[NET]: sk_release_kernel needs to be exported to modules
[safe/jmp/linux-2.6] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, task_pid_nr(current));
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         if (!sk_rmem_schedule(sk, skb->truesize)) {
286                 err = -ENOBUFS;
287                 goto out;
288         }
289
290         skb->dev = NULL;
291         skb_set_owner_r(skb, sk);
292
293         /* Cache the SKB length before we tack it onto the receive
294          * queue.  Once it is added it no longer belongs to us and
295          * may be freed by other threads of control pulling packets
296          * from the queue.
297          */
298         skb_len = skb->len;
299
300         skb_queue_tail(&sk->sk_receive_queue, skb);
301
302         if (!sock_flag(sk, SOCK_DEAD))
303                 sk->sk_data_ready(sk, skb_len);
304 out:
305         return err;
306 }
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310 {
311         int rc = NET_RX_SUCCESS;
312
313         if (sk_filter(sk, skb))
314                 goto discard_and_relse;
315
316         skb->dev = NULL;
317
318         if (nested)
319                 bh_lock_sock_nested(sk);
320         else
321                 bh_lock_sock(sk);
322         if (!sock_owned_by_user(sk)) {
323                 /*
324                  * trylock + unlock semantics:
325                  */
326                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328                 rc = sk->sk_backlog_rcv(sk, skb);
329
330                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331         } else
332                 sk_add_backlog(sk, skb);
333         bh_unlock_sock(sk);
334 out:
335         sock_put(sk);
336         return rc;
337 discard_and_relse:
338         kfree_skb(skb);
339         goto out;
340 }
341 EXPORT_SYMBOL(sk_receive_skb);
342
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344 {
345         struct dst_entry *dst = sk->sk_dst_cache;
346
347         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348                 sk->sk_dst_cache = NULL;
349                 dst_release(dst);
350                 return NULL;
351         }
352
353         return dst;
354 }
355 EXPORT_SYMBOL(__sk_dst_check);
356
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358 {
359         struct dst_entry *dst = sk_dst_get(sk);
360
361         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362                 sk_dst_reset(sk);
363                 dst_release(dst);
364                 return NULL;
365         }
366
367         return dst;
368 }
369 EXPORT_SYMBOL(sk_dst_check);
370
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372 {
373         int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375         struct net *net = sk->sk_net;
376         char devname[IFNAMSIZ];
377         int index;
378
379         /* Sorry... */
380         ret = -EPERM;
381         if (!capable(CAP_NET_RAW))
382                 goto out;
383
384         ret = -EINVAL;
385         if (optlen < 0)
386                 goto out;
387
388         /* Bind this socket to a particular device like "eth0",
389          * as specified in the passed interface name. If the
390          * name is "" or the option length is zero the socket
391          * is not bound.
392          */
393         if (optlen > IFNAMSIZ - 1)
394                 optlen = IFNAMSIZ - 1;
395         memset(devname, 0, sizeof(devname));
396
397         ret = -EFAULT;
398         if (copy_from_user(devname, optval, optlen))
399                 goto out;
400
401         if (devname[0] == '\0') {
402                 index = 0;
403         } else {
404                 struct net_device *dev = dev_get_by_name(net, devname);
405
406                 ret = -ENODEV;
407                 if (!dev)
408                         goto out;
409
410                 index = dev->ifindex;
411                 dev_put(dev);
412         }
413
414         lock_sock(sk);
415         sk->sk_bound_dev_if = index;
416         sk_dst_reset(sk);
417         release_sock(sk);
418
419         ret = 0;
420
421 out:
422 #endif
423
424         return ret;
425 }
426
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428 {
429         if (valbool)
430                 sock_set_flag(sk, bit);
431         else
432                 sock_reset_flag(sk, bit);
433 }
434
435 /*
436  *      This is meant for all protocols to use and covers goings on
437  *      at the socket level. Everything here is generic.
438  */
439
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441                     char __user *optval, int optlen)
442 {
443         struct sock *sk=sock->sk;
444         int val;
445         int valbool;
446         struct linger ling;
447         int ret = 0;
448
449         /*
450          *      Options without arguments
451          */
452
453 #ifdef SO_DONTLINGER            /* Compatibility item... */
454         if (optname == SO_DONTLINGER) {
455                 lock_sock(sk);
456                 sock_reset_flag(sk, SOCK_LINGER);
457                 release_sock(sk);
458                 return 0;
459         }
460 #endif
461
462         if (optname == SO_BINDTODEVICE)
463                 return sock_bindtodevice(sk, optval, optlen);
464
465         if (optlen < sizeof(int))
466                 return -EINVAL;
467
468         if (get_user(val, (int __user *)optval))
469                 return -EFAULT;
470
471         valbool = val?1:0;
472
473         lock_sock(sk);
474
475         switch(optname) {
476         case SO_DEBUG:
477                 if (val && !capable(CAP_NET_ADMIN)) {
478                         ret = -EACCES;
479                 } else
480                         sock_valbool_flag(sk, SOCK_DBG, valbool);
481                 break;
482         case SO_REUSEADDR:
483                 sk->sk_reuse = valbool;
484                 break;
485         case SO_TYPE:
486         case SO_ERROR:
487                 ret = -ENOPROTOOPT;
488                 break;
489         case SO_DONTROUTE:
490                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491                 break;
492         case SO_BROADCAST:
493                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494                 break;
495         case SO_SNDBUF:
496                 /* Don't error on this BSD doesn't and if you think
497                    about it this is right. Otherwise apps have to
498                    play 'guess the biggest size' games. RCVBUF/SNDBUF
499                    are treated in BSD as hints */
500
501                 if (val > sysctl_wmem_max)
502                         val = sysctl_wmem_max;
503 set_sndbuf:
504                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505                 if ((val * 2) < SOCK_MIN_SNDBUF)
506                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507                 else
508                         sk->sk_sndbuf = val * 2;
509
510                 /*
511                  *      Wake up sending tasks if we
512                  *      upped the value.
513                  */
514                 sk->sk_write_space(sk);
515                 break;
516
517         case SO_SNDBUFFORCE:
518                 if (!capable(CAP_NET_ADMIN)) {
519                         ret = -EPERM;
520                         break;
521                 }
522                 goto set_sndbuf;
523
524         case SO_RCVBUF:
525                 /* Don't error on this BSD doesn't and if you think
526                    about it this is right. Otherwise apps have to
527                    play 'guess the biggest size' games. RCVBUF/SNDBUF
528                    are treated in BSD as hints */
529
530                 if (val > sysctl_rmem_max)
531                         val = sysctl_rmem_max;
532 set_rcvbuf:
533                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534                 /*
535                  * We double it on the way in to account for
536                  * "struct sk_buff" etc. overhead.   Applications
537                  * assume that the SO_RCVBUF setting they make will
538                  * allow that much actual data to be received on that
539                  * socket.
540                  *
541                  * Applications are unaware that "struct sk_buff" and
542                  * other overheads allocate from the receive buffer
543                  * during socket buffer allocation.
544                  *
545                  * And after considering the possible alternatives,
546                  * returning the value we actually used in getsockopt
547                  * is the most desirable behavior.
548                  */
549                 if ((val * 2) < SOCK_MIN_RCVBUF)
550                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551                 else
552                         sk->sk_rcvbuf = val * 2;
553                 break;
554
555         case SO_RCVBUFFORCE:
556                 if (!capable(CAP_NET_ADMIN)) {
557                         ret = -EPERM;
558                         break;
559                 }
560                 goto set_rcvbuf;
561
562         case SO_KEEPALIVE:
563 #ifdef CONFIG_INET
564                 if (sk->sk_protocol == IPPROTO_TCP)
565                         tcp_set_keepalive(sk, valbool);
566 #endif
567                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568                 break;
569
570         case SO_OOBINLINE:
571                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572                 break;
573
574         case SO_NO_CHECK:
575                 sk->sk_no_check = valbool;
576                 break;
577
578         case SO_PRIORITY:
579                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580                         sk->sk_priority = val;
581                 else
582                         ret = -EPERM;
583                 break;
584
585         case SO_LINGER:
586                 if (optlen < sizeof(ling)) {
587                         ret = -EINVAL;  /* 1003.1g */
588                         break;
589                 }
590                 if (copy_from_user(&ling,optval,sizeof(ling))) {
591                         ret = -EFAULT;
592                         break;
593                 }
594                 if (!ling.l_onoff)
595                         sock_reset_flag(sk, SOCK_LINGER);
596                 else {
597 #if (BITS_PER_LONG == 32)
598                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600                         else
601 #endif
602                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603                         sock_set_flag(sk, SOCK_LINGER);
604                 }
605                 break;
606
607         case SO_BSDCOMPAT:
608                 sock_warn_obsolete_bsdism("setsockopt");
609                 break;
610
611         case SO_PASSCRED:
612                 if (valbool)
613                         set_bit(SOCK_PASSCRED, &sock->flags);
614                 else
615                         clear_bit(SOCK_PASSCRED, &sock->flags);
616                 break;
617
618         case SO_TIMESTAMP:
619         case SO_TIMESTAMPNS:
620                 if (valbool)  {
621                         if (optname == SO_TIMESTAMP)
622                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                         else
624                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625                         sock_set_flag(sk, SOCK_RCVTSTAMP);
626                         sock_enable_timestamp(sk);
627                 } else {
628                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
629                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630                 }
631                 break;
632
633         case SO_RCVLOWAT:
634                 if (val < 0)
635                         val = INT_MAX;
636                 sk->sk_rcvlowat = val ? : 1;
637                 break;
638
639         case SO_RCVTIMEO:
640                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641                 break;
642
643         case SO_SNDTIMEO:
644                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645                 break;
646
647         case SO_ATTACH_FILTER:
648                 ret = -EINVAL;
649                 if (optlen == sizeof(struct sock_fprog)) {
650                         struct sock_fprog fprog;
651
652                         ret = -EFAULT;
653                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
654                                 break;
655
656                         ret = sk_attach_filter(&fprog, sk);
657                 }
658                 break;
659
660         case SO_DETACH_FILTER:
661                 ret = sk_detach_filter(sk);
662                 break;
663
664         case SO_PASSSEC:
665                 if (valbool)
666                         set_bit(SOCK_PASSSEC, &sock->flags);
667                 else
668                         clear_bit(SOCK_PASSSEC, &sock->flags);
669                 break;
670         case SO_MARK:
671                 if (!capable(CAP_NET_ADMIN))
672                         ret = -EPERM;
673                 else {
674                         sk->sk_mark = val;
675                 }
676                 break;
677
678                 /* We implement the SO_SNDLOWAT etc to
679                    not be settable (1003.1g 5.3) */
680         default:
681                 ret = -ENOPROTOOPT;
682                 break;
683         }
684         release_sock(sk);
685         return ret;
686 }
687
688
689 int sock_getsockopt(struct socket *sock, int level, int optname,
690                     char __user *optval, int __user *optlen)
691 {
692         struct sock *sk = sock->sk;
693
694         union {
695                 int val;
696                 struct linger ling;
697                 struct timeval tm;
698         } v;
699
700         unsigned int lv = sizeof(int);
701         int len;
702
703         if (get_user(len, optlen))
704                 return -EFAULT;
705         if (len < 0)
706                 return -EINVAL;
707
708         switch(optname) {
709         case SO_DEBUG:
710                 v.val = sock_flag(sk, SOCK_DBG);
711                 break;
712
713         case SO_DONTROUTE:
714                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
715                 break;
716
717         case SO_BROADCAST:
718                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
719                 break;
720
721         case SO_SNDBUF:
722                 v.val = sk->sk_sndbuf;
723                 break;
724
725         case SO_RCVBUF:
726                 v.val = sk->sk_rcvbuf;
727                 break;
728
729         case SO_REUSEADDR:
730                 v.val = sk->sk_reuse;
731                 break;
732
733         case SO_KEEPALIVE:
734                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735                 break;
736
737         case SO_TYPE:
738                 v.val = sk->sk_type;
739                 break;
740
741         case SO_ERROR:
742                 v.val = -sock_error(sk);
743                 if (v.val==0)
744                         v.val = xchg(&sk->sk_err_soft, 0);
745                 break;
746
747         case SO_OOBINLINE:
748                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
749                 break;
750
751         case SO_NO_CHECK:
752                 v.val = sk->sk_no_check;
753                 break;
754
755         case SO_PRIORITY:
756                 v.val = sk->sk_priority;
757                 break;
758
759         case SO_LINGER:
760                 lv              = sizeof(v.ling);
761                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
762                 v.ling.l_linger = sk->sk_lingertime / HZ;
763                 break;
764
765         case SO_BSDCOMPAT:
766                 sock_warn_obsolete_bsdism("getsockopt");
767                 break;
768
769         case SO_TIMESTAMP:
770                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
772                 break;
773
774         case SO_TIMESTAMPNS:
775                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776                 break;
777
778         case SO_RCVTIMEO:
779                 lv=sizeof(struct timeval);
780                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781                         v.tm.tv_sec = 0;
782                         v.tm.tv_usec = 0;
783                 } else {
784                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
786                 }
787                 break;
788
789         case SO_SNDTIMEO:
790                 lv=sizeof(struct timeval);
791                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792                         v.tm.tv_sec = 0;
793                         v.tm.tv_usec = 0;
794                 } else {
795                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
797                 }
798                 break;
799
800         case SO_RCVLOWAT:
801                 v.val = sk->sk_rcvlowat;
802                 break;
803
804         case SO_SNDLOWAT:
805                 v.val=1;
806                 break;
807
808         case SO_PASSCRED:
809                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810                 break;
811
812         case SO_PEERCRED:
813                 if (len > sizeof(sk->sk_peercred))
814                         len = sizeof(sk->sk_peercred);
815                 if (copy_to_user(optval, &sk->sk_peercred, len))
816                         return -EFAULT;
817                 goto lenout;
818
819         case SO_PEERNAME:
820         {
821                 char address[128];
822
823                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824                         return -ENOTCONN;
825                 if (lv < len)
826                         return -EINVAL;
827                 if (copy_to_user(optval, address, len))
828                         return -EFAULT;
829                 goto lenout;
830         }
831
832         /* Dubious BSD thing... Probably nobody even uses it, but
833          * the UNIX standard wants it for whatever reason... -DaveM
834          */
835         case SO_ACCEPTCONN:
836                 v.val = sk->sk_state == TCP_LISTEN;
837                 break;
838
839         case SO_PASSSEC:
840                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841                 break;
842
843         case SO_PEERSEC:
844                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
845
846         case SO_MARK:
847                 v.val = sk->sk_mark;
848                 break;
849
850         default:
851                 return -ENOPROTOOPT;
852         }
853
854         if (len > lv)
855                 len = lv;
856         if (copy_to_user(optval, &v, len))
857                 return -EFAULT;
858 lenout:
859         if (put_user(len, optlen))
860                 return -EFAULT;
861         return 0;
862 }
863
864 /*
865  * Initialize an sk_lock.
866  *
867  * (We also register the sk_lock with the lock validator.)
868  */
869 static inline void sock_lock_init(struct sock *sk)
870 {
871         sock_lock_init_class_and_name(sk,
872                         af_family_slock_key_strings[sk->sk_family],
873                         af_family_slock_keys + sk->sk_family,
874                         af_family_key_strings[sk->sk_family],
875                         af_family_keys + sk->sk_family);
876 }
877
878 static void sock_copy(struct sock *nsk, const struct sock *osk)
879 {
880 #ifdef CONFIG_SECURITY_NETWORK
881         void *sptr = nsk->sk_security;
882 #endif
883
884         memcpy(nsk, osk, osk->sk_prot->obj_size);
885 #ifdef CONFIG_SECURITY_NETWORK
886         nsk->sk_security = sptr;
887         security_sk_clone(osk, nsk);
888 #endif
889 }
890
891 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892                 int family)
893 {
894         struct sock *sk;
895         struct kmem_cache *slab;
896
897         slab = prot->slab;
898         if (slab != NULL)
899                 sk = kmem_cache_alloc(slab, priority);
900         else
901                 sk = kmalloc(prot->obj_size, priority);
902
903         if (sk != NULL) {
904                 if (security_sk_alloc(sk, family, priority))
905                         goto out_free;
906
907                 if (!try_module_get(prot->owner))
908                         goto out_free_sec;
909         }
910
911         return sk;
912
913 out_free_sec:
914         security_sk_free(sk);
915 out_free:
916         if (slab != NULL)
917                 kmem_cache_free(slab, sk);
918         else
919                 kfree(sk);
920         return NULL;
921 }
922
923 static void sk_prot_free(struct proto *prot, struct sock *sk)
924 {
925         struct kmem_cache *slab;
926         struct module *owner;
927
928         owner = prot->owner;
929         slab = prot->slab;
930
931         security_sk_free(sk);
932         if (slab != NULL)
933                 kmem_cache_free(slab, sk);
934         else
935                 kfree(sk);
936         module_put(owner);
937 }
938
939 /**
940  *      sk_alloc - All socket objects are allocated here
941  *      @net: the applicable net namespace
942  *      @family: protocol family
943  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944  *      @prot: struct proto associated with this new sock instance
945  *      @zero_it: if we should zero the newly allocated sock
946  */
947 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948                       struct proto *prot)
949 {
950         struct sock *sk;
951
952         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953         if (sk) {
954                 sk->sk_family = family;
955                 /*
956                  * See comment in struct sock definition to understand
957                  * why we need sk_prot_creator -acme
958                  */
959                 sk->sk_prot = sk->sk_prot_creator = prot;
960                 sock_lock_init(sk);
961                 sk->sk_net = get_net(net);
962         }
963
964         return sk;
965 }
966
967 void sk_free(struct sock *sk)
968 {
969         struct sk_filter *filter;
970
971         if (sk->sk_destruct)
972                 sk->sk_destruct(sk);
973
974         filter = rcu_dereference(sk->sk_filter);
975         if (filter) {
976                 sk_filter_uncharge(sk, filter);
977                 rcu_assign_pointer(sk->sk_filter, NULL);
978         }
979
980         sock_disable_timestamp(sk);
981
982         if (atomic_read(&sk->sk_omem_alloc))
983                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
985
986         put_net(sk->sk_net);
987         sk_prot_free(sk->sk_prot_creator, sk);
988 }
989
990 /*
991  * Last sock_put should drop referrence to sk->sk_net. It has already
992  * been dropped in sk_change_net. Taking referrence to stopping namespace
993  * is not an option.
994  * Take referrence to a socket to remove it from hash _alive_ and after that
995  * destroy it in the context of init_net.
996  */
997 void sk_release_kernel(struct sock *sk)
998 {
999         if (sk == NULL || sk->sk_socket == NULL)
1000                 return;
1001
1002         sock_hold(sk);
1003         sock_release(sk->sk_socket);
1004         sk->sk_net = get_net(&init_net);
1005         sock_put(sk);
1006 }
1007 EXPORT_SYMBOL(sk_release_kernel);
1008
1009 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1010 {
1011         struct sock *newsk;
1012
1013         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1014         if (newsk != NULL) {
1015                 struct sk_filter *filter;
1016
1017                 sock_copy(newsk, sk);
1018
1019                 /* SANITY */
1020                 get_net(newsk->sk_net);
1021                 sk_node_init(&newsk->sk_node);
1022                 sock_lock_init(newsk);
1023                 bh_lock_sock(newsk);
1024                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1025
1026                 atomic_set(&newsk->sk_rmem_alloc, 0);
1027                 atomic_set(&newsk->sk_wmem_alloc, 0);
1028                 atomic_set(&newsk->sk_omem_alloc, 0);
1029                 skb_queue_head_init(&newsk->sk_receive_queue);
1030                 skb_queue_head_init(&newsk->sk_write_queue);
1031 #ifdef CONFIG_NET_DMA
1032                 skb_queue_head_init(&newsk->sk_async_wait_queue);
1033 #endif
1034
1035                 rwlock_init(&newsk->sk_dst_lock);
1036                 rwlock_init(&newsk->sk_callback_lock);
1037                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1038                                 af_callback_keys + newsk->sk_family,
1039                                 af_family_clock_key_strings[newsk->sk_family]);
1040
1041                 newsk->sk_dst_cache     = NULL;
1042                 newsk->sk_wmem_queued   = 0;
1043                 newsk->sk_forward_alloc = 0;
1044                 newsk->sk_send_head     = NULL;
1045                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1046
1047                 sock_reset_flag(newsk, SOCK_DONE);
1048                 skb_queue_head_init(&newsk->sk_error_queue);
1049
1050                 filter = newsk->sk_filter;
1051                 if (filter != NULL)
1052                         sk_filter_charge(newsk, filter);
1053
1054                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1055                         /* It is still raw copy of parent, so invalidate
1056                          * destructor and make plain sk_free() */
1057                         newsk->sk_destruct = NULL;
1058                         sk_free(newsk);
1059                         newsk = NULL;
1060                         goto out;
1061                 }
1062
1063                 newsk->sk_err      = 0;
1064                 newsk->sk_priority = 0;
1065                 atomic_set(&newsk->sk_refcnt, 2);
1066
1067                 /*
1068                  * Increment the counter in the same struct proto as the master
1069                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1070                  * is the same as sk->sk_prot->socks, as this field was copied
1071                  * with memcpy).
1072                  *
1073                  * This _changes_ the previous behaviour, where
1074                  * tcp_create_openreq_child always was incrementing the
1075                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1076                  * to be taken into account in all callers. -acme
1077                  */
1078                 sk_refcnt_debug_inc(newsk);
1079                 newsk->sk_socket = NULL;
1080                 newsk->sk_sleep  = NULL;
1081
1082                 if (newsk->sk_prot->sockets_allocated)
1083                         atomic_inc(newsk->sk_prot->sockets_allocated);
1084         }
1085 out:
1086         return newsk;
1087 }
1088
1089 EXPORT_SYMBOL_GPL(sk_clone);
1090
1091 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1092 {
1093         __sk_dst_set(sk, dst);
1094         sk->sk_route_caps = dst->dev->features;
1095         if (sk->sk_route_caps & NETIF_F_GSO)
1096                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1097         if (sk_can_gso(sk)) {
1098                 if (dst->header_len)
1099                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1100                 else
1101                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1102         }
1103 }
1104 EXPORT_SYMBOL_GPL(sk_setup_caps);
1105
1106 void __init sk_init(void)
1107 {
1108         if (num_physpages <= 4096) {
1109                 sysctl_wmem_max = 32767;
1110                 sysctl_rmem_max = 32767;
1111                 sysctl_wmem_default = 32767;
1112                 sysctl_rmem_default = 32767;
1113         } else if (num_physpages >= 131072) {
1114                 sysctl_wmem_max = 131071;
1115                 sysctl_rmem_max = 131071;
1116         }
1117 }
1118
1119 /*
1120  *      Simple resource managers for sockets.
1121  */
1122
1123
1124 /*
1125  * Write buffer destructor automatically called from kfree_skb.
1126  */
1127 void sock_wfree(struct sk_buff *skb)
1128 {
1129         struct sock *sk = skb->sk;
1130
1131         /* In case it might be waiting for more memory. */
1132         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1133         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1134                 sk->sk_write_space(sk);
1135         sock_put(sk);
1136 }
1137
1138 /*
1139  * Read buffer destructor automatically called from kfree_skb.
1140  */
1141 void sock_rfree(struct sk_buff *skb)
1142 {
1143         struct sock *sk = skb->sk;
1144
1145         skb_truesize_check(skb);
1146         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1147         sk_mem_uncharge(skb->sk, skb->truesize);
1148 }
1149
1150
1151 int sock_i_uid(struct sock *sk)
1152 {
1153         int uid;
1154
1155         read_lock(&sk->sk_callback_lock);
1156         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1157         read_unlock(&sk->sk_callback_lock);
1158         return uid;
1159 }
1160
1161 unsigned long sock_i_ino(struct sock *sk)
1162 {
1163         unsigned long ino;
1164
1165         read_lock(&sk->sk_callback_lock);
1166         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1167         read_unlock(&sk->sk_callback_lock);
1168         return ino;
1169 }
1170
1171 /*
1172  * Allocate a skb from the socket's send buffer.
1173  */
1174 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1175                              gfp_t priority)
1176 {
1177         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1178                 struct sk_buff * skb = alloc_skb(size, priority);
1179                 if (skb) {
1180                         skb_set_owner_w(skb, sk);
1181                         return skb;
1182                 }
1183         }
1184         return NULL;
1185 }
1186
1187 /*
1188  * Allocate a skb from the socket's receive buffer.
1189  */
1190 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1191                              gfp_t priority)
1192 {
1193         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1194                 struct sk_buff *skb = alloc_skb(size, priority);
1195                 if (skb) {
1196                         skb_set_owner_r(skb, sk);
1197                         return skb;
1198                 }
1199         }
1200         return NULL;
1201 }
1202
1203 /*
1204  * Allocate a memory block from the socket's option memory buffer.
1205  */
1206 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1207 {
1208         if ((unsigned)size <= sysctl_optmem_max &&
1209             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1210                 void *mem;
1211                 /* First do the add, to avoid the race if kmalloc
1212                  * might sleep.
1213                  */
1214                 atomic_add(size, &sk->sk_omem_alloc);
1215                 mem = kmalloc(size, priority);
1216                 if (mem)
1217                         return mem;
1218                 atomic_sub(size, &sk->sk_omem_alloc);
1219         }
1220         return NULL;
1221 }
1222
1223 /*
1224  * Free an option memory block.
1225  */
1226 void sock_kfree_s(struct sock *sk, void *mem, int size)
1227 {
1228         kfree(mem);
1229         atomic_sub(size, &sk->sk_omem_alloc);
1230 }
1231
1232 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1233    I think, these locks should be removed for datagram sockets.
1234  */
1235 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1236 {
1237         DEFINE_WAIT(wait);
1238
1239         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1240         for (;;) {
1241                 if (!timeo)
1242                         break;
1243                 if (signal_pending(current))
1244                         break;
1245                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1246                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1247                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1248                         break;
1249                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1250                         break;
1251                 if (sk->sk_err)
1252                         break;
1253                 timeo = schedule_timeout(timeo);
1254         }
1255         finish_wait(sk->sk_sleep, &wait);
1256         return timeo;
1257 }
1258
1259
1260 /*
1261  *      Generic send/receive buffer handlers
1262  */
1263
1264 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1265                                             unsigned long header_len,
1266                                             unsigned long data_len,
1267                                             int noblock, int *errcode)
1268 {
1269         struct sk_buff *skb;
1270         gfp_t gfp_mask;
1271         long timeo;
1272         int err;
1273
1274         gfp_mask = sk->sk_allocation;
1275         if (gfp_mask & __GFP_WAIT)
1276                 gfp_mask |= __GFP_REPEAT;
1277
1278         timeo = sock_sndtimeo(sk, noblock);
1279         while (1) {
1280                 err = sock_error(sk);
1281                 if (err != 0)
1282                         goto failure;
1283
1284                 err = -EPIPE;
1285                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1286                         goto failure;
1287
1288                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1289                         skb = alloc_skb(header_len, gfp_mask);
1290                         if (skb) {
1291                                 int npages;
1292                                 int i;
1293
1294                                 /* No pages, we're done... */
1295                                 if (!data_len)
1296                                         break;
1297
1298                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1299                                 skb->truesize += data_len;
1300                                 skb_shinfo(skb)->nr_frags = npages;
1301                                 for (i = 0; i < npages; i++) {
1302                                         struct page *page;
1303                                         skb_frag_t *frag;
1304
1305                                         page = alloc_pages(sk->sk_allocation, 0);
1306                                         if (!page) {
1307                                                 err = -ENOBUFS;
1308                                                 skb_shinfo(skb)->nr_frags = i;
1309                                                 kfree_skb(skb);
1310                                                 goto failure;
1311                                         }
1312
1313                                         frag = &skb_shinfo(skb)->frags[i];
1314                                         frag->page = page;
1315                                         frag->page_offset = 0;
1316                                         frag->size = (data_len >= PAGE_SIZE ?
1317                                                       PAGE_SIZE :
1318                                                       data_len);
1319                                         data_len -= PAGE_SIZE;
1320                                 }
1321
1322                                 /* Full success... */
1323                                 break;
1324                         }
1325                         err = -ENOBUFS;
1326                         goto failure;
1327                 }
1328                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1329                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1330                 err = -EAGAIN;
1331                 if (!timeo)
1332                         goto failure;
1333                 if (signal_pending(current))
1334                         goto interrupted;
1335                 timeo = sock_wait_for_wmem(sk, timeo);
1336         }
1337
1338         skb_set_owner_w(skb, sk);
1339         return skb;
1340
1341 interrupted:
1342         err = sock_intr_errno(timeo);
1343 failure:
1344         *errcode = err;
1345         return NULL;
1346 }
1347
1348 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1349                                     int noblock, int *errcode)
1350 {
1351         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1352 }
1353
1354 static void __lock_sock(struct sock *sk)
1355 {
1356         DEFINE_WAIT(wait);
1357
1358         for (;;) {
1359                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1360                                         TASK_UNINTERRUPTIBLE);
1361                 spin_unlock_bh(&sk->sk_lock.slock);
1362                 schedule();
1363                 spin_lock_bh(&sk->sk_lock.slock);
1364                 if (!sock_owned_by_user(sk))
1365                         break;
1366         }
1367         finish_wait(&sk->sk_lock.wq, &wait);
1368 }
1369
1370 static void __release_sock(struct sock *sk)
1371 {
1372         struct sk_buff *skb = sk->sk_backlog.head;
1373
1374         do {
1375                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1376                 bh_unlock_sock(sk);
1377
1378                 do {
1379                         struct sk_buff *next = skb->next;
1380
1381                         skb->next = NULL;
1382                         sk->sk_backlog_rcv(sk, skb);
1383
1384                         /*
1385                          * We are in process context here with softirqs
1386                          * disabled, use cond_resched_softirq() to preempt.
1387                          * This is safe to do because we've taken the backlog
1388                          * queue private:
1389                          */
1390                         cond_resched_softirq();
1391
1392                         skb = next;
1393                 } while (skb != NULL);
1394
1395                 bh_lock_sock(sk);
1396         } while ((skb = sk->sk_backlog.head) != NULL);
1397 }
1398
1399 /**
1400  * sk_wait_data - wait for data to arrive at sk_receive_queue
1401  * @sk:    sock to wait on
1402  * @timeo: for how long
1403  *
1404  * Now socket state including sk->sk_err is changed only under lock,
1405  * hence we may omit checks after joining wait queue.
1406  * We check receive queue before schedule() only as optimization;
1407  * it is very likely that release_sock() added new data.
1408  */
1409 int sk_wait_data(struct sock *sk, long *timeo)
1410 {
1411         int rc;
1412         DEFINE_WAIT(wait);
1413
1414         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1415         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1416         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1417         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1418         finish_wait(sk->sk_sleep, &wait);
1419         return rc;
1420 }
1421
1422 EXPORT_SYMBOL(sk_wait_data);
1423
1424 /**
1425  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1426  *      @sk: socket
1427  *      @size: memory size to allocate
1428  *      @kind: allocation type
1429  *
1430  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1431  *      rmem allocation. This function assumes that protocols which have
1432  *      memory_pressure use sk_wmem_queued as write buffer accounting.
1433  */
1434 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1435 {
1436         struct proto *prot = sk->sk_prot;
1437         int amt = sk_mem_pages(size);
1438         int allocated;
1439
1440         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1441         allocated = atomic_add_return(amt, prot->memory_allocated);
1442
1443         /* Under limit. */
1444         if (allocated <= prot->sysctl_mem[0]) {
1445                 if (prot->memory_pressure && *prot->memory_pressure)
1446                         *prot->memory_pressure = 0;
1447                 return 1;
1448         }
1449
1450         /* Under pressure. */
1451         if (allocated > prot->sysctl_mem[1])
1452                 if (prot->enter_memory_pressure)
1453                         prot->enter_memory_pressure();
1454
1455         /* Over hard limit. */
1456         if (allocated > prot->sysctl_mem[2])
1457                 goto suppress_allocation;
1458
1459         /* guarantee minimum buffer size under pressure */
1460         if (kind == SK_MEM_RECV) {
1461                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1462                         return 1;
1463         } else { /* SK_MEM_SEND */
1464                 if (sk->sk_type == SOCK_STREAM) {
1465                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1466                                 return 1;
1467                 } else if (atomic_read(&sk->sk_wmem_alloc) <
1468                            prot->sysctl_wmem[0])
1469                                 return 1;
1470         }
1471
1472         if (prot->memory_pressure) {
1473                 if (!*prot->memory_pressure ||
1474                     prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1475                     sk_mem_pages(sk->sk_wmem_queued +
1476                                  atomic_read(&sk->sk_rmem_alloc) +
1477                                  sk->sk_forward_alloc))
1478                         return 1;
1479         }
1480
1481 suppress_allocation:
1482
1483         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1484                 sk_stream_moderate_sndbuf(sk);
1485
1486                 /* Fail only if socket is _under_ its sndbuf.
1487                  * In this case we cannot block, so that we have to fail.
1488                  */
1489                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1490                         return 1;
1491         }
1492
1493         /* Alas. Undo changes. */
1494         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1495         atomic_sub(amt, prot->memory_allocated);
1496         return 0;
1497 }
1498
1499 EXPORT_SYMBOL(__sk_mem_schedule);
1500
1501 /**
1502  *      __sk_reclaim - reclaim memory_allocated
1503  *      @sk: socket
1504  */
1505 void __sk_mem_reclaim(struct sock *sk)
1506 {
1507         struct proto *prot = sk->sk_prot;
1508
1509         atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1510                    prot->memory_allocated);
1511         sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1512
1513         if (prot->memory_pressure && *prot->memory_pressure &&
1514             (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1515                 *prot->memory_pressure = 0;
1516 }
1517
1518 EXPORT_SYMBOL(__sk_mem_reclaim);
1519
1520
1521 /*
1522  * Set of default routines for initialising struct proto_ops when
1523  * the protocol does not support a particular function. In certain
1524  * cases where it makes no sense for a protocol to have a "do nothing"
1525  * function, some default processing is provided.
1526  */
1527
1528 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1529 {
1530         return -EOPNOTSUPP;
1531 }
1532
1533 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1534                     int len, int flags)
1535 {
1536         return -EOPNOTSUPP;
1537 }
1538
1539 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1540 {
1541         return -EOPNOTSUPP;
1542 }
1543
1544 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1545 {
1546         return -EOPNOTSUPP;
1547 }
1548
1549 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1550                     int *len, int peer)
1551 {
1552         return -EOPNOTSUPP;
1553 }
1554
1555 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1556 {
1557         return 0;
1558 }
1559
1560 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1561 {
1562         return -EOPNOTSUPP;
1563 }
1564
1565 int sock_no_listen(struct socket *sock, int backlog)
1566 {
1567         return -EOPNOTSUPP;
1568 }
1569
1570 int sock_no_shutdown(struct socket *sock, int how)
1571 {
1572         return -EOPNOTSUPP;
1573 }
1574
1575 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1576                     char __user *optval, int optlen)
1577 {
1578         return -EOPNOTSUPP;
1579 }
1580
1581 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1582                     char __user *optval, int __user *optlen)
1583 {
1584         return -EOPNOTSUPP;
1585 }
1586
1587 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1588                     size_t len)
1589 {
1590         return -EOPNOTSUPP;
1591 }
1592
1593 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1594                     size_t len, int flags)
1595 {
1596         return -EOPNOTSUPP;
1597 }
1598
1599 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1600 {
1601         /* Mirror missing mmap method error code */
1602         return -ENODEV;
1603 }
1604
1605 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1606 {
1607         ssize_t res;
1608         struct msghdr msg = {.msg_flags = flags};
1609         struct kvec iov;
1610         char *kaddr = kmap(page);
1611         iov.iov_base = kaddr + offset;
1612         iov.iov_len = size;
1613         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1614         kunmap(page);
1615         return res;
1616 }
1617
1618 /*
1619  *      Default Socket Callbacks
1620  */
1621
1622 static void sock_def_wakeup(struct sock *sk)
1623 {
1624         read_lock(&sk->sk_callback_lock);
1625         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1626                 wake_up_interruptible_all(sk->sk_sleep);
1627         read_unlock(&sk->sk_callback_lock);
1628 }
1629
1630 static void sock_def_error_report(struct sock *sk)
1631 {
1632         read_lock(&sk->sk_callback_lock);
1633         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1634                 wake_up_interruptible(sk->sk_sleep);
1635         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1636         read_unlock(&sk->sk_callback_lock);
1637 }
1638
1639 static void sock_def_readable(struct sock *sk, int len)
1640 {
1641         read_lock(&sk->sk_callback_lock);
1642         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1643                 wake_up_interruptible(sk->sk_sleep);
1644         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1645         read_unlock(&sk->sk_callback_lock);
1646 }
1647
1648 static void sock_def_write_space(struct sock *sk)
1649 {
1650         read_lock(&sk->sk_callback_lock);
1651
1652         /* Do not wake up a writer until he can make "significant"
1653          * progress.  --DaveM
1654          */
1655         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1656                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1657                         wake_up_interruptible(sk->sk_sleep);
1658
1659                 /* Should agree with poll, otherwise some programs break */
1660                 if (sock_writeable(sk))
1661                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1662         }
1663
1664         read_unlock(&sk->sk_callback_lock);
1665 }
1666
1667 static void sock_def_destruct(struct sock *sk)
1668 {
1669         kfree(sk->sk_protinfo);
1670 }
1671
1672 void sk_send_sigurg(struct sock *sk)
1673 {
1674         if (sk->sk_socket && sk->sk_socket->file)
1675                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1676                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1677 }
1678
1679 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1680                     unsigned long expires)
1681 {
1682         if (!mod_timer(timer, expires))
1683                 sock_hold(sk);
1684 }
1685
1686 EXPORT_SYMBOL(sk_reset_timer);
1687
1688 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1689 {
1690         if (timer_pending(timer) && del_timer(timer))
1691                 __sock_put(sk);
1692 }
1693
1694 EXPORT_SYMBOL(sk_stop_timer);
1695
1696 void sock_init_data(struct socket *sock, struct sock *sk)
1697 {
1698         skb_queue_head_init(&sk->sk_receive_queue);
1699         skb_queue_head_init(&sk->sk_write_queue);
1700         skb_queue_head_init(&sk->sk_error_queue);
1701 #ifdef CONFIG_NET_DMA
1702         skb_queue_head_init(&sk->sk_async_wait_queue);
1703 #endif
1704
1705         sk->sk_send_head        =       NULL;
1706
1707         init_timer(&sk->sk_timer);
1708
1709         sk->sk_allocation       =       GFP_KERNEL;
1710         sk->sk_rcvbuf           =       sysctl_rmem_default;
1711         sk->sk_sndbuf           =       sysctl_wmem_default;
1712         sk->sk_state            =       TCP_CLOSE;
1713         sk->sk_socket           =       sock;
1714
1715         sock_set_flag(sk, SOCK_ZAPPED);
1716
1717         if (sock) {
1718                 sk->sk_type     =       sock->type;
1719                 sk->sk_sleep    =       &sock->wait;
1720                 sock->sk        =       sk;
1721         } else
1722                 sk->sk_sleep    =       NULL;
1723
1724         rwlock_init(&sk->sk_dst_lock);
1725         rwlock_init(&sk->sk_callback_lock);
1726         lockdep_set_class_and_name(&sk->sk_callback_lock,
1727                         af_callback_keys + sk->sk_family,
1728                         af_family_clock_key_strings[sk->sk_family]);
1729
1730         sk->sk_state_change     =       sock_def_wakeup;
1731         sk->sk_data_ready       =       sock_def_readable;
1732         sk->sk_write_space      =       sock_def_write_space;
1733         sk->sk_error_report     =       sock_def_error_report;
1734         sk->sk_destruct         =       sock_def_destruct;
1735
1736         sk->sk_sndmsg_page      =       NULL;
1737         sk->sk_sndmsg_off       =       0;
1738
1739         sk->sk_peercred.pid     =       0;
1740         sk->sk_peercred.uid     =       -1;
1741         sk->sk_peercred.gid     =       -1;
1742         sk->sk_write_pending    =       0;
1743         sk->sk_rcvlowat         =       1;
1744         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1745         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1746
1747         sk->sk_stamp = ktime_set(-1L, -1L);
1748
1749         atomic_set(&sk->sk_refcnt, 1);
1750         atomic_set(&sk->sk_drops, 0);
1751 }
1752
1753 void lock_sock_nested(struct sock *sk, int subclass)
1754 {
1755         might_sleep();
1756         spin_lock_bh(&sk->sk_lock.slock);
1757         if (sk->sk_lock.owned)
1758                 __lock_sock(sk);
1759         sk->sk_lock.owned = 1;
1760         spin_unlock(&sk->sk_lock.slock);
1761         /*
1762          * The sk_lock has mutex_lock() semantics here:
1763          */
1764         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1765         local_bh_enable();
1766 }
1767
1768 EXPORT_SYMBOL(lock_sock_nested);
1769
1770 void release_sock(struct sock *sk)
1771 {
1772         /*
1773          * The sk_lock has mutex_unlock() semantics:
1774          */
1775         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1776
1777         spin_lock_bh(&sk->sk_lock.slock);
1778         if (sk->sk_backlog.tail)
1779                 __release_sock(sk);
1780         sk->sk_lock.owned = 0;
1781         if (waitqueue_active(&sk->sk_lock.wq))
1782                 wake_up(&sk->sk_lock.wq);
1783         spin_unlock_bh(&sk->sk_lock.slock);
1784 }
1785 EXPORT_SYMBOL(release_sock);
1786
1787 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1788 {
1789         struct timeval tv;
1790         if (!sock_flag(sk, SOCK_TIMESTAMP))
1791                 sock_enable_timestamp(sk);
1792         tv = ktime_to_timeval(sk->sk_stamp);
1793         if (tv.tv_sec == -1)
1794                 return -ENOENT;
1795         if (tv.tv_sec == 0) {
1796                 sk->sk_stamp = ktime_get_real();
1797                 tv = ktime_to_timeval(sk->sk_stamp);
1798         }
1799         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1800 }
1801 EXPORT_SYMBOL(sock_get_timestamp);
1802
1803 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1804 {
1805         struct timespec ts;
1806         if (!sock_flag(sk, SOCK_TIMESTAMP))
1807                 sock_enable_timestamp(sk);
1808         ts = ktime_to_timespec(sk->sk_stamp);
1809         if (ts.tv_sec == -1)
1810                 return -ENOENT;
1811         if (ts.tv_sec == 0) {
1812                 sk->sk_stamp = ktime_get_real();
1813                 ts = ktime_to_timespec(sk->sk_stamp);
1814         }
1815         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1816 }
1817 EXPORT_SYMBOL(sock_get_timestampns);
1818
1819 void sock_enable_timestamp(struct sock *sk)
1820 {
1821         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1822                 sock_set_flag(sk, SOCK_TIMESTAMP);
1823                 net_enable_timestamp();
1824         }
1825 }
1826
1827 /*
1828  *      Get a socket option on an socket.
1829  *
1830  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1831  *      asynchronous errors should be reported by getsockopt. We assume
1832  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1833  */
1834 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1835                            char __user *optval, int __user *optlen)
1836 {
1837         struct sock *sk = sock->sk;
1838
1839         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1840 }
1841
1842 EXPORT_SYMBOL(sock_common_getsockopt);
1843
1844 #ifdef CONFIG_COMPAT
1845 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1846                                   char __user *optval, int __user *optlen)
1847 {
1848         struct sock *sk = sock->sk;
1849
1850         if (sk->sk_prot->compat_getsockopt != NULL)
1851                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1852                                                       optval, optlen);
1853         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1854 }
1855 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1856 #endif
1857
1858 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1859                         struct msghdr *msg, size_t size, int flags)
1860 {
1861         struct sock *sk = sock->sk;
1862         int addr_len = 0;
1863         int err;
1864
1865         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1866                                    flags & ~MSG_DONTWAIT, &addr_len);
1867         if (err >= 0)
1868                 msg->msg_namelen = addr_len;
1869         return err;
1870 }
1871
1872 EXPORT_SYMBOL(sock_common_recvmsg);
1873
1874 /*
1875  *      Set socket options on an inet socket.
1876  */
1877 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1878                            char __user *optval, int optlen)
1879 {
1880         struct sock *sk = sock->sk;
1881
1882         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1883 }
1884
1885 EXPORT_SYMBOL(sock_common_setsockopt);
1886
1887 #ifdef CONFIG_COMPAT
1888 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1889                                   char __user *optval, int optlen)
1890 {
1891         struct sock *sk = sock->sk;
1892
1893         if (sk->sk_prot->compat_setsockopt != NULL)
1894                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1895                                                       optval, optlen);
1896         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1897 }
1898 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1899 #endif
1900
1901 void sk_common_release(struct sock *sk)
1902 {
1903         if (sk->sk_prot->destroy)
1904                 sk->sk_prot->destroy(sk);
1905
1906         /*
1907          * Observation: when sock_common_release is called, processes have
1908          * no access to socket. But net still has.
1909          * Step one, detach it from networking:
1910          *
1911          * A. Remove from hash tables.
1912          */
1913
1914         sk->sk_prot->unhash(sk);
1915
1916         /*
1917          * In this point socket cannot receive new packets, but it is possible
1918          * that some packets are in flight because some CPU runs receiver and
1919          * did hash table lookup before we unhashed socket. They will achieve
1920          * receive queue and will be purged by socket destructor.
1921          *
1922          * Also we still have packets pending on receive queue and probably,
1923          * our own packets waiting in device queues. sock_destroy will drain
1924          * receive queue, but transmitted packets will delay socket destruction
1925          * until the last reference will be released.
1926          */
1927
1928         sock_orphan(sk);
1929
1930         xfrm_sk_free_policy(sk);
1931
1932         sk_refcnt_debug_release(sk);
1933         sock_put(sk);
1934 }
1935
1936 EXPORT_SYMBOL(sk_common_release);
1937
1938 static DEFINE_RWLOCK(proto_list_lock);
1939 static LIST_HEAD(proto_list);
1940
1941 int proto_register(struct proto *prot, int alloc_slab)
1942 {
1943         char *request_sock_slab_name = NULL;
1944         char *timewait_sock_slab_name;
1945
1946         if (sock_prot_inuse_init(prot) != 0) {
1947                 printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1948                 goto out;
1949         }
1950
1951         if (alloc_slab) {
1952                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1953                                                SLAB_HWCACHE_ALIGN, NULL);
1954
1955                 if (prot->slab == NULL) {
1956                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1957                                prot->name);
1958                         goto out_free_inuse;
1959                 }
1960
1961                 if (prot->rsk_prot != NULL) {
1962                         static const char mask[] = "request_sock_%s";
1963
1964                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1965                         if (request_sock_slab_name == NULL)
1966                                 goto out_free_sock_slab;
1967
1968                         sprintf(request_sock_slab_name, mask, prot->name);
1969                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1970                                                                  prot->rsk_prot->obj_size, 0,
1971                                                                  SLAB_HWCACHE_ALIGN, NULL);
1972
1973                         if (prot->rsk_prot->slab == NULL) {
1974                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1975                                        prot->name);
1976                                 goto out_free_request_sock_slab_name;
1977                         }
1978                 }
1979
1980                 if (prot->twsk_prot != NULL) {
1981                         static const char mask[] = "tw_sock_%s";
1982
1983                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1984
1985                         if (timewait_sock_slab_name == NULL)
1986                                 goto out_free_request_sock_slab;
1987
1988                         sprintf(timewait_sock_slab_name, mask, prot->name);
1989                         prot->twsk_prot->twsk_slab =
1990                                 kmem_cache_create(timewait_sock_slab_name,
1991                                                   prot->twsk_prot->twsk_obj_size,
1992                                                   0, SLAB_HWCACHE_ALIGN,
1993                                                   NULL);
1994                         if (prot->twsk_prot->twsk_slab == NULL)
1995                                 goto out_free_timewait_sock_slab_name;
1996                 }
1997         }
1998
1999         write_lock(&proto_list_lock);
2000         list_add(&prot->node, &proto_list);
2001         write_unlock(&proto_list_lock);
2002         return 0;
2003
2004 out_free_timewait_sock_slab_name:
2005         kfree(timewait_sock_slab_name);
2006 out_free_request_sock_slab:
2007         if (prot->rsk_prot && prot->rsk_prot->slab) {
2008                 kmem_cache_destroy(prot->rsk_prot->slab);
2009                 prot->rsk_prot->slab = NULL;
2010         }
2011 out_free_request_sock_slab_name:
2012         kfree(request_sock_slab_name);
2013 out_free_sock_slab:
2014         kmem_cache_destroy(prot->slab);
2015         prot->slab = NULL;
2016 out_free_inuse:
2017         sock_prot_inuse_free(prot);
2018 out:
2019         return -ENOBUFS;
2020 }
2021
2022 EXPORT_SYMBOL(proto_register);
2023
2024 void proto_unregister(struct proto *prot)
2025 {
2026         write_lock(&proto_list_lock);
2027         list_del(&prot->node);
2028         write_unlock(&proto_list_lock);
2029
2030         sock_prot_inuse_free(prot);
2031
2032         if (prot->slab != NULL) {
2033                 kmem_cache_destroy(prot->slab);
2034                 prot->slab = NULL;
2035         }
2036
2037         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2038                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
2039
2040                 kmem_cache_destroy(prot->rsk_prot->slab);
2041                 kfree(name);
2042                 prot->rsk_prot->slab = NULL;
2043         }
2044
2045         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2046                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2047
2048                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2049                 kfree(name);
2050                 prot->twsk_prot->twsk_slab = NULL;
2051         }
2052 }
2053
2054 EXPORT_SYMBOL(proto_unregister);
2055
2056 #ifdef CONFIG_PROC_FS
2057 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2058         __acquires(proto_list_lock)
2059 {
2060         read_lock(&proto_list_lock);
2061         return seq_list_start_head(&proto_list, *pos);
2062 }
2063
2064 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2065 {
2066         return seq_list_next(v, &proto_list, pos);
2067 }
2068
2069 static void proto_seq_stop(struct seq_file *seq, void *v)
2070         __releases(proto_list_lock)
2071 {
2072         read_unlock(&proto_list_lock);
2073 }
2074
2075 static char proto_method_implemented(const void *method)
2076 {
2077         return method == NULL ? 'n' : 'y';
2078 }
2079
2080 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2081 {
2082         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2083                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2084                    proto->name,
2085                    proto->obj_size,
2086                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2087                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2088                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2089                    proto->max_header,
2090                    proto->slab == NULL ? "no" : "yes",
2091                    module_name(proto->owner),
2092                    proto_method_implemented(proto->close),
2093                    proto_method_implemented(proto->connect),
2094                    proto_method_implemented(proto->disconnect),
2095                    proto_method_implemented(proto->accept),
2096                    proto_method_implemented(proto->ioctl),
2097                    proto_method_implemented(proto->init),
2098                    proto_method_implemented(proto->destroy),
2099                    proto_method_implemented(proto->shutdown),
2100                    proto_method_implemented(proto->setsockopt),
2101                    proto_method_implemented(proto->getsockopt),
2102                    proto_method_implemented(proto->sendmsg),
2103                    proto_method_implemented(proto->recvmsg),
2104                    proto_method_implemented(proto->sendpage),
2105                    proto_method_implemented(proto->bind),
2106                    proto_method_implemented(proto->backlog_rcv),
2107                    proto_method_implemented(proto->hash),
2108                    proto_method_implemented(proto->unhash),
2109                    proto_method_implemented(proto->get_port),
2110                    proto_method_implemented(proto->enter_memory_pressure));
2111 }
2112
2113 static int proto_seq_show(struct seq_file *seq, void *v)
2114 {
2115         if (v == &proto_list)
2116                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2117                            "protocol",
2118                            "size",
2119                            "sockets",
2120                            "memory",
2121                            "press",
2122                            "maxhdr",
2123                            "slab",
2124                            "module",
2125                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2126         else
2127                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2128         return 0;
2129 }
2130
2131 static const struct seq_operations proto_seq_ops = {
2132         .start  = proto_seq_start,
2133         .next   = proto_seq_next,
2134         .stop   = proto_seq_stop,
2135         .show   = proto_seq_show,
2136 };
2137
2138 static int proto_seq_open(struct inode *inode, struct file *file)
2139 {
2140         return seq_open(file, &proto_seq_ops);
2141 }
2142
2143 static const struct file_operations proto_seq_fops = {
2144         .owner          = THIS_MODULE,
2145         .open           = proto_seq_open,
2146         .read           = seq_read,
2147         .llseek         = seq_lseek,
2148         .release        = seq_release,
2149 };
2150
2151 static int __init proto_init(void)
2152 {
2153         /* register /proc/net/protocols */
2154         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2155 }
2156
2157 subsys_initcall(proto_init);
2158
2159 #endif /* PROC_FS */
2160
2161 EXPORT_SYMBOL(sk_alloc);
2162 EXPORT_SYMBOL(sk_free);
2163 EXPORT_SYMBOL(sk_send_sigurg);
2164 EXPORT_SYMBOL(sock_alloc_send_skb);
2165 EXPORT_SYMBOL(sock_init_data);
2166 EXPORT_SYMBOL(sock_kfree_s);
2167 EXPORT_SYMBOL(sock_kmalloc);
2168 EXPORT_SYMBOL(sock_no_accept);
2169 EXPORT_SYMBOL(sock_no_bind);
2170 EXPORT_SYMBOL(sock_no_connect);
2171 EXPORT_SYMBOL(sock_no_getname);
2172 EXPORT_SYMBOL(sock_no_getsockopt);
2173 EXPORT_SYMBOL(sock_no_ioctl);
2174 EXPORT_SYMBOL(sock_no_listen);
2175 EXPORT_SYMBOL(sock_no_mmap);
2176 EXPORT_SYMBOL(sock_no_poll);
2177 EXPORT_SYMBOL(sock_no_recvmsg);
2178 EXPORT_SYMBOL(sock_no_sendmsg);
2179 EXPORT_SYMBOL(sock_no_sendpage);
2180 EXPORT_SYMBOL(sock_no_setsockopt);
2181 EXPORT_SYMBOL(sock_no_shutdown);
2182 EXPORT_SYMBOL(sock_no_socketpair);
2183 EXPORT_SYMBOL(sock_rfree);
2184 EXPORT_SYMBOL(sock_setsockopt);
2185 EXPORT_SYMBOL(sock_wfree);
2186 EXPORT_SYMBOL(sock_wmalloc);
2187 EXPORT_SYMBOL(sock_i_uid);
2188 EXPORT_SYMBOL(sock_i_ino);
2189 EXPORT_SYMBOL(sysctl_optmem_max);