[NET]: Move some core sock setup into sk_prot_alloc
[safe/jmp/linux-2.6] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, task_pid_nr(current));
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         skb->dev = NULL;
286         skb_set_owner_r(skb, sk);
287
288         /* Cache the SKB length before we tack it onto the receive
289          * queue.  Once it is added it no longer belongs to us and
290          * may be freed by other threads of control pulling packets
291          * from the queue.
292          */
293         skb_len = skb->len;
294
295         skb_queue_tail(&sk->sk_receive_queue, skb);
296
297         if (!sock_flag(sk, SOCK_DEAD))
298                 sk->sk_data_ready(sk, skb_len);
299 out:
300         return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306         int rc = NET_RX_SUCCESS;
307
308         if (sk_filter(sk, skb))
309                 goto discard_and_relse;
310
311         skb->dev = NULL;
312
313         if (nested)
314                 bh_lock_sock_nested(sk);
315         else
316                 bh_lock_sock(sk);
317         if (!sock_owned_by_user(sk)) {
318                 /*
319                  * trylock + unlock semantics:
320                  */
321                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323                 rc = sk->sk_backlog_rcv(sk, skb);
324
325                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326         } else
327                 sk_add_backlog(sk, skb);
328         bh_unlock_sock(sk);
329 out:
330         sock_put(sk);
331         return rc;
332 discard_and_relse:
333         kfree_skb(skb);
334         goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340         struct dst_entry *dst = sk->sk_dst_cache;
341
342         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343                 sk->sk_dst_cache = NULL;
344                 dst_release(dst);
345                 return NULL;
346         }
347
348         return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354         struct dst_entry *dst = sk_dst_get(sk);
355
356         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357                 sk_dst_reset(sk);
358                 dst_release(dst);
359                 return NULL;
360         }
361
362         return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368         int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370         struct net *net = sk->sk_net;
371         char devname[IFNAMSIZ];
372         int index;
373
374         /* Sorry... */
375         ret = -EPERM;
376         if (!capable(CAP_NET_RAW))
377                 goto out;
378
379         ret = -EINVAL;
380         if (optlen < 0)
381                 goto out;
382
383         /* Bind this socket to a particular device like "eth0",
384          * as specified in the passed interface name. If the
385          * name is "" or the option length is zero the socket
386          * is not bound.
387          */
388         if (optlen > IFNAMSIZ - 1)
389                 optlen = IFNAMSIZ - 1;
390         memset(devname, 0, sizeof(devname));
391
392         ret = -EFAULT;
393         if (copy_from_user(devname, optval, optlen))
394                 goto out;
395
396         if (devname[0] == '\0') {
397                 index = 0;
398         } else {
399                 struct net_device *dev = dev_get_by_name(net, devname);
400
401                 ret = -ENODEV;
402                 if (!dev)
403                         goto out;
404
405                 index = dev->ifindex;
406                 dev_put(dev);
407         }
408
409         lock_sock(sk);
410         sk->sk_bound_dev_if = index;
411         sk_dst_reset(sk);
412         release_sock(sk);
413
414         ret = 0;
415
416 out:
417 #endif
418
419         return ret;
420 }
421
422 /*
423  *      This is meant for all protocols to use and covers goings on
424  *      at the socket level. Everything here is generic.
425  */
426
427 int sock_setsockopt(struct socket *sock, int level, int optname,
428                     char __user *optval, int optlen)
429 {
430         struct sock *sk=sock->sk;
431         int val;
432         int valbool;
433         struct linger ling;
434         int ret = 0;
435
436         /*
437          *      Options without arguments
438          */
439
440 #ifdef SO_DONTLINGER            /* Compatibility item... */
441         if (optname == SO_DONTLINGER) {
442                 lock_sock(sk);
443                 sock_reset_flag(sk, SOCK_LINGER);
444                 release_sock(sk);
445                 return 0;
446         }
447 #endif
448
449         if (optname == SO_BINDTODEVICE)
450                 return sock_bindtodevice(sk, optval, optlen);
451
452         if (optlen < sizeof(int))
453                 return -EINVAL;
454
455         if (get_user(val, (int __user *)optval))
456                 return -EFAULT;
457
458         valbool = val?1:0;
459
460         lock_sock(sk);
461
462         switch(optname) {
463         case SO_DEBUG:
464                 if (val && !capable(CAP_NET_ADMIN)) {
465                         ret = -EACCES;
466                 }
467                 else if (valbool)
468                         sock_set_flag(sk, SOCK_DBG);
469                 else
470                         sock_reset_flag(sk, SOCK_DBG);
471                 break;
472         case SO_REUSEADDR:
473                 sk->sk_reuse = valbool;
474                 break;
475         case SO_TYPE:
476         case SO_ERROR:
477                 ret = -ENOPROTOOPT;
478                 break;
479         case SO_DONTROUTE:
480                 if (valbool)
481                         sock_set_flag(sk, SOCK_LOCALROUTE);
482                 else
483                         sock_reset_flag(sk, SOCK_LOCALROUTE);
484                 break;
485         case SO_BROADCAST:
486                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487                 break;
488         case SO_SNDBUF:
489                 /* Don't error on this BSD doesn't and if you think
490                    about it this is right. Otherwise apps have to
491                    play 'guess the biggest size' games. RCVBUF/SNDBUF
492                    are treated in BSD as hints */
493
494                 if (val > sysctl_wmem_max)
495                         val = sysctl_wmem_max;
496 set_sndbuf:
497                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498                 if ((val * 2) < SOCK_MIN_SNDBUF)
499                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500                 else
501                         sk->sk_sndbuf = val * 2;
502
503                 /*
504                  *      Wake up sending tasks if we
505                  *      upped the value.
506                  */
507                 sk->sk_write_space(sk);
508                 break;
509
510         case SO_SNDBUFFORCE:
511                 if (!capable(CAP_NET_ADMIN)) {
512                         ret = -EPERM;
513                         break;
514                 }
515                 goto set_sndbuf;
516
517         case SO_RCVBUF:
518                 /* Don't error on this BSD doesn't and if you think
519                    about it this is right. Otherwise apps have to
520                    play 'guess the biggest size' games. RCVBUF/SNDBUF
521                    are treated in BSD as hints */
522
523                 if (val > sysctl_rmem_max)
524                         val = sysctl_rmem_max;
525 set_rcvbuf:
526                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527                 /*
528                  * We double it on the way in to account for
529                  * "struct sk_buff" etc. overhead.   Applications
530                  * assume that the SO_RCVBUF setting they make will
531                  * allow that much actual data to be received on that
532                  * socket.
533                  *
534                  * Applications are unaware that "struct sk_buff" and
535                  * other overheads allocate from the receive buffer
536                  * during socket buffer allocation.
537                  *
538                  * And after considering the possible alternatives,
539                  * returning the value we actually used in getsockopt
540                  * is the most desirable behavior.
541                  */
542                 if ((val * 2) < SOCK_MIN_RCVBUF)
543                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544                 else
545                         sk->sk_rcvbuf = val * 2;
546                 break;
547
548         case SO_RCVBUFFORCE:
549                 if (!capable(CAP_NET_ADMIN)) {
550                         ret = -EPERM;
551                         break;
552                 }
553                 goto set_rcvbuf;
554
555         case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557                 if (sk->sk_protocol == IPPROTO_TCP)
558                         tcp_set_keepalive(sk, valbool);
559 #endif
560                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561                 break;
562
563         case SO_OOBINLINE:
564                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565                 break;
566
567         case SO_NO_CHECK:
568                 sk->sk_no_check = valbool;
569                 break;
570
571         case SO_PRIORITY:
572                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573                         sk->sk_priority = val;
574                 else
575                         ret = -EPERM;
576                 break;
577
578         case SO_LINGER:
579                 if (optlen < sizeof(ling)) {
580                         ret = -EINVAL;  /* 1003.1g */
581                         break;
582                 }
583                 if (copy_from_user(&ling,optval,sizeof(ling))) {
584                         ret = -EFAULT;
585                         break;
586                 }
587                 if (!ling.l_onoff)
588                         sock_reset_flag(sk, SOCK_LINGER);
589                 else {
590 #if (BITS_PER_LONG == 32)
591                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593                         else
594 #endif
595                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596                         sock_set_flag(sk, SOCK_LINGER);
597                 }
598                 break;
599
600         case SO_BSDCOMPAT:
601                 sock_warn_obsolete_bsdism("setsockopt");
602                 break;
603
604         case SO_PASSCRED:
605                 if (valbool)
606                         set_bit(SOCK_PASSCRED, &sock->flags);
607                 else
608                         clear_bit(SOCK_PASSCRED, &sock->flags);
609                 break;
610
611         case SO_TIMESTAMP:
612         case SO_TIMESTAMPNS:
613                 if (valbool)  {
614                         if (optname == SO_TIMESTAMP)
615                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616                         else
617                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618                         sock_set_flag(sk, SOCK_RCVTSTAMP);
619                         sock_enable_timestamp(sk);
620                 } else {
621                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
622                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                 }
624                 break;
625
626         case SO_RCVLOWAT:
627                 if (val < 0)
628                         val = INT_MAX;
629                 sk->sk_rcvlowat = val ? : 1;
630                 break;
631
632         case SO_RCVTIMEO:
633                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634                 break;
635
636         case SO_SNDTIMEO:
637                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638                 break;
639
640         case SO_ATTACH_FILTER:
641                 ret = -EINVAL;
642                 if (optlen == sizeof(struct sock_fprog)) {
643                         struct sock_fprog fprog;
644
645                         ret = -EFAULT;
646                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
647                                 break;
648
649                         ret = sk_attach_filter(&fprog, sk);
650                 }
651                 break;
652
653         case SO_DETACH_FILTER:
654                 ret = sk_detach_filter(sk);
655                 break;
656
657         case SO_PASSSEC:
658                 if (valbool)
659                         set_bit(SOCK_PASSSEC, &sock->flags);
660                 else
661                         clear_bit(SOCK_PASSSEC, &sock->flags);
662                 break;
663
664                 /* We implement the SO_SNDLOWAT etc to
665                    not be settable (1003.1g 5.3) */
666         default:
667                 ret = -ENOPROTOOPT;
668                 break;
669         }
670         release_sock(sk);
671         return ret;
672 }
673
674
675 int sock_getsockopt(struct socket *sock, int level, int optname,
676                     char __user *optval, int __user *optlen)
677 {
678         struct sock *sk = sock->sk;
679
680         union {
681                 int val;
682                 struct linger ling;
683                 struct timeval tm;
684         } v;
685
686         unsigned int lv = sizeof(int);
687         int len;
688
689         if (get_user(len, optlen))
690                 return -EFAULT;
691         if (len < 0)
692                 return -EINVAL;
693
694         switch(optname) {
695         case SO_DEBUG:
696                 v.val = sock_flag(sk, SOCK_DBG);
697                 break;
698
699         case SO_DONTROUTE:
700                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
701                 break;
702
703         case SO_BROADCAST:
704                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
705                 break;
706
707         case SO_SNDBUF:
708                 v.val = sk->sk_sndbuf;
709                 break;
710
711         case SO_RCVBUF:
712                 v.val = sk->sk_rcvbuf;
713                 break;
714
715         case SO_REUSEADDR:
716                 v.val = sk->sk_reuse;
717                 break;
718
719         case SO_KEEPALIVE:
720                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721                 break;
722
723         case SO_TYPE:
724                 v.val = sk->sk_type;
725                 break;
726
727         case SO_ERROR:
728                 v.val = -sock_error(sk);
729                 if (v.val==0)
730                         v.val = xchg(&sk->sk_err_soft, 0);
731                 break;
732
733         case SO_OOBINLINE:
734                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
735                 break;
736
737         case SO_NO_CHECK:
738                 v.val = sk->sk_no_check;
739                 break;
740
741         case SO_PRIORITY:
742                 v.val = sk->sk_priority;
743                 break;
744
745         case SO_LINGER:
746                 lv              = sizeof(v.ling);
747                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
748                 v.ling.l_linger = sk->sk_lingertime / HZ;
749                 break;
750
751         case SO_BSDCOMPAT:
752                 sock_warn_obsolete_bsdism("getsockopt");
753                 break;
754
755         case SO_TIMESTAMP:
756                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
758                 break;
759
760         case SO_TIMESTAMPNS:
761                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762                 break;
763
764         case SO_RCVTIMEO:
765                 lv=sizeof(struct timeval);
766                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767                         v.tm.tv_sec = 0;
768                         v.tm.tv_usec = 0;
769                 } else {
770                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772                 }
773                 break;
774
775         case SO_SNDTIMEO:
776                 lv=sizeof(struct timeval);
777                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778                         v.tm.tv_sec = 0;
779                         v.tm.tv_usec = 0;
780                 } else {
781                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783                 }
784                 break;
785
786         case SO_RCVLOWAT:
787                 v.val = sk->sk_rcvlowat;
788                 break;
789
790         case SO_SNDLOWAT:
791                 v.val=1;
792                 break;
793
794         case SO_PASSCRED:
795                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796                 break;
797
798         case SO_PEERCRED:
799                 if (len > sizeof(sk->sk_peercred))
800                         len = sizeof(sk->sk_peercred);
801                 if (copy_to_user(optval, &sk->sk_peercred, len))
802                         return -EFAULT;
803                 goto lenout;
804
805         case SO_PEERNAME:
806         {
807                 char address[128];
808
809                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810                         return -ENOTCONN;
811                 if (lv < len)
812                         return -EINVAL;
813                 if (copy_to_user(optval, address, len))
814                         return -EFAULT;
815                 goto lenout;
816         }
817
818         /* Dubious BSD thing... Probably nobody even uses it, but
819          * the UNIX standard wants it for whatever reason... -DaveM
820          */
821         case SO_ACCEPTCONN:
822                 v.val = sk->sk_state == TCP_LISTEN;
823                 break;
824
825         case SO_PASSSEC:
826                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827                 break;
828
829         case SO_PEERSEC:
830                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
831
832         default:
833                 return -ENOPROTOOPT;
834         }
835
836         if (len > lv)
837                 len = lv;
838         if (copy_to_user(optval, &v, len))
839                 return -EFAULT;
840 lenout:
841         if (put_user(len, optlen))
842                 return -EFAULT;
843         return 0;
844 }
845
846 /*
847  * Initialize an sk_lock.
848  *
849  * (We also register the sk_lock with the lock validator.)
850  */
851 static inline void sock_lock_init(struct sock *sk)
852 {
853         sock_lock_init_class_and_name(sk,
854                         af_family_slock_key_strings[sk->sk_family],
855                         af_family_slock_keys + sk->sk_family,
856                         af_family_key_strings[sk->sk_family],
857                         af_family_keys + sk->sk_family);
858 }
859
860 static void sock_copy(struct sock *nsk, const struct sock *osk)
861 {
862 #ifdef CONFIG_SECURITY_NETWORK
863         void *sptr = nsk->sk_security;
864 #endif
865
866         memcpy(nsk, osk, osk->sk_prot->obj_size);
867 #ifdef CONFIG_SECURITY_NETWORK
868         nsk->sk_security = sptr;
869         security_sk_clone(osk, nsk);
870 #endif
871 }
872
873 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
874                 int family)
875 {
876         struct sock *sk;
877         struct kmem_cache *slab;
878
879         slab = prot->slab;
880         if (slab != NULL)
881                 sk = kmem_cache_alloc(slab, priority);
882         else
883                 sk = kmalloc(prot->obj_size, priority);
884
885         if (sk != NULL) {
886                 if (security_sk_alloc(sk, family, priority))
887                         goto out_free;
888
889                 if (!try_module_get(prot->owner))
890                         goto out_free_sec;
891         }
892
893         return sk;
894
895 out_free_sec:
896         security_sk_free(sk);
897 out_free:
898         if (slab != NULL)
899                 kmem_cache_free(slab, sk);
900         else
901                 kfree(sk);
902         return NULL;
903 }
904
905 static void sk_prot_free(struct proto *prot, struct sock *sk)
906 {
907         struct kmem_cache *slab;
908         struct module *owner;
909
910         owner = prot->owner;
911         slab = prot->slab;
912
913         security_sk_free(sk);
914         if (slab != NULL)
915                 kmem_cache_free(slab, sk);
916         else
917                 kfree(sk);
918         module_put(owner);
919 }
920
921 /**
922  *      sk_alloc - All socket objects are allocated here
923  *      @net: the applicable net namespace
924  *      @family: protocol family
925  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
926  *      @prot: struct proto associated with this new sock instance
927  *      @zero_it: if we should zero the newly allocated sock
928  */
929 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
930                       struct proto *prot, int zero_it)
931 {
932         struct sock *sk;
933
934         if (zero_it)
935                 priority |= __GFP_ZERO;
936
937         sk = sk_prot_alloc(prot, priority, family);
938         if (sk) {
939                 if (zero_it) {
940                         sk->sk_family = family;
941                         /*
942                          * See comment in struct sock definition to understand
943                          * why we need sk_prot_creator -acme
944                          */
945                         sk->sk_prot = sk->sk_prot_creator = prot;
946                         sock_lock_init(sk);
947                         sk->sk_net = get_net(net);
948                 }
949         }
950
951         return sk;
952 }
953
954 void sk_free(struct sock *sk)
955 {
956         struct sk_filter *filter;
957
958         if (sk->sk_destruct)
959                 sk->sk_destruct(sk);
960
961         filter = rcu_dereference(sk->sk_filter);
962         if (filter) {
963                 sk_filter_uncharge(sk, filter);
964                 rcu_assign_pointer(sk->sk_filter, NULL);
965         }
966
967         sock_disable_timestamp(sk);
968
969         if (atomic_read(&sk->sk_omem_alloc))
970                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
971                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
972
973         put_net(sk->sk_net);
974         sk_prot_free(sk->sk_prot_creator, sk);
975 }
976
977 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
978 {
979         struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
980
981         if (newsk != NULL) {
982                 struct sk_filter *filter;
983
984                 sock_copy(newsk, sk);
985
986                 /* SANITY */
987                 get_net(newsk->sk_net);
988                 sk_node_init(&newsk->sk_node);
989                 sock_lock_init(newsk);
990                 bh_lock_sock(newsk);
991                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
992
993                 atomic_set(&newsk->sk_rmem_alloc, 0);
994                 atomic_set(&newsk->sk_wmem_alloc, 0);
995                 atomic_set(&newsk->sk_omem_alloc, 0);
996                 skb_queue_head_init(&newsk->sk_receive_queue);
997                 skb_queue_head_init(&newsk->sk_write_queue);
998 #ifdef CONFIG_NET_DMA
999                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1000 #endif
1001
1002                 rwlock_init(&newsk->sk_dst_lock);
1003                 rwlock_init(&newsk->sk_callback_lock);
1004                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1005                                 af_callback_keys + newsk->sk_family,
1006                                 af_family_clock_key_strings[newsk->sk_family]);
1007
1008                 newsk->sk_dst_cache     = NULL;
1009                 newsk->sk_wmem_queued   = 0;
1010                 newsk->sk_forward_alloc = 0;
1011                 newsk->sk_send_head     = NULL;
1012                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1013
1014                 sock_reset_flag(newsk, SOCK_DONE);
1015                 skb_queue_head_init(&newsk->sk_error_queue);
1016
1017                 filter = newsk->sk_filter;
1018                 if (filter != NULL)
1019                         sk_filter_charge(newsk, filter);
1020
1021                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1022                         /* It is still raw copy of parent, so invalidate
1023                          * destructor and make plain sk_free() */
1024                         newsk->sk_destruct = NULL;
1025                         sk_free(newsk);
1026                         newsk = NULL;
1027                         goto out;
1028                 }
1029
1030                 newsk->sk_err      = 0;
1031                 newsk->sk_priority = 0;
1032                 atomic_set(&newsk->sk_refcnt, 2);
1033
1034                 /*
1035                  * Increment the counter in the same struct proto as the master
1036                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1037                  * is the same as sk->sk_prot->socks, as this field was copied
1038                  * with memcpy).
1039                  *
1040                  * This _changes_ the previous behaviour, where
1041                  * tcp_create_openreq_child always was incrementing the
1042                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1043                  * to be taken into account in all callers. -acme
1044                  */
1045                 sk_refcnt_debug_inc(newsk);
1046                 newsk->sk_socket = NULL;
1047                 newsk->sk_sleep  = NULL;
1048
1049                 if (newsk->sk_prot->sockets_allocated)
1050                         atomic_inc(newsk->sk_prot->sockets_allocated);
1051         }
1052 out:
1053         return newsk;
1054 }
1055
1056 EXPORT_SYMBOL_GPL(sk_clone);
1057
1058 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1059 {
1060         __sk_dst_set(sk, dst);
1061         sk->sk_route_caps = dst->dev->features;
1062         if (sk->sk_route_caps & NETIF_F_GSO)
1063                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1064         if (sk_can_gso(sk)) {
1065                 if (dst->header_len)
1066                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1067                 else
1068                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1069         }
1070 }
1071 EXPORT_SYMBOL_GPL(sk_setup_caps);
1072
1073 void __init sk_init(void)
1074 {
1075         if (num_physpages <= 4096) {
1076                 sysctl_wmem_max = 32767;
1077                 sysctl_rmem_max = 32767;
1078                 sysctl_wmem_default = 32767;
1079                 sysctl_rmem_default = 32767;
1080         } else if (num_physpages >= 131072) {
1081                 sysctl_wmem_max = 131071;
1082                 sysctl_rmem_max = 131071;
1083         }
1084 }
1085
1086 /*
1087  *      Simple resource managers for sockets.
1088  */
1089
1090
1091 /*
1092  * Write buffer destructor automatically called from kfree_skb.
1093  */
1094 void sock_wfree(struct sk_buff *skb)
1095 {
1096         struct sock *sk = skb->sk;
1097
1098         /* In case it might be waiting for more memory. */
1099         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1100         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1101                 sk->sk_write_space(sk);
1102         sock_put(sk);
1103 }
1104
1105 /*
1106  * Read buffer destructor automatically called from kfree_skb.
1107  */
1108 void sock_rfree(struct sk_buff *skb)
1109 {
1110         struct sock *sk = skb->sk;
1111
1112         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1113 }
1114
1115
1116 int sock_i_uid(struct sock *sk)
1117 {
1118         int uid;
1119
1120         read_lock(&sk->sk_callback_lock);
1121         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1122         read_unlock(&sk->sk_callback_lock);
1123         return uid;
1124 }
1125
1126 unsigned long sock_i_ino(struct sock *sk)
1127 {
1128         unsigned long ino;
1129
1130         read_lock(&sk->sk_callback_lock);
1131         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1132         read_unlock(&sk->sk_callback_lock);
1133         return ino;
1134 }
1135
1136 /*
1137  * Allocate a skb from the socket's send buffer.
1138  */
1139 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1140                              gfp_t priority)
1141 {
1142         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1143                 struct sk_buff * skb = alloc_skb(size, priority);
1144                 if (skb) {
1145                         skb_set_owner_w(skb, sk);
1146                         return skb;
1147                 }
1148         }
1149         return NULL;
1150 }
1151
1152 /*
1153  * Allocate a skb from the socket's receive buffer.
1154  */
1155 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1156                              gfp_t priority)
1157 {
1158         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1159                 struct sk_buff *skb = alloc_skb(size, priority);
1160                 if (skb) {
1161                         skb_set_owner_r(skb, sk);
1162                         return skb;
1163                 }
1164         }
1165         return NULL;
1166 }
1167
1168 /*
1169  * Allocate a memory block from the socket's option memory buffer.
1170  */
1171 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1172 {
1173         if ((unsigned)size <= sysctl_optmem_max &&
1174             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1175                 void *mem;
1176                 /* First do the add, to avoid the race if kmalloc
1177                  * might sleep.
1178                  */
1179                 atomic_add(size, &sk->sk_omem_alloc);
1180                 mem = kmalloc(size, priority);
1181                 if (mem)
1182                         return mem;
1183                 atomic_sub(size, &sk->sk_omem_alloc);
1184         }
1185         return NULL;
1186 }
1187
1188 /*
1189  * Free an option memory block.
1190  */
1191 void sock_kfree_s(struct sock *sk, void *mem, int size)
1192 {
1193         kfree(mem);
1194         atomic_sub(size, &sk->sk_omem_alloc);
1195 }
1196
1197 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1198    I think, these locks should be removed for datagram sockets.
1199  */
1200 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1201 {
1202         DEFINE_WAIT(wait);
1203
1204         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1205         for (;;) {
1206                 if (!timeo)
1207                         break;
1208                 if (signal_pending(current))
1209                         break;
1210                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1211                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1212                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1213                         break;
1214                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1215                         break;
1216                 if (sk->sk_err)
1217                         break;
1218                 timeo = schedule_timeout(timeo);
1219         }
1220         finish_wait(sk->sk_sleep, &wait);
1221         return timeo;
1222 }
1223
1224
1225 /*
1226  *      Generic send/receive buffer handlers
1227  */
1228
1229 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1230                                             unsigned long header_len,
1231                                             unsigned long data_len,
1232                                             int noblock, int *errcode)
1233 {
1234         struct sk_buff *skb;
1235         gfp_t gfp_mask;
1236         long timeo;
1237         int err;
1238
1239         gfp_mask = sk->sk_allocation;
1240         if (gfp_mask & __GFP_WAIT)
1241                 gfp_mask |= __GFP_REPEAT;
1242
1243         timeo = sock_sndtimeo(sk, noblock);
1244         while (1) {
1245                 err = sock_error(sk);
1246                 if (err != 0)
1247                         goto failure;
1248
1249                 err = -EPIPE;
1250                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1251                         goto failure;
1252
1253                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1254                         skb = alloc_skb(header_len, gfp_mask);
1255                         if (skb) {
1256                                 int npages;
1257                                 int i;
1258
1259                                 /* No pages, we're done... */
1260                                 if (!data_len)
1261                                         break;
1262
1263                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1264                                 skb->truesize += data_len;
1265                                 skb_shinfo(skb)->nr_frags = npages;
1266                                 for (i = 0; i < npages; i++) {
1267                                         struct page *page;
1268                                         skb_frag_t *frag;
1269
1270                                         page = alloc_pages(sk->sk_allocation, 0);
1271                                         if (!page) {
1272                                                 err = -ENOBUFS;
1273                                                 skb_shinfo(skb)->nr_frags = i;
1274                                                 kfree_skb(skb);
1275                                                 goto failure;
1276                                         }
1277
1278                                         frag = &skb_shinfo(skb)->frags[i];
1279                                         frag->page = page;
1280                                         frag->page_offset = 0;
1281                                         frag->size = (data_len >= PAGE_SIZE ?
1282                                                       PAGE_SIZE :
1283                                                       data_len);
1284                                         data_len -= PAGE_SIZE;
1285                                 }
1286
1287                                 /* Full success... */
1288                                 break;
1289                         }
1290                         err = -ENOBUFS;
1291                         goto failure;
1292                 }
1293                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1294                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1295                 err = -EAGAIN;
1296                 if (!timeo)
1297                         goto failure;
1298                 if (signal_pending(current))
1299                         goto interrupted;
1300                 timeo = sock_wait_for_wmem(sk, timeo);
1301         }
1302
1303         skb_set_owner_w(skb, sk);
1304         return skb;
1305
1306 interrupted:
1307         err = sock_intr_errno(timeo);
1308 failure:
1309         *errcode = err;
1310         return NULL;
1311 }
1312
1313 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1314                                     int noblock, int *errcode)
1315 {
1316         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1317 }
1318
1319 static void __lock_sock(struct sock *sk)
1320 {
1321         DEFINE_WAIT(wait);
1322
1323         for (;;) {
1324                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1325                                         TASK_UNINTERRUPTIBLE);
1326                 spin_unlock_bh(&sk->sk_lock.slock);
1327                 schedule();
1328                 spin_lock_bh(&sk->sk_lock.slock);
1329                 if (!sock_owned_by_user(sk))
1330                         break;
1331         }
1332         finish_wait(&sk->sk_lock.wq, &wait);
1333 }
1334
1335 static void __release_sock(struct sock *sk)
1336 {
1337         struct sk_buff *skb = sk->sk_backlog.head;
1338
1339         do {
1340                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1341                 bh_unlock_sock(sk);
1342
1343                 do {
1344                         struct sk_buff *next = skb->next;
1345
1346                         skb->next = NULL;
1347                         sk->sk_backlog_rcv(sk, skb);
1348
1349                         /*
1350                          * We are in process context here with softirqs
1351                          * disabled, use cond_resched_softirq() to preempt.
1352                          * This is safe to do because we've taken the backlog
1353                          * queue private:
1354                          */
1355                         cond_resched_softirq();
1356
1357                         skb = next;
1358                 } while (skb != NULL);
1359
1360                 bh_lock_sock(sk);
1361         } while ((skb = sk->sk_backlog.head) != NULL);
1362 }
1363
1364 /**
1365  * sk_wait_data - wait for data to arrive at sk_receive_queue
1366  * @sk:    sock to wait on
1367  * @timeo: for how long
1368  *
1369  * Now socket state including sk->sk_err is changed only under lock,
1370  * hence we may omit checks after joining wait queue.
1371  * We check receive queue before schedule() only as optimization;
1372  * it is very likely that release_sock() added new data.
1373  */
1374 int sk_wait_data(struct sock *sk, long *timeo)
1375 {
1376         int rc;
1377         DEFINE_WAIT(wait);
1378
1379         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1380         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1381         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1382         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1383         finish_wait(sk->sk_sleep, &wait);
1384         return rc;
1385 }
1386
1387 EXPORT_SYMBOL(sk_wait_data);
1388
1389 /*
1390  * Set of default routines for initialising struct proto_ops when
1391  * the protocol does not support a particular function. In certain
1392  * cases where it makes no sense for a protocol to have a "do nothing"
1393  * function, some default processing is provided.
1394  */
1395
1396 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1397 {
1398         return -EOPNOTSUPP;
1399 }
1400
1401 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1402                     int len, int flags)
1403 {
1404         return -EOPNOTSUPP;
1405 }
1406
1407 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1408 {
1409         return -EOPNOTSUPP;
1410 }
1411
1412 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1413 {
1414         return -EOPNOTSUPP;
1415 }
1416
1417 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1418                     int *len, int peer)
1419 {
1420         return -EOPNOTSUPP;
1421 }
1422
1423 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1424 {
1425         return 0;
1426 }
1427
1428 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1429 {
1430         return -EOPNOTSUPP;
1431 }
1432
1433 int sock_no_listen(struct socket *sock, int backlog)
1434 {
1435         return -EOPNOTSUPP;
1436 }
1437
1438 int sock_no_shutdown(struct socket *sock, int how)
1439 {
1440         return -EOPNOTSUPP;
1441 }
1442
1443 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1444                     char __user *optval, int optlen)
1445 {
1446         return -EOPNOTSUPP;
1447 }
1448
1449 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1450                     char __user *optval, int __user *optlen)
1451 {
1452         return -EOPNOTSUPP;
1453 }
1454
1455 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1456                     size_t len)
1457 {
1458         return -EOPNOTSUPP;
1459 }
1460
1461 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1462                     size_t len, int flags)
1463 {
1464         return -EOPNOTSUPP;
1465 }
1466
1467 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1468 {
1469         /* Mirror missing mmap method error code */
1470         return -ENODEV;
1471 }
1472
1473 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1474 {
1475         ssize_t res;
1476         struct msghdr msg = {.msg_flags = flags};
1477         struct kvec iov;
1478         char *kaddr = kmap(page);
1479         iov.iov_base = kaddr + offset;
1480         iov.iov_len = size;
1481         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1482         kunmap(page);
1483         return res;
1484 }
1485
1486 /*
1487  *      Default Socket Callbacks
1488  */
1489
1490 static void sock_def_wakeup(struct sock *sk)
1491 {
1492         read_lock(&sk->sk_callback_lock);
1493         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1494                 wake_up_interruptible_all(sk->sk_sleep);
1495         read_unlock(&sk->sk_callback_lock);
1496 }
1497
1498 static void sock_def_error_report(struct sock *sk)
1499 {
1500         read_lock(&sk->sk_callback_lock);
1501         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1502                 wake_up_interruptible(sk->sk_sleep);
1503         sk_wake_async(sk,0,POLL_ERR);
1504         read_unlock(&sk->sk_callback_lock);
1505 }
1506
1507 static void sock_def_readable(struct sock *sk, int len)
1508 {
1509         read_lock(&sk->sk_callback_lock);
1510         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1511                 wake_up_interruptible(sk->sk_sleep);
1512         sk_wake_async(sk,1,POLL_IN);
1513         read_unlock(&sk->sk_callback_lock);
1514 }
1515
1516 static void sock_def_write_space(struct sock *sk)
1517 {
1518         read_lock(&sk->sk_callback_lock);
1519
1520         /* Do not wake up a writer until he can make "significant"
1521          * progress.  --DaveM
1522          */
1523         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1524                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1525                         wake_up_interruptible(sk->sk_sleep);
1526
1527                 /* Should agree with poll, otherwise some programs break */
1528                 if (sock_writeable(sk))
1529                         sk_wake_async(sk, 2, POLL_OUT);
1530         }
1531
1532         read_unlock(&sk->sk_callback_lock);
1533 }
1534
1535 static void sock_def_destruct(struct sock *sk)
1536 {
1537         kfree(sk->sk_protinfo);
1538 }
1539
1540 void sk_send_sigurg(struct sock *sk)
1541 {
1542         if (sk->sk_socket && sk->sk_socket->file)
1543                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1544                         sk_wake_async(sk, 3, POLL_PRI);
1545 }
1546
1547 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1548                     unsigned long expires)
1549 {
1550         if (!mod_timer(timer, expires))
1551                 sock_hold(sk);
1552 }
1553
1554 EXPORT_SYMBOL(sk_reset_timer);
1555
1556 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1557 {
1558         if (timer_pending(timer) && del_timer(timer))
1559                 __sock_put(sk);
1560 }
1561
1562 EXPORT_SYMBOL(sk_stop_timer);
1563
1564 void sock_init_data(struct socket *sock, struct sock *sk)
1565 {
1566         skb_queue_head_init(&sk->sk_receive_queue);
1567         skb_queue_head_init(&sk->sk_write_queue);
1568         skb_queue_head_init(&sk->sk_error_queue);
1569 #ifdef CONFIG_NET_DMA
1570         skb_queue_head_init(&sk->sk_async_wait_queue);
1571 #endif
1572
1573         sk->sk_send_head        =       NULL;
1574
1575         init_timer(&sk->sk_timer);
1576
1577         sk->sk_allocation       =       GFP_KERNEL;
1578         sk->sk_rcvbuf           =       sysctl_rmem_default;
1579         sk->sk_sndbuf           =       sysctl_wmem_default;
1580         sk->sk_state            =       TCP_CLOSE;
1581         sk->sk_socket           =       sock;
1582
1583         sock_set_flag(sk, SOCK_ZAPPED);
1584
1585         if (sock) {
1586                 sk->sk_type     =       sock->type;
1587                 sk->sk_sleep    =       &sock->wait;
1588                 sock->sk        =       sk;
1589         } else
1590                 sk->sk_sleep    =       NULL;
1591
1592         rwlock_init(&sk->sk_dst_lock);
1593         rwlock_init(&sk->sk_callback_lock);
1594         lockdep_set_class_and_name(&sk->sk_callback_lock,
1595                         af_callback_keys + sk->sk_family,
1596                         af_family_clock_key_strings[sk->sk_family]);
1597
1598         sk->sk_state_change     =       sock_def_wakeup;
1599         sk->sk_data_ready       =       sock_def_readable;
1600         sk->sk_write_space      =       sock_def_write_space;
1601         sk->sk_error_report     =       sock_def_error_report;
1602         sk->sk_destruct         =       sock_def_destruct;
1603
1604         sk->sk_sndmsg_page      =       NULL;
1605         sk->sk_sndmsg_off       =       0;
1606
1607         sk->sk_peercred.pid     =       0;
1608         sk->sk_peercred.uid     =       -1;
1609         sk->sk_peercred.gid     =       -1;
1610         sk->sk_write_pending    =       0;
1611         sk->sk_rcvlowat         =       1;
1612         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1613         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1614
1615         sk->sk_stamp = ktime_set(-1L, -1L);
1616
1617         atomic_set(&sk->sk_refcnt, 1);
1618 }
1619
1620 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1621 {
1622         might_sleep();
1623         spin_lock_bh(&sk->sk_lock.slock);
1624         if (sk->sk_lock.owned)
1625                 __lock_sock(sk);
1626         sk->sk_lock.owned = 1;
1627         spin_unlock(&sk->sk_lock.slock);
1628         /*
1629          * The sk_lock has mutex_lock() semantics here:
1630          */
1631         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1632         local_bh_enable();
1633 }
1634
1635 EXPORT_SYMBOL(lock_sock_nested);
1636
1637 void fastcall release_sock(struct sock *sk)
1638 {
1639         /*
1640          * The sk_lock has mutex_unlock() semantics:
1641          */
1642         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1643
1644         spin_lock_bh(&sk->sk_lock.slock);
1645         if (sk->sk_backlog.tail)
1646                 __release_sock(sk);
1647         sk->sk_lock.owned = 0;
1648         if (waitqueue_active(&sk->sk_lock.wq))
1649                 wake_up(&sk->sk_lock.wq);
1650         spin_unlock_bh(&sk->sk_lock.slock);
1651 }
1652 EXPORT_SYMBOL(release_sock);
1653
1654 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1655 {
1656         struct timeval tv;
1657         if (!sock_flag(sk, SOCK_TIMESTAMP))
1658                 sock_enable_timestamp(sk);
1659         tv = ktime_to_timeval(sk->sk_stamp);
1660         if (tv.tv_sec == -1)
1661                 return -ENOENT;
1662         if (tv.tv_sec == 0) {
1663                 sk->sk_stamp = ktime_get_real();
1664                 tv = ktime_to_timeval(sk->sk_stamp);
1665         }
1666         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1667 }
1668 EXPORT_SYMBOL(sock_get_timestamp);
1669
1670 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1671 {
1672         struct timespec ts;
1673         if (!sock_flag(sk, SOCK_TIMESTAMP))
1674                 sock_enable_timestamp(sk);
1675         ts = ktime_to_timespec(sk->sk_stamp);
1676         if (ts.tv_sec == -1)
1677                 return -ENOENT;
1678         if (ts.tv_sec == 0) {
1679                 sk->sk_stamp = ktime_get_real();
1680                 ts = ktime_to_timespec(sk->sk_stamp);
1681         }
1682         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1683 }
1684 EXPORT_SYMBOL(sock_get_timestampns);
1685
1686 void sock_enable_timestamp(struct sock *sk)
1687 {
1688         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1689                 sock_set_flag(sk, SOCK_TIMESTAMP);
1690                 net_enable_timestamp();
1691         }
1692 }
1693
1694 /*
1695  *      Get a socket option on an socket.
1696  *
1697  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1698  *      asynchronous errors should be reported by getsockopt. We assume
1699  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1700  */
1701 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1702                            char __user *optval, int __user *optlen)
1703 {
1704         struct sock *sk = sock->sk;
1705
1706         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1707 }
1708
1709 EXPORT_SYMBOL(sock_common_getsockopt);
1710
1711 #ifdef CONFIG_COMPAT
1712 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1713                                   char __user *optval, int __user *optlen)
1714 {
1715         struct sock *sk = sock->sk;
1716
1717         if (sk->sk_prot->compat_getsockopt != NULL)
1718                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1719                                                       optval, optlen);
1720         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1721 }
1722 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1723 #endif
1724
1725 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1726                         struct msghdr *msg, size_t size, int flags)
1727 {
1728         struct sock *sk = sock->sk;
1729         int addr_len = 0;
1730         int err;
1731
1732         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1733                                    flags & ~MSG_DONTWAIT, &addr_len);
1734         if (err >= 0)
1735                 msg->msg_namelen = addr_len;
1736         return err;
1737 }
1738
1739 EXPORT_SYMBOL(sock_common_recvmsg);
1740
1741 /*
1742  *      Set socket options on an inet socket.
1743  */
1744 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1745                            char __user *optval, int optlen)
1746 {
1747         struct sock *sk = sock->sk;
1748
1749         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1750 }
1751
1752 EXPORT_SYMBOL(sock_common_setsockopt);
1753
1754 #ifdef CONFIG_COMPAT
1755 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1756                                   char __user *optval, int optlen)
1757 {
1758         struct sock *sk = sock->sk;
1759
1760         if (sk->sk_prot->compat_setsockopt != NULL)
1761                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1762                                                       optval, optlen);
1763         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1764 }
1765 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1766 #endif
1767
1768 void sk_common_release(struct sock *sk)
1769 {
1770         if (sk->sk_prot->destroy)
1771                 sk->sk_prot->destroy(sk);
1772
1773         /*
1774          * Observation: when sock_common_release is called, processes have
1775          * no access to socket. But net still has.
1776          * Step one, detach it from networking:
1777          *
1778          * A. Remove from hash tables.
1779          */
1780
1781         sk->sk_prot->unhash(sk);
1782
1783         /*
1784          * In this point socket cannot receive new packets, but it is possible
1785          * that some packets are in flight because some CPU runs receiver and
1786          * did hash table lookup before we unhashed socket. They will achieve
1787          * receive queue and will be purged by socket destructor.
1788          *
1789          * Also we still have packets pending on receive queue and probably,
1790          * our own packets waiting in device queues. sock_destroy will drain
1791          * receive queue, but transmitted packets will delay socket destruction
1792          * until the last reference will be released.
1793          */
1794
1795         sock_orphan(sk);
1796
1797         xfrm_sk_free_policy(sk);
1798
1799         sk_refcnt_debug_release(sk);
1800         sock_put(sk);
1801 }
1802
1803 EXPORT_SYMBOL(sk_common_release);
1804
1805 static DEFINE_RWLOCK(proto_list_lock);
1806 static LIST_HEAD(proto_list);
1807
1808 int proto_register(struct proto *prot, int alloc_slab)
1809 {
1810         char *request_sock_slab_name = NULL;
1811         char *timewait_sock_slab_name;
1812         int rc = -ENOBUFS;
1813
1814         if (alloc_slab) {
1815                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1816                                                SLAB_HWCACHE_ALIGN, NULL);
1817
1818                 if (prot->slab == NULL) {
1819                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1820                                prot->name);
1821                         goto out;
1822                 }
1823
1824                 if (prot->rsk_prot != NULL) {
1825                         static const char mask[] = "request_sock_%s";
1826
1827                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1828                         if (request_sock_slab_name == NULL)
1829                                 goto out_free_sock_slab;
1830
1831                         sprintf(request_sock_slab_name, mask, prot->name);
1832                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1833                                                                  prot->rsk_prot->obj_size, 0,
1834                                                                  SLAB_HWCACHE_ALIGN, NULL);
1835
1836                         if (prot->rsk_prot->slab == NULL) {
1837                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1838                                        prot->name);
1839                                 goto out_free_request_sock_slab_name;
1840                         }
1841                 }
1842
1843                 if (prot->twsk_prot != NULL) {
1844                         static const char mask[] = "tw_sock_%s";
1845
1846                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1847
1848                         if (timewait_sock_slab_name == NULL)
1849                                 goto out_free_request_sock_slab;
1850
1851                         sprintf(timewait_sock_slab_name, mask, prot->name);
1852                         prot->twsk_prot->twsk_slab =
1853                                 kmem_cache_create(timewait_sock_slab_name,
1854                                                   prot->twsk_prot->twsk_obj_size,
1855                                                   0, SLAB_HWCACHE_ALIGN,
1856                                                   NULL);
1857                         if (prot->twsk_prot->twsk_slab == NULL)
1858                                 goto out_free_timewait_sock_slab_name;
1859                 }
1860         }
1861
1862         write_lock(&proto_list_lock);
1863         list_add(&prot->node, &proto_list);
1864         write_unlock(&proto_list_lock);
1865         rc = 0;
1866 out:
1867         return rc;
1868 out_free_timewait_sock_slab_name:
1869         kfree(timewait_sock_slab_name);
1870 out_free_request_sock_slab:
1871         if (prot->rsk_prot && prot->rsk_prot->slab) {
1872                 kmem_cache_destroy(prot->rsk_prot->slab);
1873                 prot->rsk_prot->slab = NULL;
1874         }
1875 out_free_request_sock_slab_name:
1876         kfree(request_sock_slab_name);
1877 out_free_sock_slab:
1878         kmem_cache_destroy(prot->slab);
1879         prot->slab = NULL;
1880         goto out;
1881 }
1882
1883 EXPORT_SYMBOL(proto_register);
1884
1885 void proto_unregister(struct proto *prot)
1886 {
1887         write_lock(&proto_list_lock);
1888         list_del(&prot->node);
1889         write_unlock(&proto_list_lock);
1890
1891         if (prot->slab != NULL) {
1892                 kmem_cache_destroy(prot->slab);
1893                 prot->slab = NULL;
1894         }
1895
1896         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1897                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1898
1899                 kmem_cache_destroy(prot->rsk_prot->slab);
1900                 kfree(name);
1901                 prot->rsk_prot->slab = NULL;
1902         }
1903
1904         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1905                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1906
1907                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1908                 kfree(name);
1909                 prot->twsk_prot->twsk_slab = NULL;
1910         }
1911 }
1912
1913 EXPORT_SYMBOL(proto_unregister);
1914
1915 #ifdef CONFIG_PROC_FS
1916 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1917 {
1918         read_lock(&proto_list_lock);
1919         return seq_list_start_head(&proto_list, *pos);
1920 }
1921
1922 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1923 {
1924         return seq_list_next(v, &proto_list, pos);
1925 }
1926
1927 static void proto_seq_stop(struct seq_file *seq, void *v)
1928 {
1929         read_unlock(&proto_list_lock);
1930 }
1931
1932 static char proto_method_implemented(const void *method)
1933 {
1934         return method == NULL ? 'n' : 'y';
1935 }
1936
1937 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1938 {
1939         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1940                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1941                    proto->name,
1942                    proto->obj_size,
1943                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1944                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1945                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1946                    proto->max_header,
1947                    proto->slab == NULL ? "no" : "yes",
1948                    module_name(proto->owner),
1949                    proto_method_implemented(proto->close),
1950                    proto_method_implemented(proto->connect),
1951                    proto_method_implemented(proto->disconnect),
1952                    proto_method_implemented(proto->accept),
1953                    proto_method_implemented(proto->ioctl),
1954                    proto_method_implemented(proto->init),
1955                    proto_method_implemented(proto->destroy),
1956                    proto_method_implemented(proto->shutdown),
1957                    proto_method_implemented(proto->setsockopt),
1958                    proto_method_implemented(proto->getsockopt),
1959                    proto_method_implemented(proto->sendmsg),
1960                    proto_method_implemented(proto->recvmsg),
1961                    proto_method_implemented(proto->sendpage),
1962                    proto_method_implemented(proto->bind),
1963                    proto_method_implemented(proto->backlog_rcv),
1964                    proto_method_implemented(proto->hash),
1965                    proto_method_implemented(proto->unhash),
1966                    proto_method_implemented(proto->get_port),
1967                    proto_method_implemented(proto->enter_memory_pressure));
1968 }
1969
1970 static int proto_seq_show(struct seq_file *seq, void *v)
1971 {
1972         if (v == &proto_list)
1973                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1974                            "protocol",
1975                            "size",
1976                            "sockets",
1977                            "memory",
1978                            "press",
1979                            "maxhdr",
1980                            "slab",
1981                            "module",
1982                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1983         else
1984                 proto_seq_printf(seq, list_entry(v, struct proto, node));
1985         return 0;
1986 }
1987
1988 static const struct seq_operations proto_seq_ops = {
1989         .start  = proto_seq_start,
1990         .next   = proto_seq_next,
1991         .stop   = proto_seq_stop,
1992         .show   = proto_seq_show,
1993 };
1994
1995 static int proto_seq_open(struct inode *inode, struct file *file)
1996 {
1997         return seq_open(file, &proto_seq_ops);
1998 }
1999
2000 static const struct file_operations proto_seq_fops = {
2001         .owner          = THIS_MODULE,
2002         .open           = proto_seq_open,
2003         .read           = seq_read,
2004         .llseek         = seq_lseek,
2005         .release        = seq_release,
2006 };
2007
2008 static int __init proto_init(void)
2009 {
2010         /* register /proc/net/protocols */
2011         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2012 }
2013
2014 subsys_initcall(proto_init);
2015
2016 #endif /* PROC_FS */
2017
2018 EXPORT_SYMBOL(sk_alloc);
2019 EXPORT_SYMBOL(sk_free);
2020 EXPORT_SYMBOL(sk_send_sigurg);
2021 EXPORT_SYMBOL(sock_alloc_send_skb);
2022 EXPORT_SYMBOL(sock_init_data);
2023 EXPORT_SYMBOL(sock_kfree_s);
2024 EXPORT_SYMBOL(sock_kmalloc);
2025 EXPORT_SYMBOL(sock_no_accept);
2026 EXPORT_SYMBOL(sock_no_bind);
2027 EXPORT_SYMBOL(sock_no_connect);
2028 EXPORT_SYMBOL(sock_no_getname);
2029 EXPORT_SYMBOL(sock_no_getsockopt);
2030 EXPORT_SYMBOL(sock_no_ioctl);
2031 EXPORT_SYMBOL(sock_no_listen);
2032 EXPORT_SYMBOL(sock_no_mmap);
2033 EXPORT_SYMBOL(sock_no_poll);
2034 EXPORT_SYMBOL(sock_no_recvmsg);
2035 EXPORT_SYMBOL(sock_no_sendmsg);
2036 EXPORT_SYMBOL(sock_no_sendpage);
2037 EXPORT_SYMBOL(sock_no_setsockopt);
2038 EXPORT_SYMBOL(sock_no_shutdown);
2039 EXPORT_SYMBOL(sock_no_socketpair);
2040 EXPORT_SYMBOL(sock_rfree);
2041 EXPORT_SYMBOL(sock_setsockopt);
2042 EXPORT_SYMBOL(sock_wfree);
2043 EXPORT_SYMBOL(sock_wmalloc);
2044 EXPORT_SYMBOL(sock_i_uid);
2045 EXPORT_SYMBOL(sock_i_ino);
2046 EXPORT_SYMBOL(sysctl_optmem_max);
2047 #ifdef CONFIG_SYSCTL
2048 EXPORT_SYMBOL(sysctl_rmem_max);
2049 EXPORT_SYMBOL(sysctl_wmem_max);
2050 #endif