gssd_krb5: More arcfour-hmac support
[safe/jmp/linux-2.6] / net / decnet / dn_neigh.c
1 /*
2  * DECnet       An implementation of the DECnet protocol suite for the LINUX
3  *              operating system.  DECnet is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              DECnet Neighbour Functions (Adjacency Database and
7  *                                                        On-Ethernet Cache)
8  *
9  * Author:      Steve Whitehouse <SteveW@ACM.org>
10  *
11  *
12  * Changes:
13  *     Steve Whitehouse     : Fixed router listing routine
14  *     Steve Whitehouse     : Added error_report functions
15  *     Steve Whitehouse     : Added default router detection
16  *     Steve Whitehouse     : Hop counts in outgoing messages
17  *     Steve Whitehouse     : Fixed src/dst in outgoing messages so
18  *                            forwarding now stands a good chance of
19  *                            working.
20  *     Steve Whitehouse     : Fixed neighbour states (for now anyway).
21  *     Steve Whitehouse     : Made error_report functions dummies. This
22  *                            is not the right place to return skbs.
23  *     Steve Whitehouse     : Convert to seq_file
24  *
25  */
26
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/slab.h>
32 #include <linux/if_ether.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/string.h>
36 #include <linux/netfilter_decnet.h>
37 #include <linux/spinlock.h>
38 #include <linux/seq_file.h>
39 #include <linux/rcupdate.h>
40 #include <linux/jhash.h>
41 #include <asm/atomic.h>
42 #include <net/net_namespace.h>
43 #include <net/neighbour.h>
44 #include <net/dst.h>
45 #include <net/flow.h>
46 #include <net/dn.h>
47 #include <net/dn_dev.h>
48 #include <net/dn_neigh.h>
49 #include <net/dn_route.h>
50
51 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);
52 static int dn_neigh_construct(struct neighbour *);
53 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
54 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
55 static int dn_long_output(struct sk_buff *);
56 static int dn_short_output(struct sk_buff *);
57 static int dn_phase3_output(struct sk_buff *);
58
59
60 /*
61  * For talking to broadcast devices: Ethernet & PPP
62  */
63 static const struct neigh_ops dn_long_ops = {
64         .family =               AF_DECnet,
65         .error_report =         dn_long_error_report,
66         .output =               dn_long_output,
67         .connected_output =     dn_long_output,
68         .hh_output =            dev_queue_xmit,
69         .queue_xmit =           dev_queue_xmit,
70 };
71
72 /*
73  * For talking to pointopoint and multidrop devices: DDCMP and X.25
74  */
75 static const struct neigh_ops dn_short_ops = {
76         .family =               AF_DECnet,
77         .error_report =         dn_short_error_report,
78         .output =               dn_short_output,
79         .connected_output =     dn_short_output,
80         .hh_output =            dev_queue_xmit,
81         .queue_xmit =           dev_queue_xmit,
82 };
83
84 /*
85  * For talking to DECnet phase III nodes
86  */
87 static const struct neigh_ops dn_phase3_ops = {
88         .family =               AF_DECnet,
89         .error_report =         dn_short_error_report, /* Can use short version here */
90         .output =               dn_phase3_output,
91         .connected_output =     dn_phase3_output,
92         .hh_output =            dev_queue_xmit,
93         .queue_xmit =           dev_queue_xmit
94 };
95
96 struct neigh_table dn_neigh_table = {
97         .family =                       PF_DECnet,
98         .entry_size =                   sizeof(struct dn_neigh),
99         .key_len =                      sizeof(__le16),
100         .hash =                         dn_neigh_hash,
101         .constructor =                  dn_neigh_construct,
102         .id =                           "dn_neigh_cache",
103         .parms ={
104                 .tbl =                  &dn_neigh_table,
105                 .base_reachable_time =  30 * HZ,
106                 .retrans_time = 1 * HZ,
107                 .gc_staletime = 60 * HZ,
108                 .reachable_time =               30 * HZ,
109                 .delay_probe_time =     5 * HZ,
110                 .queue_len =            3,
111                 .ucast_probes = 0,
112                 .app_probes =           0,
113                 .mcast_probes = 0,
114                 .anycast_delay =        0,
115                 .proxy_delay =          0,
116                 .proxy_qlen =           0,
117                 .locktime =             1 * HZ,
118         },
119         .gc_interval =                  30 * HZ,
120         .gc_thresh1 =                   128,
121         .gc_thresh2 =                   512,
122         .gc_thresh3 =                   1024,
123 };
124
125 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev)
126 {
127         return jhash_2words(*(__u16 *)pkey, 0, dn_neigh_table.hash_rnd);
128 }
129
130 static int dn_neigh_construct(struct neighbour *neigh)
131 {
132         struct net_device *dev = neigh->dev;
133         struct dn_neigh *dn = (struct dn_neigh *)neigh;
134         struct dn_dev *dn_db;
135         struct neigh_parms *parms;
136
137         rcu_read_lock();
138         dn_db = rcu_dereference(dev->dn_ptr);
139         if (dn_db == NULL) {
140                 rcu_read_unlock();
141                 return -EINVAL;
142         }
143
144         parms = dn_db->neigh_parms;
145         if (!parms) {
146                 rcu_read_unlock();
147                 return -EINVAL;
148         }
149
150         __neigh_parms_put(neigh->parms);
151         neigh->parms = neigh_parms_clone(parms);
152
153         if (dn_db->use_long)
154                 neigh->ops = &dn_long_ops;
155         else
156                 neigh->ops = &dn_short_ops;
157         rcu_read_unlock();
158
159         if (dn->flags & DN_NDFLAG_P3)
160                 neigh->ops = &dn_phase3_ops;
161
162         neigh->nud_state = NUD_NOARP;
163         neigh->output = neigh->ops->connected_output;
164
165         if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
166                 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
167         else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
168                 dn_dn2eth(neigh->ha, dn->addr);
169         else {
170                 if (net_ratelimit())
171                         printk(KERN_DEBUG "Trying to create neigh for hw %d\n",  dev->type);
172                 return -EINVAL;
173         }
174
175         /*
176          * Make an estimate of the remote block size by assuming that its
177          * two less then the device mtu, which it true for ethernet (and
178          * other things which support long format headers) since there is
179          * an extra length field (of 16 bits) which isn't part of the
180          * ethernet headers and which the DECnet specs won't admit is part
181          * of the DECnet routing headers either.
182          *
183          * If we over estimate here its no big deal, the NSP negotiations
184          * will prevent us from sending packets which are too large for the
185          * remote node to handle. In any case this figure is normally updated
186          * by a hello message in most cases.
187          */
188         dn->blksize = dev->mtu - 2;
189
190         return 0;
191 }
192
193 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
194 {
195         printk(KERN_DEBUG "dn_long_error_report: called\n");
196         kfree_skb(skb);
197 }
198
199
200 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
201 {
202         printk(KERN_DEBUG "dn_short_error_report: called\n");
203         kfree_skb(skb);
204 }
205
206 static int dn_neigh_output_packet(struct sk_buff *skb)
207 {
208         struct dst_entry *dst = skb_dst(skb);
209         struct dn_route *rt = (struct dn_route *)dst;
210         struct neighbour *neigh = dst->neighbour;
211         struct net_device *dev = neigh->dev;
212         char mac_addr[ETH_ALEN];
213
214         dn_dn2eth(mac_addr, rt->rt_local_src);
215         if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
216                             mac_addr, skb->len) >= 0)
217                 return neigh->ops->queue_xmit(skb);
218
219         if (net_ratelimit())
220                 printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
221
222         kfree_skb(skb);
223         return -EINVAL;
224 }
225
226 static int dn_long_output(struct sk_buff *skb)
227 {
228         struct dst_entry *dst = skb_dst(skb);
229         struct neighbour *neigh = dst->neighbour;
230         struct net_device *dev = neigh->dev;
231         int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
232         unsigned char *data;
233         struct dn_long_packet *lp;
234         struct dn_skb_cb *cb = DN_SKB_CB(skb);
235
236
237         if (skb_headroom(skb) < headroom) {
238                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
239                 if (skb2 == NULL) {
240                         if (net_ratelimit())
241                                 printk(KERN_CRIT "dn_long_output: no memory\n");
242                         kfree_skb(skb);
243                         return -ENOBUFS;
244                 }
245                 kfree_skb(skb);
246                 skb = skb2;
247                 if (net_ratelimit())
248                         printk(KERN_INFO "dn_long_output: Increasing headroom\n");
249         }
250
251         data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
252         lp = (struct dn_long_packet *)(data+3);
253
254         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
255         *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
256
257         lp->msgflg   = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
258         lp->d_area   = lp->d_subarea = 0;
259         dn_dn2eth(lp->d_id, cb->dst);
260         lp->s_area   = lp->s_subarea = 0;
261         dn_dn2eth(lp->s_id, cb->src);
262         lp->nl2      = 0;
263         lp->visit_ct = cb->hops & 0x3f;
264         lp->s_class  = 0;
265         lp->pt       = 0;
266
267         skb_reset_network_header(skb);
268
269         return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
270 }
271
272 static int dn_short_output(struct sk_buff *skb)
273 {
274         struct dst_entry *dst = skb_dst(skb);
275         struct neighbour *neigh = dst->neighbour;
276         struct net_device *dev = neigh->dev;
277         int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
278         struct dn_short_packet *sp;
279         unsigned char *data;
280         struct dn_skb_cb *cb = DN_SKB_CB(skb);
281
282
283         if (skb_headroom(skb) < headroom) {
284                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
285                 if (skb2 == NULL) {
286                         if (net_ratelimit())
287                                 printk(KERN_CRIT "dn_short_output: no memory\n");
288                         kfree_skb(skb);
289                         return -ENOBUFS;
290                 }
291                 kfree_skb(skb);
292                 skb = skb2;
293                 if (net_ratelimit())
294                         printk(KERN_INFO "dn_short_output: Increasing headroom\n");
295         }
296
297         data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
298         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
299         sp = (struct dn_short_packet *)(data+2);
300
301         sp->msgflg     = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
302         sp->dstnode    = cb->dst;
303         sp->srcnode    = cb->src;
304         sp->forward    = cb->hops & 0x3f;
305
306         skb_reset_network_header(skb);
307
308         return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
309 }
310
311 /*
312  * Phase 3 output is the same is short output, execpt that
313  * it clears the area bits before transmission.
314  */
315 static int dn_phase3_output(struct sk_buff *skb)
316 {
317         struct dst_entry *dst = skb_dst(skb);
318         struct neighbour *neigh = dst->neighbour;
319         struct net_device *dev = neigh->dev;
320         int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
321         struct dn_short_packet *sp;
322         unsigned char *data;
323         struct dn_skb_cb *cb = DN_SKB_CB(skb);
324
325         if (skb_headroom(skb) < headroom) {
326                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
327                 if (skb2 == NULL) {
328                         if (net_ratelimit())
329                                 printk(KERN_CRIT "dn_phase3_output: no memory\n");
330                         kfree_skb(skb);
331                         return -ENOBUFS;
332                 }
333                 kfree_skb(skb);
334                 skb = skb2;
335                 if (net_ratelimit())
336                         printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
337         }
338
339         data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
340         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
341         sp = (struct dn_short_packet *)(data + 2);
342
343         sp->msgflg   = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
344         sp->dstnode  = cb->dst & cpu_to_le16(0x03ff);
345         sp->srcnode  = cb->src & cpu_to_le16(0x03ff);
346         sp->forward  = cb->hops & 0x3f;
347
348         skb_reset_network_header(skb);
349
350         return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
351 }
352
353 /*
354  * Unfortunately, the neighbour code uses the device in its hash
355  * function, so we don't get any advantage from it. This function
356  * basically does a neigh_lookup(), but without comparing the device
357  * field. This is required for the On-Ethernet cache
358  */
359
360 /*
361  * Pointopoint link receives a hello message
362  */
363 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
364 {
365         kfree_skb(skb);
366 }
367
368 /*
369  * Ethernet router hello message received
370  */
371 int dn_neigh_router_hello(struct sk_buff *skb)
372 {
373         struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
374
375         struct neighbour *neigh;
376         struct dn_neigh *dn;
377         struct dn_dev *dn_db;
378         __le16 src;
379
380         src = dn_eth2dn(msg->id);
381
382         neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
383
384         dn = (struct dn_neigh *)neigh;
385
386         if (neigh) {
387                 write_lock(&neigh->lock);
388
389                 neigh->used = jiffies;
390                 dn_db = (struct dn_dev *)neigh->dev->dn_ptr;
391
392                 if (!(neigh->nud_state & NUD_PERMANENT)) {
393                         neigh->updated = jiffies;
394
395                         if (neigh->dev->type == ARPHRD_ETHER)
396                                 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
397
398                         dn->blksize  = le16_to_cpu(msg->blksize);
399                         dn->priority = msg->priority;
400
401                         dn->flags &= ~DN_NDFLAG_P3;
402
403                         switch(msg->iinfo & DN_RT_INFO_TYPE) {
404                                 case DN_RT_INFO_L1RT:
405                                         dn->flags &=~DN_NDFLAG_R2;
406                                         dn->flags |= DN_NDFLAG_R1;
407                                         break;
408                                 case DN_RT_INFO_L2RT:
409                                         dn->flags |= DN_NDFLAG_R2;
410                         }
411                 }
412
413                 /* Only use routers in our area */
414                 if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
415                         if (!dn_db->router) {
416                                 dn_db->router = neigh_clone(neigh);
417                         } else {
418                                 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
419                                         neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
420                         }
421                 }
422                 write_unlock(&neigh->lock);
423                 neigh_release(neigh);
424         }
425
426         kfree_skb(skb);
427         return 0;
428 }
429
430 /*
431  * Endnode hello message received
432  */
433 int dn_neigh_endnode_hello(struct sk_buff *skb)
434 {
435         struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
436         struct neighbour *neigh;
437         struct dn_neigh *dn;
438         __le16 src;
439
440         src = dn_eth2dn(msg->id);
441
442         neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
443
444         dn = (struct dn_neigh *)neigh;
445
446         if (neigh) {
447                 write_lock(&neigh->lock);
448
449                 neigh->used = jiffies;
450
451                 if (!(neigh->nud_state & NUD_PERMANENT)) {
452                         neigh->updated = jiffies;
453
454                         if (neigh->dev->type == ARPHRD_ETHER)
455                                 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
456                         dn->flags   &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
457                         dn->blksize  = le16_to_cpu(msg->blksize);
458                         dn->priority = 0;
459                 }
460
461                 write_unlock(&neigh->lock);
462                 neigh_release(neigh);
463         }
464
465         kfree_skb(skb);
466         return 0;
467 }
468
469 static char *dn_find_slot(char *base, int max, int priority)
470 {
471         int i;
472         unsigned char *min = NULL;
473
474         base += 6; /* skip first id */
475
476         for(i = 0; i < max; i++) {
477                 if (!min || (*base < *min))
478                         min = base;
479                 base += 7; /* find next priority */
480         }
481
482         if (!min)
483                 return NULL;
484
485         return (*min < priority) ? (min - 6) : NULL;
486 }
487
488 struct elist_cb_state {
489         struct net_device *dev;
490         unsigned char *ptr;
491         unsigned char *rs;
492         int t, n;
493 };
494
495 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
496 {
497         struct elist_cb_state *s = _info;
498         struct dn_neigh *dn;
499
500         if (neigh->dev != s->dev)
501                 return;
502
503         dn = (struct dn_neigh *) neigh;
504         if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
505                 return;
506
507         if (s->t == s->n)
508                 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
509         else
510                 s->t++;
511         if (s->rs == NULL)
512                 return;
513
514         dn_dn2eth(s->rs, dn->addr);
515         s->rs += 6;
516         *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
517         *(s->rs) |= dn->priority;
518         s->rs++;
519 }
520
521 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
522 {
523         struct elist_cb_state state;
524
525         state.dev = dev;
526         state.t = 0;
527         state.n = n;
528         state.ptr = ptr;
529         state.rs = ptr;
530
531         neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
532
533         return state.t;
534 }
535
536
537 #ifdef CONFIG_PROC_FS
538
539 static inline void dn_neigh_format_entry(struct seq_file *seq,
540                                          struct neighbour *n)
541 {
542         struct dn_neigh *dn = (struct dn_neigh *) n;
543         char buf[DN_ASCBUF_LEN];
544
545         read_lock(&n->lock);
546         seq_printf(seq, "%-7s %s%s%s   %02x    %02d  %07ld %-8s\n",
547                    dn_addr2asc(le16_to_cpu(dn->addr), buf),
548                    (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
549                    (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
550                    (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
551                    dn->n.nud_state,
552                    atomic_read(&dn->n.refcnt),
553                    dn->blksize,
554                    (dn->n.dev) ? dn->n.dev->name : "?");
555         read_unlock(&n->lock);
556 }
557
558 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
559 {
560         if (v == SEQ_START_TOKEN) {
561                 seq_puts(seq, "Addr    Flags State Use Blksize Dev\n");
562         } else {
563                 dn_neigh_format_entry(seq, v);
564         }
565
566         return 0;
567 }
568
569 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
570 {
571         return neigh_seq_start(seq, pos, &dn_neigh_table,
572                                NEIGH_SEQ_NEIGH_ONLY);
573 }
574
575 static const struct seq_operations dn_neigh_seq_ops = {
576         .start = dn_neigh_seq_start,
577         .next  = neigh_seq_next,
578         .stop  = neigh_seq_stop,
579         .show  = dn_neigh_seq_show,
580 };
581
582 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
583 {
584         return seq_open_net(inode, file, &dn_neigh_seq_ops,
585                             sizeof(struct neigh_seq_state));
586 }
587
588 static const struct file_operations dn_neigh_seq_fops = {
589         .owner          = THIS_MODULE,
590         .open           = dn_neigh_seq_open,
591         .read           = seq_read,
592         .llseek         = seq_lseek,
593         .release        = seq_release_net,
594 };
595
596 #endif
597
598 void __init dn_neigh_init(void)
599 {
600         neigh_table_init(&dn_neigh_table);
601         proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
602 }
603
604 void __exit dn_neigh_cleanup(void)
605 {
606         proc_net_remove(&init_net, "decnet_neigh");
607         neigh_table_clear(&dn_neigh_table);
608 }