mm: make get_scan_ratio() safe for memcg
[safe/jmp/linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52         /* Incremented by the number of inactive pages that were scanned */
53         unsigned long nr_scanned;
54
55         /* Number of pages freed so far during a call to shrink_zones() */
56         unsigned long nr_reclaimed;
57
58         /* This context's GFP mask */
59         gfp_t gfp_mask;
60
61         int may_writepage;
62
63         /* Can pages be swapped as part of reclaim? */
64         int may_swap;
65
66         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68          * In this context, it doesn't matter that we scan the
69          * whole list at once. */
70         int swap_cluster_max;
71
72         int swappiness;
73
74         int all_unreclaimable;
75
76         int order;
77
78         /* Which cgroup do we reclaim from */
79         struct mem_cgroup *mem_cgroup;
80
81         /* Pluggable isolate pages callback */
82         unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83                         unsigned long *scanned, int order, int mode,
84                         struct zone *z, struct mem_cgroup *mem_cont,
85                         int active, int file);
86 };
87
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field)                    \
92         do {                                                            \
93                 if ((_page)->lru.prev != _base) {                       \
94                         struct page *prev;                              \
95                                                                         \
96                         prev = lru_to_page(&(_page->lru));              \
97                         prefetch(&prev->_field);                        \
98                 }                                                       \
99         } while (0)
100 #else
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102 #endif
103
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetchw(&prev->_field);                       \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 /*
119  * From 0 .. 100.  Higher means more swappy.
120  */
121 int vm_swappiness = 60;
122 long vm_total_pages;    /* The total number of pages which the VM controls */
123
124 static LIST_HEAD(shrinker_list);
125 static DECLARE_RWSEM(shrinker_rwsem);
126
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scan_global_lru(sc)     (!(sc)->mem_cgroup)
129 #else
130 #define scan_global_lru(sc)     (1)
131 #endif
132
133 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134                                                   struct scan_control *sc)
135 {
136         return &zone->reclaim_stat;
137 }
138
139 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
140                                    enum lru_list lru)
141 {
142         return zone_page_state(zone, NR_LRU_BASE + lru);
143 }
144
145
146 /*
147  * Add a shrinker callback to be called from the vm
148  */
149 void register_shrinker(struct shrinker *shrinker)
150 {
151         shrinker->nr = 0;
152         down_write(&shrinker_rwsem);
153         list_add_tail(&shrinker->list, &shrinker_list);
154         up_write(&shrinker_rwsem);
155 }
156 EXPORT_SYMBOL(register_shrinker);
157
158 /*
159  * Remove one
160  */
161 void unregister_shrinker(struct shrinker *shrinker)
162 {
163         down_write(&shrinker_rwsem);
164         list_del(&shrinker->list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(unregister_shrinker);
168
169 #define SHRINK_BATCH 128
170 /*
171  * Call the shrink functions to age shrinkable caches
172  *
173  * Here we assume it costs one seek to replace a lru page and that it also
174  * takes a seek to recreate a cache object.  With this in mind we age equal
175  * percentages of the lru and ageable caches.  This should balance the seeks
176  * generated by these structures.
177  *
178  * If the vm encountered mapped pages on the LRU it increase the pressure on
179  * slab to avoid swapping.
180  *
181  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
182  *
183  * `lru_pages' represents the number of on-LRU pages in all the zones which
184  * are eligible for the caller's allocation attempt.  It is used for balancing
185  * slab reclaim versus page reclaim.
186  *
187  * Returns the number of slab objects which we shrunk.
188  */
189 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
190                         unsigned long lru_pages)
191 {
192         struct shrinker *shrinker;
193         unsigned long ret = 0;
194
195         if (scanned == 0)
196                 scanned = SWAP_CLUSTER_MAX;
197
198         if (!down_read_trylock(&shrinker_rwsem))
199                 return 1;       /* Assume we'll be able to shrink next time */
200
201         list_for_each_entry(shrinker, &shrinker_list, list) {
202                 unsigned long long delta;
203                 unsigned long total_scan;
204                 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
205
206                 delta = (4 * scanned) / shrinker->seeks;
207                 delta *= max_pass;
208                 do_div(delta, lru_pages + 1);
209                 shrinker->nr += delta;
210                 if (shrinker->nr < 0) {
211                         printk(KERN_ERR "%s: nr=%ld\n",
212                                         __func__, shrinker->nr);
213                         shrinker->nr = max_pass;
214                 }
215
216                 /*
217                  * Avoid risking looping forever due to too large nr value:
218                  * never try to free more than twice the estimate number of
219                  * freeable entries.
220                  */
221                 if (shrinker->nr > max_pass * 2)
222                         shrinker->nr = max_pass * 2;
223
224                 total_scan = shrinker->nr;
225                 shrinker->nr = 0;
226
227                 while (total_scan >= SHRINK_BATCH) {
228                         long this_scan = SHRINK_BATCH;
229                         int shrink_ret;
230                         int nr_before;
231
232                         nr_before = (*shrinker->shrink)(0, gfp_mask);
233                         shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
234                         if (shrink_ret == -1)
235                                 break;
236                         if (shrink_ret < nr_before)
237                                 ret += nr_before - shrink_ret;
238                         count_vm_events(SLABS_SCANNED, this_scan);
239                         total_scan -= this_scan;
240
241                         cond_resched();
242                 }
243
244                 shrinker->nr += total_scan;
245         }
246         up_read(&shrinker_rwsem);
247         return ret;
248 }
249
250 /* Called without lock on whether page is mapped, so answer is unstable */
251 static inline int page_mapping_inuse(struct page *page)
252 {
253         struct address_space *mapping;
254
255         /* Page is in somebody's page tables. */
256         if (page_mapped(page))
257                 return 1;
258
259         /* Be more reluctant to reclaim swapcache than pagecache */
260         if (PageSwapCache(page))
261                 return 1;
262
263         mapping = page_mapping(page);
264         if (!mapping)
265                 return 0;
266
267         /* File is mmap'd by somebody? */
268         return mapping_mapped(mapping);
269 }
270
271 static inline int is_page_cache_freeable(struct page *page)
272 {
273         return page_count(page) - !!PagePrivate(page) == 2;
274 }
275
276 static int may_write_to_queue(struct backing_dev_info *bdi)
277 {
278         if (current->flags & PF_SWAPWRITE)
279                 return 1;
280         if (!bdi_write_congested(bdi))
281                 return 1;
282         if (bdi == current->backing_dev_info)
283                 return 1;
284         return 0;
285 }
286
287 /*
288  * We detected a synchronous write error writing a page out.  Probably
289  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
290  * fsync(), msync() or close().
291  *
292  * The tricky part is that after writepage we cannot touch the mapping: nothing
293  * prevents it from being freed up.  But we have a ref on the page and once
294  * that page is locked, the mapping is pinned.
295  *
296  * We're allowed to run sleeping lock_page() here because we know the caller has
297  * __GFP_FS.
298  */
299 static void handle_write_error(struct address_space *mapping,
300                                 struct page *page, int error)
301 {
302         lock_page(page);
303         if (page_mapping(page) == mapping)
304                 mapping_set_error(mapping, error);
305         unlock_page(page);
306 }
307
308 /* Request for sync pageout. */
309 enum pageout_io {
310         PAGEOUT_IO_ASYNC,
311         PAGEOUT_IO_SYNC,
312 };
313
314 /* possible outcome of pageout() */
315 typedef enum {
316         /* failed to write page out, page is locked */
317         PAGE_KEEP,
318         /* move page to the active list, page is locked */
319         PAGE_ACTIVATE,
320         /* page has been sent to the disk successfully, page is unlocked */
321         PAGE_SUCCESS,
322         /* page is clean and locked */
323         PAGE_CLEAN,
324 } pageout_t;
325
326 /*
327  * pageout is called by shrink_page_list() for each dirty page.
328  * Calls ->writepage().
329  */
330 static pageout_t pageout(struct page *page, struct address_space *mapping,
331                                                 enum pageout_io sync_writeback)
332 {
333         /*
334          * If the page is dirty, only perform writeback if that write
335          * will be non-blocking.  To prevent this allocation from being
336          * stalled by pagecache activity.  But note that there may be
337          * stalls if we need to run get_block().  We could test
338          * PagePrivate for that.
339          *
340          * If this process is currently in generic_file_write() against
341          * this page's queue, we can perform writeback even if that
342          * will block.
343          *
344          * If the page is swapcache, write it back even if that would
345          * block, for some throttling. This happens by accident, because
346          * swap_backing_dev_info is bust: it doesn't reflect the
347          * congestion state of the swapdevs.  Easy to fix, if needed.
348          * See swapfile.c:page_queue_congested().
349          */
350         if (!is_page_cache_freeable(page))
351                 return PAGE_KEEP;
352         if (!mapping) {
353                 /*
354                  * Some data journaling orphaned pages can have
355                  * page->mapping == NULL while being dirty with clean buffers.
356                  */
357                 if (PagePrivate(page)) {
358                         if (try_to_free_buffers(page)) {
359                                 ClearPageDirty(page);
360                                 printk("%s: orphaned page\n", __func__);
361                                 return PAGE_CLEAN;
362                         }
363                 }
364                 return PAGE_KEEP;
365         }
366         if (mapping->a_ops->writepage == NULL)
367                 return PAGE_ACTIVATE;
368         if (!may_write_to_queue(mapping->backing_dev_info))
369                 return PAGE_KEEP;
370
371         if (clear_page_dirty_for_io(page)) {
372                 int res;
373                 struct writeback_control wbc = {
374                         .sync_mode = WB_SYNC_NONE,
375                         .nr_to_write = SWAP_CLUSTER_MAX,
376                         .range_start = 0,
377                         .range_end = LLONG_MAX,
378                         .nonblocking = 1,
379                         .for_reclaim = 1,
380                 };
381
382                 SetPageReclaim(page);
383                 res = mapping->a_ops->writepage(page, &wbc);
384                 if (res < 0)
385                         handle_write_error(mapping, page, res);
386                 if (res == AOP_WRITEPAGE_ACTIVATE) {
387                         ClearPageReclaim(page);
388                         return PAGE_ACTIVATE;
389                 }
390
391                 /*
392                  * Wait on writeback if requested to. This happens when
393                  * direct reclaiming a large contiguous area and the
394                  * first attempt to free a range of pages fails.
395                  */
396                 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
397                         wait_on_page_writeback(page);
398
399                 if (!PageWriteback(page)) {
400                         /* synchronous write or broken a_ops? */
401                         ClearPageReclaim(page);
402                 }
403                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
404                 return PAGE_SUCCESS;
405         }
406
407         return PAGE_CLEAN;
408 }
409
410 /*
411  * Same as remove_mapping, but if the page is removed from the mapping, it
412  * gets returned with a refcount of 0.
413  */
414 static int __remove_mapping(struct address_space *mapping, struct page *page)
415 {
416         BUG_ON(!PageLocked(page));
417         BUG_ON(mapping != page_mapping(page));
418
419         spin_lock_irq(&mapping->tree_lock);
420         /*
421          * The non racy check for a busy page.
422          *
423          * Must be careful with the order of the tests. When someone has
424          * a ref to the page, it may be possible that they dirty it then
425          * drop the reference. So if PageDirty is tested before page_count
426          * here, then the following race may occur:
427          *
428          * get_user_pages(&page);
429          * [user mapping goes away]
430          * write_to(page);
431          *                              !PageDirty(page)    [good]
432          * SetPageDirty(page);
433          * put_page(page);
434          *                              !page_count(page)   [good, discard it]
435          *
436          * [oops, our write_to data is lost]
437          *
438          * Reversing the order of the tests ensures such a situation cannot
439          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
440          * load is not satisfied before that of page->_count.
441          *
442          * Note that if SetPageDirty is always performed via set_page_dirty,
443          * and thus under tree_lock, then this ordering is not required.
444          */
445         if (!page_freeze_refs(page, 2))
446                 goto cannot_free;
447         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
448         if (unlikely(PageDirty(page))) {
449                 page_unfreeze_refs(page, 2);
450                 goto cannot_free;
451         }
452
453         if (PageSwapCache(page)) {
454                 swp_entry_t swap = { .val = page_private(page) };
455                 __delete_from_swap_cache(page);
456                 spin_unlock_irq(&mapping->tree_lock);
457                 swap_free(swap);
458         } else {
459                 __remove_from_page_cache(page);
460                 spin_unlock_irq(&mapping->tree_lock);
461         }
462
463         return 1;
464
465 cannot_free:
466         spin_unlock_irq(&mapping->tree_lock);
467         return 0;
468 }
469
470 /*
471  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
472  * someone else has a ref on the page, abort and return 0.  If it was
473  * successfully detached, return 1.  Assumes the caller has a single ref on
474  * this page.
475  */
476 int remove_mapping(struct address_space *mapping, struct page *page)
477 {
478         if (__remove_mapping(mapping, page)) {
479                 /*
480                  * Unfreezing the refcount with 1 rather than 2 effectively
481                  * drops the pagecache ref for us without requiring another
482                  * atomic operation.
483                  */
484                 page_unfreeze_refs(page, 1);
485                 return 1;
486         }
487         return 0;
488 }
489
490 /**
491  * putback_lru_page - put previously isolated page onto appropriate LRU list
492  * @page: page to be put back to appropriate lru list
493  *
494  * Add previously isolated @page to appropriate LRU list.
495  * Page may still be unevictable for other reasons.
496  *
497  * lru_lock must not be held, interrupts must be enabled.
498  */
499 #ifdef CONFIG_UNEVICTABLE_LRU
500 void putback_lru_page(struct page *page)
501 {
502         int lru;
503         int active = !!TestClearPageActive(page);
504         int was_unevictable = PageUnevictable(page);
505
506         VM_BUG_ON(PageLRU(page));
507
508 redo:
509         ClearPageUnevictable(page);
510
511         if (page_evictable(page, NULL)) {
512                 /*
513                  * For evictable pages, we can use the cache.
514                  * In event of a race, worst case is we end up with an
515                  * unevictable page on [in]active list.
516                  * We know how to handle that.
517                  */
518                 lru = active + page_is_file_cache(page);
519                 lru_cache_add_lru(page, lru);
520         } else {
521                 /*
522                  * Put unevictable pages directly on zone's unevictable
523                  * list.
524                  */
525                 lru = LRU_UNEVICTABLE;
526                 add_page_to_unevictable_list(page);
527         }
528
529         /*
530          * page's status can change while we move it among lru. If an evictable
531          * page is on unevictable list, it never be freed. To avoid that,
532          * check after we added it to the list, again.
533          */
534         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
535                 if (!isolate_lru_page(page)) {
536                         put_page(page);
537                         goto redo;
538                 }
539                 /* This means someone else dropped this page from LRU
540                  * So, it will be freed or putback to LRU again. There is
541                  * nothing to do here.
542                  */
543         }
544
545         if (was_unevictable && lru != LRU_UNEVICTABLE)
546                 count_vm_event(UNEVICTABLE_PGRESCUED);
547         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
548                 count_vm_event(UNEVICTABLE_PGCULLED);
549
550         put_page(page);         /* drop ref from isolate */
551 }
552
553 #else /* CONFIG_UNEVICTABLE_LRU */
554
555 void putback_lru_page(struct page *page)
556 {
557         int lru;
558         VM_BUG_ON(PageLRU(page));
559
560         lru = !!TestClearPageActive(page) + page_is_file_cache(page);
561         lru_cache_add_lru(page, lru);
562         put_page(page);
563 }
564 #endif /* CONFIG_UNEVICTABLE_LRU */
565
566
567 /*
568  * shrink_page_list() returns the number of reclaimed pages
569  */
570 static unsigned long shrink_page_list(struct list_head *page_list,
571                                         struct scan_control *sc,
572                                         enum pageout_io sync_writeback)
573 {
574         LIST_HEAD(ret_pages);
575         struct pagevec freed_pvec;
576         int pgactivate = 0;
577         unsigned long nr_reclaimed = 0;
578
579         cond_resched();
580
581         pagevec_init(&freed_pvec, 1);
582         while (!list_empty(page_list)) {
583                 struct address_space *mapping;
584                 struct page *page;
585                 int may_enter_fs;
586                 int referenced;
587
588                 cond_resched();
589
590                 page = lru_to_page(page_list);
591                 list_del(&page->lru);
592
593                 if (!trylock_page(page))
594                         goto keep;
595
596                 VM_BUG_ON(PageActive(page));
597
598                 sc->nr_scanned++;
599
600                 if (unlikely(!page_evictable(page, NULL)))
601                         goto cull_mlocked;
602
603                 if (!sc->may_swap && page_mapped(page))
604                         goto keep_locked;
605
606                 /* Double the slab pressure for mapped and swapcache pages */
607                 if (page_mapped(page) || PageSwapCache(page))
608                         sc->nr_scanned++;
609
610                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
611                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
612
613                 if (PageWriteback(page)) {
614                         /*
615                          * Synchronous reclaim is performed in two passes,
616                          * first an asynchronous pass over the list to
617                          * start parallel writeback, and a second synchronous
618                          * pass to wait for the IO to complete.  Wait here
619                          * for any page for which writeback has already
620                          * started.
621                          */
622                         if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
623                                 wait_on_page_writeback(page);
624                         else
625                                 goto keep_locked;
626                 }
627
628                 referenced = page_referenced(page, 1, sc->mem_cgroup);
629                 /* In active use or really unfreeable?  Activate it. */
630                 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
631                                         referenced && page_mapping_inuse(page))
632                         goto activate_locked;
633
634                 /*
635                  * Anonymous process memory has backing store?
636                  * Try to allocate it some swap space here.
637                  */
638                 if (PageAnon(page) && !PageSwapCache(page)) {
639                         if (!(sc->gfp_mask & __GFP_IO))
640                                 goto keep_locked;
641                         if (!add_to_swap(page))
642                                 goto activate_locked;
643                         may_enter_fs = 1;
644                 }
645
646                 mapping = page_mapping(page);
647
648                 /*
649                  * The page is mapped into the page tables of one or more
650                  * processes. Try to unmap it here.
651                  */
652                 if (page_mapped(page) && mapping) {
653                         switch (try_to_unmap(page, 0)) {
654                         case SWAP_FAIL:
655                                 goto activate_locked;
656                         case SWAP_AGAIN:
657                                 goto keep_locked;
658                         case SWAP_MLOCK:
659                                 goto cull_mlocked;
660                         case SWAP_SUCCESS:
661                                 ; /* try to free the page below */
662                         }
663                 }
664
665                 if (PageDirty(page)) {
666                         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
667                                 goto keep_locked;
668                         if (!may_enter_fs)
669                                 goto keep_locked;
670                         if (!sc->may_writepage)
671                                 goto keep_locked;
672
673                         /* Page is dirty, try to write it out here */
674                         switch (pageout(page, mapping, sync_writeback)) {
675                         case PAGE_KEEP:
676                                 goto keep_locked;
677                         case PAGE_ACTIVATE:
678                                 goto activate_locked;
679                         case PAGE_SUCCESS:
680                                 if (PageWriteback(page) || PageDirty(page))
681                                         goto keep;
682                                 /*
683                                  * A synchronous write - probably a ramdisk.  Go
684                                  * ahead and try to reclaim the page.
685                                  */
686                                 if (!trylock_page(page))
687                                         goto keep;
688                                 if (PageDirty(page) || PageWriteback(page))
689                                         goto keep_locked;
690                                 mapping = page_mapping(page);
691                         case PAGE_CLEAN:
692                                 ; /* try to free the page below */
693                         }
694                 }
695
696                 /*
697                  * If the page has buffers, try to free the buffer mappings
698                  * associated with this page. If we succeed we try to free
699                  * the page as well.
700                  *
701                  * We do this even if the page is PageDirty().
702                  * try_to_release_page() does not perform I/O, but it is
703                  * possible for a page to have PageDirty set, but it is actually
704                  * clean (all its buffers are clean).  This happens if the
705                  * buffers were written out directly, with submit_bh(). ext3
706                  * will do this, as well as the blockdev mapping.
707                  * try_to_release_page() will discover that cleanness and will
708                  * drop the buffers and mark the page clean - it can be freed.
709                  *
710                  * Rarely, pages can have buffers and no ->mapping.  These are
711                  * the pages which were not successfully invalidated in
712                  * truncate_complete_page().  We try to drop those buffers here
713                  * and if that worked, and the page is no longer mapped into
714                  * process address space (page_count == 1) it can be freed.
715                  * Otherwise, leave the page on the LRU so it is swappable.
716                  */
717                 if (PagePrivate(page)) {
718                         if (!try_to_release_page(page, sc->gfp_mask))
719                                 goto activate_locked;
720                         if (!mapping && page_count(page) == 1) {
721                                 unlock_page(page);
722                                 if (put_page_testzero(page))
723                                         goto free_it;
724                                 else {
725                                         /*
726                                          * rare race with speculative reference.
727                                          * the speculative reference will free
728                                          * this page shortly, so we may
729                                          * increment nr_reclaimed here (and
730                                          * leave it off the LRU).
731                                          */
732                                         nr_reclaimed++;
733                                         continue;
734                                 }
735                         }
736                 }
737
738                 if (!mapping || !__remove_mapping(mapping, page))
739                         goto keep_locked;
740
741                 /*
742                  * At this point, we have no other references and there is
743                  * no way to pick any more up (removed from LRU, removed
744                  * from pagecache). Can use non-atomic bitops now (and
745                  * we obviously don't have to worry about waking up a process
746                  * waiting on the page lock, because there are no references.
747                  */
748                 __clear_page_locked(page);
749 free_it:
750                 nr_reclaimed++;
751                 if (!pagevec_add(&freed_pvec, page)) {
752                         __pagevec_free(&freed_pvec);
753                         pagevec_reinit(&freed_pvec);
754                 }
755                 continue;
756
757 cull_mlocked:
758                 if (PageSwapCache(page))
759                         try_to_free_swap(page);
760                 unlock_page(page);
761                 putback_lru_page(page);
762                 continue;
763
764 activate_locked:
765                 /* Not a candidate for swapping, so reclaim swap space. */
766                 if (PageSwapCache(page) && vm_swap_full())
767                         try_to_free_swap(page);
768                 VM_BUG_ON(PageActive(page));
769                 SetPageActive(page);
770                 pgactivate++;
771 keep_locked:
772                 unlock_page(page);
773 keep:
774                 list_add(&page->lru, &ret_pages);
775                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
776         }
777         list_splice(&ret_pages, page_list);
778         if (pagevec_count(&freed_pvec))
779                 __pagevec_free(&freed_pvec);
780         count_vm_events(PGACTIVATE, pgactivate);
781         return nr_reclaimed;
782 }
783
784 /* LRU Isolation modes. */
785 #define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
786 #define ISOLATE_ACTIVE 1        /* Isolate active pages. */
787 #define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
788
789 /*
790  * Attempt to remove the specified page from its LRU.  Only take this page
791  * if it is of the appropriate PageActive status.  Pages which are being
792  * freed elsewhere are also ignored.
793  *
794  * page:        page to consider
795  * mode:        one of the LRU isolation modes defined above
796  *
797  * returns 0 on success, -ve errno on failure.
798  */
799 int __isolate_lru_page(struct page *page, int mode, int file)
800 {
801         int ret = -EINVAL;
802
803         /* Only take pages on the LRU. */
804         if (!PageLRU(page))
805                 return ret;
806
807         /*
808          * When checking the active state, we need to be sure we are
809          * dealing with comparible boolean values.  Take the logical not
810          * of each.
811          */
812         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
813                 return ret;
814
815         if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
816                 return ret;
817
818         /*
819          * When this function is being called for lumpy reclaim, we
820          * initially look into all LRU pages, active, inactive and
821          * unevictable; only give shrink_page_list evictable pages.
822          */
823         if (PageUnevictable(page))
824                 return ret;
825
826         ret = -EBUSY;
827
828         if (likely(get_page_unless_zero(page))) {
829                 /*
830                  * Be careful not to clear PageLRU until after we're
831                  * sure the page is not being freed elsewhere -- the
832                  * page release code relies on it.
833                  */
834                 ClearPageLRU(page);
835                 ret = 0;
836                 mem_cgroup_del_lru(page);
837         }
838
839         return ret;
840 }
841
842 /*
843  * zone->lru_lock is heavily contended.  Some of the functions that
844  * shrink the lists perform better by taking out a batch of pages
845  * and working on them outside the LRU lock.
846  *
847  * For pagecache intensive workloads, this function is the hottest
848  * spot in the kernel (apart from copy_*_user functions).
849  *
850  * Appropriate locks must be held before calling this function.
851  *
852  * @nr_to_scan: The number of pages to look through on the list.
853  * @src:        The LRU list to pull pages off.
854  * @dst:        The temp list to put pages on to.
855  * @scanned:    The number of pages that were scanned.
856  * @order:      The caller's attempted allocation order
857  * @mode:       One of the LRU isolation modes
858  * @file:       True [1] if isolating file [!anon] pages
859  *
860  * returns how many pages were moved onto *@dst.
861  */
862 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
863                 struct list_head *src, struct list_head *dst,
864                 unsigned long *scanned, int order, int mode, int file)
865 {
866         unsigned long nr_taken = 0;
867         unsigned long scan;
868
869         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
870                 struct page *page;
871                 unsigned long pfn;
872                 unsigned long end_pfn;
873                 unsigned long page_pfn;
874                 int zone_id;
875
876                 page = lru_to_page(src);
877                 prefetchw_prev_lru_page(page, src, flags);
878
879                 VM_BUG_ON(!PageLRU(page));
880
881                 switch (__isolate_lru_page(page, mode, file)) {
882                 case 0:
883                         list_move(&page->lru, dst);
884                         nr_taken++;
885                         break;
886
887                 case -EBUSY:
888                         /* else it is being freed elsewhere */
889                         list_move(&page->lru, src);
890                         continue;
891
892                 default:
893                         BUG();
894                 }
895
896                 if (!order)
897                         continue;
898
899                 /*
900                  * Attempt to take all pages in the order aligned region
901                  * surrounding the tag page.  Only take those pages of
902                  * the same active state as that tag page.  We may safely
903                  * round the target page pfn down to the requested order
904                  * as the mem_map is guarenteed valid out to MAX_ORDER,
905                  * where that page is in a different zone we will detect
906                  * it from its zone id and abort this block scan.
907                  */
908                 zone_id = page_zone_id(page);
909                 page_pfn = page_to_pfn(page);
910                 pfn = page_pfn & ~((1 << order) - 1);
911                 end_pfn = pfn + (1 << order);
912                 for (; pfn < end_pfn; pfn++) {
913                         struct page *cursor_page;
914
915                         /* The target page is in the block, ignore it. */
916                         if (unlikely(pfn == page_pfn))
917                                 continue;
918
919                         /* Avoid holes within the zone. */
920                         if (unlikely(!pfn_valid_within(pfn)))
921                                 break;
922
923                         cursor_page = pfn_to_page(pfn);
924
925                         /* Check that we have not crossed a zone boundary. */
926                         if (unlikely(page_zone_id(cursor_page) != zone_id))
927                                 continue;
928                         switch (__isolate_lru_page(cursor_page, mode, file)) {
929                         case 0:
930                                 list_move(&cursor_page->lru, dst);
931                                 nr_taken++;
932                                 scan++;
933                                 break;
934
935                         case -EBUSY:
936                                 /* else it is being freed elsewhere */
937                                 list_move(&cursor_page->lru, src);
938                         default:
939                                 break;  /* ! on LRU or wrong list */
940                         }
941                 }
942         }
943
944         *scanned = scan;
945         return nr_taken;
946 }
947
948 static unsigned long isolate_pages_global(unsigned long nr,
949                                         struct list_head *dst,
950                                         unsigned long *scanned, int order,
951                                         int mode, struct zone *z,
952                                         struct mem_cgroup *mem_cont,
953                                         int active, int file)
954 {
955         int lru = LRU_BASE;
956         if (active)
957                 lru += LRU_ACTIVE;
958         if (file)
959                 lru += LRU_FILE;
960         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
961                                                                 mode, !!file);
962 }
963
964 /*
965  * clear_active_flags() is a helper for shrink_active_list(), clearing
966  * any active bits from the pages in the list.
967  */
968 static unsigned long clear_active_flags(struct list_head *page_list,
969                                         unsigned int *count)
970 {
971         int nr_active = 0;
972         int lru;
973         struct page *page;
974
975         list_for_each_entry(page, page_list, lru) {
976                 lru = page_is_file_cache(page);
977                 if (PageActive(page)) {
978                         lru += LRU_ACTIVE;
979                         ClearPageActive(page);
980                         nr_active++;
981                 }
982                 count[lru]++;
983         }
984
985         return nr_active;
986 }
987
988 /**
989  * isolate_lru_page - tries to isolate a page from its LRU list
990  * @page: page to isolate from its LRU list
991  *
992  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
993  * vmstat statistic corresponding to whatever LRU list the page was on.
994  *
995  * Returns 0 if the page was removed from an LRU list.
996  * Returns -EBUSY if the page was not on an LRU list.
997  *
998  * The returned page will have PageLRU() cleared.  If it was found on
999  * the active list, it will have PageActive set.  If it was found on
1000  * the unevictable list, it will have the PageUnevictable bit set. That flag
1001  * may need to be cleared by the caller before letting the page go.
1002  *
1003  * The vmstat statistic corresponding to the list on which the page was
1004  * found will be decremented.
1005  *
1006  * Restrictions:
1007  * (1) Must be called with an elevated refcount on the page. This is a
1008  *     fundamentnal difference from isolate_lru_pages (which is called
1009  *     without a stable reference).
1010  * (2) the lru_lock must not be held.
1011  * (3) interrupts must be enabled.
1012  */
1013 int isolate_lru_page(struct page *page)
1014 {
1015         int ret = -EBUSY;
1016
1017         if (PageLRU(page)) {
1018                 struct zone *zone = page_zone(page);
1019
1020                 spin_lock_irq(&zone->lru_lock);
1021                 if (PageLRU(page) && get_page_unless_zero(page)) {
1022                         int lru = page_lru(page);
1023                         ret = 0;
1024                         ClearPageLRU(page);
1025
1026                         del_page_from_lru_list(zone, page, lru);
1027                 }
1028                 spin_unlock_irq(&zone->lru_lock);
1029         }
1030         return ret;
1031 }
1032
1033 /*
1034  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1035  * of reclaimed pages
1036  */
1037 static unsigned long shrink_inactive_list(unsigned long max_scan,
1038                         struct zone *zone, struct scan_control *sc,
1039                         int priority, int file)
1040 {
1041         LIST_HEAD(page_list);
1042         struct pagevec pvec;
1043         unsigned long nr_scanned = 0;
1044         unsigned long nr_reclaimed = 0;
1045         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1046
1047         pagevec_init(&pvec, 1);
1048
1049         lru_add_drain();
1050         spin_lock_irq(&zone->lru_lock);
1051         do {
1052                 struct page *page;
1053                 unsigned long nr_taken;
1054                 unsigned long nr_scan;
1055                 unsigned long nr_freed;
1056                 unsigned long nr_active;
1057                 unsigned int count[NR_LRU_LISTS] = { 0, };
1058                 int mode = ISOLATE_INACTIVE;
1059
1060                 /*
1061                  * If we need a large contiguous chunk of memory, or have
1062                  * trouble getting a small set of contiguous pages, we
1063                  * will reclaim both active and inactive pages.
1064                  *
1065                  * We use the same threshold as pageout congestion_wait below.
1066                  */
1067                 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1068                         mode = ISOLATE_BOTH;
1069                 else if (sc->order && priority < DEF_PRIORITY - 2)
1070                         mode = ISOLATE_BOTH;
1071
1072                 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1073                              &page_list, &nr_scan, sc->order, mode,
1074                                 zone, sc->mem_cgroup, 0, file);
1075                 nr_active = clear_active_flags(&page_list, count);
1076                 __count_vm_events(PGDEACTIVATE, nr_active);
1077
1078                 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1079                                                 -count[LRU_ACTIVE_FILE]);
1080                 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1081                                                 -count[LRU_INACTIVE_FILE]);
1082                 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1083                                                 -count[LRU_ACTIVE_ANON]);
1084                 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1085                                                 -count[LRU_INACTIVE_ANON]);
1086
1087                 if (scan_global_lru(sc)) {
1088                         zone->pages_scanned += nr_scan;
1089                         reclaim_stat->recent_scanned[0] +=
1090                                                       count[LRU_INACTIVE_ANON];
1091                         reclaim_stat->recent_scanned[0] +=
1092                                                       count[LRU_ACTIVE_ANON];
1093                         reclaim_stat->recent_scanned[1] +=
1094                                                       count[LRU_INACTIVE_FILE];
1095                         reclaim_stat->recent_scanned[1] +=
1096                                                       count[LRU_ACTIVE_FILE];
1097                 }
1098                 spin_unlock_irq(&zone->lru_lock);
1099
1100                 nr_scanned += nr_scan;
1101                 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1102
1103                 /*
1104                  * If we are direct reclaiming for contiguous pages and we do
1105                  * not reclaim everything in the list, try again and wait
1106                  * for IO to complete. This will stall high-order allocations
1107                  * but that should be acceptable to the caller
1108                  */
1109                 if (nr_freed < nr_taken && !current_is_kswapd() &&
1110                                         sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1111                         congestion_wait(WRITE, HZ/10);
1112
1113                         /*
1114                          * The attempt at page out may have made some
1115                          * of the pages active, mark them inactive again.
1116                          */
1117                         nr_active = clear_active_flags(&page_list, count);
1118                         count_vm_events(PGDEACTIVATE, nr_active);
1119
1120                         nr_freed += shrink_page_list(&page_list, sc,
1121                                                         PAGEOUT_IO_SYNC);
1122                 }
1123
1124                 nr_reclaimed += nr_freed;
1125                 local_irq_disable();
1126                 if (current_is_kswapd()) {
1127                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1128                         __count_vm_events(KSWAPD_STEAL, nr_freed);
1129                 } else if (scan_global_lru(sc))
1130                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1131
1132                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1133
1134                 if (nr_taken == 0)
1135                         goto done;
1136
1137                 spin_lock(&zone->lru_lock);
1138                 /*
1139                  * Put back any unfreeable pages.
1140                  */
1141                 while (!list_empty(&page_list)) {
1142                         int lru;
1143                         page = lru_to_page(&page_list);
1144                         VM_BUG_ON(PageLRU(page));
1145                         list_del(&page->lru);
1146                         if (unlikely(!page_evictable(page, NULL))) {
1147                                 spin_unlock_irq(&zone->lru_lock);
1148                                 putback_lru_page(page);
1149                                 spin_lock_irq(&zone->lru_lock);
1150                                 continue;
1151                         }
1152                         SetPageLRU(page);
1153                         lru = page_lru(page);
1154                         add_page_to_lru_list(zone, page, lru);
1155                         if (PageActive(page) && scan_global_lru(sc)) {
1156                                 int file = !!page_is_file_cache(page);
1157                                 reclaim_stat->recent_rotated[file]++;
1158                         }
1159                         if (!pagevec_add(&pvec, page)) {
1160                                 spin_unlock_irq(&zone->lru_lock);
1161                                 __pagevec_release(&pvec);
1162                                 spin_lock_irq(&zone->lru_lock);
1163                         }
1164                 }
1165         } while (nr_scanned < max_scan);
1166         spin_unlock(&zone->lru_lock);
1167 done:
1168         local_irq_enable();
1169         pagevec_release(&pvec);
1170         return nr_reclaimed;
1171 }
1172
1173 /*
1174  * We are about to scan this zone at a certain priority level.  If that priority
1175  * level is smaller (ie: more urgent) than the previous priority, then note
1176  * that priority level within the zone.  This is done so that when the next
1177  * process comes in to scan this zone, it will immediately start out at this
1178  * priority level rather than having to build up its own scanning priority.
1179  * Here, this priority affects only the reclaim-mapped threshold.
1180  */
1181 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1182 {
1183         if (priority < zone->prev_priority)
1184                 zone->prev_priority = priority;
1185 }
1186
1187 /*
1188  * This moves pages from the active list to the inactive list.
1189  *
1190  * We move them the other way if the page is referenced by one or more
1191  * processes, from rmap.
1192  *
1193  * If the pages are mostly unmapped, the processing is fast and it is
1194  * appropriate to hold zone->lru_lock across the whole operation.  But if
1195  * the pages are mapped, the processing is slow (page_referenced()) so we
1196  * should drop zone->lru_lock around each page.  It's impossible to balance
1197  * this, so instead we remove the pages from the LRU while processing them.
1198  * It is safe to rely on PG_active against the non-LRU pages in here because
1199  * nobody will play with that bit on a non-LRU page.
1200  *
1201  * The downside is that we have to touch page->_count against each page.
1202  * But we had to alter page->flags anyway.
1203  */
1204
1205
1206 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1207                         struct scan_control *sc, int priority, int file)
1208 {
1209         unsigned long pgmoved;
1210         int pgdeactivate = 0;
1211         unsigned long pgscanned;
1212         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1213         LIST_HEAD(l_inactive);
1214         struct page *page;
1215         struct pagevec pvec;
1216         enum lru_list lru;
1217         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1218
1219         lru_add_drain();
1220         spin_lock_irq(&zone->lru_lock);
1221         pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1222                                         ISOLATE_ACTIVE, zone,
1223                                         sc->mem_cgroup, 1, file);
1224         /*
1225          * zone->pages_scanned is used for detect zone's oom
1226          * mem_cgroup remembers nr_scan by itself.
1227          */
1228         if (scan_global_lru(sc)) {
1229                 zone->pages_scanned += pgscanned;
1230                 reclaim_stat->recent_scanned[!!file] += pgmoved;
1231         }
1232
1233         if (file)
1234                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1235         else
1236                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1237         spin_unlock_irq(&zone->lru_lock);
1238
1239         pgmoved = 0;
1240         while (!list_empty(&l_hold)) {
1241                 cond_resched();
1242                 page = lru_to_page(&l_hold);
1243                 list_del(&page->lru);
1244
1245                 if (unlikely(!page_evictable(page, NULL))) {
1246                         putback_lru_page(page);
1247                         continue;
1248                 }
1249
1250                 /* page_referenced clears PageReferenced */
1251                 if (page_mapping_inuse(page) &&
1252                     page_referenced(page, 0, sc->mem_cgroup))
1253                         pgmoved++;
1254
1255                 list_add(&page->lru, &l_inactive);
1256         }
1257
1258         /*
1259          * Move the pages to the [file or anon] inactive list.
1260          */
1261         pagevec_init(&pvec, 1);
1262         pgmoved = 0;
1263         lru = LRU_BASE + file * LRU_FILE;
1264
1265         spin_lock_irq(&zone->lru_lock);
1266         /*
1267          * Count referenced pages from currently used mappings as
1268          * rotated, even though they are moved to the inactive list.
1269          * This helps balance scan pressure between file and anonymous
1270          * pages in get_scan_ratio.
1271          */
1272         if (scan_global_lru(sc))
1273                 reclaim_stat->recent_rotated[!!file] += pgmoved;
1274
1275         while (!list_empty(&l_inactive)) {
1276                 page = lru_to_page(&l_inactive);
1277                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1278                 VM_BUG_ON(PageLRU(page));
1279                 SetPageLRU(page);
1280                 VM_BUG_ON(!PageActive(page));
1281                 ClearPageActive(page);
1282
1283                 list_move(&page->lru, &zone->lru[lru].list);
1284                 mem_cgroup_add_lru_list(page, lru);
1285                 pgmoved++;
1286                 if (!pagevec_add(&pvec, page)) {
1287                         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1288                         spin_unlock_irq(&zone->lru_lock);
1289                         pgdeactivate += pgmoved;
1290                         pgmoved = 0;
1291                         if (buffer_heads_over_limit)
1292                                 pagevec_strip(&pvec);
1293                         __pagevec_release(&pvec);
1294                         spin_lock_irq(&zone->lru_lock);
1295                 }
1296         }
1297         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1298         pgdeactivate += pgmoved;
1299         if (buffer_heads_over_limit) {
1300                 spin_unlock_irq(&zone->lru_lock);
1301                 pagevec_strip(&pvec);
1302                 spin_lock_irq(&zone->lru_lock);
1303         }
1304         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1305         __count_vm_events(PGDEACTIVATE, pgdeactivate);
1306         spin_unlock_irq(&zone->lru_lock);
1307         if (vm_swap_full())
1308                 pagevec_swap_free(&pvec);
1309
1310         pagevec_release(&pvec);
1311 }
1312
1313 /**
1314  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1315  * @zone: zone to check
1316  *
1317  * Returns true if the zone does not have enough inactive anon pages,
1318  * meaning some active anon pages need to be deactivated.
1319  */
1320 static int inactive_anon_is_low(struct zone *zone)
1321 {
1322         unsigned long active, inactive;
1323
1324         active = zone_page_state(zone, NR_ACTIVE_ANON);
1325         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1326
1327         if (inactive * zone->inactive_ratio < active)
1328                 return 1;
1329
1330         return 0;
1331 }
1332
1333 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1334         struct zone *zone, struct scan_control *sc, int priority)
1335 {
1336         int file = is_file_lru(lru);
1337
1338         if (lru == LRU_ACTIVE_FILE) {
1339                 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1340                 return 0;
1341         }
1342
1343         if (lru == LRU_ACTIVE_ANON &&
1344             (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1345                 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1346                 return 0;
1347         }
1348         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1349 }
1350
1351 /*
1352  * Determine how aggressively the anon and file LRU lists should be
1353  * scanned.  The relative value of each set of LRU lists is determined
1354  * by looking at the fraction of the pages scanned we did rotate back
1355  * onto the active list instead of evict.
1356  *
1357  * percent[0] specifies how much pressure to put on ram/swap backed
1358  * memory, while percent[1] determines pressure on the file LRUs.
1359  */
1360 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1361                                         unsigned long *percent)
1362 {
1363         unsigned long anon, file, free;
1364         unsigned long anon_prio, file_prio;
1365         unsigned long ap, fp;
1366         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1367
1368         /* If we have no swap space, do not bother scanning anon pages. */
1369         if (nr_swap_pages <= 0) {
1370                 percent[0] = 0;
1371                 percent[1] = 100;
1372                 return;
1373         }
1374
1375         anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1376                 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1377         file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1378                 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1379
1380         if (scan_global_lru(sc)) {
1381                 free  = zone_page_state(zone, NR_FREE_PAGES);
1382                 /* If we have very few page cache pages,
1383                    force-scan anon pages. */
1384                 if (unlikely(file + free <= zone->pages_high)) {
1385                         percent[0] = 100;
1386                         percent[1] = 0;
1387                         return;
1388                 }
1389         }
1390
1391         /*
1392          * OK, so we have swap space and a fair amount of page cache
1393          * pages.  We use the recently rotated / recently scanned
1394          * ratios to determine how valuable each cache is.
1395          *
1396          * Because workloads change over time (and to avoid overflow)
1397          * we keep these statistics as a floating average, which ends
1398          * up weighing recent references more than old ones.
1399          *
1400          * anon in [0], file in [1]
1401          */
1402         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1403                 spin_lock_irq(&zone->lru_lock);
1404                 reclaim_stat->recent_scanned[0] /= 2;
1405                 reclaim_stat->recent_rotated[0] /= 2;
1406                 spin_unlock_irq(&zone->lru_lock);
1407         }
1408
1409         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1410                 spin_lock_irq(&zone->lru_lock);
1411                 reclaim_stat->recent_scanned[1] /= 2;
1412                 reclaim_stat->recent_rotated[1] /= 2;
1413                 spin_unlock_irq(&zone->lru_lock);
1414         }
1415
1416         /*
1417          * With swappiness at 100, anonymous and file have the same priority.
1418          * This scanning priority is essentially the inverse of IO cost.
1419          */
1420         anon_prio = sc->swappiness;
1421         file_prio = 200 - sc->swappiness;
1422
1423         /*
1424          * The amount of pressure on anon vs file pages is inversely
1425          * proportional to the fraction of recently scanned pages on
1426          * each list that were recently referenced and in active use.
1427          */
1428         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1429         ap /= reclaim_stat->recent_rotated[0] + 1;
1430
1431         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1432         fp /= reclaim_stat->recent_rotated[1] + 1;
1433
1434         /* Normalize to percentages */
1435         percent[0] = 100 * ap / (ap + fp + 1);
1436         percent[1] = 100 - percent[0];
1437 }
1438
1439
1440 /*
1441  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1442  */
1443 static void shrink_zone(int priority, struct zone *zone,
1444                                 struct scan_control *sc)
1445 {
1446         unsigned long nr[NR_LRU_LISTS];
1447         unsigned long nr_to_scan;
1448         unsigned long percent[2];       /* anon @ 0; file @ 1 */
1449         enum lru_list l;
1450         unsigned long nr_reclaimed = sc->nr_reclaimed;
1451         unsigned long swap_cluster_max = sc->swap_cluster_max;
1452
1453         get_scan_ratio(zone, sc, percent);
1454
1455         for_each_evictable_lru(l) {
1456                 if (scan_global_lru(sc)) {
1457                         int file = is_file_lru(l);
1458                         int scan;
1459
1460                         scan = zone_page_state(zone, NR_LRU_BASE + l);
1461                         if (priority) {
1462                                 scan >>= priority;
1463                                 scan = (scan * percent[file]) / 100;
1464                         }
1465                         zone->lru[l].nr_scan += scan;
1466                         nr[l] = zone->lru[l].nr_scan;
1467                         if (nr[l] >= swap_cluster_max)
1468                                 zone->lru[l].nr_scan = 0;
1469                         else
1470                                 nr[l] = 0;
1471                 } else {
1472                         /*
1473                          * This reclaim occurs not because zone memory shortage
1474                          * but because memory controller hits its limit.
1475                          * Don't modify zone reclaim related data.
1476                          */
1477                         nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1478                                                                 priority, l);
1479                 }
1480         }
1481
1482         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1483                                         nr[LRU_INACTIVE_FILE]) {
1484                 for_each_evictable_lru(l) {
1485                         if (nr[l]) {
1486                                 nr_to_scan = min(nr[l], swap_cluster_max);
1487                                 nr[l] -= nr_to_scan;
1488
1489                                 nr_reclaimed += shrink_list(l, nr_to_scan,
1490                                                             zone, sc, priority);
1491                         }
1492                 }
1493                 /*
1494                  * On large memory systems, scan >> priority can become
1495                  * really large. This is fine for the starting priority;
1496                  * we want to put equal scanning pressure on each zone.
1497                  * However, if the VM has a harder time of freeing pages,
1498                  * with multiple processes reclaiming pages, the total
1499                  * freeing target can get unreasonably large.
1500                  */
1501                 if (nr_reclaimed > swap_cluster_max &&
1502                         priority < DEF_PRIORITY && !current_is_kswapd())
1503                         break;
1504         }
1505
1506         sc->nr_reclaimed = nr_reclaimed;
1507
1508         /*
1509          * Even if we did not try to evict anon pages at all, we want to
1510          * rebalance the anon lru active/inactive ratio.
1511          */
1512         if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1513                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1514         else if (!scan_global_lru(sc))
1515                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1516
1517         throttle_vm_writeout(sc->gfp_mask);
1518 }
1519
1520 /*
1521  * This is the direct reclaim path, for page-allocating processes.  We only
1522  * try to reclaim pages from zones which will satisfy the caller's allocation
1523  * request.
1524  *
1525  * We reclaim from a zone even if that zone is over pages_high.  Because:
1526  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1527  *    allocation or
1528  * b) The zones may be over pages_high but they must go *over* pages_high to
1529  *    satisfy the `incremental min' zone defense algorithm.
1530  *
1531  * If a zone is deemed to be full of pinned pages then just give it a light
1532  * scan then give up on it.
1533  */
1534 static void shrink_zones(int priority, struct zonelist *zonelist,
1535                                         struct scan_control *sc)
1536 {
1537         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1538         struct zoneref *z;
1539         struct zone *zone;
1540
1541         sc->all_unreclaimable = 1;
1542         for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1543                 if (!populated_zone(zone))
1544                         continue;
1545                 /*
1546                  * Take care memory controller reclaiming has small influence
1547                  * to global LRU.
1548                  */
1549                 if (scan_global_lru(sc)) {
1550                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1551                                 continue;
1552                         note_zone_scanning_priority(zone, priority);
1553
1554                         if (zone_is_all_unreclaimable(zone) &&
1555                                                 priority != DEF_PRIORITY)
1556                                 continue;       /* Let kswapd poll it */
1557                         sc->all_unreclaimable = 0;
1558                 } else {
1559                         /*
1560                          * Ignore cpuset limitation here. We just want to reduce
1561                          * # of used pages by us regardless of memory shortage.
1562                          */
1563                         sc->all_unreclaimable = 0;
1564                         mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1565                                                         priority);
1566                 }
1567
1568                 shrink_zone(priority, zone, sc);
1569         }
1570 }
1571
1572 /*
1573  * This is the main entry point to direct page reclaim.
1574  *
1575  * If a full scan of the inactive list fails to free enough memory then we
1576  * are "out of memory" and something needs to be killed.
1577  *
1578  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1579  * high - the zone may be full of dirty or under-writeback pages, which this
1580  * caller can't do much about.  We kick pdflush and take explicit naps in the
1581  * hope that some of these pages can be written.  But if the allocating task
1582  * holds filesystem locks which prevent writeout this might not work, and the
1583  * allocation attempt will fail.
1584  *
1585  * returns:     0, if no pages reclaimed
1586  *              else, the number of pages reclaimed
1587  */
1588 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1589                                         struct scan_control *sc)
1590 {
1591         int priority;
1592         unsigned long ret = 0;
1593         unsigned long total_scanned = 0;
1594         struct reclaim_state *reclaim_state = current->reclaim_state;
1595         unsigned long lru_pages = 0;
1596         struct zoneref *z;
1597         struct zone *zone;
1598         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1599
1600         delayacct_freepages_start();
1601
1602         if (scan_global_lru(sc))
1603                 count_vm_event(ALLOCSTALL);
1604         /*
1605          * mem_cgroup will not do shrink_slab.
1606          */
1607         if (scan_global_lru(sc)) {
1608                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1609
1610                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1611                                 continue;
1612
1613                         lru_pages += zone_lru_pages(zone);
1614                 }
1615         }
1616
1617         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1618                 sc->nr_scanned = 0;
1619                 if (!priority)
1620                         disable_swap_token();
1621                 shrink_zones(priority, zonelist, sc);
1622                 /*
1623                  * Don't shrink slabs when reclaiming memory from
1624                  * over limit cgroups
1625                  */
1626                 if (scan_global_lru(sc)) {
1627                         shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1628                         if (reclaim_state) {
1629                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1630                                 reclaim_state->reclaimed_slab = 0;
1631                         }
1632                 }
1633                 total_scanned += sc->nr_scanned;
1634                 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1635                         ret = sc->nr_reclaimed;
1636                         goto out;
1637                 }
1638
1639                 /*
1640                  * Try to write back as many pages as we just scanned.  This
1641                  * tends to cause slow streaming writers to write data to the
1642                  * disk smoothly, at the dirtying rate, which is nice.   But
1643                  * that's undesirable in laptop mode, where we *want* lumpy
1644                  * writeout.  So in laptop mode, write out the whole world.
1645                  */
1646                 if (total_scanned > sc->swap_cluster_max +
1647                                         sc->swap_cluster_max / 2) {
1648                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1649                         sc->may_writepage = 1;
1650                 }
1651
1652                 /* Take a nap, wait for some writeback to complete */
1653                 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1654                         congestion_wait(WRITE, HZ/10);
1655         }
1656         /* top priority shrink_zones still had more to do? don't OOM, then */
1657         if (!sc->all_unreclaimable && scan_global_lru(sc))
1658                 ret = sc->nr_reclaimed;
1659 out:
1660         /*
1661          * Now that we've scanned all the zones at this priority level, note
1662          * that level within the zone so that the next thread which performs
1663          * scanning of this zone will immediately start out at this priority
1664          * level.  This affects only the decision whether or not to bring
1665          * mapped pages onto the inactive list.
1666          */
1667         if (priority < 0)
1668                 priority = 0;
1669
1670         if (scan_global_lru(sc)) {
1671                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1672
1673                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1674                                 continue;
1675
1676                         zone->prev_priority = priority;
1677                 }
1678         } else
1679                 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1680
1681         delayacct_freepages_end();
1682
1683         return ret;
1684 }
1685
1686 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1687                                                                 gfp_t gfp_mask)
1688 {
1689         struct scan_control sc = {
1690                 .gfp_mask = gfp_mask,
1691                 .may_writepage = !laptop_mode,
1692                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1693                 .may_swap = 1,
1694                 .swappiness = vm_swappiness,
1695                 .order = order,
1696                 .mem_cgroup = NULL,
1697                 .isolate_pages = isolate_pages_global,
1698         };
1699
1700         return do_try_to_free_pages(zonelist, &sc);
1701 }
1702
1703 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1704
1705 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1706                                                 gfp_t gfp_mask,
1707                                            bool noswap)
1708 {
1709         struct scan_control sc = {
1710                 .may_writepage = !laptop_mode,
1711                 .may_swap = 1,
1712                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1713                 .swappiness = vm_swappiness,
1714                 .order = 0,
1715                 .mem_cgroup = mem_cont,
1716                 .isolate_pages = mem_cgroup_isolate_pages,
1717         };
1718         struct zonelist *zonelist;
1719
1720         if (noswap)
1721                 sc.may_swap = 0;
1722
1723         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1724                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1725         zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1726         return do_try_to_free_pages(zonelist, &sc);
1727 }
1728 #endif
1729
1730 /*
1731  * For kswapd, balance_pgdat() will work across all this node's zones until
1732  * they are all at pages_high.
1733  *
1734  * Returns the number of pages which were actually freed.
1735  *
1736  * There is special handling here for zones which are full of pinned pages.
1737  * This can happen if the pages are all mlocked, or if they are all used by
1738  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1739  * What we do is to detect the case where all pages in the zone have been
1740  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1741  * dead and from now on, only perform a short scan.  Basically we're polling
1742  * the zone for when the problem goes away.
1743  *
1744  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1745  * zones which have free_pages > pages_high, but once a zone is found to have
1746  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1747  * of the number of free pages in the lower zones.  This interoperates with
1748  * the page allocator fallback scheme to ensure that aging of pages is balanced
1749  * across the zones.
1750  */
1751 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1752 {
1753         int all_zones_ok;
1754         int priority;
1755         int i;
1756         unsigned long total_scanned;
1757         struct reclaim_state *reclaim_state = current->reclaim_state;
1758         struct scan_control sc = {
1759                 .gfp_mask = GFP_KERNEL,
1760                 .may_swap = 1,
1761                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1762                 .swappiness = vm_swappiness,
1763                 .order = order,
1764                 .mem_cgroup = NULL,
1765                 .isolate_pages = isolate_pages_global,
1766         };
1767         /*
1768          * temp_priority is used to remember the scanning priority at which
1769          * this zone was successfully refilled to free_pages == pages_high.
1770          */
1771         int temp_priority[MAX_NR_ZONES];
1772
1773 loop_again:
1774         total_scanned = 0;
1775         sc.nr_reclaimed = 0;
1776         sc.may_writepage = !laptop_mode;
1777         count_vm_event(PAGEOUTRUN);
1778
1779         for (i = 0; i < pgdat->nr_zones; i++)
1780                 temp_priority[i] = DEF_PRIORITY;
1781
1782         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1783                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1784                 unsigned long lru_pages = 0;
1785
1786                 /* The swap token gets in the way of swapout... */
1787                 if (!priority)
1788                         disable_swap_token();
1789
1790                 all_zones_ok = 1;
1791
1792                 /*
1793                  * Scan in the highmem->dma direction for the highest
1794                  * zone which needs scanning
1795                  */
1796                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1797                         struct zone *zone = pgdat->node_zones + i;
1798
1799                         if (!populated_zone(zone))
1800                                 continue;
1801
1802                         if (zone_is_all_unreclaimable(zone) &&
1803                             priority != DEF_PRIORITY)
1804                                 continue;
1805
1806                         /*
1807                          * Do some background aging of the anon list, to give
1808                          * pages a chance to be referenced before reclaiming.
1809                          */
1810                         if (inactive_anon_is_low(zone))
1811                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1812                                                         &sc, priority, 0);
1813
1814                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1815                                                0, 0)) {
1816                                 end_zone = i;
1817                                 break;
1818                         }
1819                 }
1820                 if (i < 0)
1821                         goto out;
1822
1823                 for (i = 0; i <= end_zone; i++) {
1824                         struct zone *zone = pgdat->node_zones + i;
1825
1826                         lru_pages += zone_lru_pages(zone);
1827                 }
1828
1829                 /*
1830                  * Now scan the zone in the dma->highmem direction, stopping
1831                  * at the last zone which needs scanning.
1832                  *
1833                  * We do this because the page allocator works in the opposite
1834                  * direction.  This prevents the page allocator from allocating
1835                  * pages behind kswapd's direction of progress, which would
1836                  * cause too much scanning of the lower zones.
1837                  */
1838                 for (i = 0; i <= end_zone; i++) {
1839                         struct zone *zone = pgdat->node_zones + i;
1840                         int nr_slab;
1841
1842                         if (!populated_zone(zone))
1843                                 continue;
1844
1845                         if (zone_is_all_unreclaimable(zone) &&
1846                                         priority != DEF_PRIORITY)
1847                                 continue;
1848
1849                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1850                                                end_zone, 0))
1851                                 all_zones_ok = 0;
1852                         temp_priority[i] = priority;
1853                         sc.nr_scanned = 0;
1854                         note_zone_scanning_priority(zone, priority);
1855                         /*
1856                          * We put equal pressure on every zone, unless one
1857                          * zone has way too many pages free already.
1858                          */
1859                         if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1860                                                 end_zone, 0))
1861                                 shrink_zone(priority, zone, &sc);
1862                         reclaim_state->reclaimed_slab = 0;
1863                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1864                                                 lru_pages);
1865                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1866                         total_scanned += sc.nr_scanned;
1867                         if (zone_is_all_unreclaimable(zone))
1868                                 continue;
1869                         if (nr_slab == 0 && zone->pages_scanned >=
1870                                                 (zone_lru_pages(zone) * 6))
1871                                         zone_set_flag(zone,
1872                                                       ZONE_ALL_UNRECLAIMABLE);
1873                         /*
1874                          * If we've done a decent amount of scanning and
1875                          * the reclaim ratio is low, start doing writepage
1876                          * even in laptop mode
1877                          */
1878                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1879                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1880                                 sc.may_writepage = 1;
1881                 }
1882                 if (all_zones_ok)
1883                         break;          /* kswapd: all done */
1884                 /*
1885                  * OK, kswapd is getting into trouble.  Take a nap, then take
1886                  * another pass across the zones.
1887                  */
1888                 if (total_scanned && priority < DEF_PRIORITY - 2)
1889                         congestion_wait(WRITE, HZ/10);
1890
1891                 /*
1892                  * We do this so kswapd doesn't build up large priorities for
1893                  * example when it is freeing in parallel with allocators. It
1894                  * matches the direct reclaim path behaviour in terms of impact
1895                  * on zone->*_priority.
1896                  */
1897                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1898                         break;
1899         }
1900 out:
1901         /*
1902          * Note within each zone the priority level at which this zone was
1903          * brought into a happy state.  So that the next thread which scans this
1904          * zone will start out at that priority level.
1905          */
1906         for (i = 0; i < pgdat->nr_zones; i++) {
1907                 struct zone *zone = pgdat->node_zones + i;
1908
1909                 zone->prev_priority = temp_priority[i];
1910         }
1911         if (!all_zones_ok) {
1912                 cond_resched();
1913
1914                 try_to_freeze();
1915
1916                 /*
1917                  * Fragmentation may mean that the system cannot be
1918                  * rebalanced for high-order allocations in all zones.
1919                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1920                  * it means the zones have been fully scanned and are still
1921                  * not balanced. For high-order allocations, there is
1922                  * little point trying all over again as kswapd may
1923                  * infinite loop.
1924                  *
1925                  * Instead, recheck all watermarks at order-0 as they
1926                  * are the most important. If watermarks are ok, kswapd will go
1927                  * back to sleep. High-order users can still perform direct
1928                  * reclaim if they wish.
1929                  */
1930                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1931                         order = sc.order = 0;
1932
1933                 goto loop_again;
1934         }
1935
1936         return sc.nr_reclaimed;
1937 }
1938
1939 /*
1940  * The background pageout daemon, started as a kernel thread
1941  * from the init process.
1942  *
1943  * This basically trickles out pages so that we have _some_
1944  * free memory available even if there is no other activity
1945  * that frees anything up. This is needed for things like routing
1946  * etc, where we otherwise might have all activity going on in
1947  * asynchronous contexts that cannot page things out.
1948  *
1949  * If there are applications that are active memory-allocators
1950  * (most normal use), this basically shouldn't matter.
1951  */
1952 static int kswapd(void *p)
1953 {
1954         unsigned long order;
1955         pg_data_t *pgdat = (pg_data_t*)p;
1956         struct task_struct *tsk = current;
1957         DEFINE_WAIT(wait);
1958         struct reclaim_state reclaim_state = {
1959                 .reclaimed_slab = 0,
1960         };
1961         node_to_cpumask_ptr(cpumask, pgdat->node_id);
1962
1963         if (!cpumask_empty(cpumask))
1964                 set_cpus_allowed_ptr(tsk, cpumask);
1965         current->reclaim_state = &reclaim_state;
1966
1967         /*
1968          * Tell the memory management that we're a "memory allocator",
1969          * and that if we need more memory we should get access to it
1970          * regardless (see "__alloc_pages()"). "kswapd" should
1971          * never get caught in the normal page freeing logic.
1972          *
1973          * (Kswapd normally doesn't need memory anyway, but sometimes
1974          * you need a small amount of memory in order to be able to
1975          * page out something else, and this flag essentially protects
1976          * us from recursively trying to free more memory as we're
1977          * trying to free the first piece of memory in the first place).
1978          */
1979         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1980         set_freezable();
1981
1982         order = 0;
1983         for ( ; ; ) {
1984                 unsigned long new_order;
1985
1986                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1987                 new_order = pgdat->kswapd_max_order;
1988                 pgdat->kswapd_max_order = 0;
1989                 if (order < new_order) {
1990                         /*
1991                          * Don't sleep if someone wants a larger 'order'
1992                          * allocation
1993                          */
1994                         order = new_order;
1995                 } else {
1996                         if (!freezing(current))
1997                                 schedule();
1998
1999                         order = pgdat->kswapd_max_order;
2000                 }
2001                 finish_wait(&pgdat->kswapd_wait, &wait);
2002
2003                 if (!try_to_freeze()) {
2004                         /* We can speed up thawing tasks if we don't call
2005                          * balance_pgdat after returning from the refrigerator
2006                          */
2007                         balance_pgdat(pgdat, order);
2008                 }
2009         }
2010         return 0;
2011 }
2012
2013 /*
2014  * A zone is low on free memory, so wake its kswapd task to service it.
2015  */
2016 void wakeup_kswapd(struct zone *zone, int order)
2017 {
2018         pg_data_t *pgdat;
2019
2020         if (!populated_zone(zone))
2021                 return;
2022
2023         pgdat = zone->zone_pgdat;
2024         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2025                 return;
2026         if (pgdat->kswapd_max_order < order)
2027                 pgdat->kswapd_max_order = order;
2028         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2029                 return;
2030         if (!waitqueue_active(&pgdat->kswapd_wait))
2031                 return;
2032         wake_up_interruptible(&pgdat->kswapd_wait);
2033 }
2034
2035 unsigned long global_lru_pages(void)
2036 {
2037         return global_page_state(NR_ACTIVE_ANON)
2038                 + global_page_state(NR_ACTIVE_FILE)
2039                 + global_page_state(NR_INACTIVE_ANON)
2040                 + global_page_state(NR_INACTIVE_FILE);
2041 }
2042
2043 #ifdef CONFIG_PM
2044 /*
2045  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2046  * from LRU lists system-wide, for given pass and priority, and returns the
2047  * number of reclaimed pages
2048  *
2049  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2050  */
2051 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2052                                       int pass, struct scan_control *sc)
2053 {
2054         struct zone *zone;
2055         unsigned long nr_to_scan, ret = 0;
2056         enum lru_list l;
2057
2058         for_each_zone(zone) {
2059
2060                 if (!populated_zone(zone))
2061                         continue;
2062
2063                 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2064                         continue;
2065
2066                 for_each_evictable_lru(l) {
2067                         /* For pass = 0, we don't shrink the active list */
2068                         if (pass == 0 &&
2069                                 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2070                                 continue;
2071
2072                         zone->lru[l].nr_scan +=
2073                                 (zone_page_state(zone, NR_LRU_BASE + l)
2074                                                                 >> prio) + 1;
2075                         if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2076                                 zone->lru[l].nr_scan = 0;
2077                                 nr_to_scan = min(nr_pages,
2078                                         zone_page_state(zone,
2079                                                         NR_LRU_BASE + l));
2080                                 ret += shrink_list(l, nr_to_scan, zone,
2081                                                                 sc, prio);
2082                                 if (ret >= nr_pages)
2083                                         return ret;
2084                         }
2085                 }
2086         }
2087
2088         return ret;
2089 }
2090
2091 /*
2092  * Try to free `nr_pages' of memory, system-wide, and return the number of
2093  * freed pages.
2094  *
2095  * Rather than trying to age LRUs the aim is to preserve the overall
2096  * LRU order by reclaiming preferentially
2097  * inactive > active > active referenced > active mapped
2098  */
2099 unsigned long shrink_all_memory(unsigned long nr_pages)
2100 {
2101         unsigned long lru_pages, nr_slab;
2102         unsigned long ret = 0;
2103         int pass;
2104         struct reclaim_state reclaim_state;
2105         struct scan_control sc = {
2106                 .gfp_mask = GFP_KERNEL,
2107                 .may_swap = 0,
2108                 .swap_cluster_max = nr_pages,
2109                 .may_writepage = 1,
2110                 .swappiness = vm_swappiness,
2111                 .isolate_pages = isolate_pages_global,
2112         };
2113
2114         current->reclaim_state = &reclaim_state;
2115
2116         lru_pages = global_lru_pages();
2117         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2118         /* If slab caches are huge, it's better to hit them first */
2119         while (nr_slab >= lru_pages) {
2120                 reclaim_state.reclaimed_slab = 0;
2121                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2122                 if (!reclaim_state.reclaimed_slab)
2123                         break;
2124
2125                 ret += reclaim_state.reclaimed_slab;
2126                 if (ret >= nr_pages)
2127                         goto out;
2128
2129                 nr_slab -= reclaim_state.reclaimed_slab;
2130         }
2131
2132         /*
2133          * We try to shrink LRUs in 5 passes:
2134          * 0 = Reclaim from inactive_list only
2135          * 1 = Reclaim from active list but don't reclaim mapped
2136          * 2 = 2nd pass of type 1
2137          * 3 = Reclaim mapped (normal reclaim)
2138          * 4 = 2nd pass of type 3
2139          */
2140         for (pass = 0; pass < 5; pass++) {
2141                 int prio;
2142
2143                 /* Force reclaiming mapped pages in the passes #3 and #4 */
2144                 if (pass > 2) {
2145                         sc.may_swap = 1;
2146                         sc.swappiness = 100;
2147                 }
2148
2149                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2150                         unsigned long nr_to_scan = nr_pages - ret;
2151
2152                         sc.nr_scanned = 0;
2153                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2154                         if (ret >= nr_pages)
2155                                 goto out;
2156
2157                         reclaim_state.reclaimed_slab = 0;
2158                         shrink_slab(sc.nr_scanned, sc.gfp_mask,
2159                                         global_lru_pages());
2160                         ret += reclaim_state.reclaimed_slab;
2161                         if (ret >= nr_pages)
2162                                 goto out;
2163
2164                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2165                                 congestion_wait(WRITE, HZ / 10);
2166                 }
2167         }
2168
2169         /*
2170          * If ret = 0, we could not shrink LRUs, but there may be something
2171          * in slab caches
2172          */
2173         if (!ret) {
2174                 do {
2175                         reclaim_state.reclaimed_slab = 0;
2176                         shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2177                         ret += reclaim_state.reclaimed_slab;
2178                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2179         }
2180
2181 out:
2182         current->reclaim_state = NULL;
2183
2184         return ret;
2185 }
2186 #endif
2187
2188 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2189    not required for correctness.  So if the last cpu in a node goes
2190    away, we get changed to run anywhere: as the first one comes back,
2191    restore their cpu bindings. */
2192 static int __devinit cpu_callback(struct notifier_block *nfb,
2193                                   unsigned long action, void *hcpu)
2194 {
2195         int nid;
2196
2197         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2198                 for_each_node_state(nid, N_HIGH_MEMORY) {
2199                         pg_data_t *pgdat = NODE_DATA(nid);
2200                         node_to_cpumask_ptr(mask, pgdat->node_id);
2201
2202                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2203                                 /* One of our CPUs online: restore mask */
2204                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2205                 }
2206         }
2207         return NOTIFY_OK;
2208 }
2209
2210 /*
2211  * This kswapd start function will be called by init and node-hot-add.
2212  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2213  */
2214 int kswapd_run(int nid)
2215 {
2216         pg_data_t *pgdat = NODE_DATA(nid);
2217         int ret = 0;
2218
2219         if (pgdat->kswapd)
2220                 return 0;
2221
2222         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2223         if (IS_ERR(pgdat->kswapd)) {
2224                 /* failure at boot is fatal */
2225                 BUG_ON(system_state == SYSTEM_BOOTING);
2226                 printk("Failed to start kswapd on node %d\n",nid);
2227                 ret = -1;
2228         }
2229         return ret;
2230 }
2231
2232 static int __init kswapd_init(void)
2233 {
2234         int nid;
2235
2236         swap_setup();
2237         for_each_node_state(nid, N_HIGH_MEMORY)
2238                 kswapd_run(nid);
2239         hotcpu_notifier(cpu_callback, 0);
2240         return 0;
2241 }
2242
2243 module_init(kswapd_init)
2244
2245 #ifdef CONFIG_NUMA
2246 /*
2247  * Zone reclaim mode
2248  *
2249  * If non-zero call zone_reclaim when the number of free pages falls below
2250  * the watermarks.
2251  */
2252 int zone_reclaim_mode __read_mostly;
2253
2254 #define RECLAIM_OFF 0
2255 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2256 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2257 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2258
2259 /*
2260  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2261  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2262  * a zone.
2263  */
2264 #define ZONE_RECLAIM_PRIORITY 4
2265
2266 /*
2267  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2268  * occur.
2269  */
2270 int sysctl_min_unmapped_ratio = 1;
2271
2272 /*
2273  * If the number of slab pages in a zone grows beyond this percentage then
2274  * slab reclaim needs to occur.
2275  */
2276 int sysctl_min_slab_ratio = 5;
2277
2278 /*
2279  * Try to free up some pages from this zone through reclaim.
2280  */
2281 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2282 {
2283         /* Minimum pages needed in order to stay on node */
2284         const unsigned long nr_pages = 1 << order;
2285         struct task_struct *p = current;
2286         struct reclaim_state reclaim_state;
2287         int priority;
2288         struct scan_control sc = {
2289                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2290                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2291                 .swap_cluster_max = max_t(unsigned long, nr_pages,
2292                                         SWAP_CLUSTER_MAX),
2293                 .gfp_mask = gfp_mask,
2294                 .swappiness = vm_swappiness,
2295                 .isolate_pages = isolate_pages_global,
2296         };
2297         unsigned long slab_reclaimable;
2298
2299         disable_swap_token();
2300         cond_resched();
2301         /*
2302          * We need to be able to allocate from the reserves for RECLAIM_SWAP
2303          * and we also need to be able to write out pages for RECLAIM_WRITE
2304          * and RECLAIM_SWAP.
2305          */
2306         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2307         reclaim_state.reclaimed_slab = 0;
2308         p->reclaim_state = &reclaim_state;
2309
2310         if (zone_page_state(zone, NR_FILE_PAGES) -
2311                 zone_page_state(zone, NR_FILE_MAPPED) >
2312                 zone->min_unmapped_pages) {
2313                 /*
2314                  * Free memory by calling shrink zone with increasing
2315                  * priorities until we have enough memory freed.
2316                  */
2317                 priority = ZONE_RECLAIM_PRIORITY;
2318                 do {
2319                         note_zone_scanning_priority(zone, priority);
2320                         shrink_zone(priority, zone, &sc);
2321                         priority--;
2322                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2323         }
2324
2325         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2326         if (slab_reclaimable > zone->min_slab_pages) {
2327                 /*
2328                  * shrink_slab() does not currently allow us to determine how
2329                  * many pages were freed in this zone. So we take the current
2330                  * number of slab pages and shake the slab until it is reduced
2331                  * by the same nr_pages that we used for reclaiming unmapped
2332                  * pages.
2333                  *
2334                  * Note that shrink_slab will free memory on all zones and may
2335                  * take a long time.
2336                  */
2337                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2338                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2339                                 slab_reclaimable - nr_pages)
2340                         ;
2341
2342                 /*
2343                  * Update nr_reclaimed by the number of slab pages we
2344                  * reclaimed from this zone.
2345                  */
2346                 sc.nr_reclaimed += slab_reclaimable -
2347                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2348         }
2349
2350         p->reclaim_state = NULL;
2351         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2352         return sc.nr_reclaimed >= nr_pages;
2353 }
2354
2355 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2356 {
2357         int node_id;
2358         int ret;
2359
2360         /*
2361          * Zone reclaim reclaims unmapped file backed pages and
2362          * slab pages if we are over the defined limits.
2363          *
2364          * A small portion of unmapped file backed pages is needed for
2365          * file I/O otherwise pages read by file I/O will be immediately
2366          * thrown out if the zone is overallocated. So we do not reclaim
2367          * if less than a specified percentage of the zone is used by
2368          * unmapped file backed pages.
2369          */
2370         if (zone_page_state(zone, NR_FILE_PAGES) -
2371             zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2372             && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2373                         <= zone->min_slab_pages)
2374                 return 0;
2375
2376         if (zone_is_all_unreclaimable(zone))
2377                 return 0;
2378
2379         /*
2380          * Do not scan if the allocation should not be delayed.
2381          */
2382         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2383                         return 0;
2384
2385         /*
2386          * Only run zone reclaim on the local zone or on zones that do not
2387          * have associated processors. This will favor the local processor
2388          * over remote processors and spread off node memory allocations
2389          * as wide as possible.
2390          */
2391         node_id = zone_to_nid(zone);
2392         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2393                 return 0;
2394
2395         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2396                 return 0;
2397         ret = __zone_reclaim(zone, gfp_mask, order);
2398         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2399
2400         return ret;
2401 }
2402 #endif
2403
2404 #ifdef CONFIG_UNEVICTABLE_LRU
2405 /*
2406  * page_evictable - test whether a page is evictable
2407  * @page: the page to test
2408  * @vma: the VMA in which the page is or will be mapped, may be NULL
2409  *
2410  * Test whether page is evictable--i.e., should be placed on active/inactive
2411  * lists vs unevictable list.  The vma argument is !NULL when called from the
2412  * fault path to determine how to instantate a new page.
2413  *
2414  * Reasons page might not be evictable:
2415  * (1) page's mapping marked unevictable
2416  * (2) page is part of an mlocked VMA
2417  *
2418  */
2419 int page_evictable(struct page *page, struct vm_area_struct *vma)
2420 {
2421
2422         if (mapping_unevictable(page_mapping(page)))
2423                 return 0;
2424
2425         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2426                 return 0;
2427
2428         return 1;
2429 }
2430
2431 /**
2432  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2433  * @page: page to check evictability and move to appropriate lru list
2434  * @zone: zone page is in
2435  *
2436  * Checks a page for evictability and moves the page to the appropriate
2437  * zone lru list.
2438  *
2439  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2440  * have PageUnevictable set.
2441  */
2442 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2443 {
2444         VM_BUG_ON(PageActive(page));
2445
2446 retry:
2447         ClearPageUnevictable(page);
2448         if (page_evictable(page, NULL)) {
2449                 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2450
2451                 __dec_zone_state(zone, NR_UNEVICTABLE);
2452                 list_move(&page->lru, &zone->lru[l].list);
2453                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2454                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2455                 __count_vm_event(UNEVICTABLE_PGRESCUED);
2456         } else {
2457                 /*
2458                  * rotate unevictable list
2459                  */
2460                 SetPageUnevictable(page);
2461                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2462                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2463                 if (page_evictable(page, NULL))
2464                         goto retry;
2465         }
2466 }
2467
2468 /**
2469  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2470  * @mapping: struct address_space to scan for evictable pages
2471  *
2472  * Scan all pages in mapping.  Check unevictable pages for
2473  * evictability and move them to the appropriate zone lru list.
2474  */
2475 void scan_mapping_unevictable_pages(struct address_space *mapping)
2476 {
2477         pgoff_t next = 0;
2478         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2479                          PAGE_CACHE_SHIFT;
2480         struct zone *zone;
2481         struct pagevec pvec;
2482
2483         if (mapping->nrpages == 0)
2484                 return;
2485
2486         pagevec_init(&pvec, 0);
2487         while (next < end &&
2488                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2489                 int i;
2490                 int pg_scanned = 0;
2491
2492                 zone = NULL;
2493
2494                 for (i = 0; i < pagevec_count(&pvec); i++) {
2495                         struct page *page = pvec.pages[i];
2496                         pgoff_t page_index = page->index;
2497                         struct zone *pagezone = page_zone(page);
2498
2499                         pg_scanned++;
2500                         if (page_index > next)
2501                                 next = page_index;
2502                         next++;
2503
2504                         if (pagezone != zone) {
2505                                 if (zone)
2506                                         spin_unlock_irq(&zone->lru_lock);
2507                                 zone = pagezone;
2508                                 spin_lock_irq(&zone->lru_lock);
2509                         }
2510
2511                         if (PageLRU(page) && PageUnevictable(page))
2512                                 check_move_unevictable_page(page, zone);
2513                 }
2514                 if (zone)
2515                         spin_unlock_irq(&zone->lru_lock);
2516                 pagevec_release(&pvec);
2517
2518                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2519         }
2520
2521 }
2522
2523 /**
2524  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2525  * @zone - zone of which to scan the unevictable list
2526  *
2527  * Scan @zone's unevictable LRU lists to check for pages that have become
2528  * evictable.  Move those that have to @zone's inactive list where they
2529  * become candidates for reclaim, unless shrink_inactive_zone() decides
2530  * to reactivate them.  Pages that are still unevictable are rotated
2531  * back onto @zone's unevictable list.
2532  */
2533 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2534 static void scan_zone_unevictable_pages(struct zone *zone)
2535 {
2536         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2537         unsigned long scan;
2538         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2539
2540         while (nr_to_scan > 0) {
2541                 unsigned long batch_size = min(nr_to_scan,
2542                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
2543
2544                 spin_lock_irq(&zone->lru_lock);
2545                 for (scan = 0;  scan < batch_size; scan++) {
2546                         struct page *page = lru_to_page(l_unevictable);
2547
2548                         if (!trylock_page(page))
2549                                 continue;
2550
2551                         prefetchw_prev_lru_page(page, l_unevictable, flags);
2552
2553                         if (likely(PageLRU(page) && PageUnevictable(page)))
2554                                 check_move_unevictable_page(page, zone);
2555
2556                         unlock_page(page);
2557                 }
2558                 spin_unlock_irq(&zone->lru_lock);
2559
2560                 nr_to_scan -= batch_size;
2561         }
2562 }
2563
2564
2565 /**
2566  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2567  *
2568  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2569  * pages that have become evictable.  Move those back to the zones'
2570  * inactive list where they become candidates for reclaim.
2571  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2572  * and we add swap to the system.  As such, it runs in the context of a task
2573  * that has possibly/probably made some previously unevictable pages
2574  * evictable.
2575  */
2576 static void scan_all_zones_unevictable_pages(void)
2577 {
2578         struct zone *zone;
2579
2580         for_each_zone(zone) {
2581                 scan_zone_unevictable_pages(zone);
2582         }
2583 }
2584
2585 /*
2586  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2587  * all nodes' unevictable lists for evictable pages
2588  */
2589 unsigned long scan_unevictable_pages;
2590
2591 int scan_unevictable_handler(struct ctl_table *table, int write,
2592                            struct file *file, void __user *buffer,
2593                            size_t *length, loff_t *ppos)
2594 {
2595         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2596
2597         if (write && *(unsigned long *)table->data)
2598                 scan_all_zones_unevictable_pages();
2599
2600         scan_unevictable_pages = 0;
2601         return 0;
2602 }
2603
2604 /*
2605  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2606  * a specified node's per zone unevictable lists for evictable pages.
2607  */
2608
2609 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2610                                           struct sysdev_attribute *attr,
2611                                           char *buf)
2612 {
2613         return sprintf(buf, "0\n");     /* always zero; should fit... */
2614 }
2615
2616 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2617                                            struct sysdev_attribute *attr,
2618                                         const char *buf, size_t count)
2619 {
2620         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2621         struct zone *zone;
2622         unsigned long res;
2623         unsigned long req = strict_strtoul(buf, 10, &res);
2624
2625         if (!req)
2626                 return 1;       /* zero is no-op */
2627
2628         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2629                 if (!populated_zone(zone))
2630                         continue;
2631                 scan_zone_unevictable_pages(zone);
2632         }
2633         return 1;
2634 }
2635
2636
2637 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2638                         read_scan_unevictable_node,
2639                         write_scan_unevictable_node);
2640
2641 int scan_unevictable_register_node(struct node *node)
2642 {
2643         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2644 }
2645
2646 void scan_unevictable_unregister_node(struct node *node)
2647 {
2648         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2649 }
2650
2651 #endif