[NET]: Introduce inet_connection_sock
[safe/jmp/linux-2.6] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presnce of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make 
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks. 
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90
91 int sysctl_tcp_moderate_rcvbuf = 1;
92
93 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
94 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
95 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
96 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
97 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
98 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
99 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
100 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
101 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
102
103 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
107
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113
114 /* Adapt the MSS value used to make delayed ack decision to the 
115  * real world.
116  */ 
117 static inline void tcp_measure_rcv_mss(struct sock *sk,
118                                        const struct sk_buff *skb)
119 {
120         struct inet_connection_sock *icsk = inet_csk(sk);
121         const unsigned int lss = icsk->icsk_ack.last_seg_size; 
122         unsigned int len;
123
124         icsk->icsk_ack.last_seg_size = 0; 
125
126         /* skb->len may jitter because of SACKs, even if peer
127          * sends good full-sized frames.
128          */
129         len = skb->len;
130         if (len >= icsk->icsk_ack.rcv_mss) {
131                 icsk->icsk_ack.rcv_mss = len;
132         } else {
133                 /* Otherwise, we make more careful check taking into account,
134                  * that SACKs block is variable.
135                  *
136                  * "len" is invariant segment length, including TCP header.
137                  */
138                 len += skb->data - skb->h.raw;
139                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
140                     /* If PSH is not set, packet should be
141                      * full sized, provided peer TCP is not badly broken.
142                      * This observation (if it is correct 8)) allows
143                      * to handle super-low mtu links fairly.
144                      */
145                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
146                      !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
147                         /* Subtract also invariant (if peer is RFC compliant),
148                          * tcp header plus fixed timestamp option length.
149                          * Resulting "len" is MSS free of SACK jitter.
150                          */
151                         len -= tcp_sk(sk)->tcp_header_len;
152                         icsk->icsk_ack.last_seg_size = len;
153                         if (len == lss) {
154                                 icsk->icsk_ack.rcv_mss = len;
155                                 return;
156                         }
157                 }
158                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
159         }
160 }
161
162 static void tcp_incr_quickack(struct sock *sk)
163 {
164         struct inet_connection_sock *icsk = inet_csk(sk);
165         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
166
167         if (quickacks==0)
168                 quickacks=2;
169         if (quickacks > icsk->icsk_ack.quick)
170                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
171 }
172
173 void tcp_enter_quickack_mode(struct sock *sk)
174 {
175         struct inet_connection_sock *icsk = inet_csk(sk);
176         tcp_incr_quickack(sk);
177         icsk->icsk_ack.pingpong = 0;
178         icsk->icsk_ack.ato = TCP_ATO_MIN;
179 }
180
181 /* Send ACKs quickly, if "quick" count is not exhausted
182  * and the session is not interactive.
183  */
184
185 static inline int tcp_in_quickack_mode(const struct sock *sk)
186 {
187         const struct inet_connection_sock *icsk = inet_csk(sk);
188         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
189 }
190
191 /* Buffer size and advertised window tuning.
192  *
193  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
194  */
195
196 static void tcp_fixup_sndbuf(struct sock *sk)
197 {
198         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
199                      sizeof(struct sk_buff);
200
201         if (sk->sk_sndbuf < 3 * sndmem)
202                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
203 }
204
205 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
206  *
207  * All tcp_full_space() is split to two parts: "network" buffer, allocated
208  * forward and advertised in receiver window (tp->rcv_wnd) and
209  * "application buffer", required to isolate scheduling/application
210  * latencies from network.
211  * window_clamp is maximal advertised window. It can be less than
212  * tcp_full_space(), in this case tcp_full_space() - window_clamp
213  * is reserved for "application" buffer. The less window_clamp is
214  * the smoother our behaviour from viewpoint of network, but the lower
215  * throughput and the higher sensitivity of the connection to losses. 8)
216  *
217  * rcv_ssthresh is more strict window_clamp used at "slow start"
218  * phase to predict further behaviour of this connection.
219  * It is used for two goals:
220  * - to enforce header prediction at sender, even when application
221  *   requires some significant "application buffer". It is check #1.
222  * - to prevent pruning of receive queue because of misprediction
223  *   of receiver window. Check #2.
224  *
225  * The scheme does not work when sender sends good segments opening
226  * window and then starts to feed us spagetti. But it should work
227  * in common situations. Otherwise, we have to rely on queue collapsing.
228  */
229
230 /* Slow part of check#2. */
231 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
232                              const struct sk_buff *skb)
233 {
234         /* Optimize this! */
235         int truesize = tcp_win_from_space(skb->truesize)/2;
236         int window = tcp_full_space(sk)/2;
237
238         while (tp->rcv_ssthresh <= window) {
239                 if (truesize <= skb->len)
240                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
241
242                 truesize >>= 1;
243                 window >>= 1;
244         }
245         return 0;
246 }
247
248 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
249                                    struct sk_buff *skb)
250 {
251         /* Check #1 */
252         if (tp->rcv_ssthresh < tp->window_clamp &&
253             (int)tp->rcv_ssthresh < tcp_space(sk) &&
254             !tcp_memory_pressure) {
255                 int incr;
256
257                 /* Check #2. Increase window, if skb with such overhead
258                  * will fit to rcvbuf in future.
259                  */
260                 if (tcp_win_from_space(skb->truesize) <= skb->len)
261                         incr = 2*tp->advmss;
262                 else
263                         incr = __tcp_grow_window(sk, tp, skb);
264
265                 if (incr) {
266                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
267                         inet_csk(sk)->icsk_ack.quick |= 1;
268                 }
269         }
270 }
271
272 /* 3. Tuning rcvbuf, when connection enters established state. */
273
274 static void tcp_fixup_rcvbuf(struct sock *sk)
275 {
276         struct tcp_sock *tp = tcp_sk(sk);
277         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
278
279         /* Try to select rcvbuf so that 4 mss-sized segments
280          * will fit to window and correspoding skbs will fit to our rcvbuf.
281          * (was 3; 4 is minimum to allow fast retransmit to work.)
282          */
283         while (tcp_win_from_space(rcvmem) < tp->advmss)
284                 rcvmem += 128;
285         if (sk->sk_rcvbuf < 4 * rcvmem)
286                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
287 }
288
289 /* 4. Try to fixup all. It is made iimediately after connection enters
290  *    established state.
291  */
292 static void tcp_init_buffer_space(struct sock *sk)
293 {
294         struct tcp_sock *tp = tcp_sk(sk);
295         int maxwin;
296
297         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
298                 tcp_fixup_rcvbuf(sk);
299         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
300                 tcp_fixup_sndbuf(sk);
301
302         tp->rcvq_space.space = tp->rcv_wnd;
303
304         maxwin = tcp_full_space(sk);
305
306         if (tp->window_clamp >= maxwin) {
307                 tp->window_clamp = maxwin;
308
309                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
310                         tp->window_clamp = max(maxwin -
311                                                (maxwin >> sysctl_tcp_app_win),
312                                                4 * tp->advmss);
313         }
314
315         /* Force reservation of one segment. */
316         if (sysctl_tcp_app_win &&
317             tp->window_clamp > 2 * tp->advmss &&
318             tp->window_clamp + tp->advmss > maxwin)
319                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
320
321         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
322         tp->snd_cwnd_stamp = tcp_time_stamp;
323 }
324
325 /* 5. Recalculate window clamp after socket hit its memory bounds. */
326 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
327 {
328         struct sk_buff *skb;
329         unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
330         int ofo_win = 0;
331
332         inet_csk(sk)->icsk_ack.quick = 0;
333
334         skb_queue_walk(&tp->out_of_order_queue, skb) {
335                 ofo_win += skb->len;
336         }
337
338         /* If overcommit is due to out of order segments,
339          * do not clamp window. Try to expand rcvbuf instead.
340          */
341         if (ofo_win) {
342                 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344                     !tcp_memory_pressure &&
345                     atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
346                         sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347                                             sysctl_tcp_rmem[2]);
348         }
349         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
350                 app_win += ofo_win;
351                 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
352                         app_win >>= 1;
353                 if (app_win > inet_csk(sk)->icsk_ack.rcv_mss)
354                         app_win -= inet_csk(sk)->icsk_ack.rcv_mss;
355                 app_win = max(app_win, 2U*tp->advmss);
356
357                 if (!ofo_win)
358                         tp->window_clamp = min(tp->window_clamp, app_win);
359                 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
360         }
361 }
362
363 /* Receiver "autotuning" code.
364  *
365  * The algorithm for RTT estimation w/o timestamps is based on
366  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
367  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
368  *
369  * More detail on this code can be found at
370  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
371  * though this reference is out of date.  A new paper
372  * is pending.
373  */
374 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
375 {
376         u32 new_sample = tp->rcv_rtt_est.rtt;
377         long m = sample;
378
379         if (m == 0)
380                 m = 1;
381
382         if (new_sample != 0) {
383                 /* If we sample in larger samples in the non-timestamp
384                  * case, we could grossly overestimate the RTT especially
385                  * with chatty applications or bulk transfer apps which
386                  * are stalled on filesystem I/O.
387                  *
388                  * Also, since we are only going for a minimum in the
389                  * non-timestamp case, we do not smoothe things out
390                  * else with timestamps disabled convergance takes too
391                  * long.
392                  */
393                 if (!win_dep) {
394                         m -= (new_sample >> 3);
395                         new_sample += m;
396                 } else if (m < new_sample)
397                         new_sample = m << 3;
398         } else {
399                 /* No previous mesaure. */
400                 new_sample = m << 3;
401         }
402
403         if (tp->rcv_rtt_est.rtt != new_sample)
404                 tp->rcv_rtt_est.rtt = new_sample;
405 }
406
407 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
408 {
409         if (tp->rcv_rtt_est.time == 0)
410                 goto new_measure;
411         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
412                 return;
413         tcp_rcv_rtt_update(tp,
414                            jiffies - tp->rcv_rtt_est.time,
415                            1);
416
417 new_measure:
418         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
419         tp->rcv_rtt_est.time = tcp_time_stamp;
420 }
421
422 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
423 {
424         struct tcp_sock *tp = tcp_sk(sk);
425         if (tp->rx_opt.rcv_tsecr &&
426             (TCP_SKB_CB(skb)->end_seq -
427              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
428                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
429 }
430
431 /*
432  * This function should be called every time data is copied to user space.
433  * It calculates the appropriate TCP receive buffer space.
434  */
435 void tcp_rcv_space_adjust(struct sock *sk)
436 {
437         struct tcp_sock *tp = tcp_sk(sk);
438         int time;
439         int space;
440         
441         if (tp->rcvq_space.time == 0)
442                 goto new_measure;
443         
444         time = tcp_time_stamp - tp->rcvq_space.time;
445         if (time < (tp->rcv_rtt_est.rtt >> 3) ||
446             tp->rcv_rtt_est.rtt == 0)
447                 return;
448         
449         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
450
451         space = max(tp->rcvq_space.space, space);
452
453         if (tp->rcvq_space.space != space) {
454                 int rcvmem;
455
456                 tp->rcvq_space.space = space;
457
458                 if (sysctl_tcp_moderate_rcvbuf) {
459                         int new_clamp = space;
460
461                         /* Receive space grows, normalize in order to
462                          * take into account packet headers and sk_buff
463                          * structure overhead.
464                          */
465                         space /= tp->advmss;
466                         if (!space)
467                                 space = 1;
468                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
469                                   16 + sizeof(struct sk_buff));
470                         while (tcp_win_from_space(rcvmem) < tp->advmss)
471                                 rcvmem += 128;
472                         space *= rcvmem;
473                         space = min(space, sysctl_tcp_rmem[2]);
474                         if (space > sk->sk_rcvbuf) {
475                                 sk->sk_rcvbuf = space;
476
477                                 /* Make the window clamp follow along.  */
478                                 tp->window_clamp = new_clamp;
479                         }
480                 }
481         }
482         
483 new_measure:
484         tp->rcvq_space.seq = tp->copied_seq;
485         tp->rcvq_space.time = tcp_time_stamp;
486 }
487
488 /* There is something which you must keep in mind when you analyze the
489  * behavior of the tp->ato delayed ack timeout interval.  When a
490  * connection starts up, we want to ack as quickly as possible.  The
491  * problem is that "good" TCP's do slow start at the beginning of data
492  * transmission.  The means that until we send the first few ACK's the
493  * sender will sit on his end and only queue most of his data, because
494  * he can only send snd_cwnd unacked packets at any given time.  For
495  * each ACK we send, he increments snd_cwnd and transmits more of his
496  * queue.  -DaveM
497  */
498 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
499 {
500         struct inet_connection_sock *icsk = inet_csk(sk);
501         u32 now;
502
503         inet_csk_schedule_ack(sk);
504
505         tcp_measure_rcv_mss(sk, skb);
506
507         tcp_rcv_rtt_measure(tp);
508         
509         now = tcp_time_stamp;
510
511         if (!icsk->icsk_ack.ato) {
512                 /* The _first_ data packet received, initialize
513                  * delayed ACK engine.
514                  */
515                 tcp_incr_quickack(sk);
516                 icsk->icsk_ack.ato = TCP_ATO_MIN;
517         } else {
518                 int m = now - icsk->icsk_ack.lrcvtime;
519
520                 if (m <= TCP_ATO_MIN/2) {
521                         /* The fastest case is the first. */
522                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
523                 } else if (m < icsk->icsk_ack.ato) {
524                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
525                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
526                                 icsk->icsk_ack.ato = icsk->icsk_rto;
527                 } else if (m > icsk->icsk_rto) {
528                         /* Too long gap. Apparently sender falled to
529                          * restart window, so that we send ACKs quickly.
530                          */
531                         tcp_incr_quickack(sk);
532                         sk_stream_mem_reclaim(sk);
533                 }
534         }
535         icsk->icsk_ack.lrcvtime = now;
536
537         TCP_ECN_check_ce(tp, skb);
538
539         if (skb->len >= 128)
540                 tcp_grow_window(sk, tp, skb);
541 }
542
543 /* Called to compute a smoothed rtt estimate. The data fed to this
544  * routine either comes from timestamps, or from segments that were
545  * known _not_ to have been retransmitted [see Karn/Partridge
546  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
547  * piece by Van Jacobson.
548  * NOTE: the next three routines used to be one big routine.
549  * To save cycles in the RFC 1323 implementation it was better to break
550  * it up into three procedures. -- erics
551  */
552 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt)
553 {
554         long m = mrtt; /* RTT */
555
556         /*      The following amusing code comes from Jacobson's
557          *      article in SIGCOMM '88.  Note that rtt and mdev
558          *      are scaled versions of rtt and mean deviation.
559          *      This is designed to be as fast as possible 
560          *      m stands for "measurement".
561          *
562          *      On a 1990 paper the rto value is changed to:
563          *      RTO = rtt + 4 * mdev
564          *
565          * Funny. This algorithm seems to be very broken.
566          * These formulae increase RTO, when it should be decreased, increase
567          * too slowly, when it should be incresed fastly, decrease too fastly
568          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
569          * does not matter how to _calculate_ it. Seems, it was trap
570          * that VJ failed to avoid. 8)
571          */
572         if(m == 0)
573                 m = 1;
574         if (tp->srtt != 0) {
575                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
576                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
577                 if (m < 0) {
578                         m = -m;         /* m is now abs(error) */
579                         m -= (tp->mdev >> 2);   /* similar update on mdev */
580                         /* This is similar to one of Eifel findings.
581                          * Eifel blocks mdev updates when rtt decreases.
582                          * This solution is a bit different: we use finer gain
583                          * for mdev in this case (alpha*beta).
584                          * Like Eifel it also prevents growth of rto,
585                          * but also it limits too fast rto decreases,
586                          * happening in pure Eifel.
587                          */
588                         if (m > 0)
589                                 m >>= 3;
590                 } else {
591                         m -= (tp->mdev >> 2);   /* similar update on mdev */
592                 }
593                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
594                 if (tp->mdev > tp->mdev_max) {
595                         tp->mdev_max = tp->mdev;
596                         if (tp->mdev_max > tp->rttvar)
597                                 tp->rttvar = tp->mdev_max;
598                 }
599                 if (after(tp->snd_una, tp->rtt_seq)) {
600                         if (tp->mdev_max < tp->rttvar)
601                                 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
602                         tp->rtt_seq = tp->snd_nxt;
603                         tp->mdev_max = TCP_RTO_MIN;
604                 }
605         } else {
606                 /* no previous measure. */
607                 tp->srtt = m<<3;        /* take the measured time to be rtt */
608                 tp->mdev = m<<1;        /* make sure rto = 3*rtt */
609                 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
610                 tp->rtt_seq = tp->snd_nxt;
611         }
612
613         if (tp->ca_ops->rtt_sample)
614                 tp->ca_ops->rtt_sample(tp, *usrtt);
615 }
616
617 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
618  * routine referred to above.
619  */
620 static inline void tcp_set_rto(struct sock *sk)
621 {
622         const struct tcp_sock *tp = tcp_sk(sk);
623         /* Old crap is replaced with new one. 8)
624          *
625          * More seriously:
626          * 1. If rtt variance happened to be less 50msec, it is hallucination.
627          *    It cannot be less due to utterly erratic ACK generation made
628          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629          *    to do with delayed acks, because at cwnd>2 true delack timeout
630          *    is invisible. Actually, Linux-2.4 also generates erratic
631          *    ACKs in some curcumstances.
632          */
633         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
634
635         /* 2. Fixups made earlier cannot be right.
636          *    If we do not estimate RTO correctly without them,
637          *    all the algo is pure shit and should be replaced
638          *    with correct one. It is exaclty, which we pretend to do.
639          */
640 }
641
642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643  * guarantees that rto is higher.
644  */
645 static inline void tcp_bound_rto(struct sock *sk)
646 {
647         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
648                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
649 }
650
651 /* Save metrics learned by this TCP session.
652    This function is called only, when TCP finishes successfully
653    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
654  */
655 void tcp_update_metrics(struct sock *sk)
656 {
657         struct tcp_sock *tp = tcp_sk(sk);
658         struct dst_entry *dst = __sk_dst_get(sk);
659
660         if (sysctl_tcp_nometrics_save)
661                 return;
662
663         dst_confirm(dst);
664
665         if (dst && (dst->flags&DST_HOST)) {
666                 int m;
667
668                 if (inet_csk(sk)->icsk_backoff || !tp->srtt) {
669                         /* This session failed to estimate rtt. Why?
670                          * Probably, no packets returned in time.
671                          * Reset our results.
672                          */
673                         if (!(dst_metric_locked(dst, RTAX_RTT)))
674                                 dst->metrics[RTAX_RTT-1] = 0;
675                         return;
676                 }
677
678                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
679
680                 /* If newly calculated rtt larger than stored one,
681                  * store new one. Otherwise, use EWMA. Remember,
682                  * rtt overestimation is always better than underestimation.
683                  */
684                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
685                         if (m <= 0)
686                                 dst->metrics[RTAX_RTT-1] = tp->srtt;
687                         else
688                                 dst->metrics[RTAX_RTT-1] -= (m>>3);
689                 }
690
691                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
692                         if (m < 0)
693                                 m = -m;
694
695                         /* Scale deviation to rttvar fixed point */
696                         m >>= 1;
697                         if (m < tp->mdev)
698                                 m = tp->mdev;
699
700                         if (m >= dst_metric(dst, RTAX_RTTVAR))
701                                 dst->metrics[RTAX_RTTVAR-1] = m;
702                         else
703                                 dst->metrics[RTAX_RTTVAR-1] -=
704                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
705                 }
706
707                 if (tp->snd_ssthresh >= 0xFFFF) {
708                         /* Slow start still did not finish. */
709                         if (dst_metric(dst, RTAX_SSTHRESH) &&
710                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
711                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
712                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
713                         if (!dst_metric_locked(dst, RTAX_CWND) &&
714                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
715                                 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
716                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
717                            tp->ca_state == TCP_CA_Open) {
718                         /* Cong. avoidance phase, cwnd is reliable. */
719                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
720                                 dst->metrics[RTAX_SSTHRESH-1] =
721                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
722                         if (!dst_metric_locked(dst, RTAX_CWND))
723                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
724                 } else {
725                         /* Else slow start did not finish, cwnd is non-sense,
726                            ssthresh may be also invalid.
727                          */
728                         if (!dst_metric_locked(dst, RTAX_CWND))
729                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
730                         if (dst->metrics[RTAX_SSTHRESH-1] &&
731                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
732                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
733                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
734                 }
735
736                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
737                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
738                             tp->reordering != sysctl_tcp_reordering)
739                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
740                 }
741         }
742 }
743
744 /* Numbers are taken from RFC2414.  */
745 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
746 {
747         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
748
749         if (!cwnd) {
750                 if (tp->mss_cache > 1460)
751                         cwnd = 2;
752                 else
753                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
754         }
755         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756 }
757
758 /* Initialize metrics on socket. */
759
760 static void tcp_init_metrics(struct sock *sk)
761 {
762         struct tcp_sock *tp = tcp_sk(sk);
763         struct dst_entry *dst = __sk_dst_get(sk);
764
765         if (dst == NULL)
766                 goto reset;
767
768         dst_confirm(dst);
769
770         if (dst_metric_locked(dst, RTAX_CWND))
771                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
772         if (dst_metric(dst, RTAX_SSTHRESH)) {
773                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
774                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
775                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
776         }
777         if (dst_metric(dst, RTAX_REORDERING) &&
778             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
779                 tp->rx_opt.sack_ok &= ~2;
780                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
781         }
782
783         if (dst_metric(dst, RTAX_RTT) == 0)
784                 goto reset;
785
786         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
787                 goto reset;
788
789         /* Initial rtt is determined from SYN,SYN-ACK.
790          * The segment is small and rtt may appear much
791          * less than real one. Use per-dst memory
792          * to make it more realistic.
793          *
794          * A bit of theory. RTT is time passed after "normal" sized packet
795          * is sent until it is ACKed. In normal curcumstances sending small
796          * packets force peer to delay ACKs and calculation is correct too.
797          * The algorithm is adaptive and, provided we follow specs, it
798          * NEVER underestimate RTT. BUT! If peer tries to make some clever
799          * tricks sort of "quick acks" for time long enough to decrease RTT
800          * to low value, and then abruptly stops to do it and starts to delay
801          * ACKs, wait for troubles.
802          */
803         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
804                 tp->srtt = dst_metric(dst, RTAX_RTT);
805                 tp->rtt_seq = tp->snd_nxt;
806         }
807         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
808                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
809                 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
810         }
811         tcp_set_rto(sk);
812         tcp_bound_rto(sk);
813         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
814                 goto reset;
815         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
816         tp->snd_cwnd_stamp = tcp_time_stamp;
817         return;
818
819 reset:
820         /* Play conservative. If timestamps are not
821          * supported, TCP will fail to recalculate correct
822          * rtt, if initial rto is too small. FORGET ALL AND RESET!
823          */
824         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
825                 tp->srtt = 0;
826                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
827                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
828         }
829 }
830
831 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
832 {
833         if (metric > tp->reordering) {
834                 tp->reordering = min(TCP_MAX_REORDERING, metric);
835
836                 /* This exciting event is worth to be remembered. 8) */
837                 if (ts)
838                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
839                 else if (IsReno(tp))
840                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
841                 else if (IsFack(tp))
842                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
843                 else
844                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
845 #if FASTRETRANS_DEBUG > 1
846                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
847                        tp->rx_opt.sack_ok, tp->ca_state,
848                        tp->reordering,
849                        tp->fackets_out,
850                        tp->sacked_out,
851                        tp->undo_marker ? tp->undo_retrans : 0);
852 #endif
853                 /* Disable FACK yet. */
854                 tp->rx_opt.sack_ok &= ~2;
855         }
856 }
857
858 /* This procedure tags the retransmission queue when SACKs arrive.
859  *
860  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
861  * Packets in queue with these bits set are counted in variables
862  * sacked_out, retrans_out and lost_out, correspondingly.
863  *
864  * Valid combinations are:
865  * Tag  InFlight        Description
866  * 0    1               - orig segment is in flight.
867  * S    0               - nothing flies, orig reached receiver.
868  * L    0               - nothing flies, orig lost by net.
869  * R    2               - both orig and retransmit are in flight.
870  * L|R  1               - orig is lost, retransmit is in flight.
871  * S|R  1               - orig reached receiver, retrans is still in flight.
872  * (L|S|R is logically valid, it could occur when L|R is sacked,
873  *  but it is equivalent to plain S and code short-curcuits it to S.
874  *  L|S is logically invalid, it would mean -1 packet in flight 8))
875  *
876  * These 6 states form finite state machine, controlled by the following events:
877  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
878  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
879  * 3. Loss detection event of one of three flavors:
880  *      A. Scoreboard estimator decided the packet is lost.
881  *         A'. Reno "three dupacks" marks head of queue lost.
882  *         A''. Its FACK modfication, head until snd.fack is lost.
883  *      B. SACK arrives sacking data transmitted after never retransmitted
884  *         hole was sent out.
885  *      C. SACK arrives sacking SND.NXT at the moment, when the
886  *         segment was retransmitted.
887  * 4. D-SACK added new rule: D-SACK changes any tag to S.
888  *
889  * It is pleasant to note, that state diagram turns out to be commutative,
890  * so that we are allowed not to be bothered by order of our actions,
891  * when multiple events arrive simultaneously. (see the function below).
892  *
893  * Reordering detection.
894  * --------------------
895  * Reordering metric is maximal distance, which a packet can be displaced
896  * in packet stream. With SACKs we can estimate it:
897  *
898  * 1. SACK fills old hole and the corresponding segment was not
899  *    ever retransmitted -> reordering. Alas, we cannot use it
900  *    when segment was retransmitted.
901  * 2. The last flaw is solved with D-SACK. D-SACK arrives
902  *    for retransmitted and already SACKed segment -> reordering..
903  * Both of these heuristics are not used in Loss state, when we cannot
904  * account for retransmits accurately.
905  */
906 static int
907 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
908 {
909         struct tcp_sock *tp = tcp_sk(sk);
910         unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
911         struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
912         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
913         int reord = tp->packets_out;
914         int prior_fackets;
915         u32 lost_retrans = 0;
916         int flag = 0;
917         int i;
918
919         /* So, SACKs for already sent large segments will be lost.
920          * Not good, but alternative is to resegment the queue. */
921         if (sk->sk_route_caps & NETIF_F_TSO) {
922                 sk->sk_route_caps &= ~NETIF_F_TSO;
923                 sock_set_flag(sk, SOCK_NO_LARGESEND);
924                 tp->mss_cache = tp->mss_cache;
925         }
926
927         if (!tp->sacked_out)
928                 tp->fackets_out = 0;
929         prior_fackets = tp->fackets_out;
930
931         for (i=0; i<num_sacks; i++, sp++) {
932                 struct sk_buff *skb;
933                 __u32 start_seq = ntohl(sp->start_seq);
934                 __u32 end_seq = ntohl(sp->end_seq);
935                 int fack_count = 0;
936                 int dup_sack = 0;
937
938                 /* Check for D-SACK. */
939                 if (i == 0) {
940                         u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
941
942                         if (before(start_seq, ack)) {
943                                 dup_sack = 1;
944                                 tp->rx_opt.sack_ok |= 4;
945                                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
946                         } else if (num_sacks > 1 &&
947                                    !after(end_seq, ntohl(sp[1].end_seq)) &&
948                                    !before(start_seq, ntohl(sp[1].start_seq))) {
949                                 dup_sack = 1;
950                                 tp->rx_opt.sack_ok |= 4;
951                                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
952                         }
953
954                         /* D-SACK for already forgotten data...
955                          * Do dumb counting. */
956                         if (dup_sack &&
957                             !after(end_seq, prior_snd_una) &&
958                             after(end_seq, tp->undo_marker))
959                                 tp->undo_retrans--;
960
961                         /* Eliminate too old ACKs, but take into
962                          * account more or less fresh ones, they can
963                          * contain valid SACK info.
964                          */
965                         if (before(ack, prior_snd_una - tp->max_window))
966                                 return 0;
967                 }
968
969                 /* Event "B" in the comment above. */
970                 if (after(end_seq, tp->high_seq))
971                         flag |= FLAG_DATA_LOST;
972
973                 sk_stream_for_retrans_queue(skb, sk) {
974                         u8 sacked = TCP_SKB_CB(skb)->sacked;
975                         int in_sack;
976
977                         /* The retransmission queue is always in order, so
978                          * we can short-circuit the walk early.
979                          */
980                         if(!before(TCP_SKB_CB(skb)->seq, end_seq))
981                                 break;
982
983                         fack_count += tcp_skb_pcount(skb);
984
985                         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
986                                 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
987
988                         /* Account D-SACK for retransmitted packet. */
989                         if ((dup_sack && in_sack) &&
990                             (sacked & TCPCB_RETRANS) &&
991                             after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
992                                 tp->undo_retrans--;
993
994                         /* The frame is ACKed. */
995                         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
996                                 if (sacked&TCPCB_RETRANS) {
997                                         if ((dup_sack && in_sack) &&
998                                             (sacked&TCPCB_SACKED_ACKED))
999                                                 reord = min(fack_count, reord);
1000                                 } else {
1001                                         /* If it was in a hole, we detected reordering. */
1002                                         if (fack_count < prior_fackets &&
1003                                             !(sacked&TCPCB_SACKED_ACKED))
1004                                                 reord = min(fack_count, reord);
1005                                 }
1006
1007                                 /* Nothing to do; acked frame is about to be dropped. */
1008                                 continue;
1009                         }
1010
1011                         if ((sacked&TCPCB_SACKED_RETRANS) &&
1012                             after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1013                             (!lost_retrans || after(end_seq, lost_retrans)))
1014                                 lost_retrans = end_seq;
1015
1016                         if (!in_sack)
1017                                 continue;
1018
1019                         if (!(sacked&TCPCB_SACKED_ACKED)) {
1020                                 if (sacked & TCPCB_SACKED_RETRANS) {
1021                                         /* If the segment is not tagged as lost,
1022                                          * we do not clear RETRANS, believing
1023                                          * that retransmission is still in flight.
1024                                          */
1025                                         if (sacked & TCPCB_LOST) {
1026                                                 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1027                                                 tp->lost_out -= tcp_skb_pcount(skb);
1028                                                 tp->retrans_out -= tcp_skb_pcount(skb);
1029                                         }
1030                                 } else {
1031                                         /* New sack for not retransmitted frame,
1032                                          * which was in hole. It is reordering.
1033                                          */
1034                                         if (!(sacked & TCPCB_RETRANS) &&
1035                                             fack_count < prior_fackets)
1036                                                 reord = min(fack_count, reord);
1037
1038                                         if (sacked & TCPCB_LOST) {
1039                                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1040                                                 tp->lost_out -= tcp_skb_pcount(skb);
1041                                         }
1042                                 }
1043
1044                                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1045                                 flag |= FLAG_DATA_SACKED;
1046                                 tp->sacked_out += tcp_skb_pcount(skb);
1047
1048                                 if (fack_count > tp->fackets_out)
1049                                         tp->fackets_out = fack_count;
1050                         } else {
1051                                 if (dup_sack && (sacked&TCPCB_RETRANS))
1052                                         reord = min(fack_count, reord);
1053                         }
1054
1055                         /* D-SACK. We can detect redundant retransmission
1056                          * in S|R and plain R frames and clear it.
1057                          * undo_retrans is decreased above, L|R frames
1058                          * are accounted above as well.
1059                          */
1060                         if (dup_sack &&
1061                             (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1062                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1063                                 tp->retrans_out -= tcp_skb_pcount(skb);
1064                         }
1065                 }
1066         }
1067
1068         /* Check for lost retransmit. This superb idea is
1069          * borrowed from "ratehalving". Event "C".
1070          * Later note: FACK people cheated me again 8),
1071          * we have to account for reordering! Ugly,
1072          * but should help.
1073          */
1074         if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
1075                 struct sk_buff *skb;
1076
1077                 sk_stream_for_retrans_queue(skb, sk) {
1078                         if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1079                                 break;
1080                         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1081                                 continue;
1082                         if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1083                             after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1084                             (IsFack(tp) ||
1085                              !before(lost_retrans,
1086                                      TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1087                                      tp->mss_cache))) {
1088                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1089                                 tp->retrans_out -= tcp_skb_pcount(skb);
1090
1091                                 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1092                                         tp->lost_out += tcp_skb_pcount(skb);
1093                                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1094                                         flag |= FLAG_DATA_SACKED;
1095                                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1096                                 }
1097                         }
1098                 }
1099         }
1100
1101         tp->left_out = tp->sacked_out + tp->lost_out;
1102
1103         if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
1104                 tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
1105
1106 #if FASTRETRANS_DEBUG > 0
1107         BUG_TRAP((int)tp->sacked_out >= 0);
1108         BUG_TRAP((int)tp->lost_out >= 0);
1109         BUG_TRAP((int)tp->retrans_out >= 0);
1110         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1111 #endif
1112         return flag;
1113 }
1114
1115 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1116  * segments to see from the next ACKs whether any data was really missing.
1117  * If the RTO was spurious, new ACKs should arrive.
1118  */
1119 void tcp_enter_frto(struct sock *sk)
1120 {
1121         struct tcp_sock *tp = tcp_sk(sk);
1122         struct sk_buff *skb;
1123
1124         tp->frto_counter = 1;
1125
1126         if (tp->ca_state <= TCP_CA_Disorder ||
1127             tp->snd_una == tp->high_seq ||
1128             (tp->ca_state == TCP_CA_Loss && !inet_csk(sk)->icsk_retransmits)) {
1129                 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1130                 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1131                 tcp_ca_event(tp, CA_EVENT_FRTO);
1132         }
1133
1134         /* Have to clear retransmission markers here to keep the bookkeeping
1135          * in shape, even though we are not yet in Loss state.
1136          * If something was really lost, it is eventually caught up
1137          * in tcp_enter_frto_loss.
1138          */
1139         tp->retrans_out = 0;
1140         tp->undo_marker = tp->snd_una;
1141         tp->undo_retrans = 0;
1142
1143         sk_stream_for_retrans_queue(skb, sk) {
1144                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1145         }
1146         tcp_sync_left_out(tp);
1147
1148         tcp_set_ca_state(tp, TCP_CA_Open);
1149         tp->frto_highmark = tp->snd_nxt;
1150 }
1151
1152 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1153  * which indicates that we should follow the traditional RTO recovery,
1154  * i.e. mark everything lost and do go-back-N retransmission.
1155  */
1156 static void tcp_enter_frto_loss(struct sock *sk)
1157 {
1158         struct tcp_sock *tp = tcp_sk(sk);
1159         struct sk_buff *skb;
1160         int cnt = 0;
1161
1162         tp->sacked_out = 0;
1163         tp->lost_out = 0;
1164         tp->fackets_out = 0;
1165
1166         sk_stream_for_retrans_queue(skb, sk) {
1167                 cnt += tcp_skb_pcount(skb);
1168                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1169                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1170
1171                         /* Do not mark those segments lost that were
1172                          * forward transmitted after RTO
1173                          */
1174                         if (!after(TCP_SKB_CB(skb)->end_seq,
1175                                    tp->frto_highmark)) {
1176                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1177                                 tp->lost_out += tcp_skb_pcount(skb);
1178                         }
1179                 } else {
1180                         tp->sacked_out += tcp_skb_pcount(skb);
1181                         tp->fackets_out = cnt;
1182                 }
1183         }
1184         tcp_sync_left_out(tp);
1185
1186         tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1187         tp->snd_cwnd_cnt = 0;
1188         tp->snd_cwnd_stamp = tcp_time_stamp;
1189         tp->undo_marker = 0;
1190         tp->frto_counter = 0;
1191
1192         tp->reordering = min_t(unsigned int, tp->reordering,
1193                                              sysctl_tcp_reordering);
1194         tcp_set_ca_state(tp, TCP_CA_Loss);
1195         tp->high_seq = tp->frto_highmark;
1196         TCP_ECN_queue_cwr(tp);
1197 }
1198
1199 void tcp_clear_retrans(struct tcp_sock *tp)
1200 {
1201         tp->left_out = 0;
1202         tp->retrans_out = 0;
1203
1204         tp->fackets_out = 0;
1205         tp->sacked_out = 0;
1206         tp->lost_out = 0;
1207
1208         tp->undo_marker = 0;
1209         tp->undo_retrans = 0;
1210 }
1211
1212 /* Enter Loss state. If "how" is not zero, forget all SACK information
1213  * and reset tags completely, otherwise preserve SACKs. If receiver
1214  * dropped its ofo queue, we will know this due to reneging detection.
1215  */
1216 void tcp_enter_loss(struct sock *sk, int how)
1217 {
1218         struct tcp_sock *tp = tcp_sk(sk);
1219         struct sk_buff *skb;
1220         int cnt = 0;
1221
1222         /* Reduce ssthresh if it has not yet been made inside this window. */
1223         if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1224             (tp->ca_state == TCP_CA_Loss && !inet_csk(sk)->icsk_retransmits)) {
1225                 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1226                 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1227                 tcp_ca_event(tp, CA_EVENT_LOSS);
1228         }
1229         tp->snd_cwnd       = 1;
1230         tp->snd_cwnd_cnt   = 0;
1231         tp->snd_cwnd_stamp = tcp_time_stamp;
1232
1233         tcp_clear_retrans(tp);
1234
1235         /* Push undo marker, if it was plain RTO and nothing
1236          * was retransmitted. */
1237         if (!how)
1238                 tp->undo_marker = tp->snd_una;
1239
1240         sk_stream_for_retrans_queue(skb, sk) {
1241                 cnt += tcp_skb_pcount(skb);
1242                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1243                         tp->undo_marker = 0;
1244                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1245                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1246                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1247                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1248                         tp->lost_out += tcp_skb_pcount(skb);
1249                 } else {
1250                         tp->sacked_out += tcp_skb_pcount(skb);
1251                         tp->fackets_out = cnt;
1252                 }
1253         }
1254         tcp_sync_left_out(tp);
1255
1256         tp->reordering = min_t(unsigned int, tp->reordering,
1257                                              sysctl_tcp_reordering);
1258         tcp_set_ca_state(tp, TCP_CA_Loss);
1259         tp->high_seq = tp->snd_nxt;
1260         TCP_ECN_queue_cwr(tp);
1261 }
1262
1263 static int tcp_check_sack_reneging(struct sock *sk)
1264 {
1265         struct sk_buff *skb;
1266
1267         /* If ACK arrived pointing to a remembered SACK,
1268          * it means that our remembered SACKs do not reflect
1269          * real state of receiver i.e.
1270          * receiver _host_ is heavily congested (or buggy).
1271          * Do processing similar to RTO timeout.
1272          */
1273         if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1274             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1275                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1276
1277                 tcp_enter_loss(sk, 1);
1278                 inet_csk(sk)->icsk_retransmits++;
1279                 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1280                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1281                                           inet_csk(sk)->icsk_rto);
1282                 return 1;
1283         }
1284         return 0;
1285 }
1286
1287 static inline int tcp_fackets_out(struct tcp_sock *tp)
1288 {
1289         return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1290 }
1291
1292 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1293 {
1294         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1295 }
1296
1297 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1298 {
1299         return tp->packets_out &&
1300                tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1301 }
1302
1303 /* Linux NewReno/SACK/FACK/ECN state machine.
1304  * --------------------------------------
1305  *
1306  * "Open"       Normal state, no dubious events, fast path.
1307  * "Disorder"   In all the respects it is "Open",
1308  *              but requires a bit more attention. It is entered when
1309  *              we see some SACKs or dupacks. It is split of "Open"
1310  *              mainly to move some processing from fast path to slow one.
1311  * "CWR"        CWND was reduced due to some Congestion Notification event.
1312  *              It can be ECN, ICMP source quench, local device congestion.
1313  * "Recovery"   CWND was reduced, we are fast-retransmitting.
1314  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
1315  *
1316  * tcp_fastretrans_alert() is entered:
1317  * - each incoming ACK, if state is not "Open"
1318  * - when arrived ACK is unusual, namely:
1319  *      * SACK
1320  *      * Duplicate ACK.
1321  *      * ECN ECE.
1322  *
1323  * Counting packets in flight is pretty simple.
1324  *
1325  *      in_flight = packets_out - left_out + retrans_out
1326  *
1327  *      packets_out is SND.NXT-SND.UNA counted in packets.
1328  *
1329  *      retrans_out is number of retransmitted segments.
1330  *
1331  *      left_out is number of segments left network, but not ACKed yet.
1332  *
1333  *              left_out = sacked_out + lost_out
1334  *
1335  *     sacked_out: Packets, which arrived to receiver out of order
1336  *                 and hence not ACKed. With SACKs this number is simply
1337  *                 amount of SACKed data. Even without SACKs
1338  *                 it is easy to give pretty reliable estimate of this number,
1339  *                 counting duplicate ACKs.
1340  *
1341  *       lost_out: Packets lost by network. TCP has no explicit
1342  *                 "loss notification" feedback from network (for now).
1343  *                 It means that this number can be only _guessed_.
1344  *                 Actually, it is the heuristics to predict lossage that
1345  *                 distinguishes different algorithms.
1346  *
1347  *      F.e. after RTO, when all the queue is considered as lost,
1348  *      lost_out = packets_out and in_flight = retrans_out.
1349  *
1350  *              Essentially, we have now two algorithms counting
1351  *              lost packets.
1352  *
1353  *              FACK: It is the simplest heuristics. As soon as we decided
1354  *              that something is lost, we decide that _all_ not SACKed
1355  *              packets until the most forward SACK are lost. I.e.
1356  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
1357  *              It is absolutely correct estimate, if network does not reorder
1358  *              packets. And it loses any connection to reality when reordering
1359  *              takes place. We use FACK by default until reordering
1360  *              is suspected on the path to this destination.
1361  *
1362  *              NewReno: when Recovery is entered, we assume that one segment
1363  *              is lost (classic Reno). While we are in Recovery and
1364  *              a partial ACK arrives, we assume that one more packet
1365  *              is lost (NewReno). This heuristics are the same in NewReno
1366  *              and SACK.
1367  *
1368  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1369  *  deflation etc. CWND is real congestion window, never inflated, changes
1370  *  only according to classic VJ rules.
1371  *
1372  * Really tricky (and requiring careful tuning) part of algorithm
1373  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1374  * The first determines the moment _when_ we should reduce CWND and,
1375  * hence, slow down forward transmission. In fact, it determines the moment
1376  * when we decide that hole is caused by loss, rather than by a reorder.
1377  *
1378  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1379  * holes, caused by lost packets.
1380  *
1381  * And the most logically complicated part of algorithm is undo
1382  * heuristics. We detect false retransmits due to both too early
1383  * fast retransmit (reordering) and underestimated RTO, analyzing
1384  * timestamps and D-SACKs. When we detect that some segments were
1385  * retransmitted by mistake and CWND reduction was wrong, we undo
1386  * window reduction and abort recovery phase. This logic is hidden
1387  * inside several functions named tcp_try_undo_<something>.
1388  */
1389
1390 /* This function decides, when we should leave Disordered state
1391  * and enter Recovery phase, reducing congestion window.
1392  *
1393  * Main question: may we further continue forward transmission
1394  * with the same cwnd?
1395  */
1396 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1397 {
1398         __u32 packets_out;
1399
1400         /* Trick#1: The loss is proven. */
1401         if (tp->lost_out)
1402                 return 1;
1403
1404         /* Not-A-Trick#2 : Classic rule... */
1405         if (tcp_fackets_out(tp) > tp->reordering)
1406                 return 1;
1407
1408         /* Trick#3 : when we use RFC2988 timer restart, fast
1409          * retransmit can be triggered by timeout of queue head.
1410          */
1411         if (tcp_head_timedout(sk, tp))
1412                 return 1;
1413
1414         /* Trick#4: It is still not OK... But will it be useful to delay
1415          * recovery more?
1416          */
1417         packets_out = tp->packets_out;
1418         if (packets_out <= tp->reordering &&
1419             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1420             !tcp_may_send_now(sk, tp)) {
1421                 /* We have nothing to send. This connection is limited
1422                  * either by receiver window or by application.
1423                  */
1424                 return 1;
1425         }
1426
1427         return 0;
1428 }
1429
1430 /* If we receive more dupacks than we expected counting segments
1431  * in assumption of absent reordering, interpret this as reordering.
1432  * The only another reason could be bug in receiver TCP.
1433  */
1434 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
1435 {
1436         u32 holes;
1437
1438         holes = max(tp->lost_out, 1U);
1439         holes = min(holes, tp->packets_out);
1440
1441         if ((tp->sacked_out + holes) > tp->packets_out) {
1442                 tp->sacked_out = tp->packets_out - holes;
1443                 tcp_update_reordering(tp, tp->packets_out+addend, 0);
1444         }
1445 }
1446
1447 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1448
1449 static void tcp_add_reno_sack(struct tcp_sock *tp)
1450 {
1451         tp->sacked_out++;
1452         tcp_check_reno_reordering(tp, 0);
1453         tcp_sync_left_out(tp);
1454 }
1455
1456 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1457
1458 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1459 {
1460         if (acked > 0) {
1461                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1462                 if (acked-1 >= tp->sacked_out)
1463                         tp->sacked_out = 0;
1464                 else
1465                         tp->sacked_out -= acked-1;
1466         }
1467         tcp_check_reno_reordering(tp, acked);
1468         tcp_sync_left_out(tp);
1469 }
1470
1471 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1472 {
1473         tp->sacked_out = 0;
1474         tp->left_out = tp->lost_out;
1475 }
1476
1477 /* Mark head of queue up as lost. */
1478 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1479                                int packets, u32 high_seq)
1480 {
1481         struct sk_buff *skb;
1482         int cnt = packets;
1483
1484         BUG_TRAP(cnt <= tp->packets_out);
1485
1486         sk_stream_for_retrans_queue(skb, sk) {
1487                 cnt -= tcp_skb_pcount(skb);
1488                 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1489                         break;
1490                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1491                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1492                         tp->lost_out += tcp_skb_pcount(skb);
1493                 }
1494         }
1495         tcp_sync_left_out(tp);
1496 }
1497
1498 /* Account newly detected lost packet(s) */
1499
1500 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1501 {
1502         if (IsFack(tp)) {
1503                 int lost = tp->fackets_out - tp->reordering;
1504                 if (lost <= 0)
1505                         lost = 1;
1506                 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1507         } else {
1508                 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1509         }
1510
1511         /* New heuristics: it is possible only after we switched
1512          * to restart timer each time when something is ACKed.
1513          * Hence, we can detect timed out packets during fast
1514          * retransmit without falling to slow start.
1515          */
1516         if (tcp_head_timedout(sk, tp)) {
1517                 struct sk_buff *skb;
1518
1519                 sk_stream_for_retrans_queue(skb, sk) {
1520                         if (tcp_skb_timedout(sk, skb) &&
1521                             !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1522                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1523                                 tp->lost_out += tcp_skb_pcount(skb);
1524                         }
1525                 }
1526                 tcp_sync_left_out(tp);
1527         }
1528 }
1529
1530 /* CWND moderation, preventing bursts due to too big ACKs
1531  * in dubious situations.
1532  */
1533 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1534 {
1535         tp->snd_cwnd = min(tp->snd_cwnd,
1536                            tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1537         tp->snd_cwnd_stamp = tcp_time_stamp;
1538 }
1539
1540 /* Decrease cwnd each second ack. */
1541 static void tcp_cwnd_down(struct tcp_sock *tp)
1542 {
1543         int decr = tp->snd_cwnd_cnt + 1;
1544
1545         tp->snd_cwnd_cnt = decr&1;
1546         decr >>= 1;
1547
1548         if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp))
1549                 tp->snd_cwnd -= decr;
1550
1551         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1552         tp->snd_cwnd_stamp = tcp_time_stamp;
1553 }
1554
1555 /* Nothing was retransmitted or returned timestamp is less
1556  * than timestamp of the first retransmission.
1557  */
1558 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1559 {
1560         return !tp->retrans_stamp ||
1561                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1562                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1563 }
1564
1565 /* Undo procedures. */
1566
1567 #if FASTRETRANS_DEBUG > 1
1568 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1569 {
1570         struct inet_sock *inet = inet_sk(sk);
1571         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1572                msg,
1573                NIPQUAD(inet->daddr), ntohs(inet->dport),
1574                tp->snd_cwnd, tp->left_out,
1575                tp->snd_ssthresh, tp->prior_ssthresh,
1576                tp->packets_out);
1577 }
1578 #else
1579 #define DBGUNDO(x...) do { } while (0)
1580 #endif
1581
1582 static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
1583 {
1584         if (tp->prior_ssthresh) {
1585                 if (tp->ca_ops->undo_cwnd)
1586                         tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp);
1587                 else
1588                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1589
1590                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1591                         tp->snd_ssthresh = tp->prior_ssthresh;
1592                         TCP_ECN_withdraw_cwr(tp);
1593                 }
1594         } else {
1595                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1596         }
1597         tcp_moderate_cwnd(tp);
1598         tp->snd_cwnd_stamp = tcp_time_stamp;
1599 }
1600
1601 static inline int tcp_may_undo(struct tcp_sock *tp)
1602 {
1603         return tp->undo_marker &&
1604                 (!tp->undo_retrans || tcp_packet_delayed(tp));
1605 }
1606
1607 /* People celebrate: "We love our President!" */
1608 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1609 {
1610         if (tcp_may_undo(tp)) {
1611                 /* Happy end! We did not retransmit anything
1612                  * or our original transmission succeeded.
1613                  */
1614                 DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1615                 tcp_undo_cwr(tp, 1);
1616                 if (tp->ca_state == TCP_CA_Loss)
1617                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1618                 else
1619                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1620                 tp->undo_marker = 0;
1621         }
1622         if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1623                 /* Hold old state until something *above* high_seq
1624                  * is ACKed. For Reno it is MUST to prevent false
1625                  * fast retransmits (RFC2582). SACK TCP is safe. */
1626                 tcp_moderate_cwnd(tp);
1627                 return 1;
1628         }
1629         tcp_set_ca_state(tp, TCP_CA_Open);
1630         return 0;
1631 }
1632
1633 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1634 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1635 {
1636         if (tp->undo_marker && !tp->undo_retrans) {
1637                 DBGUNDO(sk, tp, "D-SACK");
1638                 tcp_undo_cwr(tp, 1);
1639                 tp->undo_marker = 0;
1640                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1641         }
1642 }
1643
1644 /* Undo during fast recovery after partial ACK. */
1645
1646 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1647                                 int acked)
1648 {
1649         /* Partial ACK arrived. Force Hoe's retransmit. */
1650         int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1651
1652         if (tcp_may_undo(tp)) {
1653                 /* Plain luck! Hole if filled with delayed
1654                  * packet, rather than with a retransmit.
1655                  */
1656                 if (tp->retrans_out == 0)
1657                         tp->retrans_stamp = 0;
1658
1659                 tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1660
1661                 DBGUNDO(sk, tp, "Hoe");
1662                 tcp_undo_cwr(tp, 0);
1663                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1664
1665                 /* So... Do not make Hoe's retransmit yet.
1666                  * If the first packet was delayed, the rest
1667                  * ones are most probably delayed as well.
1668                  */
1669                 failed = 0;
1670         }
1671         return failed;
1672 }
1673
1674 /* Undo during loss recovery after partial ACK. */
1675 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1676 {
1677         if (tcp_may_undo(tp)) {
1678                 struct sk_buff *skb;
1679                 sk_stream_for_retrans_queue(skb, sk) {
1680                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1681                 }
1682                 DBGUNDO(sk, tp, "partial loss");
1683                 tp->lost_out = 0;
1684                 tp->left_out = tp->sacked_out;
1685                 tcp_undo_cwr(tp, 1);
1686                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1687                 inet_csk(sk)->icsk_retransmits = 0;
1688                 tp->undo_marker = 0;
1689                 if (!IsReno(tp))
1690                         tcp_set_ca_state(tp, TCP_CA_Open);
1691                 return 1;
1692         }
1693         return 0;
1694 }
1695
1696 static inline void tcp_complete_cwr(struct tcp_sock *tp)
1697 {
1698         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1699         tp->snd_cwnd_stamp = tcp_time_stamp;
1700         tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR);
1701 }
1702
1703 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1704 {
1705         tp->left_out = tp->sacked_out;
1706
1707         if (tp->retrans_out == 0)
1708                 tp->retrans_stamp = 0;
1709
1710         if (flag&FLAG_ECE)
1711                 tcp_enter_cwr(tp);
1712
1713         if (tp->ca_state != TCP_CA_CWR) {
1714                 int state = TCP_CA_Open;
1715
1716                 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1717                         state = TCP_CA_Disorder;
1718
1719                 if (tp->ca_state != state) {
1720                         tcp_set_ca_state(tp, state);
1721                         tp->high_seq = tp->snd_nxt;
1722                 }
1723                 tcp_moderate_cwnd(tp);
1724         } else {
1725                 tcp_cwnd_down(tp);
1726         }
1727 }
1728
1729 /* Process an event, which can update packets-in-flight not trivially.
1730  * Main goal of this function is to calculate new estimate for left_out,
1731  * taking into account both packets sitting in receiver's buffer and
1732  * packets lost by network.
1733  *
1734  * Besides that it does CWND reduction, when packet loss is detected
1735  * and changes state of machine.
1736  *
1737  * It does _not_ decide what to send, it is made in function
1738  * tcp_xmit_retransmit_queue().
1739  */
1740 static void
1741 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1742                       int prior_packets, int flag)
1743 {
1744         struct tcp_sock *tp = tcp_sk(sk);
1745         int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1746
1747         /* Some technical things:
1748          * 1. Reno does not count dupacks (sacked_out) automatically. */
1749         if (!tp->packets_out)
1750                 tp->sacked_out = 0;
1751         /* 2. SACK counts snd_fack in packets inaccurately. */
1752         if (tp->sacked_out == 0)
1753                 tp->fackets_out = 0;
1754
1755         /* Now state machine starts.
1756          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1757         if (flag&FLAG_ECE)
1758                 tp->prior_ssthresh = 0;
1759
1760         /* B. In all the states check for reneging SACKs. */
1761         if (tp->sacked_out && tcp_check_sack_reneging(sk))
1762                 return;
1763
1764         /* C. Process data loss notification, provided it is valid. */
1765         if ((flag&FLAG_DATA_LOST) &&
1766             before(tp->snd_una, tp->high_seq) &&
1767             tp->ca_state != TCP_CA_Open &&
1768             tp->fackets_out > tp->reordering) {
1769                 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1770                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1771         }
1772
1773         /* D. Synchronize left_out to current state. */
1774         tcp_sync_left_out(tp);
1775
1776         /* E. Check state exit conditions. State can be terminated
1777          *    when high_seq is ACKed. */
1778         if (tp->ca_state == TCP_CA_Open) {
1779                 if (!sysctl_tcp_frto)
1780                         BUG_TRAP(tp->retrans_out == 0);
1781                 tp->retrans_stamp = 0;
1782         } else if (!before(tp->snd_una, tp->high_seq)) {
1783                 switch (tp->ca_state) {
1784                 case TCP_CA_Loss:
1785                         inet_csk(sk)->icsk_retransmits = 0;
1786                         if (tcp_try_undo_recovery(sk, tp))
1787                                 return;
1788                         break;
1789
1790                 case TCP_CA_CWR:
1791                         /* CWR is to be held something *above* high_seq
1792                          * is ACKed for CWR bit to reach receiver. */
1793                         if (tp->snd_una != tp->high_seq) {
1794                                 tcp_complete_cwr(tp);
1795                                 tcp_set_ca_state(tp, TCP_CA_Open);
1796                         }
1797                         break;
1798
1799                 case TCP_CA_Disorder:
1800                         tcp_try_undo_dsack(sk, tp);
1801                         if (!tp->undo_marker ||
1802                             /* For SACK case do not Open to allow to undo
1803                              * catching for all duplicate ACKs. */
1804                             IsReno(tp) || tp->snd_una != tp->high_seq) {
1805                                 tp->undo_marker = 0;
1806                                 tcp_set_ca_state(tp, TCP_CA_Open);
1807                         }
1808                         break;
1809
1810                 case TCP_CA_Recovery:
1811                         if (IsReno(tp))
1812                                 tcp_reset_reno_sack(tp);
1813                         if (tcp_try_undo_recovery(sk, tp))
1814                                 return;
1815                         tcp_complete_cwr(tp);
1816                         break;
1817                 }
1818         }
1819
1820         /* F. Process state. */
1821         switch (tp->ca_state) {
1822         case TCP_CA_Recovery:
1823                 if (prior_snd_una == tp->snd_una) {
1824                         if (IsReno(tp) && is_dupack)
1825                                 tcp_add_reno_sack(tp);
1826                 } else {
1827                         int acked = prior_packets - tp->packets_out;
1828                         if (IsReno(tp))
1829                                 tcp_remove_reno_sacks(sk, tp, acked);
1830                         is_dupack = tcp_try_undo_partial(sk, tp, acked);
1831                 }
1832                 break;
1833         case TCP_CA_Loss:
1834                 if (flag&FLAG_DATA_ACKED)
1835                         inet_csk(sk)->icsk_retransmits = 0;
1836                 if (!tcp_try_undo_loss(sk, tp)) {
1837                         tcp_moderate_cwnd(tp);
1838                         tcp_xmit_retransmit_queue(sk);
1839                         return;
1840                 }
1841                 if (tp->ca_state != TCP_CA_Open)
1842                         return;
1843                 /* Loss is undone; fall through to processing in Open state. */
1844         default:
1845                 if (IsReno(tp)) {
1846                         if (tp->snd_una != prior_snd_una)
1847                                 tcp_reset_reno_sack(tp);
1848                         if (is_dupack)
1849                                 tcp_add_reno_sack(tp);
1850                 }
1851
1852                 if (tp->ca_state == TCP_CA_Disorder)
1853                         tcp_try_undo_dsack(sk, tp);
1854
1855                 if (!tcp_time_to_recover(sk, tp)) {
1856                         tcp_try_to_open(sk, tp, flag);
1857                         return;
1858                 }
1859
1860                 /* Otherwise enter Recovery state */
1861
1862                 if (IsReno(tp))
1863                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1864                 else
1865                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1866
1867                 tp->high_seq = tp->snd_nxt;
1868                 tp->prior_ssthresh = 0;
1869                 tp->undo_marker = tp->snd_una;
1870                 tp->undo_retrans = tp->retrans_out;
1871
1872                 if (tp->ca_state < TCP_CA_CWR) {
1873                         if (!(flag&FLAG_ECE))
1874                                 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1875                         tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1876                         TCP_ECN_queue_cwr(tp);
1877                 }
1878
1879                 tp->snd_cwnd_cnt = 0;
1880                 tcp_set_ca_state(tp, TCP_CA_Recovery);
1881         }
1882
1883         if (is_dupack || tcp_head_timedout(sk, tp))
1884                 tcp_update_scoreboard(sk, tp);
1885         tcp_cwnd_down(tp);
1886         tcp_xmit_retransmit_queue(sk);
1887 }
1888
1889 /* Read draft-ietf-tcplw-high-performance before mucking
1890  * with this code. (Superceeds RFC1323)
1891  */
1892 static void tcp_ack_saw_tstamp(struct sock *sk, u32 *usrtt, int flag)
1893 {
1894         /* RTTM Rule: A TSecr value received in a segment is used to
1895          * update the averaged RTT measurement only if the segment
1896          * acknowledges some new data, i.e., only if it advances the
1897          * left edge of the send window.
1898          *
1899          * See draft-ietf-tcplw-high-performance-00, section 3.3.
1900          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1901          *
1902          * Changed: reset backoff as soon as we see the first valid sample.
1903          * If we do not, we get strongly overstimated rto. With timestamps
1904          * samples are accepted even from very old segments: f.e., when rtt=1
1905          * increases to 8, we retransmit 5 times and after 8 seconds delayed
1906          * answer arrives rto becomes 120 seconds! If at least one of segments
1907          * in window is lost... Voila.                          --ANK (010210)
1908          */
1909         struct tcp_sock *tp = tcp_sk(sk);
1910         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1911         tcp_rtt_estimator(tp, seq_rtt, usrtt);
1912         tcp_set_rto(sk);
1913         inet_csk(sk)->icsk_backoff = 0;
1914         tcp_bound_rto(sk);
1915 }
1916
1917 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, u32 *usrtt, int flag)
1918 {
1919         /* We don't have a timestamp. Can only use
1920          * packets that are not retransmitted to determine
1921          * rtt estimates. Also, we must not reset the
1922          * backoff for rto until we get a non-retransmitted
1923          * packet. This allows us to deal with a situation
1924          * where the network delay has increased suddenly.
1925          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1926          */
1927
1928         if (flag & FLAG_RETRANS_DATA_ACKED)
1929                 return;
1930
1931         tcp_rtt_estimator(tcp_sk(sk), seq_rtt, usrtt);
1932         tcp_set_rto(sk);
1933         inet_csk(sk)->icsk_backoff = 0;
1934         tcp_bound_rto(sk);
1935 }
1936
1937 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1938                                       const s32 seq_rtt, u32 *usrtt)
1939 {
1940         const struct tcp_sock *tp = tcp_sk(sk);
1941         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1942         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1943                 tcp_ack_saw_tstamp(sk, usrtt, flag);
1944         else if (seq_rtt >= 0)
1945                 tcp_ack_no_tstamp(sk, seq_rtt, usrtt, flag);
1946 }
1947
1948 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
1949                                   u32 in_flight, int good)
1950 {
1951         tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good);
1952         tp->snd_cwnd_stamp = tcp_time_stamp;
1953 }
1954
1955 /* Restart timer after forward progress on connection.
1956  * RFC2988 recommends to restart timer to now+rto.
1957  */
1958
1959 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1960 {
1961         if (!tp->packets_out) {
1962                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1963         } else {
1964                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto);
1965         }
1966 }
1967
1968 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1969                          __u32 now, __s32 *seq_rtt)
1970 {
1971         struct tcp_sock *tp = tcp_sk(sk);
1972         struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 
1973         __u32 seq = tp->snd_una;
1974         __u32 packets_acked;
1975         int acked = 0;
1976
1977         /* If we get here, the whole TSO packet has not been
1978          * acked.
1979          */
1980         BUG_ON(!after(scb->end_seq, seq));
1981
1982         packets_acked = tcp_skb_pcount(skb);
1983         if (tcp_trim_head(sk, skb, seq - scb->seq))
1984                 return 0;
1985         packets_acked -= tcp_skb_pcount(skb);
1986
1987         if (packets_acked) {
1988                 __u8 sacked = scb->sacked;
1989
1990                 acked |= FLAG_DATA_ACKED;
1991                 if (sacked) {
1992                         if (sacked & TCPCB_RETRANS) {
1993                                 if (sacked & TCPCB_SACKED_RETRANS)
1994                                         tp->retrans_out -= packets_acked;
1995                                 acked |= FLAG_RETRANS_DATA_ACKED;
1996                                 *seq_rtt = -1;
1997                         } else if (*seq_rtt < 0)
1998                                 *seq_rtt = now - scb->when;
1999                         if (sacked & TCPCB_SACKED_ACKED)
2000                                 tp->sacked_out -= packets_acked;
2001                         if (sacked & TCPCB_LOST)
2002                                 tp->lost_out -= packets_acked;
2003                         if (sacked & TCPCB_URG) {
2004                                 if (tp->urg_mode &&
2005                                     !before(seq, tp->snd_up))
2006                                         tp->urg_mode = 0;
2007                         }
2008                 } else if (*seq_rtt < 0)
2009                         *seq_rtt = now - scb->when;
2010
2011                 if (tp->fackets_out) {
2012                         __u32 dval = min(tp->fackets_out, packets_acked);
2013                         tp->fackets_out -= dval;
2014                 }
2015                 tp->packets_out -= packets_acked;
2016
2017                 BUG_ON(tcp_skb_pcount(skb) == 0);
2018                 BUG_ON(!before(scb->seq, scb->end_seq));
2019         }
2020
2021         return acked;
2022 }
2023
2024
2025 /* Remove acknowledged frames from the retransmission queue. */
2026 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
2027 {
2028         struct tcp_sock *tp = tcp_sk(sk);
2029         struct sk_buff *skb;
2030         __u32 now = tcp_time_stamp;
2031         int acked = 0;
2032         __s32 seq_rtt = -1;
2033         struct timeval usnow;
2034         u32 pkts_acked = 0;
2035
2036         if (seq_usrtt)
2037                 do_gettimeofday(&usnow);
2038
2039         while ((skb = skb_peek(&sk->sk_write_queue)) &&
2040                skb != sk->sk_send_head) {
2041                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 
2042                 __u8 sacked = scb->sacked;
2043
2044                 /* If our packet is before the ack sequence we can
2045                  * discard it as it's confirmed to have arrived at
2046                  * the other end.
2047                  */
2048                 if (after(scb->end_seq, tp->snd_una)) {
2049                         if (tcp_skb_pcount(skb) > 1 &&
2050                             after(tp->snd_una, scb->seq))
2051                                 acked |= tcp_tso_acked(sk, skb,
2052                                                        now, &seq_rtt);
2053                         break;
2054                 }
2055
2056                 /* Initial outgoing SYN's get put onto the write_queue
2057                  * just like anything else we transmit.  It is not
2058                  * true data, and if we misinform our callers that
2059                  * this ACK acks real data, we will erroneously exit
2060                  * connection startup slow start one packet too
2061                  * quickly.  This is severely frowned upon behavior.
2062                  */
2063                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2064                         acked |= FLAG_DATA_ACKED;
2065                         ++pkts_acked;
2066                 } else {
2067                         acked |= FLAG_SYN_ACKED;
2068                         tp->retrans_stamp = 0;
2069                 }
2070
2071                 if (sacked) {
2072                         if (sacked & TCPCB_RETRANS) {
2073                                 if(sacked & TCPCB_SACKED_RETRANS)
2074                                         tp->retrans_out -= tcp_skb_pcount(skb);
2075                                 acked |= FLAG_RETRANS_DATA_ACKED;
2076                                 seq_rtt = -1;
2077                         } else if (seq_rtt < 0)
2078                                 seq_rtt = now - scb->when;
2079                         if (seq_usrtt)
2080                                 *seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000
2081                                         + (usnow.tv_usec - skb->stamp.tv_usec);
2082
2083                         if (sacked & TCPCB_SACKED_ACKED)
2084                                 tp->sacked_out -= tcp_skb_pcount(skb);
2085                         if (sacked & TCPCB_LOST)
2086                                 tp->lost_out -= tcp_skb_pcount(skb);
2087                         if (sacked & TCPCB_URG) {
2088                                 if (tp->urg_mode &&
2089                                     !before(scb->end_seq, tp->snd_up))
2090                                         tp->urg_mode = 0;
2091                         }
2092                 } else if (seq_rtt < 0)
2093                         seq_rtt = now - scb->when;
2094                 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2095                 tcp_packets_out_dec(tp, skb);
2096                 __skb_unlink(skb, &sk->sk_write_queue);
2097                 sk_stream_free_skb(sk, skb);
2098         }
2099
2100         if (acked&FLAG_ACKED) {
2101                 tcp_ack_update_rtt(sk, acked, seq_rtt, seq_usrtt);
2102                 tcp_ack_packets_out(sk, tp);
2103
2104                 if (tp->ca_ops->pkts_acked)
2105                         tp->ca_ops->pkts_acked(tp, pkts_acked);
2106         }
2107
2108 #if FASTRETRANS_DEBUG > 0
2109         BUG_TRAP((int)tp->sacked_out >= 0);
2110         BUG_TRAP((int)tp->lost_out >= 0);
2111         BUG_TRAP((int)tp->retrans_out >= 0);
2112         if (!tp->packets_out && tp->rx_opt.sack_ok) {
2113                 if (tp->lost_out) {
2114                         printk(KERN_DEBUG "Leak l=%u %d\n",
2115                                tp->lost_out, tp->ca_state);
2116                         tp->lost_out = 0;
2117                 }
2118                 if (tp->sacked_out) {
2119                         printk(KERN_DEBUG "Leak s=%u %d\n",
2120                                tp->sacked_out, tp->ca_state);
2121                         tp->sacked_out = 0;
2122                 }
2123                 if (tp->retrans_out) {
2124                         printk(KERN_DEBUG "Leak r=%u %d\n",
2125                                tp->retrans_out, tp->ca_state);
2126                         tp->retrans_out = 0;
2127                 }
2128         }
2129 #endif
2130         *seq_rtt_p = seq_rtt;
2131         return acked;
2132 }
2133
2134 static void tcp_ack_probe(struct sock *sk)
2135 {
2136         const struct tcp_sock *tp = tcp_sk(sk);
2137         struct inet_connection_sock *icsk = inet_csk(sk);
2138
2139         /* Was it a usable window open? */
2140
2141         if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2142                    tp->snd_una + tp->snd_wnd)) {
2143                 icsk->icsk_backoff = 0;
2144                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2145                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2146                  * This function is not for random using!
2147                  */
2148         } else {
2149                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2150                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX));
2151         }
2152 }
2153
2154 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
2155 {
2156         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2157                 tp->ca_state != TCP_CA_Open);
2158 }
2159
2160 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
2161 {
2162         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2163                 !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
2164 }
2165
2166 /* Check that window update is acceptable.
2167  * The function assumes that snd_una<=ack<=snd_next.
2168  */
2169 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2170                                         const u32 ack_seq, const u32 nwin)
2171 {
2172         return (after(ack, tp->snd_una) ||
2173                 after(ack_seq, tp->snd_wl1) ||
2174                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2175 }
2176
2177 /* Update our send window.
2178  *
2179  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2180  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2181  */
2182 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2183                                  struct sk_buff *skb, u32 ack, u32 ack_seq)
2184 {
2185         int flag = 0;
2186         u32 nwin = ntohs(skb->h.th->window);
2187
2188         if (likely(!skb->h.th->syn))
2189                 nwin <<= tp->rx_opt.snd_wscale;
2190
2191         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2192                 flag |= FLAG_WIN_UPDATE;
2193                 tcp_update_wl(tp, ack, ack_seq);
2194
2195                 if (tp->snd_wnd != nwin) {
2196                         tp->snd_wnd = nwin;
2197
2198                         /* Note, it is the only place, where
2199                          * fast path is recovered for sending TCP.
2200                          */
2201                         tcp_fast_path_check(sk, tp);
2202
2203                         if (nwin > tp->max_window) {
2204                                 tp->max_window = nwin;
2205                                 tcp_sync_mss(sk, tp->pmtu_cookie);
2206                         }
2207                 }
2208         }
2209
2210         tp->snd_una = ack;
2211
2212         return flag;
2213 }
2214
2215 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2216 {
2217         struct tcp_sock *tp = tcp_sk(sk);
2218         
2219         tcp_sync_left_out(tp);
2220         
2221         if (tp->snd_una == prior_snd_una ||
2222             !before(tp->snd_una, tp->frto_highmark)) {
2223                 /* RTO was caused by loss, start retransmitting in
2224                  * go-back-N slow start
2225                  */
2226                 tcp_enter_frto_loss(sk);
2227                 return;
2228         }
2229
2230         if (tp->frto_counter == 1) {
2231                 /* First ACK after RTO advances the window: allow two new
2232                  * segments out.
2233                  */
2234                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2235         } else {
2236                 /* Also the second ACK after RTO advances the window.
2237                  * The RTO was likely spurious. Reduce cwnd and continue
2238                  * in congestion avoidance
2239                  */
2240                 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2241                 tcp_moderate_cwnd(tp);
2242         }
2243
2244         /* F-RTO affects on two new ACKs following RTO.
2245          * At latest on third ACK the TCP behavor is back to normal.
2246          */
2247         tp->frto_counter = (tp->frto_counter + 1) % 3;
2248 }
2249
2250 /* This routine deals with incoming acks, but not outgoing ones. */
2251 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2252 {
2253         struct tcp_sock *tp = tcp_sk(sk);
2254         u32 prior_snd_una = tp->snd_una;
2255         u32 ack_seq = TCP_SKB_CB(skb)->seq;
2256         u32 ack = TCP_SKB_CB(skb)->ack_seq;
2257         u32 prior_in_flight;
2258         s32 seq_rtt;
2259         s32 seq_usrtt = 0;
2260         int prior_packets;
2261
2262         /* If the ack is newer than sent or older than previous acks
2263          * then we can probably ignore it.
2264          */
2265         if (after(ack, tp->snd_nxt))
2266                 goto uninteresting_ack;
2267
2268         if (before(ack, prior_snd_una))
2269                 goto old_ack;
2270
2271         if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2272                 /* Window is constant, pure forward advance.
2273                  * No more checks are required.
2274                  * Note, we use the fact that SND.UNA>=SND.WL2.
2275                  */
2276                 tcp_update_wl(tp, ack, ack_seq);
2277                 tp->snd_una = ack;
2278                 flag |= FLAG_WIN_UPDATE;
2279
2280                 tcp_ca_event(tp, CA_EVENT_FAST_ACK);
2281
2282                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2283         } else {
2284                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2285                         flag |= FLAG_DATA;
2286                 else
2287                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2288
2289                 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2290
2291                 if (TCP_SKB_CB(skb)->sacked)
2292                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2293
2294                 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2295                         flag |= FLAG_ECE;
2296
2297                 tcp_ca_event(tp, CA_EVENT_SLOW_ACK);
2298         }
2299
2300         /* We passed data and got it acked, remove any soft error
2301          * log. Something worked...
2302          */
2303         sk->sk_err_soft = 0;
2304         tp->rcv_tstamp = tcp_time_stamp;
2305         prior_packets = tp->packets_out;
2306         if (!prior_packets)
2307                 goto no_queue;
2308
2309         prior_in_flight = tcp_packets_in_flight(tp);
2310
2311         /* See if we can take anything off of the retransmit queue. */
2312         flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2313                                     tp->ca_ops->rtt_sample ? &seq_usrtt : NULL);
2314
2315         if (tp->frto_counter)
2316                 tcp_process_frto(sk, prior_snd_una);
2317
2318         if (tcp_ack_is_dubious(tp, flag)) {
2319                 /* Advanve CWND, if state allows this. */
2320                 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag))
2321                         tcp_cong_avoid(tp, ack,  seq_rtt, prior_in_flight, 0);
2322                 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2323         } else {
2324                 if ((flag & FLAG_DATA_ACKED))
2325                         tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1);
2326         }
2327
2328         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2329                 dst_confirm(sk->sk_dst_cache);
2330
2331         return 1;
2332
2333 no_queue:
2334         tp->probes_out = 0;
2335
2336         /* If this ack opens up a zero window, clear backoff.  It was
2337          * being used to time the probes, and is probably far higher than
2338          * it needs to be for normal retransmission.
2339          */
2340         if (sk->sk_send_head)
2341                 tcp_ack_probe(sk);
2342         return 1;
2343
2344 old_ack:
2345         if (TCP_SKB_CB(skb)->sacked)
2346                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2347
2348 uninteresting_ack:
2349         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2350         return 0;
2351 }
2352
2353
2354 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2355  * But, this can also be called on packets in the established flow when
2356  * the fast version below fails.
2357  */
2358 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2359 {
2360         unsigned char *ptr;
2361         struct tcphdr *th = skb->h.th;
2362         int length=(th->doff*4)-sizeof(struct tcphdr);
2363
2364         ptr = (unsigned char *)(th + 1);
2365         opt_rx->saw_tstamp = 0;
2366
2367         while(length>0) {
2368                 int opcode=*ptr++;
2369                 int opsize;
2370
2371                 switch (opcode) {
2372                         case TCPOPT_EOL:
2373                                 return;
2374                         case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
2375                                 length--;
2376                                 continue;
2377                         default:
2378                                 opsize=*ptr++;
2379                                 if (opsize < 2) /* "silly options" */
2380                                         return;
2381                                 if (opsize > length)
2382                                         return; /* don't parse partial options */
2383                                 switch(opcode) {
2384                                 case TCPOPT_MSS:
2385                                         if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2386                                                 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2387                                                 if (in_mss) {
2388                                                         if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2389                                                                 in_mss = opt_rx->user_mss;
2390                                                         opt_rx->mss_clamp = in_mss;
2391                                                 }
2392                                         }
2393                                         break;
2394                                 case TCPOPT_WINDOW:
2395                                         if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2396                                                 if (sysctl_tcp_window_scaling) {
2397                                                         __u8 snd_wscale = *(__u8 *) ptr;
2398                                                         opt_rx->wscale_ok = 1;
2399                                                         if (snd_wscale > 14) {
2400                                                                 if(net_ratelimit())
2401                                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
2402                                                                                "scaling value %d >14 received.\n",
2403                                                                                snd_wscale);
2404                                                                 snd_wscale = 14;
2405                                                         }
2406                                                         opt_rx->snd_wscale = snd_wscale;
2407                                                 }
2408                                         break;
2409                                 case TCPOPT_TIMESTAMP:
2410                                         if(opsize==TCPOLEN_TIMESTAMP) {
2411                                                 if ((estab && opt_rx->tstamp_ok) ||
2412                                                     (!estab && sysctl_tcp_timestamps)) {
2413                                                         opt_rx->saw_tstamp = 1;
2414                                                         opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2415                                                         opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2416                                                 }
2417                                         }
2418                                         break;
2419                                 case TCPOPT_SACK_PERM:
2420                                         if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2421                                                 if (sysctl_tcp_sack) {
2422                                                         opt_rx->sack_ok = 1;
2423                                                         tcp_sack_reset(opt_rx);
2424                                                 }
2425                                         }
2426                                         break;
2427
2428                                 case TCPOPT_SACK:
2429                                         if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2430                                            !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2431                                            opt_rx->sack_ok) {
2432                                                 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2433                                         }
2434                                 };
2435                                 ptr+=opsize-2;
2436                                 length-=opsize;
2437                 };
2438         }
2439 }
2440
2441 /* Fast parse options. This hopes to only see timestamps.
2442  * If it is wrong it falls back on tcp_parse_options().
2443  */
2444 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2445                                          struct tcp_sock *tp)
2446 {
2447         if (th->doff == sizeof(struct tcphdr)>>2) {
2448                 tp->rx_opt.saw_tstamp = 0;
2449                 return 0;
2450         } else if (tp->rx_opt.tstamp_ok &&
2451                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2452                 __u32 *ptr = (__u32 *)(th + 1);
2453                 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2454                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2455                         tp->rx_opt.saw_tstamp = 1;
2456                         ++ptr;
2457                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
2458                         ++ptr;
2459                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2460                         return 1;
2461                 }
2462         }
2463         tcp_parse_options(skb, &tp->rx_opt, 1);
2464         return 1;
2465 }
2466
2467 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2468 {
2469         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2470         tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2471 }
2472
2473 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2474 {
2475         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2476                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2477                  * extra check below makes sure this can only happen
2478                  * for pure ACK frames.  -DaveM
2479                  *
2480                  * Not only, also it occurs for expired timestamps.
2481                  */
2482
2483                 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2484                    xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2485                         tcp_store_ts_recent(tp);
2486         }
2487 }
2488
2489 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2490  *
2491  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2492  * it can pass through stack. So, the following predicate verifies that
2493  * this segment is not used for anything but congestion avoidance or
2494  * fast retransmit. Moreover, we even are able to eliminate most of such
2495  * second order effects, if we apply some small "replay" window (~RTO)
2496  * to timestamp space.
2497  *
2498  * All these measures still do not guarantee that we reject wrapped ACKs
2499  * on networks with high bandwidth, when sequence space is recycled fastly,
2500  * but it guarantees that such events will be very rare and do not affect
2501  * connection seriously. This doesn't look nice, but alas, PAWS is really
2502  * buggy extension.
2503  *
2504  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2505  * states that events when retransmit arrives after original data are rare.
2506  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2507  * the biggest problem on large power networks even with minor reordering.
2508  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2509  * up to bandwidth of 18Gigabit/sec. 8) ]
2510  */
2511
2512 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2513 {
2514         struct tcp_sock *tp = tcp_sk(sk);
2515         struct tcphdr *th = skb->h.th;
2516         u32 seq = TCP_SKB_CB(skb)->seq;
2517         u32 ack = TCP_SKB_CB(skb)->ack_seq;
2518
2519         return (/* 1. Pure ACK with correct sequence number. */
2520                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2521
2522                 /* 2. ... and duplicate ACK. */
2523                 ack == tp->snd_una &&
2524
2525                 /* 3. ... and does not update window. */
2526                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2527
2528                 /* 4. ... and sits in replay window. */
2529                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2530 }
2531
2532 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2533 {
2534         const struct tcp_sock *tp = tcp_sk(sk);
2535         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2536                 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2537                 !tcp_disordered_ack(sk, skb));
2538 }
2539
2540 /* Check segment sequence number for validity.
2541  *
2542  * Segment controls are considered valid, if the segment
2543  * fits to the window after truncation to the window. Acceptability
2544  * of data (and SYN, FIN, of course) is checked separately.
2545  * See tcp_data_queue(), for example.
2546  *
2547  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2548  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2549  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2550  * (borrowed from freebsd)
2551  */
2552
2553 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2554 {
2555         return  !before(end_seq, tp->rcv_wup) &&
2556                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2557 }
2558
2559 /* When we get a reset we do this. */
2560 static void tcp_reset(struct sock *sk)
2561 {
2562         /* We want the right error as BSD sees it (and indeed as we do). */
2563         switch (sk->sk_state) {
2564                 case TCP_SYN_SENT:
2565                         sk->sk_err = ECONNREFUSED;
2566                         break;
2567                 case TCP_CLOSE_WAIT:
2568                         sk->sk_err = EPIPE;
2569                         break;
2570                 case TCP_CLOSE:
2571                         return;
2572                 default:
2573                         sk->sk_err = ECONNRESET;
2574         }
2575
2576         if (!sock_flag(sk, SOCK_DEAD))
2577                 sk->sk_error_report(sk);
2578
2579         tcp_done(sk);
2580 }
2581
2582 /*
2583  *      Process the FIN bit. This now behaves as it is supposed to work
2584  *      and the FIN takes effect when it is validly part of sequence
2585  *      space. Not before when we get holes.
2586  *
2587  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2588  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
2589  *      TIME-WAIT)
2590  *
2591  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
2592  *      close and we go into CLOSING (and later onto TIME-WAIT)
2593  *
2594  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2595  */
2596 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2597 {
2598         struct tcp_sock *tp = tcp_sk(sk);
2599
2600         inet_csk_schedule_ack(sk);
2601
2602         sk->sk_shutdown |= RCV_SHUTDOWN;
2603         sock_set_flag(sk, SOCK_DONE);
2604
2605         switch (sk->sk_state) {
2606                 case TCP_SYN_RECV:
2607                 case TCP_ESTABLISHED:
2608                         /* Move to CLOSE_WAIT */
2609                         tcp_set_state(sk, TCP_CLOSE_WAIT);
2610                         inet_csk(sk)->icsk_ack.pingpong = 1;
2611                         break;
2612
2613                 case TCP_CLOSE_WAIT:
2614                 case TCP_CLOSING:
2615                         /* Received a retransmission of the FIN, do
2616                          * nothing.
2617                          */
2618                         break;
2619                 case TCP_LAST_ACK:
2620                         /* RFC793: Remain in the LAST-ACK state. */
2621                         break;
2622
2623                 case TCP_FIN_WAIT1:
2624                         /* This case occurs when a simultaneous close
2625                          * happens, we must ack the received FIN and
2626                          * enter the CLOSING state.
2627                          */
2628                         tcp_send_ack(sk);
2629                         tcp_set_state(sk, TCP_CLOSING);
2630                         break;
2631                 case TCP_FIN_WAIT2:
2632                         /* Received a FIN -- send ACK and enter TIME_WAIT. */
2633                         tcp_send_ack(sk);
2634                         tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2635                         break;
2636                 default:
2637                         /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2638                          * cases we should never reach this piece of code.
2639                          */
2640                         printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2641                                __FUNCTION__, sk->sk_state);
2642                         break;
2643         };
2644
2645         /* It _is_ possible, that we have something out-of-order _after_ FIN.
2646          * Probably, we should reset in this case. For now drop them.
2647          */
2648         __skb_queue_purge(&tp->out_of_order_queue);
2649         if (tp->rx_opt.sack_ok)
2650                 tcp_sack_reset(&tp->rx_opt);
2651         sk_stream_mem_reclaim(sk);
2652
2653         if (!sock_flag(sk, SOCK_DEAD)) {
2654                 sk->sk_state_change(sk);
2655
2656                 /* Do not send POLL_HUP for half duplex close. */
2657                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2658                     sk->sk_state == TCP_CLOSE)
2659                         sk_wake_async(sk, 1, POLL_HUP);
2660                 else
2661                         sk_wake_async(sk, 1, POLL_IN);
2662         }
2663 }
2664
2665 static __inline__ int
2666 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2667 {
2668         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2669                 if (before(seq, sp->start_seq))
2670                         sp->start_seq = seq;
2671                 if (after(end_seq, sp->end_seq))
2672                         sp->end_seq = end_seq;
2673                 return 1;
2674         }
2675         return 0;
2676 }
2677
2678 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2679 {
2680         if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2681                 if (before(seq, tp->rcv_nxt))
2682                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2683                 else
2684                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2685
2686                 tp->rx_opt.dsack = 1;
2687                 tp->duplicate_sack[0].start_seq = seq;
2688                 tp->duplicate_sack[0].end_seq = end_seq;
2689                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2690         }
2691 }
2692
2693 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2694 {
2695         if (!tp->rx_opt.dsack)
2696                 tcp_dsack_set(tp, seq, end_seq);
2697         else
2698                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2699 }
2700
2701 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2702 {
2703         struct tcp_sock *tp = tcp_sk(sk);
2704
2705         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2706             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2707                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2708                 tcp_enter_quickack_mode(sk);
2709
2710                 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2711                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2712
2713                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2714                                 end_seq = tp->rcv_nxt;
2715                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2716                 }
2717         }
2718
2719         tcp_send_ack(sk);
2720 }
2721
2722 /* These routines update the SACK block as out-of-order packets arrive or
2723  * in-order packets close up the sequence space.
2724  */
2725 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2726 {
2727         int this_sack;
2728         struct tcp_sack_block *sp = &tp->selective_acks[0];
2729         struct tcp_sack_block *swalk = sp+1;
2730
2731         /* See if the recent change to the first SACK eats into
2732          * or hits the sequence space of other SACK blocks, if so coalesce.
2733          */
2734         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2735                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2736                         int i;
2737
2738                         /* Zap SWALK, by moving every further SACK up by one slot.
2739                          * Decrease num_sacks.
2740                          */
2741                         tp->rx_opt.num_sacks--;
2742                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2743                         for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2744                                 sp[i] = sp[i+1];
2745                         continue;
2746                 }
2747                 this_sack++, swalk++;
2748         }
2749 }
2750
2751 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2752 {
2753         __u32 tmp;
2754
2755         tmp = sack1->start_seq;
2756         sack1->start_seq = sack2->start_seq;
2757         sack2->start_seq = tmp;
2758
2759         tmp = sack1->end_seq;
2760         sack1->end_seq = sack2->end_seq;
2761         sack2->end_seq = tmp;
2762 }
2763
2764 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2765 {
2766         struct tcp_sock *tp = tcp_sk(sk);
2767         struct tcp_sack_block *sp = &tp->selective_acks[0];
2768         int cur_sacks = tp->rx_opt.num_sacks;
2769         int this_sack;
2770
2771         if (!cur_sacks)
2772                 goto new_sack;
2773
2774         for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2775                 if (tcp_sack_extend(sp, seq, end_seq)) {
2776                         /* Rotate this_sack to the first one. */
2777                         for (; this_sack>0; this_sack--, sp--)
2778                                 tcp_sack_swap(sp, sp-1);
2779                         if (cur_sacks > 1)
2780                                 tcp_sack_maybe_coalesce(tp);
2781                         return;
2782                 }
2783         }
2784
2785         /* Could not find an adjacent existing SACK, build a new one,
2786          * put it at the front, and shift everyone else down.  We
2787          * always know there is at least one SACK present already here.
2788          *
2789          * If the sack array is full, forget about the last one.
2790          */
2791         if (this_sack >= 4) {
2792                 this_sack--;
2793                 tp->rx_opt.num_sacks--;
2794                 sp--;
2795         }
2796         for(; this_sack > 0; this_sack--, sp--)
2797                 *sp = *(sp-1);
2798
2799 new_sack:
2800         /* Build the new head SACK, and we're done. */
2801         sp->start_seq = seq;
2802         sp->end_seq = end_seq;
2803         tp->rx_opt.num_sacks++;
2804         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2805 }
2806
2807 /* RCV.NXT advances, some SACKs should be eaten. */
2808
2809 static void tcp_sack_remove(struct tcp_sock *tp)
2810 {
2811         struct tcp_sack_block *sp = &tp->selective_acks[0];
2812         int num_sacks = tp->rx_opt.num_sacks;
2813         int this_sack;
2814
2815         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2816         if (skb_queue_empty(&tp->out_of_order_queue)) {
2817                 tp->rx_opt.num_sacks = 0;
2818                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2819                 return;
2820         }
2821
2822         for(this_sack = 0; this_sack < num_sacks; ) {
2823                 /* Check if the start of the sack is covered by RCV.NXT. */
2824                 if (!before(tp->rcv_nxt, sp->start_seq)) {
2825                         int i;
2826
2827                         /* RCV.NXT must cover all the block! */
2828                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2829
2830                         /* Zap this SACK, by moving forward any other SACKS. */
2831                         for (i=this_sack+1; i < num_sacks; i++)
2832                                 tp->selective_acks[i-1] = tp->selective_acks[i];
2833                         num_sacks--;
2834                         continue;
2835                 }
2836                 this_sack++;
2837                 sp++;
2838         }
2839         if (num_sacks != tp->rx_opt.num_sacks) {
2840                 tp->rx_opt.num_sacks = num_sacks;
2841                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2842         }
2843 }
2844
2845 /* This one checks to see if we can put data from the
2846  * out_of_order queue into the receive_queue.
2847  */
2848 static void tcp_ofo_queue(struct sock *sk)
2849 {
2850         struct tcp_sock *tp = tcp_sk(sk);
2851         __u32 dsack_high = tp->rcv_nxt;
2852         struct sk_buff *skb;
2853
2854         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2855                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2856                         break;
2857
2858                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2859                         __u32 dsack = dsack_high;
2860                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2861                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
2862                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2863                 }
2864
2865                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2866                         SOCK_DEBUG(sk, "ofo packet was already received \n");
2867                         __skb_unlink(skb, &tp->out_of_order_queue);
2868                         __kfree_skb(skb);
2869                         continue;
2870                 }
2871                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2872                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2873                            TCP_SKB_CB(skb)->end_seq);
2874
2875                 __skb_unlink(skb, &tp->out_of_order_queue);
2876                 __skb_queue_tail(&sk->sk_receive_queue, skb);
2877                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2878                 if(skb->h.th->fin)
2879                         tcp_fin(skb, sk, skb->h.th);
2880         }
2881 }
2882
2883 static int tcp_prune_queue(struct sock *sk);
2884
2885 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2886 {
2887         struct tcphdr *th = skb->h.th;
2888         struct tcp_sock *tp = tcp_sk(sk);
2889         int eaten = -1;
2890
2891         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2892                 goto drop;
2893
2894         __skb_pull(skb, th->doff*4);
2895
2896         TCP_ECN_accept_cwr(tp, skb);
2897
2898         if (tp->rx_opt.dsack) {
2899                 tp->rx_opt.dsack = 0;
2900                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2901                                                     4 - tp->rx_opt.tstamp_ok);
2902         }
2903
2904         /*  Queue data for delivery to the user.
2905          *  Packets in sequence go to the receive queue.
2906          *  Out of sequence packets to the out_of_order_queue.
2907          */
2908         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2909                 if (tcp_receive_window(tp) == 0)
2910                         goto out_of_window;
2911
2912                 /* Ok. In sequence. In window. */
2913                 if (tp->ucopy.task == current &&
2914                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2915                     sock_owned_by_user(sk) && !tp->urg_data) {
2916                         int chunk = min_t(unsigned int, skb->len,
2917                                                         tp->ucopy.len);
2918
2919                         __set_current_state(TASK_RUNNING);
2920
2921                         local_bh_enable();
2922                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2923                                 tp->ucopy.len -= chunk;
2924                                 tp->copied_seq += chunk;
2925                                 eaten = (chunk == skb->len && !th->fin);
2926                                 tcp_rcv_space_adjust(sk);
2927                         }
2928                         local_bh_disable();
2929                 }
2930
2931                 if (eaten <= 0) {
2932 queue_and_out:
2933                         if (eaten < 0 &&
2934                             (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2935                              !sk_stream_rmem_schedule(sk, skb))) {
2936                                 if (tcp_prune_queue(sk) < 0 ||
2937                                     !sk_stream_rmem_schedule(sk, skb))
2938                                         goto drop;
2939                         }
2940                         sk_stream_set_owner_r(skb, sk);
2941                         __skb_queue_tail(&sk->sk_receive_queue, skb);
2942                 }
2943                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2944                 if(skb->len)
2945                         tcp_event_data_recv(sk, tp, skb);
2946                 if(th->fin)
2947                         tcp_fin(skb, sk, th);
2948
2949                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
2950                         tcp_ofo_queue(sk);
2951
2952                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
2953                          * gap in queue is filled.
2954                          */
2955                         if (skb_queue_empty(&tp->out_of_order_queue))
2956                                 inet_csk(sk)->icsk_ack.pingpong = 0;
2957                 }
2958
2959                 if (tp->rx_opt.num_sacks)
2960                         tcp_sack_remove(tp);
2961
2962                 tcp_fast_path_check(sk, tp);
2963
2964                 if (eaten > 0)
2965                         __kfree_skb(skb);
2966                 else if (!sock_flag(sk, SOCK_DEAD))
2967                         sk->sk_data_ready(sk, 0);
2968                 return;
2969         }
2970
2971         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2972                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
2973                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2974                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
2975
2976 out_of_window:
2977                 tcp_enter_quickack_mode(sk);
2978                 inet_csk_schedule_ack(sk);
2979 drop:
2980                 __kfree_skb(skb);
2981                 return;
2982         }
2983
2984         /* Out of window. F.e. zero window probe. */
2985         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
2986                 goto out_of_window;
2987
2988         tcp_enter_quickack_mode(sk);
2989
2990         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2991                 /* Partial packet, seq < rcv_next < end_seq */
2992                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
2993                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2994                            TCP_SKB_CB(skb)->end_seq);
2995
2996                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
2997                 
2998                 /* If window is closed, drop tail of packet. But after
2999                  * remembering D-SACK for its head made in previous line.
3000                  */
3001                 if (!tcp_receive_window(tp))
3002                         goto out_of_window;
3003                 goto queue_and_out;
3004         }
3005
3006         TCP_ECN_check_ce(tp, skb);
3007
3008         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3009             !sk_stream_rmem_schedule(sk, skb)) {
3010                 if (tcp_prune_queue(sk) < 0 ||
3011                     !sk_stream_rmem_schedule(sk, skb))
3012                         goto drop;
3013         }
3014
3015         /* Disable header prediction. */
3016         tp->pred_flags = 0;
3017         inet_csk_schedule_ack(sk);
3018
3019         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3020                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3021
3022         sk_stream_set_owner_r(skb, sk);
3023
3024         if (!skb_peek(&tp->out_of_order_queue)) {
3025                 /* Initial out of order segment, build 1 SACK. */
3026                 if (tp->rx_opt.sack_ok) {
3027                         tp->rx_opt.num_sacks = 1;
3028                         tp->rx_opt.dsack     = 0;
3029                         tp->rx_opt.eff_sacks = 1;
3030                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3031                         tp->selective_acks[0].end_seq =
3032                                                 TCP_SKB_CB(skb)->end_seq;
3033                 }
3034                 __skb_queue_head(&tp->out_of_order_queue,skb);
3035         } else {
3036                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3037                 u32 seq = TCP_SKB_CB(skb)->seq;
3038                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3039
3040                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3041                         __skb_append(skb1, skb, &tp->out_of_order_queue);
3042
3043                         if (!tp->rx_opt.num_sacks ||
3044                             tp->selective_acks[0].end_seq != seq)
3045                                 goto add_sack;
3046
3047                         /* Common case: data arrive in order after hole. */
3048                         tp->selective_acks[0].end_seq = end_seq;
3049                         return;
3050                 }
3051
3052                 /* Find place to insert this segment. */
3053                 do {
3054                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
3055                                 break;
3056                 } while ((skb1 = skb1->prev) !=
3057                          (struct sk_buff*)&tp->out_of_order_queue);
3058
3059                 /* Do skb overlap to previous one? */
3060                 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3061                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3062                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3063                                 /* All the bits are present. Drop. */
3064                                 __kfree_skb(skb);
3065                                 tcp_dsack_set(tp, seq, end_seq);
3066                                 goto add_sack;
3067                         }
3068                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3069                                 /* Partial overlap. */
3070                                 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3071                         } else {
3072                                 skb1 = skb1->prev;
3073                         }
3074                 }
3075                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3076                 
3077                 /* And clean segments covered by new one as whole. */
3078                 while ((skb1 = skb->next) !=
3079                        (struct sk_buff*)&tp->out_of_order_queue &&
3080                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3081                        if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3082                                tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3083                                break;
3084                        }
3085                        __skb_unlink(skb1, &tp->out_of_order_queue);
3086                        tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3087                        __kfree_skb(skb1);
3088                 }
3089
3090 add_sack:
3091                 if (tp->rx_opt.sack_ok)
3092                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
3093         }
3094 }
3095
3096 /* Collapse contiguous sequence of skbs head..tail with
3097  * sequence numbers start..end.
3098  * Segments with FIN/SYN are not collapsed (only because this
3099  * simplifies code)
3100  */
3101 static void
3102 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3103              struct sk_buff *head, struct sk_buff *tail,
3104              u32 start, u32 end)
3105 {
3106         struct sk_buff *skb;
3107
3108         /* First, check that queue is collapsable and find
3109          * the point where collapsing can be useful. */
3110         for (skb = head; skb != tail; ) {
3111                 /* No new bits? It is possible on ofo queue. */
3112                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3113                         struct sk_buff *next = skb->next;
3114                         __skb_unlink(skb, list);
3115                         __kfree_skb(skb);
3116                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3117                         skb = next;
3118                         continue;
3119                 }
3120
3121                 /* The first skb to collapse is:
3122                  * - not SYN/FIN and
3123                  * - bloated or contains data before "start" or
3124                  *   overlaps to the next one.
3125                  */
3126                 if (!skb->h.th->syn && !skb->h.th->fin &&
3127                     (tcp_win_from_space(skb->truesize) > skb->len ||
3128                      before(TCP_SKB_CB(skb)->seq, start) ||
3129                      (skb->next != tail &&
3130                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3131                         break;
3132
3133                 /* Decided to skip this, advance start seq. */
3134                 start = TCP_SKB_CB(skb)->end_seq;
3135                 skb = skb->next;
3136         }
3137         if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3138                 return;
3139
3140         while (before(start, end)) {
3141                 struct sk_buff *nskb;
3142                 int header = skb_headroom(skb);
3143                 int copy = SKB_MAX_ORDER(header, 0);
3144
3145                 /* Too big header? This can happen with IPv6. */
3146                 if (copy < 0)
3147                         return;
3148                 if (end-start < copy)
3149                         copy = end-start;
3150                 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3151                 if (!nskb)
3152                         return;
3153                 skb_reserve(nskb, header);
3154                 memcpy(nskb->head, skb->head, header);
3155                 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3156                 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3157                 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3158                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3159                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3160                 __skb_insert(nskb, skb->prev, skb, list);
3161                 sk_stream_set_owner_r(nskb, sk);
3162
3163                 /* Copy data, releasing collapsed skbs. */
3164                 while (copy > 0) {
3165                         int offset = start - TCP_SKB_CB(skb)->seq;
3166                         int size = TCP_SKB_CB(skb)->end_seq - start;
3167
3168                         if (offset < 0) BUG();
3169                         if (size > 0) {
3170                                 size = min(copy, size);
3171                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3172                                         BUG();
3173                                 TCP_SKB_CB(nskb)->end_seq += size;
3174                                 copy -= size;
3175                                 start += size;
3176                         }
3177                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3178                                 struct sk_buff *next = skb->next;
3179                                 __skb_unlink(skb, list);
3180                                 __kfree_skb(skb);
3181                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3182                                 skb = next;
3183                                 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3184                                         return;
3185                         }
3186                 }
3187         }
3188 }
3189
3190 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3191  * and tcp_collapse() them until all the queue is collapsed.
3192  */
3193 static void tcp_collapse_ofo_queue(struct sock *sk)
3194 {
3195         struct tcp_sock *tp = tcp_sk(sk);
3196         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3197         struct sk_buff *head;
3198         u32 start, end;
3199
3200         if (skb == NULL)
3201                 return;
3202
3203         start = TCP_SKB_CB(skb)->seq;
3204         end = TCP_SKB_CB(skb)->end_seq;
3205         head = skb;
3206
3207         for (;;) {
3208                 skb = skb->next;
3209
3210                 /* Segment is terminated when we see gap or when
3211                  * we are at the end of all the queue. */
3212                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3213                     after(TCP_SKB_CB(skb)->seq, end) ||
3214                     before(TCP_SKB_CB(skb)->end_seq, start)) {
3215                         tcp_collapse(sk, &tp->out_of_order_queue,
3216                                      head, skb, start, end);
3217                         head = skb;
3218                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3219                                 break;
3220                         /* Start new segment */
3221                         start = TCP_SKB_CB(skb)->seq;
3222                         end = TCP_SKB_CB(skb)->end_seq;
3223                 } else {
3224                         if (before(TCP_SKB_CB(skb)->seq, start))
3225                                 start = TCP_SKB_CB(skb)->seq;
3226                         if (after(TCP_SKB_CB(skb)->end_seq, end))
3227                                 end = TCP_SKB_CB(skb)->end_seq;
3228                 }
3229         }
3230 }
3231
3232 /* Reduce allocated memory if we can, trying to get
3233  * the socket within its memory limits again.
3234  *
3235  * Return less than zero if we should start dropping frames
3236  * until the socket owning process reads some of the data
3237  * to stabilize the situation.
3238  */
3239 static int tcp_prune_queue(struct sock *sk)
3240 {
3241         struct tcp_sock *tp = tcp_sk(sk); 
3242
3243         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3244
3245         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3246
3247         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3248                 tcp_clamp_window(sk, tp);
3249         else if (tcp_memory_pressure)
3250                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3251
3252         tcp_collapse_ofo_queue(sk);
3253         tcp_collapse(sk, &sk->sk_receive_queue,
3254                      sk->sk_receive_queue.next,
3255                      (struct sk_buff*)&sk->sk_receive_queue,
3256                      tp->copied_seq, tp->rcv_nxt);
3257         sk_stream_mem_reclaim(sk);
3258
3259         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3260                 return 0;
3261
3262         /* Collapsing did not help, destructive actions follow.
3263          * This must not ever occur. */
3264
3265         /* First, purge the out_of_order queue. */
3266         if (!skb_queue_empty(&tp->out_of_order_queue)) {
3267                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3268                 __skb_queue_purge(&tp->out_of_order_queue);
3269
3270                 /* Reset SACK state.  A conforming SACK implementation will
3271                  * do the same at a timeout based retransmit.  When a connection
3272                  * is in a sad state like this, we care only about integrity
3273                  * of the connection not performance.
3274                  */
3275                 if (tp->rx_opt.sack_ok)
3276                         tcp_sack_reset(&tp->rx_opt);
3277                 sk_stream_mem_reclaim(sk);
3278         }
3279
3280         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3281                 return 0;
3282
3283         /* If we are really being abused, tell the caller to silently
3284          * drop receive data on the floor.  It will get retransmitted
3285          * and hopefully then we'll have sufficient space.
3286          */
3287         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3288
3289         /* Massive buffer overcommit. */
3290         tp->pred_flags = 0;
3291         return -1;
3292 }
3293
3294
3295 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3296  * As additional protections, we do not touch cwnd in retransmission phases,
3297  * and if application hit its sndbuf limit recently.
3298  */
3299 void tcp_cwnd_application_limited(struct sock *sk)
3300 {
3301         struct tcp_sock *tp = tcp_sk(sk);
3302
3303         if (tp->ca_state == TCP_CA_Open &&
3304             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3305                 /* Limited by application or receiver window. */
3306                 u32 win_used = max(tp->snd_cwnd_used, 2U);
3307                 if (win_used < tp->snd_cwnd) {
3308                         tp->snd_ssthresh = tcp_current_ssthresh(tp);
3309                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3310                 }
3311                 tp->snd_cwnd_used = 0;
3312         }
3313         tp->snd_cwnd_stamp = tcp_time_stamp;
3314 }
3315
3316 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3317 {
3318         /* If the user specified a specific send buffer setting, do
3319          * not modify it.
3320          */
3321         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3322                 return 0;
3323
3324         /* If we are under global TCP memory pressure, do not expand.  */
3325         if (tcp_memory_pressure)
3326                 return 0;
3327
3328         /* If we are under soft global TCP memory pressure, do not expand.  */
3329         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3330                 return 0;
3331
3332         /* If we filled the congestion window, do not expand.  */
3333         if (tp->packets_out >= tp->snd_cwnd)
3334                 return 0;
3335
3336         return 1;
3337 }
3338
3339 /* When incoming ACK allowed to free some skb from write_queue,
3340  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3341  * on the exit from tcp input handler.
3342  *
3343  * PROBLEM: sndbuf expansion does not work well with largesend.
3344  */
3345 static void tcp_new_space(struct sock *sk)
3346 {
3347         struct tcp_sock *tp = tcp_sk(sk);
3348
3349         if (tcp_should_expand_sndbuf(sk, tp)) {
3350                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3351                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3352                     demanded = max_t(unsigned int, tp->snd_cwnd,
3353                                                    tp->reordering + 1);
3354                 sndmem *= 2*demanded;
3355                 if (sndmem > sk->sk_sndbuf)
3356                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3357                 tp->snd_cwnd_stamp = tcp_time_stamp;
3358         }
3359
3360         sk->sk_write_space(sk);
3361 }
3362
3363 static inline void tcp_check_space(struct sock *sk)
3364 {
3365         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3366                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3367                 if (sk->sk_socket &&
3368                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3369                         tcp_new_space(sk);
3370         }
3371 }
3372
3373 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3374 {
3375         tcp_push_pending_frames(sk, tp);
3376         tcp_check_space(sk);
3377 }
3378
3379 /*
3380  * Check if sending an ack is needed.
3381  */
3382 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3383 {
3384         struct tcp_sock *tp = tcp_sk(sk);
3385
3386             /* More than one full frame received... */
3387         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3388              /* ... and right edge of window advances far enough.
3389               * (tcp_recvmsg() will send ACK otherwise). Or...
3390               */
3391              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3392             /* We ACK each frame or... */
3393             tcp_in_quickack_mode(sk) ||
3394             /* We have out of order data. */
3395             (ofo_possible &&
3396              skb_peek(&tp->out_of_order_queue))) {
3397                 /* Then ack it now */
3398                 tcp_send_ack(sk);
3399         } else {
3400                 /* Else, send delayed ack. */
3401                 tcp_send_delayed_ack(sk);
3402         }
3403 }
3404
3405 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3406 {
3407         if (!inet_csk_ack_scheduled(sk)) {
3408                 /* We sent a data segment already. */
3409                 return;
3410         }
3411         __tcp_ack_snd_check(sk, 1);
3412 }
3413
3414 /*
3415  *      This routine is only called when we have urgent data
3416  *      signalled. Its the 'slow' part of tcp_urg. It could be
3417  *      moved inline now as tcp_urg is only called from one
3418  *      place. We handle URGent data wrong. We have to - as
3419  *      BSD still doesn't use the correction from RFC961.
3420  *      For 1003.1g we should support a new option TCP_STDURG to permit
3421  *      either form (or just set the sysctl tcp_stdurg).
3422  */
3423  
3424 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3425 {
3426         struct tcp_sock *tp = tcp_sk(sk);
3427         u32 ptr = ntohs(th->urg_ptr);
3428
3429         if (ptr && !sysctl_tcp_stdurg)
3430                 ptr--;
3431         ptr += ntohl(th->seq);
3432
3433         /* Ignore urgent data that we've already seen and read. */
3434         if (after(tp->copied_seq, ptr))
3435                 return;
3436
3437         /* Do not replay urg ptr.
3438          *
3439          * NOTE: interesting situation not covered by specs.
3440          * Misbehaving sender may send urg ptr, pointing to segment,
3441          * which we already have in ofo queue. We are not able to fetch
3442          * such data and will stay in TCP_URG_NOTYET until will be eaten
3443          * by recvmsg(). Seems, we are not obliged to handle such wicked
3444          * situations. But it is worth to think about possibility of some
3445          * DoSes using some hypothetical application level deadlock.
3446          */
3447         if (before(ptr, tp->rcv_nxt))
3448                 return;
3449
3450         /* Do we already have a newer (or duplicate) urgent pointer? */
3451         if (tp->urg_data && !after(ptr, tp->urg_seq))
3452                 return;
3453
3454         /* Tell the world about our new urgent pointer. */
3455         sk_send_sigurg(sk);
3456
3457         /* We may be adding urgent data when the last byte read was
3458          * urgent. To do this requires some care. We cannot just ignore
3459          * tp->copied_seq since we would read the last urgent byte again
3460          * as data, nor can we alter copied_seq until this data arrives
3461          * or we break the sematics of SIOCATMARK (and thus sockatmark())
3462          *
3463          * NOTE. Double Dutch. Rendering to plain English: author of comment
3464          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
3465          * and expect that both A and B disappear from stream. This is _wrong_.
3466          * Though this happens in BSD with high probability, this is occasional.
3467          * Any application relying on this is buggy. Note also, that fix "works"
3468          * only in this artificial test. Insert some normal data between A and B and we will
3469          * decline of BSD again. Verdict: it is better to remove to trap
3470          * buggy users.
3471          */
3472         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3473             !sock_flag(sk, SOCK_URGINLINE) &&
3474             tp->copied_seq != tp->rcv_nxt) {
3475                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3476                 tp->copied_seq++;
3477                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3478                         __skb_unlink(skb, &sk->sk_receive_queue);
3479                         __kfree_skb(skb);
3480                 }
3481         }
3482
3483         tp->urg_data   = TCP_URG_NOTYET;
3484         tp->urg_seq    = ptr;
3485
3486         /* Disable header prediction. */
3487         tp->pred_flags = 0;
3488 }
3489
3490 /* This is the 'fast' part of urgent handling. */
3491 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3492 {
3493         struct tcp_sock *tp = tcp_sk(sk);
3494
3495         /* Check if we get a new urgent pointer - normally not. */
3496         if (th->urg)
3497                 tcp_check_urg(sk,th);
3498
3499         /* Do we wait for any urgent data? - normally not... */
3500         if (tp->urg_data == TCP_URG_NOTYET) {
3501                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3502                           th->syn;
3503
3504                 /* Is the urgent pointer pointing into this packet? */   
3505                 if (ptr < skb->len) {
3506                         u8 tmp;
3507                         if (skb_copy_bits(skb, ptr, &tmp, 1))
3508                                 BUG();
3509                         tp->urg_data = TCP_URG_VALID | tmp;
3510                         if (!sock_flag(sk, SOCK_DEAD))
3511                                 sk->sk_data_ready(sk, 0);
3512                 }
3513         }
3514 }
3515
3516 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3517 {
3518         struct tcp_sock *tp = tcp_sk(sk);
3519         int chunk = skb->len - hlen;
3520         int err;
3521
3522         local_bh_enable();
3523         if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3524                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3525         else
3526                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3527                                                        tp->ucopy.iov);
3528
3529         if (!err) {
3530                 tp->ucopy.len -= chunk;
3531                 tp->copied_seq += chunk;
3532                 tcp_rcv_space_adjust(sk);
3533         }
3534
3535         local_bh_disable();
3536         return err;
3537 }
3538
3539 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3540 {
3541         int result;
3542
3543         if (sock_owned_by_user(sk)) {
3544                 local_bh_enable();
3545                 result = __tcp_checksum_complete(skb);
3546                 local_bh_disable();
3547         } else {
3548                 result = __tcp_checksum_complete(skb);
3549         }
3550         return result;
3551 }
3552
3553 static __inline__ int
3554 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3555 {
3556         return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3557                 __tcp_checksum_complete_user(sk, skb);
3558 }
3559
3560 /*
3561  *      TCP receive function for the ESTABLISHED state. 
3562  *
3563  *      It is split into a fast path and a slow path. The fast path is 
3564  *      disabled when:
3565  *      - A zero window was announced from us - zero window probing
3566  *        is only handled properly in the slow path. 
3567  *      - Out of order segments arrived.
3568  *      - Urgent data is expected.
3569  *      - There is no buffer space left
3570  *      - Unexpected TCP flags/window values/header lengths are received
3571  *        (detected by checking the TCP header against pred_flags) 
3572  *      - Data is sent in both directions. Fast path only supports pure senders
3573  *        or pure receivers (this means either the sequence number or the ack
3574  *        value must stay constant)
3575  *      - Unexpected TCP option.
3576  *
3577  *      When these conditions are not satisfied it drops into a standard 
3578  *      receive procedure patterned after RFC793 to handle all cases.
3579  *      The first three cases are guaranteed by proper pred_flags setting,
3580  *      the rest is checked inline. Fast processing is turned on in 
3581  *      tcp_data_queue when everything is OK.
3582  */
3583 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3584                         struct tcphdr *th, unsigned len)
3585 {
3586         struct tcp_sock *tp = tcp_sk(sk);
3587
3588         /*
3589          *      Header prediction.
3590          *      The code loosely follows the one in the famous 
3591          *      "30 instruction TCP receive" Van Jacobson mail.
3592          *      
3593          *      Van's trick is to deposit buffers into socket queue 
3594          *      on a device interrupt, to call tcp_recv function
3595          *      on the receive process context and checksum and copy
3596          *      the buffer to user space. smart...
3597          *
3598          *      Our current scheme is not silly either but we take the 
3599          *      extra cost of the net_bh soft interrupt processing...
3600          *      We do checksum and copy also but from device to kernel.
3601          */
3602
3603         tp->rx_opt.saw_tstamp = 0;
3604
3605         /*      pred_flags is 0xS?10 << 16 + snd_wnd
3606          *      if header_predition is to be made
3607          *      'S' will always be tp->tcp_header_len >> 2
3608          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3609          *  turn it off (when there are holes in the receive 
3610          *       space for instance)
3611          *      PSH flag is ignored.
3612          */
3613
3614         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3615                 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3616                 int tcp_header_len = tp->tcp_header_len;
3617
3618                 /* Timestamp header prediction: tcp_header_len
3619                  * is automatically equal to th->doff*4 due to pred_flags
3620                  * match.
3621                  */
3622
3623                 /* Check timestamp */
3624                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3625                         __u32 *ptr = (__u32 *)(th + 1);
3626
3627                         /* No? Slow path! */
3628                         if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3629                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3630                                 goto slow_path;
3631
3632                         tp->rx_opt.saw_tstamp = 1;
3633                         ++ptr; 
3634                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3635                         ++ptr;
3636                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3637
3638                         /* If PAWS failed, check it more carefully in slow path */
3639                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3640                                 goto slow_path;
3641
3642                         /* DO NOT update ts_recent here, if checksum fails
3643                          * and timestamp was corrupted part, it will result
3644                          * in a hung connection since we will drop all
3645                          * future packets due to the PAWS test.
3646                          */
3647                 }
3648
3649                 if (len <= tcp_header_len) {
3650                         /* Bulk data transfer: sender */
3651                         if (len == tcp_header_len) {
3652                                 /* Predicted packet is in window by definition.
3653                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3654                                  * Hence, check seq<=rcv_wup reduces to:
3655                                  */
3656                                 if (tcp_header_len ==
3657                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3658                                     tp->rcv_nxt == tp->rcv_wup)
3659                                         tcp_store_ts_recent(tp);
3660
3661                                 tcp_rcv_rtt_measure_ts(sk, skb);
3662
3663                                 /* We know that such packets are checksummed
3664                                  * on entry.
3665                                  */
3666                                 tcp_ack(sk, skb, 0);
3667                                 __kfree_skb(skb); 
3668                                 tcp_data_snd_check(sk, tp);
3669                                 return 0;
3670                         } else { /* Header too small */
3671                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3672                                 goto discard;
3673                         }
3674                 } else {
3675                         int eaten = 0;
3676
3677                         if (tp->ucopy.task == current &&
3678                             tp->copied_seq == tp->rcv_nxt &&
3679                             len - tcp_header_len <= tp->ucopy.len &&
3680                             sock_owned_by_user(sk)) {
3681                                 __set_current_state(TASK_RUNNING);
3682
3683                                 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3684                                         /* Predicted packet is in window by definition.
3685                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3686                                          * Hence, check seq<=rcv_wup reduces to:
3687                                          */
3688                                         if (tcp_header_len ==
3689                                             (sizeof(struct tcphdr) +
3690                                              TCPOLEN_TSTAMP_ALIGNED) &&
3691                                             tp->rcv_nxt == tp->rcv_wup)
3692                                                 tcp_store_ts_recent(tp);
3693
3694                                         tcp_rcv_rtt_measure_ts(sk, skb);
3695
3696                                         __skb_pull(skb, tcp_header_len);
3697                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3698                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3699                                         eaten = 1;
3700                                 }
3701                         }
3702                         if (!eaten) {
3703                                 if (tcp_checksum_complete_user(sk, skb))
3704                                         goto csum_error;
3705
3706                                 /* Predicted packet is in window by definition.
3707                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3708                                  * Hence, check seq<=rcv_wup reduces to:
3709                                  */
3710                                 if (tcp_header_len ==
3711                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3712                                     tp->rcv_nxt == tp->rcv_wup)
3713                                         tcp_store_ts_recent(tp);
3714
3715                                 tcp_rcv_rtt_measure_ts(sk, skb);
3716
3717                                 if ((int)skb->truesize > sk->sk_forward_alloc)
3718                                         goto step5;
3719
3720                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3721
3722                                 /* Bulk data transfer: receiver */
3723                                 __skb_pull(skb,tcp_header_len);
3724                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3725                                 sk_stream_set_owner_r(skb, sk);
3726                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3727                         }
3728
3729                         tcp_event_data_recv(sk, tp, skb);
3730
3731                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3732                                 /* Well, only one small jumplet in fast path... */
3733                                 tcp_ack(sk, skb, FLAG_DATA);
3734                                 tcp_data_snd_check(sk, tp);
3735                                 if (!inet_csk_ack_scheduled(sk))
3736                                         goto no_ack;
3737                         }
3738
3739                         __tcp_ack_snd_check(sk, 0);
3740 no_ack:
3741                         if (eaten)
3742                                 __kfree_skb(skb);
3743                         else
3744                                 sk->sk_data_ready(sk, 0);
3745                         return 0;
3746                 }
3747         }
3748
3749 slow_path:
3750         if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3751                 goto csum_error;
3752
3753         /*
3754          * RFC1323: H1. Apply PAWS check first.
3755          */
3756         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3757             tcp_paws_discard(sk, skb)) {
3758                 if (!th->rst) {
3759                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3760                         tcp_send_dupack(sk, skb);
3761                         goto discard;
3762                 }
3763                 /* Resets are accepted even if PAWS failed.
3764
3765                    ts_recent update must be made after we are sure
3766                    that the packet is in window.
3767                  */
3768         }
3769
3770         /*
3771          *      Standard slow path.
3772          */
3773
3774         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3775                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3776                  * (RST) segments are validated by checking their SEQ-fields."
3777                  * And page 69: "If an incoming segment is not acceptable,
3778                  * an acknowledgment should be sent in reply (unless the RST bit
3779                  * is set, if so drop the segment and return)".
3780                  */
3781                 if (!th->rst)
3782                         tcp_send_dupack(sk, skb);
3783                 goto discard;
3784         }
3785
3786         if(th->rst) {
3787                 tcp_reset(sk);
3788                 goto discard;
3789         }
3790
3791         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3792
3793         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3794                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3795                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3796                 tcp_reset(sk);
3797                 return 1;
3798         }
3799
3800 step5:
3801         if(th->ack)
3802                 tcp_ack(sk, skb, FLAG_SLOWPATH);
3803
3804         tcp_rcv_rtt_measure_ts(sk, skb);
3805
3806         /* Process urgent data. */
3807         tcp_urg(sk, skb, th);
3808
3809         /* step 7: process the segment text */
3810         tcp_data_queue(sk, skb);
3811
3812         tcp_data_snd_check(sk, tp);
3813         tcp_ack_snd_check(sk);
3814         return 0;
3815
3816 csum_error:
3817         TCP_INC_STATS_BH(TCP_MIB_INERRS);
3818
3819 discard:
3820         __kfree_skb(skb);
3821         return 0;
3822 }
3823
3824 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3825                                          struct tcphdr *th, unsigned len)
3826 {
3827         struct tcp_sock *tp = tcp_sk(sk);
3828         int saved_clamp = tp->rx_opt.mss_clamp;
3829
3830         tcp_parse_options(skb, &tp->rx_opt, 0);
3831
3832         if (th->ack) {
3833                 /* rfc793:
3834                  * "If the state is SYN-SENT then
3835                  *    first check the ACK bit
3836                  *      If the ACK bit is set
3837                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3838                  *        a reset (unless the RST bit is set, if so drop
3839                  *        the segment and return)"
3840                  *
3841                  *  We do not send data with SYN, so that RFC-correct
3842                  *  test reduces to:
3843                  */
3844                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3845                         goto reset_and_undo;
3846
3847                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3848                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3849                              tcp_time_stamp)) {
3850                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3851                         goto reset_and_undo;
3852                 }
3853
3854                 /* Now ACK is acceptable.
3855                  *
3856                  * "If the RST bit is set
3857                  *    If the ACK was acceptable then signal the user "error:
3858                  *    connection reset", drop the segment, enter CLOSED state,
3859                  *    delete TCB, and return."
3860                  */
3861
3862                 if (th->rst) {
3863                         tcp_reset(sk);
3864                         goto discard;
3865                 }
3866
3867                 /* rfc793:
3868                  *   "fifth, if neither of the SYN or RST bits is set then
3869                  *    drop the segment and return."
3870                  *
3871                  *    See note below!
3872                  *                                        --ANK(990513)
3873                  */
3874                 if (!th->syn)
3875                         goto discard_and_undo;
3876
3877                 /* rfc793:
3878                  *   "If the SYN bit is on ...
3879                  *    are acceptable then ...
3880                  *    (our SYN has been ACKed), change the connection
3881                  *    state to ESTABLISHED..."
3882                  */
3883
3884                 TCP_ECN_rcv_synack(tp, th);
3885                 if (tp->ecn_flags&TCP_ECN_OK)
3886                         sock_set_flag(sk, SOCK_NO_LARGESEND);
3887
3888                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3889                 tcp_ack(sk, skb, FLAG_SLOWPATH);
3890
3891                 /* Ok.. it's good. Set up sequence numbers and
3892                  * move to established.
3893                  */
3894                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3895                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3896
3897                 /* RFC1323: The window in SYN & SYN/ACK segments is
3898                  * never scaled.
3899                  */
3900                 tp->snd_wnd = ntohs(th->window);
3901                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3902
3903                 if (!tp->rx_opt.wscale_ok) {
3904                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3905                         tp->window_clamp = min(tp->window_clamp, 65535U);
3906                 }
3907
3908                 if (tp->rx_opt.saw_tstamp) {
3909                         tp->rx_opt.tstamp_ok       = 1;
3910                         tp->tcp_header_len =
3911                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3912                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
3913                         tcp_store_ts_recent(tp);
3914                 } else {
3915                         tp->tcp_header_len = sizeof(struct tcphdr);
3916                 }
3917
3918                 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3919                         tp->rx_opt.sack_ok |= 2;
3920
3921                 tcp_sync_mss(sk, tp->pmtu_cookie);
3922                 tcp_initialize_rcv_mss(sk);
3923
3924                 /* Remember, tcp_poll() does not lock socket!
3925                  * Change state from SYN-SENT only after copied_seq
3926                  * is initialized. */
3927                 tp->copied_seq = tp->rcv_nxt;
3928                 mb();
3929                 tcp_set_state(sk, TCP_ESTABLISHED);
3930
3931                 /* Make sure socket is routed, for correct metrics.  */
3932                 tp->af_specific->rebuild_header(sk);
3933
3934                 tcp_init_metrics(sk);
3935
3936                 tcp_init_congestion_control(tp);
3937
3938                 /* Prevent spurious tcp_cwnd_restart() on first data
3939                  * packet.
3940                  */
3941                 tp->lsndtime = tcp_time_stamp;
3942
3943                 tcp_init_buffer_space(sk);
3944
3945                 if (sock_flag(sk, SOCK_KEEPOPEN))
3946                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
3947
3948                 if (!tp->rx_opt.snd_wscale)
3949                         __tcp_fast_path_on(tp, tp->snd_wnd);
3950                 else
3951                         tp->pred_flags = 0;
3952
3953                 if (!sock_flag(sk, SOCK_DEAD)) {
3954                         sk->sk_state_change(sk);
3955                         sk_wake_async(sk, 0, POLL_OUT);
3956                 }
3957
3958                 if (sk->sk_write_pending || tp->defer_accept || inet_csk(sk)->icsk_ack.pingpong) {
3959                         /* Save one ACK. Data will be ready after
3960                          * several ticks, if write_pending is set.
3961                          *
3962                          * It may be deleted, but with this feature tcpdumps
3963                          * look so _wonderfully_ clever, that I was not able
3964                          * to stand against the temptation 8)     --ANK
3965                          */
3966                         inet_csk_schedule_ack(sk);
3967                         inet_csk(sk)->icsk_ack.lrcvtime = tcp_time_stamp;
3968                         inet_csk(sk)->icsk_ack.ato       = TCP_ATO_MIN;
3969                         tcp_incr_quickack(sk);
3970                         tcp_enter_quickack_mode(sk);
3971                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, TCP_DELACK_MAX);
3972
3973 discard:
3974                         __kfree_skb(skb);
3975                         return 0;
3976                 } else {
3977                         tcp_send_ack(sk);
3978                 }
3979                 return -1;
3980         }
3981
3982         /* No ACK in the segment */
3983
3984         if (th->rst) {
3985                 /* rfc793:
3986                  * "If the RST bit is set
3987                  *
3988                  *      Otherwise (no ACK) drop the segment and return."
3989                  */
3990
3991                 goto discard_and_undo;
3992         }
3993
3994         /* PAWS check. */
3995         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
3996                 goto discard_and_undo;
3997
3998         if (th->syn) {
3999                 /* We see SYN without ACK. It is attempt of
4000                  * simultaneous connect with crossed SYNs.
4001                  * Particularly, it can be connect to self.
4002                  */
4003                 tcp_set_state(sk, TCP_SYN_RECV);
4004
4005                 if (tp->rx_opt.saw_tstamp) {
4006                         tp->rx_opt.tstamp_ok = 1;
4007                         tcp_store_ts_recent(tp);
4008                         tp->tcp_header_len =
4009                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4010                 } else {
4011                         tp->tcp_header_len = sizeof(struct tcphdr);
4012                 }
4013
4014                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4015                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4016
4017                 /* RFC1323: The window in SYN & SYN/ACK segments is
4018                  * never scaled.
4019                  */
4020                 tp->snd_wnd    = ntohs(th->window);
4021                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4022                 tp->max_window = tp->snd_wnd;
4023
4024                 TCP_ECN_rcv_syn(tp, th);
4025                 if (tp->ecn_flags&TCP_ECN_OK)
4026                         sock_set_flag(sk, SOCK_NO_LARGESEND);
4027
4028                 tcp_sync_mss(sk, tp->pmtu_cookie);
4029                 tcp_initialize_rcv_mss(sk);
4030
4031
4032                 tcp_send_synack(sk);
4033 #if 0
4034                 /* Note, we could accept data and URG from this segment.
4035                  * There are no obstacles to make this.
4036                  *
4037                  * However, if we ignore data in ACKless segments sometimes,
4038                  * we have no reasons to accept it sometimes.
4039                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
4040                  * is not flawless. So, discard packet for sanity.
4041                  * Uncomment this return to process the data.
4042                  */
4043                 return -1;
4044 #else
4045                 goto discard;
4046 #endif
4047         }
4048         /* "fifth, if neither of the SYN or RST bits is set then
4049          * drop the segment and return."
4050          */
4051
4052 discard_and_undo:
4053         tcp_clear_options(&tp->rx_opt);
4054         tp->rx_opt.mss_clamp = saved_clamp;
4055         goto discard;
4056
4057 reset_and_undo:
4058         tcp_clear_options(&tp->rx_opt);
4059         tp->rx_opt.mss_clamp = saved_clamp;
4060         return 1;
4061 }
4062
4063
4064 /*
4065  *      This function implements the receiving procedure of RFC 793 for
4066  *      all states except ESTABLISHED and TIME_WAIT. 
4067  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4068  *      address independent.
4069  */
4070         
4071 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4072                           struct tcphdr *th, unsigned len)
4073 {
4074         struct tcp_sock *tp = tcp_sk(sk);
4075         int queued = 0;
4076
4077         tp->rx_opt.saw_tstamp = 0;
4078
4079         switch (sk->sk_state) {
4080         case TCP_CLOSE:
4081                 goto discard;
4082
4083         case TCP_LISTEN:
4084                 if(th->ack)
4085                         return 1;
4086
4087                 if(th->rst)
4088                         goto discard;
4089
4090                 if(th->syn) {
4091                         if(tp->af_specific->conn_request(sk, skb) < 0)
4092                                 return 1;
4093
4094                         /* Now we have several options: In theory there is 
4095                          * nothing else in the frame. KA9Q has an option to 
4096                          * send data with the syn, BSD accepts data with the
4097                          * syn up to the [to be] advertised window and 
4098                          * Solaris 2.1 gives you a protocol error. For now 
4099                          * we just ignore it, that fits the spec precisely 
4100                          * and avoids incompatibilities. It would be nice in
4101                          * future to drop through and process the data.
4102                          *
4103                          * Now that TTCP is starting to be used we ought to 
4104                          * queue this data.
4105                          * But, this leaves one open to an easy denial of
4106                          * service attack, and SYN cookies can't defend
4107                          * against this problem. So, we drop the data
4108                          * in the interest of security over speed.
4109                          */
4110                         goto discard;
4111                 }
4112                 goto discard;
4113
4114         case TCP_SYN_SENT:
4115                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4116                 if (queued >= 0)
4117                         return queued;
4118
4119                 /* Do step6 onward by hand. */
4120                 tcp_urg(sk, skb, th);
4121                 __kfree_skb(skb);
4122                 tcp_data_snd_check(sk, tp);
4123                 return 0;
4124         }
4125
4126         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4127             tcp_paws_discard(sk, skb)) {
4128                 if (!th->rst) {
4129                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4130                         tcp_send_dupack(sk, skb);
4131                         goto discard;
4132                 }
4133                 /* Reset is accepted even if it did not pass PAWS. */
4134         }
4135
4136         /* step 1: check sequence number */
4137         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4138                 if (!th->rst)
4139                         tcp_send_dupack(sk, skb);
4140                 goto discard;
4141         }
4142
4143         /* step 2: check RST bit */
4144         if(th->rst) {
4145                 tcp_reset(sk);
4146                 goto discard;
4147         }
4148
4149         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4150
4151         /* step 3: check security and precedence [ignored] */
4152
4153         /*      step 4:
4154          *
4155          *      Check for a SYN in window.
4156          */
4157         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4158                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4159                 tcp_reset(sk);
4160                 return 1;
4161         }
4162
4163         /* step 5: check the ACK field */
4164         if (th->ack) {
4165                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4166
4167                 switch(sk->sk_state) {
4168                 case TCP_SYN_RECV:
4169                         if (acceptable) {
4170                                 tp->copied_seq = tp->rcv_nxt;
4171                                 mb();
4172                                 tcp_set_state(sk, TCP_ESTABLISHED);
4173                                 sk->sk_state_change(sk);
4174
4175                                 /* Note, that this wakeup is only for marginal
4176                                  * crossed SYN case. Passively open sockets
4177                                  * are not waked up, because sk->sk_sleep ==
4178                                  * NULL and sk->sk_socket == NULL.
4179                                  */
4180                                 if (sk->sk_socket) {
4181                                         sk_wake_async(sk,0,POLL_OUT);
4182                                 }
4183
4184                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4185                                 tp->snd_wnd = ntohs(th->window) <<
4186                                               tp->rx_opt.snd_wscale;
4187                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4188                                             TCP_SKB_CB(skb)->seq);
4189
4190                                 /* tcp_ack considers this ACK as duplicate
4191                                  * and does not calculate rtt.
4192                                  * Fix it at least with timestamps.
4193                                  */
4194                                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4195                                     !tp->srtt)
4196                                         tcp_ack_saw_tstamp(sk, 0, 0);
4197
4198                                 if (tp->rx_opt.tstamp_ok)
4199                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4200
4201                                 /* Make sure socket is routed, for
4202                                  * correct metrics.
4203                                  */
4204                                 tp->af_specific->rebuild_header(sk);
4205
4206                                 tcp_init_metrics(sk);
4207
4208                                 tcp_init_congestion_control(tp);
4209
4210                                 /* Prevent spurious tcp_cwnd_restart() on
4211                                  * first data packet.
4212                                  */
4213                                 tp->lsndtime = tcp_time_stamp;
4214
4215                                 tcp_initialize_rcv_mss(sk);
4216                                 tcp_init_buffer_space(sk);
4217                                 tcp_fast_path_on(tp);
4218                         } else {
4219                                 return 1;
4220                         }
4221                         break;
4222
4223                 case TCP_FIN_WAIT1:
4224                         if (tp->snd_una == tp->write_seq) {
4225                                 tcp_set_state(sk, TCP_FIN_WAIT2);
4226                                 sk->sk_shutdown |= SEND_SHUTDOWN;
4227                                 dst_confirm(sk->sk_dst_cache);
4228
4229                                 if (!sock_flag(sk, SOCK_DEAD))
4230                                         /* Wake up lingering close() */
4231                                         sk->sk_state_change(sk);
4232                                 else {
4233                                         int tmo;
4234
4235                                         if (tp->linger2 < 0 ||
4236                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4237                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4238                                                 tcp_done(sk);
4239                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4240                                                 return 1;
4241                                         }
4242
4243                                         tmo = tcp_fin_time(sk);
4244                                         if (tmo > TCP_TIMEWAIT_LEN) {
4245                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4246                                         } else if (th->fin || sock_owned_by_user(sk)) {
4247                                                 /* Bad case. We could lose such FIN otherwise.
4248                                                  * It is not a big problem, but it looks confusing
4249                                                  * and not so rare event. We still can lose it now,
4250                                                  * if it spins in bh_lock_sock(), but it is really
4251                                                  * marginal case.
4252                                                  */
4253                                                 inet_csk_reset_keepalive_timer(sk, tmo);
4254                                         } else {
4255                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4256                                                 goto discard;
4257                                         }
4258                                 }
4259                         }
4260                         break;
4261
4262                 case TCP_CLOSING:
4263                         if (tp->snd_una == tp->write_seq) {
4264                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4265                                 goto discard;
4266                         }
4267                         break;
4268
4269                 case TCP_LAST_ACK:
4270                         if (tp->snd_una == tp->write_seq) {
4271                                 tcp_update_metrics(sk);
4272                                 tcp_done(sk);
4273                                 goto discard;
4274                         }
4275                         break;
4276                 }
4277         } else
4278                 goto discard;
4279
4280         /* step 6: check the URG bit */
4281         tcp_urg(sk, skb, th);
4282
4283         /* step 7: process the segment text */
4284         switch (sk->sk_state) {
4285         case TCP_CLOSE_WAIT:
4286         case TCP_CLOSING:
4287         case TCP_LAST_ACK:
4288                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4289                         break;
4290         case TCP_FIN_WAIT1:
4291         case TCP_FIN_WAIT2:
4292                 /* RFC 793 says to queue data in these states,
4293                  * RFC 1122 says we MUST send a reset. 
4294                  * BSD 4.4 also does reset.
4295                  */
4296                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4297                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4298                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4299                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4300                                 tcp_reset(sk);
4301                                 return 1;
4302                         }
4303                 }
4304                 /* Fall through */
4305         case TCP_ESTABLISHED: 
4306                 tcp_data_queue(sk, skb);
4307                 queued = 1;
4308                 break;
4309         }
4310
4311         /* tcp_data could move socket to TIME-WAIT */
4312         if (sk->sk_state != TCP_CLOSE) {
4313                 tcp_data_snd_check(sk, tp);
4314                 tcp_ack_snd_check(sk);
4315         }
4316
4317         if (!queued) { 
4318 discard:
4319                 __kfree_skb(skb);
4320         }
4321         return 0;
4322 }
4323
4324 EXPORT_SYMBOL(sysctl_tcp_ecn);
4325 EXPORT_SYMBOL(sysctl_tcp_reordering);
4326 EXPORT_SYMBOL(tcp_parse_options);
4327 EXPORT_SYMBOL(tcp_rcv_established);
4328 EXPORT_SYMBOL(tcp_rcv_state_process);