 case TCPOPT_EOL:
3348                         return;
3349                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3350                         length--;
3351                         continue;
3352                 default:
3353                         opsize = *ptr++;
3354                         if (opsize < 2) /* "silly options" */
3355                                 return;
3356                         if (opsize > length)
3357                                 return; /* don't parse partial options */
3358                         switch (opcode) {
3359                         case TCPOPT_MSS:
3360                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3361                                         u16 in_mss = get_unaligned_be16(ptr);
3362                                         if (in_mss) {
3363                                                 if (opt_rx->user_mss &&
3364                                                     opt_rx->user_mss < in_mss)
3365                                                         in_mss = opt_rx->user_mss;
3366                                                 opt_rx->mss_clamp = in_mss;
3367                                         }
3368                                 }
3369                                 break;
3370                         case TCPOPT_WINDOW:
3371                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3372                                     !estab && sysctl_tcp_window_scaling) {
3373                                         __u8 snd_wscale = *(__u8 *)ptr;
3374                                         opt_rx->wscale_ok = 1;
3375                                         if (snd_wscale > 14) {
3376                                                 if (net_ratelimit())
3377                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3378                                                                "scaling value %d >14 received.\n",
3379                                                                snd_wscale);
3380                                                 snd_wscale = 14;
3381                                         }
3382                                         opt_rx->snd_wscale = snd_wscale;
3383                                 }
3384                                 break;
3385                         case TCPOPT_TIMESTAMP:
3386                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3387                                     ((estab && opt_rx->tstamp_ok) ||
3388                                      (!estab && sysctl_tcp_timestamps))) {
3389                                         opt_rx->saw_tstamp = 1;
3390                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3391                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3392                                 }
3393                                 break;
3394                         case TCPOPT_SACK_PERM:
3395                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3396                                     !estab && sysctl_tcp_sack) {
3397                                         opt_rx->sack_ok = 1;
3398                                         tcp_sack_reset(opt_rx);
3399                                 }
3400                                 break;
3401
3402                         case TCPOPT_SACK:
3403                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3404                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3405                                    opt_rx->sack_ok) {
3406                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3407                                 }
3408                                 break;
3409 #ifdef CONFIG_TCP_MD5SIG
3410                         case TCPOPT_MD5SIG:
3411                                 /*
3412                                  * The MD5 Hash has already been
3413                                  * checked (see tcp_v{4,6}_do_rcv()).
3414                                  */
3415                                 break;
3416 #endif
3417                         }
3418
3419                         ptr += opsize-2;
3420                         length -= opsize;
3421                 }
3422         }
3423 }
3424
3425 /* Fast parse options. This hopes to only see timestamps.
3426  * If it is wrong it falls back on tcp_parse_options().
3427  */
3428 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3429                                   struct tcp_sock *tp)
3430 {
3431         if (th->doff == sizeof(struct tcphdr) >> 2) {
3432                 tp->rx_opt.saw_tstamp = 0;
3433                 return 0;
3434         } else if (tp->rx_opt.tstamp_ok &&
3435                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3436                 __be32 *ptr = (__be32 *)(th + 1);
3437                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3438                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3439                         tp->rx_opt.saw_tstamp = 1;
3440                         ++ptr;
3441                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3442                         ++ptr;
3443                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3444                         return 1;
3445                 }
3446         }
3447         tcp_parse_options(skb, &tp->rx_opt, 1);
3448         return 1;
3449 }
3450
3451 #ifdef CONFIG_TCP_MD5SIG
3452 /*
3453  * Parse MD5 Signature option
3454  */
3455 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3456 {
3457         int length = (th->doff << 2) - sizeof (*th);
3458         u8 *ptr = (u8*)(th + 1);
3459
3460         /* If the TCP option is too short, we can short cut */
3461         if (length < TCPOLEN_MD5SIG)
3462                 return NULL;
3463
3464         while (length > 0) {
3465                 int opcode = *ptr++;
3466                 int opsize;
3467
3468                 switch(opcode) {
3469                 case TCPOPT_EOL:
3470                         return NULL;
3471                 case TCPOPT_NOP:
3472                         length--;
3473                         continue;
3474                 default:
3475                         opsize = *ptr++;
3476                         if (opsize < 2 || opsize > length)
3477                                 return NULL;
3478                         if (opcode == TCPOPT_MD5SIG)
3479                                 return ptr;
3480                 }
3481                 ptr += opsize - 2;
3482                 length -= opsize;
3483         }
3484         return NULL;
3485 }
3486 #endif
3487
3488 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3489 {
3490         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3491         tp->rx_opt.ts_recent_stamp = get_seconds();
3492 }
3493
3494 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3495 {
3496         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3497                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3498                  * extra check below makes sure this can only happen
3499                  * for pure ACK frames.  -DaveM
3500                  *
3501                  * Not only, also it occurs for expired timestamps.
3502                  */
3503
3504                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3505                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3506                         tcp_store_ts_recent(tp);
3507         }
3508 }
3509
3510 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3511  *
3512  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3513  * it can pass through stack. So, the following predicate verifies that
3514  * this segment is not used for anything but congestion avoidance or
3515  * fast retransmit. Moreover, we even are able to eliminate most of such
3516  * second order effects, if we apply some small "replay" window (~RTO)
3517  * to timestamp space.
3518  *
3519  * All these measures still do not guarantee that we reject wrapped ACKs
3520  * on networks with high bandwidth, when sequence space is recycled fastly,
3521  * but it guarantees that such events will be very rare and do not affect
3522  * connection seriously. This doesn't look nice, but alas, PAWS is really
3523  * buggy extension.
3524  *
3525  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3526  * states that events when retransmit arrives after original data are rare.
3527  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3528  * the biggest problem on large power networks even with minor reordering.
3529  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3530  * up to bandwidth of 18Gigabit/sec. 8) ]
3531  */
3532
3533 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3534 {
3535         struct tcp_sock *tp = tcp_sk(sk);
3536         struct tcphdr *th = tcp_hdr(skb);
3537         u32 seq = TCP_SKB_CB(skb)->seq;
3538         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3539
3540         return (/* 1. Pure ACK with correct sequence number. */
3541                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3542
3543                 /* 2. ... and duplicate ACK. */
3544                 ack == tp->snd_una &&
3545
3546                 /* 3. ... and does not update window. */
3547                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3548
3549                 /* 4. ... and sits in replay window. */
3550                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3551 }
3552
3553 static inline int tcp_paws_discard(const struct sock *sk,
3554                                    const struct sk_buff *skb)
3555 {
3556         const struct tcp_sock *tp = tcp_sk(sk);
3557         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3558                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3559                 !tcp_disordered_ack(sk, skb));
3560 }
3561
3562 /* Check segment sequence number for validity.
3563  *
3564  * Segment controls are considered valid, if the segment
3565  * fits to the window after truncation to the window. Acceptability
3566  * of data (and SYN, FIN, of course) is checked separately.
3567  * See tcp_data_queue(), for example.
3568  *
3569  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3570  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3571  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3572  * (borrowed from freebsd)
3573  */
3574
3575 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3576 {
3577         return  !before(end_seq, tp->rcv_wup) &&
3578                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3579 }
3580
3581 /* When we get a reset we do this. */
3582 static void tcp_reset(struct sock *sk)
3583 {
3584         /* We want the right error as BSD sees it (and indeed as we do). */
3585         switch (sk->sk_state) {
3586         case TCP_SYN_SENT:
3587                 sk->sk_err = ECONNREFUSED;
3588                 break;
3589         case TCP_CLOSE_WAIT:
3590                 sk->sk_err = EPIPE;
3591                 break;
3592         case TCP_CLOSE:
3593                 return;
3594         default:
3595                 sk->sk_err = ECONNRESET;
3596         }
3597
3598         if (!sock_flag(sk, SOCK_DEAD))
3599                 sk->sk_error_report(sk);
3600
3601         tcp_done(sk);
3602 }
3603
3604 /*
3605  *      Process the FIN bit. This now behaves as it is supposed to work
3606  *      and the FIN takes effect when it is validly part of sequence
3607  *      space. Not before when we get holes.
3608  *
3609  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3610  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3611  *      TIME-WAIT)
3612  *
3613  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3614  *      close and we go into CLOSING (and later onto TIME-WAIT)
3615  *
3616  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3617  */
3618 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3619 {
3620         struct tcp_sock *tp = tcp_sk(sk);
3621
3622         inet_csk_schedule_ack(sk);
3623
3624         sk->sk_shutdown |= RCV_SHUTDOWN;
3625         sock_set_flag(sk, SOCK_DONE);
3626
3627         switch (sk->sk_state) {
3628         case TCP_SYN_RECV:
3629         case TCP_ESTABLISHED:
3630                 /* Move to CLOSE_WAIT */
3631                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3632                 inet_csk(sk)->icsk_ack.pingpong = 1;
3633                 break;
3634
3635         case TCP_CLOSE_WAIT:
3636         case TCP_CLOSING:
3637                 /* Received a retransmission of the FIN, do
3638                  * nothing.
3639                  */
3640                 break;
3641         case TCP_LAST_ACK:
3642                 /* RFC793: Remain in the LAST-ACK state. */
3643                 break;
3644
3645         case TCP_FIN_WAIT1:
3646                 /* This case occurs when a simultaneous close
3647                  * happens, we must ack the received FIN and
3648                  * enter the CLOSING state.
3649                  */
3650                 tcp_send_ack(sk);
3651                 tcp_set_state(sk, TCP_CLOSING);
3652                 break;
3653         case TCP_FIN_WAIT2:
3654                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3655                 tcp_send_ack(sk);
3656                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3657                 break;
3658         default:
3659                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3660                  * cases we should never reach this piece of code.
3661                  */
3662                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3663                        __func__, sk->sk_state);
3664                 break;
3665         }
3666
3667         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3668          * Probably, we should reset in this case. For now drop them.
3669          */
3670         __skb_queue_purge(&tp->out_of_order_queue);
3671         if (tcp_is_sack(tp))
3672                 tcp_sack_reset(&tp->rx_opt);
3673         sk_mem_reclaim(sk);
3674
3675         if (!sock_flag(sk, SOCK_DEAD)) {
3676                 sk->sk_state_change(sk);
3677
3678                 /* Do not send POLL_HUP for half duplex close. */
3679                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3680                     sk->sk_state == TCP_CLOSE)
3681                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3682                 else
3683                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3684         }
3685 }
3686
3687 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3688                                   u32 end_seq)
3689 {
3690         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3691                 if (before(seq, sp->start_seq))
3692                         sp->start_seq = seq;
3693                 if (after(end_seq, sp->end_seq))
3694                         sp->end_seq = end_seq;
3695                 return 1;
3696         }
3697         return 0;
3698 }
3699
3700 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3701 {
3702         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3703                 if (before(seq, tp->rcv_nxt))
3704                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3705                 else
3706                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3707
3708                 tp->rx_opt.dsack = 1;
3709                 tp->duplicate_sack[0].start_seq = seq;
3710                 tp->duplicate_sack[0].end_seq = end_seq;
3711                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3712                                            4 - tp->rx_opt.tstamp_ok);
3713         }
3714 }
3715
3716 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3717 {
3718         if (!tp->rx_opt.dsack)
3719                 tcp_dsack_set(tp, seq, end_seq);
3720         else
3721                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3722 }
3723
3724 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3725 {
3726         struct tcp_sock *tp = tcp_sk(sk);
3727
3728         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3729             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3730                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3731                 tcp_enter_quickack_mode(sk);
3732
3733                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3734                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3735
3736                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3737                                 end_seq = tp->rcv_nxt;
3738                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3739                 }
3740         }
3741
3742         tcp_send_ack(sk);
3743 }
3744
3745 /* These routines update the SACK block as out-of-order packets arrive or
3746  * in-order packets close up the sequence space.
3747  */
3748 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3749 {
3750         int this_sack;
3751         struct tcp_sack_block *sp = &tp->selective_acks[0];
3752         struct tcp_sack_block *swalk = sp + 1;
3753
3754         /* See if the recent change to the first SACK eats into
3755          * or hits the sequence space of other SACK blocks, if so coalesce.
3756          */
3757         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3758                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3759                         int i;
3760
3761                         /* Zap SWALK, by moving every further SACK up by one slot.
3762                          * Decrease num_sacks.
3763                          */
3764                         tp->rx_opt.num_sacks--;
3765                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3766                                                    tp->rx_opt.dsack,
3767                                                    4 - tp->rx_opt.tstamp_ok);
3768                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3769                                 sp[i] = sp[i + 1];
3770                         continue;
3771                 }
3772                 this_sack++, swalk++;
3773         }
3774 }
3775
3776 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3777                                  struct tcp_sack_block *sack2)
3778 {
3779         __u32 tmp;
3780
3781         tmp = sack1->start_seq;
3782         sack1->start_seq = sack2->start_seq;
3783         sack2->start_seq = tmp;
3784
3785         tmp = sack1->end_seq;
3786         sack1->end_seq = sack2->end_seq;
3787         sack2->end_seq = tmp;
3788 }
3789
3790 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3791 {
3792         struct tcp_sock *tp = tcp_sk(sk);
3793         struct tcp_sack_block *sp = &tp->selective_acks[0];
3794         int cur_sacks = tp->rx_opt.num_sacks;
3795         int this_sack;
3796
3797         if (!cur_sacks)
3798                 goto new_sack;
3799
3800         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3801                 if (tcp_sack_extend(sp, seq, end_seq)) {
3802                         /* Rotate this_sack to the first one. */
3803                         for (; this_sack > 0; this_sack--, sp--)
3804                                 tcp_sack_swap(sp, sp - 1);
3805                         if (cur_sacks > 1)
3806                                 tcp_sack_maybe_coalesce(tp);
3807                         return;
3808                 }
3809         }
3810
3811         /* Could not find an adjacent existing SACK, build a new one,
3812          * put it at the front, and shift everyone else down.  We
3813          * always know there is at least one SACK present already here.
3814          *
3815          * If the sack array is full, forget about the last one.
3816          */
3817         if (this_sack >= 4) {
3818                 this_sack--;
3819                 tp->rx_opt.num_sacks--;
3820                 sp--;
3821         }
3822         for (; this_sack > 0; this_sack--, sp--)
3823                 *sp = *(sp - 1);
3824
3825 new_sack:
3826         /* Build the new head SACK, and we're done. */
3827         sp->start_seq = seq;
3828         sp->end_seq = end_seq;
3829         tp->rx_opt.num_sacks++;
3830         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3831                                    4 - tp->rx_opt.tstamp_ok);
3832 }
3833
3834 /* RCV.NXT advances, some SACKs should be eaten. */
3835
3836 static void tcp_sack_remove(struct tcp_sock *tp)
3837 {
3838         struct tcp_sack_block *sp = &tp->selective_acks[0];
3839         int num_sacks = tp->rx_opt.num_sacks;
3840         int this_sack;
3841
3842         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3843         if (skb_queue_empty(&tp->out_of_order_queue)) {
3844                 tp->rx_opt.num_sacks = 0;
3845                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3846                 return;
3847         }
3848
3849         for (this_sack = 0; this_sack < num_sacks;) {
3850                 /* Check if the start of the sack is covered by RCV.NXT. */
3851                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3852                         int i;
3853
3854                         /* RCV.NXT must cover all the block! */
3855                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3856
3857                         /* Zap this SACK, by moving forward any other SACKS. */
3858                         for (i=this_sack+1; i < num_sacks; i++)
3859                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3860                         num_sacks--;
3861                         continue;
3862                 }
3863                 this_sack++;
3864                 sp++;
3865         }
3866         if (num_sacks != tp->rx_opt.num_sacks) {
3867                 tp->rx_opt.num_sacks = num_sacks;
3868                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3869                                            tp->rx_opt.dsack,
3870                                            4 - tp->rx_opt.tstamp_ok);
3871         }
3872 }
3873
3874 /* This one checks to see if we can put data from the
3875  * out_of_order queue into the receive_queue.
3876  */
3877 static void tcp_ofo_queue(struct sock *sk)
3878 {
3879         struct tcp_sock *tp = tcp_sk(sk);
3880         __u32 dsack_high = tp->rcv_nxt;
3881         struct sk_buff *skb;
3882
3883         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3884                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3885                         break;
3886
3887                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3888                         __u32 dsack = dsack_high;
3889                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3890                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3891                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3892                 }
3893
3894                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3895                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3896                         __skb_unlink(skb, &tp->out_of_order_queue);
3897                         __kfree_skb(skb);
3898                         continue;
3899                 }
3900                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3901                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3902                            TCP_SKB_CB(skb)->end_seq);
3903
3904                 __skb_unlink(skb, &tp->out_of_order_queue);
3905                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3906                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3907                 if (tcp_hdr(skb)->fin)
3908                         tcp_fin(skb, sk, tcp_hdr(skb));
3909         }
3910 }
3911
3912 static int tcp_prune_ofo_queue(struct sock *sk);
3913 static int tcp_prune_queue(struct sock *sk);
3914
3915 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3916 {
3917         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3918             !sk_rmem_schedule(sk, size)) {
3919
3920                 if (tcp_prune_queue(sk) < 0)
3921                         return -1;
3922
3923                 if (!sk_rmem_schedule(sk, size)) {
3924                         if (!tcp_prune_ofo_queue(sk))
3925                                 return -1;
3926
3927                         if (!sk_rmem_schedule(sk, size))
3928                                 return -1;
3929                 }
3930         }
3931         return 0;
3932 }
3933
3934 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3935 {
3936         struct tcphdr *th = tcp_hdr(skb);
3937         struct tcp_sock *tp = tcp_sk(sk);
3938         int eaten = -1;
3939
3940         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3941                 goto drop;
3942
3943         __skb_pull(skb, th->doff * 4);
3944
3945         TCP_ECN_accept_cwr(tp, skb);
3946
3947         if (tp->rx_opt.dsack) {
3948                 tp->rx_opt.dsack = 0;
3949                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3950                                              4 - tp->rx_opt.tstamp_ok);
3951         }
3952
3953         /*  Queue data for delivery to the user.
3954          *  Packets in sequence go to the receive queue.
3955          *  Out of sequence packets to the out_of_order_queue.
3956          */
3957         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3958                 if (tcp_receive_window(tp) == 0)
3959                         goto out_of_window;
3960
3961                 /* Ok. In sequence. In window. */
3962                 if (tp->ucopy.task == current &&
3963                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3964                     sock_owned_by_user(sk) && !tp->urg_data) {
3965                         int chunk = min_t(unsigned int, skb->len,
3966                                           tp->ucopy.len);
3967
3968                         __set_current_state(TASK_RUNNING);
3969
3970                         local_bh_enable();
3971                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3972                                 tp->ucopy.len -= chunk;
3973                                 tp->copied_seq += chunk;
3974                                 eaten = (chunk == skb->len && !th->fin);
3975                                 tcp_rcv_space_adjust(sk);
3976                         }
3977                         local_bh_disable();
3978                 }
3979
3980                 if (eaten <= 0) {
3981 queue_and_out:
3982                         if (eaten < 0 &&
3983                             tcp_try_rmem_schedule(sk, skb->truesize))
3984                                 goto drop;
3985
3986                         skb_set_owner_r(skb, sk);
3987                         __skb_queue_tail(&sk->sk_receive_queue, skb);
3988                 }
3989                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3990                 if (skb->len)
3991                         tcp_event_data_recv(sk, skb);
3992                 if (th->fin)
3993                         tcp_fin(skb, sk, th);
3994
3995                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3996                         tcp_ofo_queue(sk);
3997
3998                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
3999                          * gap in queue is filled.
4000                          */
4001                         if (skb_queue_empty(&tp->out_of_order_queue))
4002                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4003                 }
4004
4005                 if (tp->rx_opt.num_sacks)
4006                         tcp_sack_remove(tp);
4007
4008                 tcp_fast_path_check(sk);
4009
4010                 if (eaten > 0)
4011                         __kfree_skb(skb);
4012                 else if (!sock_flag(sk, SOCK_DEAD))
4013                         sk->sk_data_ready(sk, 0);
4014                 return;
4015         }
4016
4017         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4018                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4019                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
4020                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4021
4022 out_of_window:
4023                 tcp_enter_quickack_mode(sk);
4024                 inet_csk_schedule_ack(sk);
4025 drop:
4026                 __kfree_skb(skb);
4027                 return;
4028         }
4029
4030         /* Out of window. F.e. zero window probe. */
4031         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4032                 goto out_of_window;
4033
4034         tcp_enter_quickack_mode(sk);
4035
4036         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4037                 /* Partial packet, seq < rcv_next < end_seq */
4038                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4039                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4040                            TCP_SKB_CB(skb)->end_seq);
4041
4042                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4043
4044                 /* If window is closed, drop tail of packet. But after
4045                  * remembering D-SACK for its head made in previous line.
4046                  */
4047                 if (!tcp_receive_window(tp))
4048                         goto out_of_window;
4049                 goto queue_and_out;
4050         }
4051
4052         TCP_ECN_check_ce(tp, skb);
4053
4054         if (tcp_try_rmem_schedule(sk, skb->truesize))
4055                 goto drop;
4056
4057         /* Disable header prediction. */
4058         tp->pred_flags = 0;
4059         inet_csk_schedule_ack(sk);
4060
4061         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4062                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4063
4064         skb_set_owner_r(skb, sk);
4065
4066         if (!skb_peek(&tp->out_of_order_queue)) {
4067                 /* Initial out of order segment, build 1 SACK. */
4068                 if (tcp_is_sack(tp)) {
4069                         tp->rx_opt.num_sacks = 1;
4070                         tp->rx_opt.dsack     = 0;
4071                         tp->rx_opt.eff_sacks = 1;
4072                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4073                         tp->selective_acks[0].end_seq =
4074                                                 TCP_SKB_CB(skb)->end_seq;
4075                 }
4076                 __skb_queue_head(&tp->out_of_order_queue, skb);
4077         } else {
4078                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4079                 u32 seq = TCP_SKB_CB(skb)->seq;
4080                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4081
4082                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4083                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4084
4085                         if (!tp->rx_opt.num_sacks ||
4086                             tp->selective_acks[0].end_seq != seq)
4087                                 goto add_sack;
4088
4089                         /* Common case: data arrive in order after hole. */
4090                         tp->selective_acks[0].end_seq = end_seq;
4091                         return;
4092                 }
4093
4094                 /* Find place to insert this segment. */
4095                 do {
4096                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4097                                 break;
4098                 } while ((skb1 = skb1->prev) !=
4099                          (struct sk_buff *)&tp->out_of_order_queue);
4100
4101                 /* Do skb overlap to previous one? */
4102                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4103                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4104                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4105                                 /* All the bits are present. Drop. */
4106                                 __kfree_skb(skb);
4107                                 tcp_dsack_set(tp, seq, end_seq);
4108                                 goto add_sack;
4109                         }
4110                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4111                                 /* Partial overlap. */
4112                                 tcp_dsack_set(tp, seq,
4113                                               TCP_SKB_CB(skb1)->end_seq);
4114                         } else {
4115                                 skb1 = skb1->prev;
4116                         }
4117                 }
4118                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4119
4120                 /* And clean segments covered by new one as whole. */
4121                 while ((skb1 = skb->next) !=
4122                        (struct sk_buff *)&tp->out_of_order_queue &&
4123                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4124                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4125                                 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4126                                                  end_seq);
4127                                 break;
4128                         }
4129                         __skb_unlink(skb1, &tp->out_of_order_queue);
4130                         tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4131                                          TCP_SKB_CB(skb1)->end_seq);
4132                         __kfree_skb(skb1);
4133                 }
4134
4135 add_sack:
4136                 if (tcp_is_sack(tp))
4137                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4138         }
4139 }
4140
4141 /* Collapse contiguous sequence of skbs head..tail with
4142  * sequence numbers start..end.
4143  * Segments with FIN/SYN are not collapsed (only because this
4144  * simplifies code)
4145  */
4146 static void
4147 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4148              struct sk_buff *head, struct sk_buff *tail,
4149              u32 start, u32 end)
4150 {
4151         struct sk_buff *skb;
4152
4153         /* First, check that queue is collapsible and find
4154          * the point where collapsing can be useful. */
4155         for (skb = head; skb != tail;) {
4156                 /* No new bits? It is possible on ofo queue. */
4157                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4158                         struct sk_buff *next = skb->next;
4159                         __skb_unlink(skb, list);
4160                         __kfree_skb(skb);
4161                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4162                         skb = next;
4163                         continue;
4164                 }
4165
4166                 /* The first skb to collapse is:
4167                  * - not SYN/FIN and
4168                  * - bloated or contains data before "start" or
4169                  *   overlaps to the next one.
4170                  */
4171                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4172                     (tcp_win_from_space(skb->truesize) > skb->len ||
4173                      before(TCP_SKB_CB(skb)->seq, start) ||
4174                      (skb->next != tail &&
4175                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4176                         break;
4177
4178                 /* Decided to skip this, advance start seq. */
4179                 start = TCP_SKB_CB(skb)->end_seq;
4180                 skb = skb->next;
4181         }
4182         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4183                 return;
4184
4185         while (before(start, end)) {
4186                 struct sk_buff *nskb;
4187                 unsigned int header = skb_headroom(skb);
4188                 int copy = SKB_MAX_ORDER(header, 0);
4189
4190                 /* Too big header? This can happen with IPv6. */
4191                 if (copy < 0)
4192                         return;
4193                 if (end - start < copy)
4194                         copy = end - start;
4195                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4196                 if (!nskb)
4197                         return;
4198
4199                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4200                 skb_set_network_header(nskb, (skb_network_header(skb) -
4201                                               skb->head));
4202                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4203                                                 skb->head));
4204                 skb_reserve(nskb, header);
4205                 memcpy(nskb->head, skb->head, header);
4206                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4207                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4208                 __skb_insert(nskb, skb->prev, skb, list);
4209                 skb_set_owner_r(nskb, sk);
4210
4211                 /* Copy data, releasing collapsed skbs. */
4212                 while (copy > 0) {
4213                         int offset = start - TCP_SKB_CB(skb)->seq;
4214                         int size = TCP_SKB_CB(skb)->end_seq - start;
4215
4216                         BUG_ON(offset < 0);
4217                         if (size > 0) {
4218                                 size = min(copy, size);
4219                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4220                                         BUG();
4221                                 TCP_SKB_CB(nskb)->end_seq += size;
4222                                 copy -= size;
4223                                 start += size;
4224                         }
4225                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4226                                 struct sk_buff *next = skb->next;
4227                                 __skb_unlink(skb, list);
4228                                 __kfree_skb(skb);
4229                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4230                                 skb = next;
4231                                 if (skb == tail ||
4232                                     tcp_hdr(skb)->syn ||
4233                                     tcp_hdr(skb)->fin)
4234                                         return;
4235                         }
4236                 }
4237         }
4238 }
4239
4240 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4241  * and tcp_collapse() them until all the queue is collapsed.
4242  */
4243 static void tcp_collapse_ofo_queue(struct sock *sk)
4244 {
4245         struct tcp_sock *tp = tcp_sk(sk);
4246         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4247         struct sk_buff *head;
4248         u32 start, end;
4249
4250         if (skb == NULL)
4251                 return;
4252
4253         start = TCP_SKB_CB(skb)->seq;
4254         end = TCP_SKB_CB(skb)->end_seq;
4255         head = skb;
4256
4257         for (;;) {
4258                 skb = skb->next;
4259
4260                 /* Segment is terminated when we see gap or when
4261                  * we are at the end of all the queue. */
4262                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4263                     after(TCP_SKB_CB(skb)->seq, end) ||
4264                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4265                         tcp_collapse(sk, &tp->out_of_order_queue,
4266                                      head, skb, start, end);
4267                         head = skb;
4268                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4269                                 break;
4270                         /* Start new segment */
4271                         start = TCP_SKB_CB(skb)->seq;
4272                         end = TCP_SKB_CB(skb)->end_seq;
4273                 } else {
4274                         if (before(TCP_SKB_CB(skb)->seq, start))
4275                                 start = TCP_SKB_CB(skb)->seq;
4276                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4277                                 end = TCP_SKB_CB(skb)->end_seq;
4278                 }
4279         }
4280 }
4281
4282 /*
4283  * Purge the out-of-order queue.
4284  * Return true if queue was pruned.
4285  */
4286 static int tcp_prune_ofo_queue(struct sock *sk)
4287 {
4288         struct tcp_sock *tp = tcp_sk(sk);
4289         int res = 0;
4290
4291         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4292                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4293                 __skb_queue_purge(&tp->out_of_order_queue);
4294
4295                 /* Reset SACK state.  A conforming SACK implementation will
4296                  * do the same at a timeout based retransmit.  When a connection
4297                  * is in a sad state like this, we care only about integrity
4298                  * of the connection not performance.
4299                  */
4300                 if (tp->rx_opt.sack_ok)
4301                         tcp_sack_reset(&tp->rx_opt);
4302                 sk_mem_reclaim(sk);
4303                 res = 1;
4304         }
4305         return res;
4306 }
4307
4308 /* Reduce allocated memory if we can, trying to get
4309  * the socket within its memory limits again.
4310  *
4311  * Return less than zero if we should start dropping frames
4312  * until the socket owning process reads some of the data
4313  * to stabilize the situation.
4314  */
4315 static int tcp_prune_queue(struct sock *sk)
4316 {
4317         struct tcp_sock *tp = tcp_sk(sk);
4318
4319         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4320
4321         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4322
4323         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4324                 tcp_clamp_window(sk);
4325         else if (tcp_memory_pressure)
4326                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4327
4328         tcp_collapse_ofo_queue(sk);
4329         tcp_collapse(sk, &sk->sk_receive_queue,
4330                      sk->sk_receive_queue.next,
4331                      (struct sk_buff *)&sk->sk_receive_queue,
4332                      tp->copied_seq, tp->rcv_nxt);
4333         sk_mem_reclaim(sk);
4334
4335         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4336                 return 0;
4337
4338         /* Collapsing did not help, destructive actions follow.
4339          * This must not ever occur. */
4340
4341         tcp_prune_ofo_queue(sk);
4342
4343         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4344                 return 0;
4345
4346         /* If we are really being abused, tell the caller to silently
4347          * drop receive data on the floor.  It will get retransmitted
4348          * and hopefully then we'll have sufficient space.
4349          */
4350         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4351
4352         /* Massive buffer overcommit. */
4353         tp->pred_flags = 0;
4354         return -1;
4355 }
4356
4357 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4358  * As additional protections, we do not touch cwnd in retransmission phases,
4359  * and if application hit its sndbuf limit recently.
4360  */
4361 void tcp_cwnd_application_limited(struct sock *sk)
4362 {
4363         struct tcp_sock *tp = tcp_sk(sk);
4364
4365         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4366             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4367                 /* Limited by application or receiver window. */
4368                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4369                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4370                 if (win_used < tp->snd_cwnd) {
4371                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4372                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4373                 }
4374                 tp->snd_cwnd_used = 0;
4375         }
4376         tp->snd_cwnd_stamp = tcp_time_stamp;
4377 }
4378
4379 static int tcp_should_expand_sndbuf(struct sock *sk)
4380 {
4381         struct tcp_sock *tp = tcp_sk(sk);
4382
4383         /* If the user specified a specific send buffer setting, do
4384          * not modify it.
4385          */
4386         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4387                 return 0;
4388
4389         /* If we are under global TCP memory pressure, do not expand.  */
4390         if (tcp_memory_pressure)
4391                 return 0;
4392
4393         /* If we are under soft global TCP memory pressure, do not expand.  */
4394         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4395                 return 0;
4396
4397         /* If we filled the congestion window, do not expand.  */
4398         if (tp->packets_out >= tp->snd_cwnd)
4399                 return 0;
4400
4401         return 1;
4402 }
4403
4404 /* When incoming ACK allowed to free some skb from write_queue,
4405  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4406  * on the exit from tcp input handler.
4407  *
4408  * PROBLEM: sndbuf expansion does not work well with largesend.
4409  */
4410 static void tcp_new_space(struct sock *sk)
4411 {
4412         struct tcp_sock *tp = tcp_sk(sk);
4413
4414         if (tcp_should_expand_sndbuf(sk)) {
4415                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4416                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4417                     demanded = max_t(unsigned int, tp->snd_cwnd,
4418                                      tp->reordering + 1);
4419                 sndmem *= 2 * demanded;
4420                 if (sndmem > sk->sk_sndbuf)
4421                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4422                 tp->snd_cwnd_stamp = tcp_time_stamp;
4423         }
4424
4425         sk->sk_write_space(sk);
4426 }
4427
4428 static void tcp_check_space(struct sock *sk)
4429 {
4430         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4431                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4432                 if (sk->sk_socket &&
4433                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4434                         tcp_new_space(sk);
4435         }
4436 }
4437
4438 static inline void tcp_data_snd_check(struct sock *sk)
4439 {
4440         tcp_push_pending_frames(sk);
4441         tcp_check_space(sk);
4442 }
4443
4444 /*
4445  * Check if sending an ack is needed.
4446  */
4447 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4448 {
4449         struct tcp_sock *tp = tcp_sk(sk);
4450
4451             /* More than one full frame received... */
4452         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4453              /* ... and right edge of window advances far enough.
4454               * (tcp_recvmsg() will send ACK otherwise). Or...
4455               */
4456              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4457             /* We ACK each frame or... */
4458             tcp_in_quickack_mode(sk) ||
4459             /* We have out of order data. */
4460             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4461                 /* Then ack it now */
4462                 tcp_send_ack(sk);
4463         } else {
4464                 /* Else, send delayed ack. */
4465                 tcp_send_delayed_ack(sk);
4466         }
4467 }
4468
4469 static inline void tcp_ack_snd_check(struct sock *sk)
4470 {
4471         if (!inet_csk_ack_scheduled(sk)) {
4472                 /* We sent a data segment already. */
4473                 return;
4474         }
4475         __tcp_ack_snd_check(sk, 1);
4476 }
4477
4478 /*
4479  *      This routine is only called when we have urgent data
4480  *      signaled. Its the 'slow' part of tcp_urg. It could be
4481  *      moved inline now as tcp_urg is only called from one
4482  *      place. We handle URGent data wrong. We have to - as
4483  *      BSD still doesn't use the correction from RFC961.
4484  *      For 1003.1g we should support a new option TCP_STDURG to permit
4485  *      either form (or just set the sysctl tcp_stdurg).
4486  */
4487
4488 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4489 {
4490         struct tcp_sock *tp = tcp_sk(sk);
4491         u32 ptr = ntohs(th->urg_ptr);
4492
4493         if (ptr && !sysctl_tcp_stdurg)
4494                 ptr--;
4495         ptr += ntohl(th->seq);
4496
4497         /* Ignore urgent data that we've already seen and read. */
4498         if (after(tp->copied_seq, ptr))
4499                 return;
4500
4501         /* Do not replay urg ptr.
4502          *
4503          * NOTE: interesting situation not covered by specs.
4504          * Misbehaving sender may send urg ptr, pointing to segment,
4505          * which we already have in ofo queue. We are not able to fetch
4506          * such data and will stay in TCP_URG_NOTYET until will be eaten
4507          * by recvmsg(). Seems, we are not obliged to handle such wicked
4508          * situations. But it is worth to think about possibility of some
4509          * DoSes using some hypothetical application level deadlock.
4510          */
4511         if (before(ptr, tp->rcv_nxt))
4512                 return;
4513
4514         /* Do we already have a newer (or duplicate) urgent pointer? */
4515         if (tp->urg_data && !after(ptr, tp->urg_seq))
4516                 return;
4517
4518         /* Tell the world about our new urgent pointer. */
4519         sk_send_sigurg(sk);
4520
4521         /* We may be adding urgent data when the last byte read was
4522          * urgent. To do this requires some care. We cannot just ignore
4523          * tp->copied_seq since we would read the last urgent byte again
4524          * as data, nor can we alter copied_seq until this data arrives
4525          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4526          *
4527          * NOTE. Double Dutch. Rendering to plain English: author of comment
4528          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4529          * and expect that both A and B disappear from stream. This is _wrong_.
4530          * Though this happens in BSD with high probability, this is occasional.
4531          * Any application relying on this is buggy. Note also, that fix "works"
4532          * only in this artificial test. Insert some normal data between A and B and we will
4533          * decline of BSD again. Verdict: it is better to remove to trap
4534          * buggy users.
4535          */
4536         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4537             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4538                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4539                 tp->copied_seq++;
4540                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4541                         __skb_unlink(skb, &sk->sk_receive_queue);
4542                         __kfree_skb(skb);
4543                 }
4544         }
4545
4546         tp->urg_data = TCP_URG_NOTYET;
4547         tp->urg_seq = ptr;
4548
4549         /* Disable header prediction. */
4550         tp->pred_flags = 0;
4551 }
4552
4553 /* This is the 'fast' part of urgent handling. */
4554 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4555 {
4556         struct tcp_sock *tp = tcp_sk(sk);
4557
4558         /* Check if we get a new urgent pointer - normally not. */
4559         if (th->urg)
4560                 tcp_check_urg(sk, th);
4561
4562         /* Do we wait for any urgent data? - normally not... */
4563         if (tp->urg_data == TCP_URG_NOTYET) {
4564                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4565                           th->syn;
4566
4567                 /* Is the urgent pointer pointing into this packet? */
4568                 if (ptr < skb->len) {
4569                         u8 tmp;
4570                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4571                                 BUG();
4572                         tp->urg_data = TCP_URG_VALID | tmp;
4573                         if (!sock_flag(sk, SOCK_DEAD))
4574                                 sk->sk_data_ready(sk, 0);
4575                 }
4576         }
4577 }
4578
4579 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4580 {
4581         struct tcp_sock *tp = tcp_sk(sk);
4582         int chunk = skb->len - hlen;
4583         int err;
4584
4585         local_bh_enable();
4586         if (skb_csum_unnecessary(skb))
4587                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4588         else
4589                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4590                                                        tp->ucopy.iov);
4591
4592         if (!err) {
4593                 tp->ucopy.len -= chunk;
4594                 tp->copied_seq += chunk;
4595                 tcp_rcv_space_adjust(sk);
4596         }
4597
4598         local_bh_disable();
4599         return err;
4600 }
4601
4602 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4603                                             struct sk_buff *skb)
4604 {
4605         __sum16 result;
4606
4607         if (sock_owned_by_user(sk)) {
4608                 local_bh_enable();
4609                 result = __tcp_checksum_complete(skb);
4610                 local_bh_disable();
4611         } else {
4612                 result = __tcp_checksum_complete(skb);
4613         }
4614         return result;
4615 }
4616
4617 static inline int tcp_checksum_complete_user(struct sock *sk,
4618                                              struct sk_buff *skb)
4619 {
4620         return !skb_csum_unnecessary(skb) &&
4621                __tcp_checksum_complete_user(sk, skb);
4622 }
4623
4624 #ifdef CONFIG_NET_DMA
4625 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4626                                   int hlen)
4627 {
4628         struct tcp_sock *tp = tcp_sk(sk);
4629         int chunk = skb->len - hlen;
4630         int dma_cookie;
4631         int copied_early = 0;
4632
4633         if (tp->ucopy.wakeup)
4634                 return 0;
4635
4636         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4637                 tp->ucopy.dma_chan = get_softnet_dma();
4638
4639         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4640
4641                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4642                                                          skb, hlen,
4643                                                          tp->ucopy.iov, chunk,
4644                                                          tp->ucopy.pinned_list);
4645
4646                 if (dma_cookie < 0)
4647                         goto out;
4648
4649                 tp->ucopy.dma_cookie = dma_cookie;
4650                 copied_early = 1;
4651
4652                 tp->ucopy.len -= chunk;
4653                 tp->copied_seq += chunk;
4654                 tcp_rcv_space_adjust(sk);
4655
4656                 if ((tp->ucopy.len == 0) ||
4657                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4658                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4659                         tp->ucopy.wakeup = 1;
4660                         sk->sk_data_ready(sk, 0);
4661                 }
4662         } else if (chunk > 0) {
4663                 tp->ucopy.wakeup = 1;
4664                 sk->sk_data_ready(sk, 0);
4665         }
4666 out:
4667         return copied_early;
4668 }
4669 #endif /* CONFIG_NET_DMA */
4670
4671 /*
4672  *      TCP receive function for the ESTABLISHED state.
4673  *
4674  *      It is split into a fast path and a slow path. The fast path is
4675  *      disabled when:
4676  *      - A zero window was announced from us - zero window probing
4677  *        is only handled properly in the slow path.
4678  *      - Out of order segments arrived.
4679  *      - Urgent data is expected.
4680  *      - There is no buffer space left
4681  *      - Unexpected TCP flags/window values/header lengths are received
4682  *        (detected by checking the TCP header against pred_flags)
4683  *      - Data is sent in both directions. Fast path only supports pure senders
4684  *        or pure receivers (this means either the sequence number or the ack
4685  *        value must stay constant)
4686  *      - Unexpected TCP option.
4687  *
4688  *      When these conditions are not satisfied it drops into a standard
4689  *      receive procedure patterned after RFC793 to handle all cases.
4690  *      The first three cases are guaranteed by proper pred_flags setting,
4691  *      the rest is checked inline. Fast processing is turned on in
4692  *      tcp_data_queue when everything is OK.
4693  */
4694 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4695                         struct tcphdr *th, unsigned len)
4696 {
4697         struct tcp_sock *tp = tcp_sk(sk);
4698
4699         /*
4700          *      Header prediction.
4701          *      The code loosely follows the one in the famous
4702          *      "30 instruction TCP receive" Van Jacobson mail.
4703          *
4704          *      Van's trick is to deposit buffers into socket queue
4705          *      on a device interrupt, to call tcp_recv function
4706          *      on the receive process context and checksum and copy
4707          *      the buffer to user space. smart...
4708          *
4709          *      Our current scheme is not silly either but we take the
4710          *      extra cost of the net_bh soft interrupt processing...
4711          *      We do checksum and copy also but from device to kernel.
4712          */
4713
4714         tp->rx_opt.saw_tstamp = 0;
4715
4716         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4717          *      if header_prediction is to be made
4718          *      'S' will always be tp->tcp_header_len >> 2
4719          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4720          *  turn it off (when there are holes in the receive
4721          *       space for instance)
4722          *      PSH flag is ignored.
4723          */
4724
4725         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4726             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4727                 int tcp_header_len = tp->tcp_header_len;
4728
4729                 /* Timestamp header prediction: tcp_header_len
4730                  * is automatically equal to th->doff*4 due to pred_flags
4731                  * match.
4732                  */
4733
4734                 /* Check timestamp */
4735                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4736                         __be32 *ptr = (__be32 *)(th + 1);
4737
4738                         /* No? Slow path! */
4739                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4740                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4741                                 goto slow_path;
4742
4743                         tp->rx_opt.saw_tstamp = 1;
4744                         ++ptr;
4745                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4746                         ++ptr;
4747                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4748
4749                         /* If PAWS failed, check it more carefully in slow path */
4750                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4751                                 goto slow_path;
4752
4753                         /* DO NOT update ts_recent here, if checksum fails
4754                          * and timestamp was corrupted part, it will result
4755                          * in a hung connection since we will drop all
4756                          * future packets due to the PAWS test.
4757                          */
4758                 }
4759
4760                 if (len <= tcp_header_len) {
4761                         /* Bulk data transfer: sender */
4762                         if (len == tcp_header_len) {
4763                                 /* Predicted packet is in window by definition.
4764                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4765                                  * Hence, check seq<=rcv_wup reduces to:
4766                                  */
4767                                 if (tcp_header_len ==
4768                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4769                                     tp->rcv_nxt == tp->rcv_wup)
4770                                         tcp_store_ts_recent(tp);
4771
4772                                 /* We know that such packets are checksummed
4773                                  * on entry.
4774                                  */
4775                                 tcp_ack(sk, skb, 0);
4776                                 __kfree_skb(skb);
4777                                 tcp_data_snd_check(sk);
4778                                 return 0;
4779                         } else { /* Header too small */
4780                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4781                                 goto discard;
4782                         }
4783                 } else {
4784                         int eaten = 0;
4785                         int copied_early = 0;
4786
4787                         if (tp->copied_seq == tp->rcv_nxt &&
4788                             len - tcp_header_len <= tp->ucopy.len) {
4789 #ifdef CONFIG_NET_DMA
4790                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4791                                         copied_early = 1;
4792                                         eaten = 1;
4793                                 }
4794 #endif
4795                                 if (tp->ucopy.task == current &&
4796                                     sock_owned_by_user(sk) && !copied_early) {
4797                                         __set_current_state(TASK_RUNNING);
4798
4799                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4800                                                 eaten = 1;
4801                                 }
4802                                 if (eaten) {
4803                                         /* Predicted packet is in window by definition.
4804                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4805                                          * Hence, check seq<=rcv_wup reduces to:
4806                                          */
4807                                         if (tcp_header_len ==
4808                                             (sizeof(struct tcphdr) +
4809                                              TCPOLEN_TSTAMP_ALIGNED) &&
4810                                             tp->rcv_nxt == tp->rcv_wup)
4811                                                 tcp_store_ts_recent(tp);
4812
4813                                         tcp_rcv_rtt_measure_ts(sk, skb);
4814
4815                                         __skb_pull(skb, tcp_header_len);
4816                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4817                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4818                                 }
4819                                 if (copied_early)
4820                                         tcp_cleanup_rbuf(sk, skb->len);
4821                         }
4822                         if (!eaten) {
4823                                 if (tcp_checksum_complete_user(sk, skb))
4824                                         goto csum_error;
4825
4826                                 /* Predicted packet is in window by definition.
4827                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4828                                  * Hence, check seq<=rcv_wup reduces to:
4829                                  */
4830                                 if (tcp_header_len ==
4831                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4832                                     tp->rcv_nxt == tp->rcv_wup)
4833                                         tcp_store_ts_recent(tp);
4834
4835                                 tcp_rcv_rtt_measure_ts(sk, skb);
4836
4837                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4838                                         goto step5;
4839
4840                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4841
4842                                 /* Bulk data transfer: receiver */
4843                                 __skb_pull(skb, tcp_header_len);
4844                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4845                                 skb_set_owner_r(skb, sk);
4846                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4847                         }
4848
4849                         tcp_event_data_recv(sk, skb);
4850
4851                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4852                                 /* Well, only one small jumplet in fast path... */
4853                                 tcp_ack(sk, skb, FLAG_DATA);
4854                                 tcp_data_snd_check(sk);
4855                                 if (!inet_csk_ack_scheduled(sk))
4856                                         goto no_ack;
4857                         }
4858
4859                         __tcp_ack_snd_check(sk, 0);
4860 no_ack:
4861 #ifdef CONFIG_NET_DMA
4862                         if (copied_early)
4863                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4864                         else
4865 #endif
4866                         if (eaten)
4867                                 __kfree_skb(skb);
4868                         else
4869                                 sk->sk_data_ready(sk, 0);
4870                         return 0;
4871                 }
4872         }
4873
4874 slow_path:
4875         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4876                 goto csum_error;
4877
4878         /*
4879          * RFC1323: H1. Apply PAWS check first.
4880          */
4881         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4882             tcp_paws_discard(sk, skb)) {
4883                 if (!th->rst) {
4884                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4885                         tcp_send_dupack(sk, skb);
4886                         goto discard;
4887                 }
4888                 /* Resets are accepted even if PAWS failed.
4889
4890                    ts_recent update must be made after we are sure
4891                    that the packet is in window.
4892                  */
4893         }
4894
4895         /*
4896          *      Standard slow path.
4897          */
4898
4899         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4900                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4901                  * (RST) segments are validated by checking their SEQ-fields."
4902                  * And page 69: "If an incoming segment is not acceptable,
4903                  * an acknowledgment should be sent in reply (unless the RST bit
4904                  * is set, if so drop the segment and return)".
4905                  */
4906                 if (!th->rst)
4907                         tcp_send_dupack(sk, skb);
4908                 goto discard;
4909         }
4910
4911         if (th->rst) {
4912                 tcp_reset(sk);
4913                 goto discard;
4914         }
4915
4916         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4917
4918         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4919                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4920                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4921                 tcp_reset(sk);
4922                 return 1;
4923         }
4924
4925 step5:
4926         if (th->ack)
4927                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4928
4929         tcp_rcv_rtt_measure_ts(sk, skb);
4930
4931         /* Process urgent data. */
4932         tcp_urg(sk, skb, th);
4933
4934         /* step 7: process the segment text */
4935         tcp_data_queue(sk, skb);
4936
4937         tcp_data_snd_check(sk);
4938         tcp_ack_snd_check(sk);
4939         return 0;
4940
4941 csum_error:
4942         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4943
4944 discard:
4945         __kfree_skb(skb);
4946         return 0;
4947 }
4948
4949 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4950                                          struct tcphdr *th, unsigned len)
4951 {
4952         struct tcp_sock *tp = tcp_sk(sk);
4953         struct inet_connection_sock *icsk = inet_csk(sk);
4954         int saved_clamp = tp->rx_opt.mss_clamp;
4955
4956         tcp_parse_options(skb, &tp->rx_opt, 0);
4957
4958         if (th->ack) {
4959                 /* rfc793:
4960                  * "If the state is SYN-SENT then
4961                  *    first check the ACK bit
4962                  *      If the ACK bit is set
4963                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4964                  *        a reset (unless the RST bit is set, if so drop
4965                  *        the segment and return)"
4966                  *
4967                  *  We do not send data with SYN, so that RFC-correct
4968                  *  test reduces to:
4969                  */
4970                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4971                         goto reset_and_undo;
4972
4973                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4974                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4975                              tcp_time_stamp)) {
4976                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4977                         goto reset_and_undo;
4978                 }
4979
4980                 /* Now ACK is acceptable.
4981                  *
4982                  * "If the RST bit is set
4983                  *    If the ACK was acceptable then signal the user "error:
4984                  *    connection reset", drop the segment, enter CLOSED state,
4985                  *    delete TCB, and return."
4986                  */
4987
4988                 if (th->rst) {
4989                         tcp_reset(sk);
4990                         goto discard;
4991                 }
4992
4993                 /* rfc793:
4994                  *   "fifth, if neither of the SYN or RST bits is set then
4995                  *    drop the segment and return."
4996                  *
4997                  *    See note below!
4998                  *                                        --ANK(990513)
4999                  */
5000                 if (!th->syn)
5001                         goto discard_and_undo;
5002
5003                 /* rfc793:
5004                  *   "If the SYN bit is on ...
5005                  *    are acceptable then ...
5006                  *    (our SYN has been ACKed), change the connection
5007                  *    state to ESTABLISHED..."
5008                  */
5009
5010                 TCP_ECN_rcv_synack(tp, th);
5011
5012                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5013                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5014
5015                 /* Ok.. it's good. Set up sequence numbers and
5016                  * move to established.
5017                  */
5018                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5019                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5020
5021                 /* RFC1323: The window in SYN & SYN/ACK segments is
5022                  * never scaled.
5023                  */
5024                 tp->snd_wnd = ntohs(th->window);
5025                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5026
5027                 if (!tp->rx_opt.wscale_ok) {
5028                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5029                         tp->window_clamp = min(tp->window_clamp, 65535U);
5030                 }
5031
5032                 if (tp->rx_opt.saw_tstamp) {
5033                         tp->rx_opt.tstamp_ok       = 1;
5034                         tp->tcp_header_len =
5035                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5036                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5037                         tcp_store_ts_recent(tp);
5038                 } else {
5039                         tp->tcp_header_len = sizeof(struct tcphdr);
5040                 }
5041
5042                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5043                         tcp_enable_fack(tp);
5044
5045                 tcp_mtup_init(sk);
5046                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5047                 tcp_initialize_rcv_mss(sk);
5048
5049                 /* Remember, tcp_poll() does not lock socket!
5050                  * Change state from SYN-SENT only after copied_seq
5051                  * is initialized. */
5052                 tp->copied_seq = tp->rcv_nxt;
5053                 smp_mb();
5054                 tcp_set_state(sk, TCP_ESTABLISHED);
5055
5056                 security_inet_conn_established(sk, skb);
5057
5058                 /* Make sure socket is routed, for correct metrics.  */
5059                 icsk->icsk_af_ops->rebuild_header(sk);
5060
5061                 tcp_init_metrics(sk);
5062
5063                 tcp_init_congestion_control(sk);
5064
5065                 /* Prevent spurious tcp_cwnd_restart() on first data
5066                  * packet.
5067                  */
5068                 tp->lsndtime = tcp_time_stamp;
5069
5070                 tcp_init_buffer_space(sk);
5071
5072                 if (sock_flag(sk, SOCK_KEEPOPEN))
5073                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5074
5075                 if (!tp->rx_opt.snd_wscale)
5076                         __tcp_fast_path_on(tp, tp->snd_wnd);
5077                 else
5078                         tp->pred_flags = 0;
5079
5080                 if (!sock_flag(sk, SOCK_DEAD)) {
5081                         sk->sk_state_change(sk);
5082                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5083                 }
5084
5085                 if (sk->sk_write_pending ||
5086                     icsk->icsk_accept_queue.rskq_defer_accept ||
5087                     icsk->icsk_ack.pingpong) {
5088                         /* Save one ACK. Data will be ready after
5089                          * several ticks, if write_pending is set.
5090                          *
5091                          * It may be deleted, but with this feature tcpdumps
5092                          * look so _wonderfully_ clever, that I was not able
5093                          * to stand against the temptation 8)     --ANK
5094                          */
5095                         inet_csk_schedule_ack(sk);
5096                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5097                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5098                         tcp_incr_quickack(sk);
5099                         tcp_enter_quickack_mode(sk);
5100                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5101                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5102
5103 discard:
5104                         __kfree_skb(skb);
5105                         return 0;
5106                 } else {
5107                         tcp_send_ack(sk);
5108                 }
5109                 return -1;
5110         }
5111
5112         /* No ACK in the segment */
5113
5114         if (th->rst) {
5115                 /* rfc793:
5116                  * "If the RST bit is set
5117                  *
5118                  *      Otherwise (no ACK) drop the segment and return."
5119                  */
5120
5121                 goto discard_and_undo;
5122         }
5123
5124         /* PAWS check. */
5125         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5126             tcp_paws_check(&tp->rx_opt, 0))
5127                 goto discard_and_undo;
5128
5129         if (th->syn) {
5130                 /* We see SYN without ACK. It is attempt of
5131                  * simultaneous connect with crossed SYNs.
5132                  * Particularly, it can be connect to self.
5133                  */
5134                 tcp_set_state(sk, TCP_SYN_RECV);
5135
5136                 if (tp->rx_opt.saw_tstamp) {
5137                         tp->rx_opt.tstamp_ok = 1;
5138                         tcp_store_ts_recent(tp);
5139                         tp->tcp_header_len =
5140                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5141                 } else {
5142                         tp->tcp_header_len = sizeof(struct tcphdr);
5143                 }
5144
5145                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5146                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5147
5148                 /* RFC1323: The window in SYN & SYN/ACK segments is
5149                  * never scaled.
5150                  */
5151                 tp->snd_wnd    = ntohs(th->window);
5152                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5153                 tp->max_window = tp->snd_wnd;
5154
5155                 TCP_ECN_rcv_syn(tp, th);
5156
5157                 tcp_mtup_init(sk);
5158                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5159                 tcp_initialize_rcv_mss(sk);
5160
5161                 tcp_send_synack(sk);
5162 #if 0
5163                 /* Note, we could accept data and URG from this segment.
5164                  * There are no obstacles to make this.
5165                  *
5166                  * However, if we ignore data in ACKless segments sometimes,
5167                  * we have no reasons to accept it sometimes.
5168                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5169                  * is not flawless. So, discard packet for sanity.
5170                  * Uncomment this return to process the data.
5171                  */
5172                 return -1;
5173 #else
5174                 goto discard;
5175 #endif
5176         }
5177         /* "fifth, if neither of the SYN or RST bits is set then
5178          * drop the segment and return."
5179          */
5180
5181 discard_and_undo:
5182         tcp_clear_options(&tp->rx_opt);
5183         tp->rx_opt.mss_clamp = saved_clamp;
5184         goto discard;
5185
5186 reset_and_undo:
5187         tcp_clear_options(&tp->rx_opt);
5188         tp->rx_opt.mss_clamp = saved_clamp;
5189         return 1;
5190 }
5191
5192 /*
5193  *      This function implements the receiving procedure of RFC 793 for
5194  *      all states except ESTABLISHED and TIME_WAIT.
5195  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5196  *      address independent.
5197  */
5198
5199 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5200                           struct tcphdr *th, unsigned len)
5201 {
5202         struct tcp_sock *tp = tcp_sk(sk);
5203         struct inet_connection_sock *icsk = inet_csk(sk);
5204         int queued = 0;
5205
5206         tp->rx_opt.saw_tstamp = 0;
5207
5208         switch (sk->sk_state) {
5209         case TCP_CLOSE:
5210                 goto discard;
5211
5212         case TCP_LISTEN:
5213                 if (th->ack)
5214                         return 1;
5215
5216                 if (th->rst)
5217                         goto discard;
5218
5219                 if (th->syn) {
5220                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5221                                 return 1;
5222
5223                         /* Now we have several options: In theory there is
5224                          * nothing else in the frame. KA9Q has an option to
5225                          * send data with the syn, BSD accepts data with the
5226                          * syn up to the [to be] advertised window and
5227                          * Solaris 2.1 gives you a protocol error. For now
5228                          * we just ignore it, that fits the spec precisely
5229                          * and avoids incompatibilities. It would be nice in
5230                          * future to drop through and process the data.
5231                          *
5232                          * Now that TTCP is starting to be used we ought to
5233                          * queue this data.
5234                          * But, this leaves one open to an easy denial of
5235                          * service attack, and SYN cookies can't defend
5236                          * against this problem. So, we drop the data
5237                          * in the interest of security over speed unless
5238                          * it's still in use.
5239                          */
5240                         kfree_skb(skb);
5241                         return 0;
5242                 }
5243                 goto discard;
5244
5245         case TCP_SYN_SENT:
5246                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5247                 if (queued >= 0)
5248                         return queued;
5249
5250                 /* Do step6 onward by hand. */
5251                 tcp_urg(sk, skb, th);
5252                 __kfree_skb(skb);
5253                 tcp_data_snd_check(sk);
5254                 return 0;
5255         }
5256
5257         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5258             tcp_paws_discard(sk, skb)) {
5259                 if (!th->rst) {
5260                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5261                         tcp_send_dupack(sk, skb);
5262                         goto discard;
5263                 }
5264                 /* Reset is accepted even if it did not pass PAWS. */
5265         }
5266
5267         /* step 1: check sequence number */
5268         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5269                 if (!th->rst)
5270                         tcp_send_dupack(sk, skb);
5271                 goto discard;
5272         }
5273
5274         /* step 2: check RST bit */
5275         if (th->rst) {
5276                 tcp_reset(sk);
5277                 goto discard;
5278         }
5279
5280         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5281
5282         /* step 3: check security and precedence [ignored] */
5283
5284         /*      step 4:
5285          *
5286          *      Check for a SYN in window.
5287          */
5288         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5289                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5290                 tcp_reset(sk);
5291                 return 1;
5292         }
5293
5294         /* step 5: check the ACK field */
5295         if (th->ack) {
5296                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5297
5298                 switch (sk->sk_state) {
5299                 case TCP_SYN_RECV:
5300                         if (acceptable) {
5301                                 tp->copied_seq = tp->rcv_nxt;
5302                                 smp_mb();
5303                                 tcp_set_state(sk, TCP_ESTABLISHED);
5304                                 sk->sk_state_change(sk);
5305
5306                                 /* Note, that this wakeup is only for marginal
5307                                  * crossed SYN case. Passively open sockets
5308                                  * are not waked up, because sk->sk_sleep ==
5309                                  * NULL and sk->sk_socket == NULL.
5310                                  */
5311                                 if (sk->sk_socket)
5312                                         sk_wake_async(sk,
5313                                                       SOCK_WAKE_IO, POLL_OUT);
5314
5315                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5316                                 tp->snd_wnd = ntohs(th->window) <<
5317                                               tp->rx_opt.snd_wscale;
5318                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5319                                             TCP_SKB_CB(skb)->seq);
5320
5321                                 /* tcp_ack considers this ACK as duplicate
5322                                  * and does not calculate rtt.
5323                                  * Fix it at least with timestamps.
5324                                  */
5325                                 if (tp->rx_opt.saw_tstamp &&
5326                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5327                                         tcp_ack_saw_tstamp(sk, 0);
5328
5329                                 if (tp->rx_opt.tstamp_ok)
5330                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5331
5332                                 /* Make sure socket is routed, for
5333                                  * correct metrics.
5334                                  */
5335                                 icsk->icsk_af_ops->rebuild_header(sk);
5336
5337                                 tcp_init_metrics(sk);
5338
5339                                 tcp_init_congestion_control(sk);
5340
5341                                 /* Prevent spurious tcp_cwnd_restart() on
5342                                  * first data packet.
5343                                  */
5344                                 tp->lsndtime = tcp_time_stamp;
5345
5346                                 tcp_mtup_init(sk);
5347                                 tcp_initialize_rcv_mss(sk);
5348                                 tcp_init_buffer_space(sk);
5349                                 tcp_fast_path_on(tp);
5350                         } else {
5351                                 return 1;
5352                         }
5353                         break;
5354
5355                 case TCP_FIN_WAIT1:
5356                         if (tp->snd_una == tp->write_seq) {
5357                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5358                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5359                                 dst_confirm(sk->sk_dst_cache);
5360
5361                                 if (!sock_flag(sk, SOCK_DEAD))
5362                                         /* Wake up lingering close() */
5363                                         sk->sk_state_change(sk);
5364                                 else {
5365                                         int tmo;
5366
5367                                         if (tp->linger2 < 0 ||
5368                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5369                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5370                                                 tcp_done(sk);
5371                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5372                                                 return 1;
5373                                         }
5374
5375                                         tmo = tcp_fin_time(sk);
5376                                         if (tmo > TCP_TIMEWAIT_LEN) {
5377                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5378                                         } else if (th->fin || sock_owned_by_user(sk)) {
5379                                                 /* Bad case. We could lose such FIN otherwise.
5380                                                  * It is not a big problem, but it looks confusing
5381                                                  * and not so rare event. We still can lose it now,
5382                                                  * if it spins in bh_lock_sock(), but it is really
5383                                                  * marginal case.
5384                                                  */
5385                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5386                                         } else {
5387                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5388                                                 goto discard;
5389                                         }
5390                                 }
5391                         }
5392                         break;
5393
5394                 case TCP_CLOSING:
5395                         if (tp->snd_una == tp->write_seq) {
5396                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5397                                 goto discard;
5398                         }
5399                         break;
5400
5401                 case TCP_LAST_ACK:
5402                         if (tp->snd_una == tp->write_seq) {
5403                                 tcp_update_metrics(sk);
5404                                 tcp_done(sk);
5405                                 goto discard;
5406                         }
5407                         break;
5408                 }
5409         } else
5410                 goto discard;
5411
5412         /* step 6: check the URG bit */
5413         tcp_urg(sk, skb, th);
5414
5415         /* step 7: process the segment text */
5416         switch (sk->sk_state) {
5417         case TCP_CLOSE_WAIT:
5418         case TCP_CLOSING:
5419         case TCP_LAST_ACK:
5420                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5421                         break;
5422         case TCP_FIN_WAIT1:
5423         case TCP_FIN_WAIT2:
5424                 /* RFC 793 says to queue data in these states,
5425                  * RFC 1122 says we MUST send a reset.
5426                  * BSD 4.4 also does reset.
5427                  */
5428                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5429                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5430                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5431                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5432                                 tcp_reset(sk);
5433                                 return 1;
5434                         }
5435                 }
5436                 /* Fall through */
5437         case TCP_ESTABLISHED:
5438                 tcp_data_queue(sk, skb);
5439                 queued = 1;
5440                 break;
5441         }
5442
5443         /* tcp_data could move socket to TIME-WAIT */
5444         if (sk->sk_state != TCP_CLOSE) {
5445                 tcp_data_snd_check(sk);
5446                 tcp_ack_snd_check(sk);
5447         }
5448
5449         if (!queued) {
5450 discard:
5451                 __kfree_skb(skb);
5452         }
5453         return 0;
5454 }
5455
5456 EXPORT_SYMBOL(sysctl_tcp_ecn);
5457 EXPORT_SYMBOL(sysctl_tcp_reordering);
5458 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5459 EXPORT_SYMBOL(tcp_parse_options);
5460 #ifdef CONFIG_TCP_MD5SIG
5461 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5462 #endif
5463 EXPORT_SYMBOL(tcp_rcv_established);
5464 EXPORT_SYMBOL(tcp_rcv_state_process);
5465 EXPORT_SYMBOL(tcp_initialize_rcv_mss);