Memory controller: make charging gfp mask aware
[safe/jmp/linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44
45 #include <linux/swapops.h>
46
47 #include "internal.h"
48
49 struct scan_control {
50         /* Incremented by the number of inactive pages that were scanned */
51         unsigned long nr_scanned;
52
53         /* This context's GFP mask */
54         gfp_t gfp_mask;
55
56         int may_writepage;
57
58         /* Can pages be swapped as part of reclaim? */
59         int may_swap;
60
61         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
62          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63          * In this context, it doesn't matter that we scan the
64          * whole list at once. */
65         int swap_cluster_max;
66
67         int swappiness;
68
69         int all_unreclaimable;
70
71         int order;
72
73         /* Which cgroup do we reclaim from */
74         struct mem_cgroup *mem_cgroup;
75
76         /* Pluggable isolate pages callback */
77         unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
78                         unsigned long *scanned, int order, int mode,
79                         struct zone *z, struct mem_cgroup *mem_cont,
80                         int active);
81 };
82
83 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84
85 #ifdef ARCH_HAS_PREFETCH
86 #define prefetch_prev_lru_page(_page, _base, _field)                    \
87         do {                                                            \
88                 if ((_page)->lru.prev != _base) {                       \
89                         struct page *prev;                              \
90                                                                         \
91                         prev = lru_to_page(&(_page->lru));              \
92                         prefetch(&prev->_field);                        \
93                 }                                                       \
94         } while (0)
95 #else
96 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
97 #endif
98
99 #ifdef ARCH_HAS_PREFETCHW
100 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
101         do {                                                            \
102                 if ((_page)->lru.prev != _base) {                       \
103                         struct page *prev;                              \
104                                                                         \
105                         prev = lru_to_page(&(_page->lru));              \
106                         prefetchw(&prev->_field);                       \
107                 }                                                       \
108         } while (0)
109 #else
110 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 /*
114  * From 0 .. 100.  Higher means more swappy.
115  */
116 int vm_swappiness = 60;
117 long vm_total_pages;    /* The total number of pages which the VM controls */
118
119 static LIST_HEAD(shrinker_list);
120 static DECLARE_RWSEM(shrinker_rwsem);
121
122 /*
123  * Add a shrinker callback to be called from the vm
124  */
125 void register_shrinker(struct shrinker *shrinker)
126 {
127         shrinker->nr = 0;
128         down_write(&shrinker_rwsem);
129         list_add_tail(&shrinker->list, &shrinker_list);
130         up_write(&shrinker_rwsem);
131 }
132 EXPORT_SYMBOL(register_shrinker);
133
134 /*
135  * Remove one
136  */
137 void unregister_shrinker(struct shrinker *shrinker)
138 {
139         down_write(&shrinker_rwsem);
140         list_del(&shrinker->list);
141         up_write(&shrinker_rwsem);
142 }
143 EXPORT_SYMBOL(unregister_shrinker);
144
145 #define SHRINK_BATCH 128
146 /*
147  * Call the shrink functions to age shrinkable caches
148  *
149  * Here we assume it costs one seek to replace a lru page and that it also
150  * takes a seek to recreate a cache object.  With this in mind we age equal
151  * percentages of the lru and ageable caches.  This should balance the seeks
152  * generated by these structures.
153  *
154  * If the vm encountered mapped pages on the LRU it increase the pressure on
155  * slab to avoid swapping.
156  *
157  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
158  *
159  * `lru_pages' represents the number of on-LRU pages in all the zones which
160  * are eligible for the caller's allocation attempt.  It is used for balancing
161  * slab reclaim versus page reclaim.
162  *
163  * Returns the number of slab objects which we shrunk.
164  */
165 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
166                         unsigned long lru_pages)
167 {
168         struct shrinker *shrinker;
169         unsigned long ret = 0;
170
171         if (scanned == 0)
172                 scanned = SWAP_CLUSTER_MAX;
173
174         if (!down_read_trylock(&shrinker_rwsem))
175                 return 1;       /* Assume we'll be able to shrink next time */
176
177         list_for_each_entry(shrinker, &shrinker_list, list) {
178                 unsigned long long delta;
179                 unsigned long total_scan;
180                 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
181
182                 delta = (4 * scanned) / shrinker->seeks;
183                 delta *= max_pass;
184                 do_div(delta, lru_pages + 1);
185                 shrinker->nr += delta;
186                 if (shrinker->nr < 0) {
187                         printk(KERN_ERR "%s: nr=%ld\n",
188                                         __FUNCTION__, shrinker->nr);
189                         shrinker->nr = max_pass;
190                 }
191
192                 /*
193                  * Avoid risking looping forever due to too large nr value:
194                  * never try to free more than twice the estimate number of
195                  * freeable entries.
196                  */
197                 if (shrinker->nr > max_pass * 2)
198                         shrinker->nr = max_pass * 2;
199
200                 total_scan = shrinker->nr;
201                 shrinker->nr = 0;
202
203                 while (total_scan >= SHRINK_BATCH) {
204                         long this_scan = SHRINK_BATCH;
205                         int shrink_ret;
206                         int nr_before;
207
208                         nr_before = (*shrinker->shrink)(0, gfp_mask);
209                         shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
210                         if (shrink_ret == -1)
211                                 break;
212                         if (shrink_ret < nr_before)
213                                 ret += nr_before - shrink_ret;
214                         count_vm_events(SLABS_SCANNED, this_scan);
215                         total_scan -= this_scan;
216
217                         cond_resched();
218                 }
219
220                 shrinker->nr += total_scan;
221         }
222         up_read(&shrinker_rwsem);
223         return ret;
224 }
225
226 /* Called without lock on whether page is mapped, so answer is unstable */
227 static inline int page_mapping_inuse(struct page *page)
228 {
229         struct address_space *mapping;
230
231         /* Page is in somebody's page tables. */
232         if (page_mapped(page))
233                 return 1;
234
235         /* Be more reluctant to reclaim swapcache than pagecache */
236         if (PageSwapCache(page))
237                 return 1;
238
239         mapping = page_mapping(page);
240         if (!mapping)
241                 return 0;
242
243         /* File is mmap'd by somebody? */
244         return mapping_mapped(mapping);
245 }
246
247 static inline int is_page_cache_freeable(struct page *page)
248 {
249         return page_count(page) - !!PagePrivate(page) == 2;
250 }
251
252 static int may_write_to_queue(struct backing_dev_info *bdi)
253 {
254         if (current->flags & PF_SWAPWRITE)
255                 return 1;
256         if (!bdi_write_congested(bdi))
257                 return 1;
258         if (bdi == current->backing_dev_info)
259                 return 1;
260         return 0;
261 }
262
263 /*
264  * We detected a synchronous write error writing a page out.  Probably
265  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
266  * fsync(), msync() or close().
267  *
268  * The tricky part is that after writepage we cannot touch the mapping: nothing
269  * prevents it from being freed up.  But we have a ref on the page and once
270  * that page is locked, the mapping is pinned.
271  *
272  * We're allowed to run sleeping lock_page() here because we know the caller has
273  * __GFP_FS.
274  */
275 static void handle_write_error(struct address_space *mapping,
276                                 struct page *page, int error)
277 {
278         lock_page(page);
279         if (page_mapping(page) == mapping)
280                 mapping_set_error(mapping, error);
281         unlock_page(page);
282 }
283
284 /* Request for sync pageout. */
285 enum pageout_io {
286         PAGEOUT_IO_ASYNC,
287         PAGEOUT_IO_SYNC,
288 };
289
290 /* possible outcome of pageout() */
291 typedef enum {
292         /* failed to write page out, page is locked */
293         PAGE_KEEP,
294         /* move page to the active list, page is locked */
295         PAGE_ACTIVATE,
296         /* page has been sent to the disk successfully, page is unlocked */
297         PAGE_SUCCESS,
298         /* page is clean and locked */
299         PAGE_CLEAN,
300 } pageout_t;
301
302 /*
303  * pageout is called by shrink_page_list() for each dirty page.
304  * Calls ->writepage().
305  */
306 static pageout_t pageout(struct page *page, struct address_space *mapping,
307                                                 enum pageout_io sync_writeback)
308 {
309         /*
310          * If the page is dirty, only perform writeback if that write
311          * will be non-blocking.  To prevent this allocation from being
312          * stalled by pagecache activity.  But note that there may be
313          * stalls if we need to run get_block().  We could test
314          * PagePrivate for that.
315          *
316          * If this process is currently in generic_file_write() against
317          * this page's queue, we can perform writeback even if that
318          * will block.
319          *
320          * If the page is swapcache, write it back even if that would
321          * block, for some throttling. This happens by accident, because
322          * swap_backing_dev_info is bust: it doesn't reflect the
323          * congestion state of the swapdevs.  Easy to fix, if needed.
324          * See swapfile.c:page_queue_congested().
325          */
326         if (!is_page_cache_freeable(page))
327                 return PAGE_KEEP;
328         if (!mapping) {
329                 /*
330                  * Some data journaling orphaned pages can have
331                  * page->mapping == NULL while being dirty with clean buffers.
332                  */
333                 if (PagePrivate(page)) {
334                         if (try_to_free_buffers(page)) {
335                                 ClearPageDirty(page);
336                                 printk("%s: orphaned page\n", __FUNCTION__);
337                                 return PAGE_CLEAN;
338                         }
339                 }
340                 return PAGE_KEEP;
341         }
342         if (mapping->a_ops->writepage == NULL)
343                 return PAGE_ACTIVATE;
344         if (!may_write_to_queue(mapping->backing_dev_info))
345                 return PAGE_KEEP;
346
347         if (clear_page_dirty_for_io(page)) {
348                 int res;
349                 struct writeback_control wbc = {
350                         .sync_mode = WB_SYNC_NONE,
351                         .nr_to_write = SWAP_CLUSTER_MAX,
352                         .range_start = 0,
353                         .range_end = LLONG_MAX,
354                         .nonblocking = 1,
355                         .for_reclaim = 1,
356                 };
357
358                 SetPageReclaim(page);
359                 res = mapping->a_ops->writepage(page, &wbc);
360                 if (res < 0)
361                         handle_write_error(mapping, page, res);
362                 if (res == AOP_WRITEPAGE_ACTIVATE) {
363                         ClearPageReclaim(page);
364                         return PAGE_ACTIVATE;
365                 }
366
367                 /*
368                  * Wait on writeback if requested to. This happens when
369                  * direct reclaiming a large contiguous area and the
370                  * first attempt to free a range of pages fails.
371                  */
372                 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
373                         wait_on_page_writeback(page);
374
375                 if (!PageWriteback(page)) {
376                         /* synchronous write or broken a_ops? */
377                         ClearPageReclaim(page);
378                 }
379                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
380                 return PAGE_SUCCESS;
381         }
382
383         return PAGE_CLEAN;
384 }
385
386 /*
387  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
388  * someone else has a ref on the page, abort and return 0.  If it was
389  * successfully detached, return 1.  Assumes the caller has a single ref on
390  * this page.
391  */
392 int remove_mapping(struct address_space *mapping, struct page *page)
393 {
394         BUG_ON(!PageLocked(page));
395         BUG_ON(mapping != page_mapping(page));
396
397         write_lock_irq(&mapping->tree_lock);
398         /*
399          * The non racy check for a busy page.
400          *
401          * Must be careful with the order of the tests. When someone has
402          * a ref to the page, it may be possible that they dirty it then
403          * drop the reference. So if PageDirty is tested before page_count
404          * here, then the following race may occur:
405          *
406          * get_user_pages(&page);
407          * [user mapping goes away]
408          * write_to(page);
409          *                              !PageDirty(page)    [good]
410          * SetPageDirty(page);
411          * put_page(page);
412          *                              !page_count(page)   [good, discard it]
413          *
414          * [oops, our write_to data is lost]
415          *
416          * Reversing the order of the tests ensures such a situation cannot
417          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
418          * load is not satisfied before that of page->_count.
419          *
420          * Note that if SetPageDirty is always performed via set_page_dirty,
421          * and thus under tree_lock, then this ordering is not required.
422          */
423         if (unlikely(page_count(page) != 2))
424                 goto cannot_free;
425         smp_rmb();
426         if (unlikely(PageDirty(page)))
427                 goto cannot_free;
428
429         if (PageSwapCache(page)) {
430                 swp_entry_t swap = { .val = page_private(page) };
431                 __delete_from_swap_cache(page);
432                 write_unlock_irq(&mapping->tree_lock);
433                 swap_free(swap);
434                 __put_page(page);       /* The pagecache ref */
435                 return 1;
436         }
437
438         __remove_from_page_cache(page);
439         write_unlock_irq(&mapping->tree_lock);
440         __put_page(page);
441         return 1;
442
443 cannot_free:
444         write_unlock_irq(&mapping->tree_lock);
445         return 0;
446 }
447
448 /*
449  * shrink_page_list() returns the number of reclaimed pages
450  */
451 static unsigned long shrink_page_list(struct list_head *page_list,
452                                         struct scan_control *sc,
453                                         enum pageout_io sync_writeback)
454 {
455         LIST_HEAD(ret_pages);
456         struct pagevec freed_pvec;
457         int pgactivate = 0;
458         unsigned long nr_reclaimed = 0;
459
460         cond_resched();
461
462         pagevec_init(&freed_pvec, 1);
463         while (!list_empty(page_list)) {
464                 struct address_space *mapping;
465                 struct page *page;
466                 int may_enter_fs;
467                 int referenced;
468
469                 cond_resched();
470
471                 page = lru_to_page(page_list);
472                 list_del(&page->lru);
473
474                 if (TestSetPageLocked(page))
475                         goto keep;
476
477                 VM_BUG_ON(PageActive(page));
478
479                 sc->nr_scanned++;
480
481                 if (!sc->may_swap && page_mapped(page))
482                         goto keep_locked;
483
484                 /* Double the slab pressure for mapped and swapcache pages */
485                 if (page_mapped(page) || PageSwapCache(page))
486                         sc->nr_scanned++;
487
488                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
489                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
490
491                 if (PageWriteback(page)) {
492                         /*
493                          * Synchronous reclaim is performed in two passes,
494                          * first an asynchronous pass over the list to
495                          * start parallel writeback, and a second synchronous
496                          * pass to wait for the IO to complete.  Wait here
497                          * for any page for which writeback has already
498                          * started.
499                          */
500                         if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
501                                 wait_on_page_writeback(page);
502                         else
503                                 goto keep_locked;
504                 }
505
506                 referenced = page_referenced(page, 1, sc->mem_cgroup);
507                 /* In active use or really unfreeable?  Activate it. */
508                 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
509                                         referenced && page_mapping_inuse(page))
510                         goto activate_locked;
511
512 #ifdef CONFIG_SWAP
513                 /*
514                  * Anonymous process memory has backing store?
515                  * Try to allocate it some swap space here.
516                  */
517                 if (PageAnon(page) && !PageSwapCache(page))
518                         if (!add_to_swap(page, GFP_ATOMIC))
519                                 goto activate_locked;
520 #endif /* CONFIG_SWAP */
521
522                 mapping = page_mapping(page);
523
524                 /*
525                  * The page is mapped into the page tables of one or more
526                  * processes. Try to unmap it here.
527                  */
528                 if (page_mapped(page) && mapping) {
529                         switch (try_to_unmap(page, 0)) {
530                         case SWAP_FAIL:
531                                 goto activate_locked;
532                         case SWAP_AGAIN:
533                                 goto keep_locked;
534                         case SWAP_SUCCESS:
535                                 ; /* try to free the page below */
536                         }
537                 }
538
539                 if (PageDirty(page)) {
540                         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
541                                 goto keep_locked;
542                         if (!may_enter_fs)
543                                 goto keep_locked;
544                         if (!sc->may_writepage)
545                                 goto keep_locked;
546
547                         /* Page is dirty, try to write it out here */
548                         switch (pageout(page, mapping, sync_writeback)) {
549                         case PAGE_KEEP:
550                                 goto keep_locked;
551                         case PAGE_ACTIVATE:
552                                 goto activate_locked;
553                         case PAGE_SUCCESS:
554                                 if (PageWriteback(page) || PageDirty(page))
555                                         goto keep;
556                                 /*
557                                  * A synchronous write - probably a ramdisk.  Go
558                                  * ahead and try to reclaim the page.
559                                  */
560                                 if (TestSetPageLocked(page))
561                                         goto keep;
562                                 if (PageDirty(page) || PageWriteback(page))
563                                         goto keep_locked;
564                                 mapping = page_mapping(page);
565                         case PAGE_CLEAN:
566                                 ; /* try to free the page below */
567                         }
568                 }
569
570                 /*
571                  * If the page has buffers, try to free the buffer mappings
572                  * associated with this page. If we succeed we try to free
573                  * the page as well.
574                  *
575                  * We do this even if the page is PageDirty().
576                  * try_to_release_page() does not perform I/O, but it is
577                  * possible for a page to have PageDirty set, but it is actually
578                  * clean (all its buffers are clean).  This happens if the
579                  * buffers were written out directly, with submit_bh(). ext3
580                  * will do this, as well as the blockdev mapping. 
581                  * try_to_release_page() will discover that cleanness and will
582                  * drop the buffers and mark the page clean - it can be freed.
583                  *
584                  * Rarely, pages can have buffers and no ->mapping.  These are
585                  * the pages which were not successfully invalidated in
586                  * truncate_complete_page().  We try to drop those buffers here
587                  * and if that worked, and the page is no longer mapped into
588                  * process address space (page_count == 1) it can be freed.
589                  * Otherwise, leave the page on the LRU so it is swappable.
590                  */
591                 if (PagePrivate(page)) {
592                         if (!try_to_release_page(page, sc->gfp_mask))
593                                 goto activate_locked;
594                         if (!mapping && page_count(page) == 1)
595                                 goto free_it;
596                 }
597
598                 if (!mapping || !remove_mapping(mapping, page))
599                         goto keep_locked;
600
601 free_it:
602                 unlock_page(page);
603                 nr_reclaimed++;
604                 if (!pagevec_add(&freed_pvec, page))
605                         __pagevec_release_nonlru(&freed_pvec);
606                 continue;
607
608 activate_locked:
609                 SetPageActive(page);
610                 pgactivate++;
611 keep_locked:
612                 unlock_page(page);
613 keep:
614                 list_add(&page->lru, &ret_pages);
615                 VM_BUG_ON(PageLRU(page));
616         }
617         list_splice(&ret_pages, page_list);
618         if (pagevec_count(&freed_pvec))
619                 __pagevec_release_nonlru(&freed_pvec);
620         count_vm_events(PGACTIVATE, pgactivate);
621         return nr_reclaimed;
622 }
623
624 /* LRU Isolation modes. */
625 #define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
626 #define ISOLATE_ACTIVE 1        /* Isolate active pages. */
627 #define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
628
629 /*
630  * Attempt to remove the specified page from its LRU.  Only take this page
631  * if it is of the appropriate PageActive status.  Pages which are being
632  * freed elsewhere are also ignored.
633  *
634  * page:        page to consider
635  * mode:        one of the LRU isolation modes defined above
636  *
637  * returns 0 on success, -ve errno on failure.
638  */
639 int __isolate_lru_page(struct page *page, int mode)
640 {
641         int ret = -EINVAL;
642
643         /* Only take pages on the LRU. */
644         if (!PageLRU(page))
645                 return ret;
646
647         /*
648          * When checking the active state, we need to be sure we are
649          * dealing with comparible boolean values.  Take the logical not
650          * of each.
651          */
652         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
653                 return ret;
654
655         ret = -EBUSY;
656         if (likely(get_page_unless_zero(page))) {
657                 /*
658                  * Be careful not to clear PageLRU until after we're
659                  * sure the page is not being freed elsewhere -- the
660                  * page release code relies on it.
661                  */
662                 ClearPageLRU(page);
663                 ret = 0;
664         }
665
666         return ret;
667 }
668
669 /*
670  * zone->lru_lock is heavily contended.  Some of the functions that
671  * shrink the lists perform better by taking out a batch of pages
672  * and working on them outside the LRU lock.
673  *
674  * For pagecache intensive workloads, this function is the hottest
675  * spot in the kernel (apart from copy_*_user functions).
676  *
677  * Appropriate locks must be held before calling this function.
678  *
679  * @nr_to_scan: The number of pages to look through on the list.
680  * @src:        The LRU list to pull pages off.
681  * @dst:        The temp list to put pages on to.
682  * @scanned:    The number of pages that were scanned.
683  * @order:      The caller's attempted allocation order
684  * @mode:       One of the LRU isolation modes
685  *
686  * returns how many pages were moved onto *@dst.
687  */
688 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
689                 struct list_head *src, struct list_head *dst,
690                 unsigned long *scanned, int order, int mode)
691 {
692         unsigned long nr_taken = 0;
693         unsigned long scan;
694
695         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
696                 struct page *page;
697                 unsigned long pfn;
698                 unsigned long end_pfn;
699                 unsigned long page_pfn;
700                 int zone_id;
701
702                 page = lru_to_page(src);
703                 prefetchw_prev_lru_page(page, src, flags);
704
705                 VM_BUG_ON(!PageLRU(page));
706
707                 switch (__isolate_lru_page(page, mode)) {
708                 case 0:
709                         list_move(&page->lru, dst);
710                         nr_taken++;
711                         break;
712
713                 case -EBUSY:
714                         /* else it is being freed elsewhere */
715                         list_move(&page->lru, src);
716                         continue;
717
718                 default:
719                         BUG();
720                 }
721
722                 if (!order)
723                         continue;
724
725                 /*
726                  * Attempt to take all pages in the order aligned region
727                  * surrounding the tag page.  Only take those pages of
728                  * the same active state as that tag page.  We may safely
729                  * round the target page pfn down to the requested order
730                  * as the mem_map is guarenteed valid out to MAX_ORDER,
731                  * where that page is in a different zone we will detect
732                  * it from its zone id and abort this block scan.
733                  */
734                 zone_id = page_zone_id(page);
735                 page_pfn = page_to_pfn(page);
736                 pfn = page_pfn & ~((1 << order) - 1);
737                 end_pfn = pfn + (1 << order);
738                 for (; pfn < end_pfn; pfn++) {
739                         struct page *cursor_page;
740
741                         /* The target page is in the block, ignore it. */
742                         if (unlikely(pfn == page_pfn))
743                                 continue;
744
745                         /* Avoid holes within the zone. */
746                         if (unlikely(!pfn_valid_within(pfn)))
747                                 break;
748
749                         cursor_page = pfn_to_page(pfn);
750                         /* Check that we have not crossed a zone boundary. */
751                         if (unlikely(page_zone_id(cursor_page) != zone_id))
752                                 continue;
753                         switch (__isolate_lru_page(cursor_page, mode)) {
754                         case 0:
755                                 list_move(&cursor_page->lru, dst);
756                                 nr_taken++;
757                                 scan++;
758                                 break;
759
760                         case -EBUSY:
761                                 /* else it is being freed elsewhere */
762                                 list_move(&cursor_page->lru, src);
763                         default:
764                                 break;
765                         }
766                 }
767         }
768
769         *scanned = scan;
770         return nr_taken;
771 }
772
773 static unsigned long isolate_pages_global(unsigned long nr,
774                                         struct list_head *dst,
775                                         unsigned long *scanned, int order,
776                                         int mode, struct zone *z,
777                                         struct mem_cgroup *mem_cont,
778                                         int active)
779 {
780         if (active)
781                 return isolate_lru_pages(nr, &z->active_list, dst,
782                                                 scanned, order, mode);
783         else
784                 return isolate_lru_pages(nr, &z->inactive_list, dst,
785                                                 scanned, order, mode);
786 }
787
788 /*
789  * clear_active_flags() is a helper for shrink_active_list(), clearing
790  * any active bits from the pages in the list.
791  */
792 static unsigned long clear_active_flags(struct list_head *page_list)
793 {
794         int nr_active = 0;
795         struct page *page;
796
797         list_for_each_entry(page, page_list, lru)
798                 if (PageActive(page)) {
799                         ClearPageActive(page);
800                         nr_active++;
801                 }
802
803         return nr_active;
804 }
805
806 /*
807  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
808  * of reclaimed pages
809  */
810 static unsigned long shrink_inactive_list(unsigned long max_scan,
811                                 struct zone *zone, struct scan_control *sc)
812 {
813         LIST_HEAD(page_list);
814         struct pagevec pvec;
815         unsigned long nr_scanned = 0;
816         unsigned long nr_reclaimed = 0;
817
818         pagevec_init(&pvec, 1);
819
820         lru_add_drain();
821         spin_lock_irq(&zone->lru_lock);
822         do {
823                 struct page *page;
824                 unsigned long nr_taken;
825                 unsigned long nr_scan;
826                 unsigned long nr_freed;
827                 unsigned long nr_active;
828
829                 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
830                              &page_list, &nr_scan, sc->order,
831                              (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
832                                              ISOLATE_BOTH : ISOLATE_INACTIVE,
833                                 zone, sc->mem_cgroup, 0);
834                 nr_active = clear_active_flags(&page_list);
835                 __count_vm_events(PGDEACTIVATE, nr_active);
836
837                 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
838                 __mod_zone_page_state(zone, NR_INACTIVE,
839                                                 -(nr_taken - nr_active));
840                 zone->pages_scanned += nr_scan;
841                 spin_unlock_irq(&zone->lru_lock);
842
843                 nr_scanned += nr_scan;
844                 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
845
846                 /*
847                  * If we are direct reclaiming for contiguous pages and we do
848                  * not reclaim everything in the list, try again and wait
849                  * for IO to complete. This will stall high-order allocations
850                  * but that should be acceptable to the caller
851                  */
852                 if (nr_freed < nr_taken && !current_is_kswapd() &&
853                                         sc->order > PAGE_ALLOC_COSTLY_ORDER) {
854                         congestion_wait(WRITE, HZ/10);
855
856                         /*
857                          * The attempt at page out may have made some
858                          * of the pages active, mark them inactive again.
859                          */
860                         nr_active = clear_active_flags(&page_list);
861                         count_vm_events(PGDEACTIVATE, nr_active);
862
863                         nr_freed += shrink_page_list(&page_list, sc,
864                                                         PAGEOUT_IO_SYNC);
865                 }
866
867                 nr_reclaimed += nr_freed;
868                 local_irq_disable();
869                 if (current_is_kswapd()) {
870                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
871                         __count_vm_events(KSWAPD_STEAL, nr_freed);
872                 } else
873                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
874                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
875
876                 if (nr_taken == 0)
877                         goto done;
878
879                 spin_lock(&zone->lru_lock);
880                 /*
881                  * Put back any unfreeable pages.
882                  */
883                 while (!list_empty(&page_list)) {
884                         page = lru_to_page(&page_list);
885                         VM_BUG_ON(PageLRU(page));
886                         SetPageLRU(page);
887                         list_del(&page->lru);
888                         if (PageActive(page))
889                                 add_page_to_active_list(zone, page);
890                         else
891                                 add_page_to_inactive_list(zone, page);
892                         if (!pagevec_add(&pvec, page)) {
893                                 spin_unlock_irq(&zone->lru_lock);
894                                 __pagevec_release(&pvec);
895                                 spin_lock_irq(&zone->lru_lock);
896                         }
897                 }
898         } while (nr_scanned < max_scan);
899         spin_unlock(&zone->lru_lock);
900 done:
901         local_irq_enable();
902         pagevec_release(&pvec);
903         return nr_reclaimed;
904 }
905
906 /*
907  * We are about to scan this zone at a certain priority level.  If that priority
908  * level is smaller (ie: more urgent) than the previous priority, then note
909  * that priority level within the zone.  This is done so that when the next
910  * process comes in to scan this zone, it will immediately start out at this
911  * priority level rather than having to build up its own scanning priority.
912  * Here, this priority affects only the reclaim-mapped threshold.
913  */
914 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
915 {
916         if (priority < zone->prev_priority)
917                 zone->prev_priority = priority;
918 }
919
920 static inline int zone_is_near_oom(struct zone *zone)
921 {
922         return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
923                                 + zone_page_state(zone, NR_INACTIVE))*3;
924 }
925
926 /*
927  * This moves pages from the active list to the inactive list.
928  *
929  * We move them the other way if the page is referenced by one or more
930  * processes, from rmap.
931  *
932  * If the pages are mostly unmapped, the processing is fast and it is
933  * appropriate to hold zone->lru_lock across the whole operation.  But if
934  * the pages are mapped, the processing is slow (page_referenced()) so we
935  * should drop zone->lru_lock around each page.  It's impossible to balance
936  * this, so instead we remove the pages from the LRU while processing them.
937  * It is safe to rely on PG_active against the non-LRU pages in here because
938  * nobody will play with that bit on a non-LRU page.
939  *
940  * The downside is that we have to touch page->_count against each page.
941  * But we had to alter page->flags anyway.
942  */
943 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
944                                 struct scan_control *sc, int priority)
945 {
946         unsigned long pgmoved;
947         int pgdeactivate = 0;
948         unsigned long pgscanned;
949         LIST_HEAD(l_hold);      /* The pages which were snipped off */
950         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
951         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
952         struct page *page;
953         struct pagevec pvec;
954         int reclaim_mapped = 0;
955
956         if (sc->may_swap) {
957                 long mapped_ratio;
958                 long distress;
959                 long swap_tendency;
960                 long imbalance;
961
962                 if (zone_is_near_oom(zone))
963                         goto force_reclaim_mapped;
964
965                 /*
966                  * `distress' is a measure of how much trouble we're having
967                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
968                  */
969                 distress = 100 >> min(zone->prev_priority, priority);
970
971                 /*
972                  * The point of this algorithm is to decide when to start
973                  * reclaiming mapped memory instead of just pagecache.  Work out
974                  * how much memory
975                  * is mapped.
976                  */
977                 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
978                                 global_page_state(NR_ANON_PAGES)) * 100) /
979                                         vm_total_pages;
980
981                 /*
982                  * Now decide how much we really want to unmap some pages.  The
983                  * mapped ratio is downgraded - just because there's a lot of
984                  * mapped memory doesn't necessarily mean that page reclaim
985                  * isn't succeeding.
986                  *
987                  * The distress ratio is important - we don't want to start
988                  * going oom.
989                  *
990                  * A 100% value of vm_swappiness overrides this algorithm
991                  * altogether.
992                  */
993                 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
994
995                 /*
996                  * If there's huge imbalance between active and inactive
997                  * (think active 100 times larger than inactive) we should
998                  * become more permissive, or the system will take too much
999                  * cpu before it start swapping during memory pressure.
1000                  * Distress is about avoiding early-oom, this is about
1001                  * making swappiness graceful despite setting it to low
1002                  * values.
1003                  *
1004                  * Avoid div by zero with nr_inactive+1, and max resulting
1005                  * value is vm_total_pages.
1006                  */
1007                 imbalance  = zone_page_state(zone, NR_ACTIVE);
1008                 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1009
1010                 /*
1011                  * Reduce the effect of imbalance if swappiness is low,
1012                  * this means for a swappiness very low, the imbalance
1013                  * must be much higher than 100 for this logic to make
1014                  * the difference.
1015                  *
1016                  * Max temporary value is vm_total_pages*100.
1017                  */
1018                 imbalance *= (vm_swappiness + 1);
1019                 imbalance /= 100;
1020
1021                 /*
1022                  * If not much of the ram is mapped, makes the imbalance
1023                  * less relevant, it's high priority we refill the inactive
1024                  * list with mapped pages only in presence of high ratio of
1025                  * mapped pages.
1026                  *
1027                  * Max temporary value is vm_total_pages*100.
1028                  */
1029                 imbalance *= mapped_ratio;
1030                 imbalance /= 100;
1031
1032                 /* apply imbalance feedback to swap_tendency */
1033                 swap_tendency += imbalance;
1034
1035                 /*
1036                  * Now use this metric to decide whether to start moving mapped
1037                  * memory onto the inactive list.
1038                  */
1039                 if (swap_tendency >= 100)
1040 force_reclaim_mapped:
1041                         reclaim_mapped = 1;
1042         }
1043
1044         lru_add_drain();
1045         spin_lock_irq(&zone->lru_lock);
1046         pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1047                                         ISOLATE_ACTIVE, zone,
1048                                         sc->mem_cgroup, 1);
1049         zone->pages_scanned += pgscanned;
1050         __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1051         spin_unlock_irq(&zone->lru_lock);
1052
1053         while (!list_empty(&l_hold)) {
1054                 cond_resched();
1055                 page = lru_to_page(&l_hold);
1056                 list_del(&page->lru);
1057                 if (page_mapped(page)) {
1058                         if (!reclaim_mapped ||
1059                             (total_swap_pages == 0 && PageAnon(page)) ||
1060                             page_referenced(page, 0, sc->mem_cgroup)) {
1061                                 list_add(&page->lru, &l_active);
1062                                 continue;
1063                         }
1064                 }
1065                 list_add(&page->lru, &l_inactive);
1066         }
1067
1068         pagevec_init(&pvec, 1);
1069         pgmoved = 0;
1070         spin_lock_irq(&zone->lru_lock);
1071         while (!list_empty(&l_inactive)) {
1072                 page = lru_to_page(&l_inactive);
1073                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1074                 VM_BUG_ON(PageLRU(page));
1075                 SetPageLRU(page);
1076                 VM_BUG_ON(!PageActive(page));
1077                 ClearPageActive(page);
1078
1079                 list_move(&page->lru, &zone->inactive_list);
1080                 mem_cgroup_move_lists(page_get_page_cgroup(page), false);
1081                 pgmoved++;
1082                 if (!pagevec_add(&pvec, page)) {
1083                         __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1084                         spin_unlock_irq(&zone->lru_lock);
1085                         pgdeactivate += pgmoved;
1086                         pgmoved = 0;
1087                         if (buffer_heads_over_limit)
1088                                 pagevec_strip(&pvec);
1089                         __pagevec_release(&pvec);
1090                         spin_lock_irq(&zone->lru_lock);
1091                 }
1092         }
1093         __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1094         pgdeactivate += pgmoved;
1095         if (buffer_heads_over_limit) {
1096                 spin_unlock_irq(&zone->lru_lock);
1097                 pagevec_strip(&pvec);
1098                 spin_lock_irq(&zone->lru_lock);
1099         }
1100
1101         pgmoved = 0;
1102         while (!list_empty(&l_active)) {
1103                 page = lru_to_page(&l_active);
1104                 prefetchw_prev_lru_page(page, &l_active, flags);
1105                 VM_BUG_ON(PageLRU(page));
1106                 SetPageLRU(page);
1107                 VM_BUG_ON(!PageActive(page));
1108                 list_move(&page->lru, &zone->active_list);
1109                 mem_cgroup_move_lists(page_get_page_cgroup(page), true);
1110                 pgmoved++;
1111                 if (!pagevec_add(&pvec, page)) {
1112                         __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1113                         pgmoved = 0;
1114                         spin_unlock_irq(&zone->lru_lock);
1115                         __pagevec_release(&pvec);
1116                         spin_lock_irq(&zone->lru_lock);
1117                 }
1118         }
1119         __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1120
1121         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1122         __count_vm_events(PGDEACTIVATE, pgdeactivate);
1123         spin_unlock_irq(&zone->lru_lock);
1124
1125         pagevec_release(&pvec);
1126 }
1127
1128 /*
1129  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1130  */
1131 static unsigned long shrink_zone(int priority, struct zone *zone,
1132                                 struct scan_control *sc)
1133 {
1134         unsigned long nr_active;
1135         unsigned long nr_inactive;
1136         unsigned long nr_to_scan;
1137         unsigned long nr_reclaimed = 0;
1138
1139         /*
1140          * Add one to `nr_to_scan' just to make sure that the kernel will
1141          * slowly sift through the active list.
1142          */
1143         zone->nr_scan_active +=
1144                 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1145         nr_active = zone->nr_scan_active;
1146         if (nr_active >= sc->swap_cluster_max)
1147                 zone->nr_scan_active = 0;
1148         else
1149                 nr_active = 0;
1150
1151         zone->nr_scan_inactive +=
1152                 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1153         nr_inactive = zone->nr_scan_inactive;
1154         if (nr_inactive >= sc->swap_cluster_max)
1155                 zone->nr_scan_inactive = 0;
1156         else
1157                 nr_inactive = 0;
1158
1159         while (nr_active || nr_inactive) {
1160                 if (nr_active) {
1161                         nr_to_scan = min(nr_active,
1162                                         (unsigned long)sc->swap_cluster_max);
1163                         nr_active -= nr_to_scan;
1164                         shrink_active_list(nr_to_scan, zone, sc, priority);
1165                 }
1166
1167                 if (nr_inactive) {
1168                         nr_to_scan = min(nr_inactive,
1169                                         (unsigned long)sc->swap_cluster_max);
1170                         nr_inactive -= nr_to_scan;
1171                         nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1172                                                                 sc);
1173                 }
1174         }
1175
1176         throttle_vm_writeout(sc->gfp_mask);
1177         return nr_reclaimed;
1178 }
1179
1180 /*
1181  * This is the direct reclaim path, for page-allocating processes.  We only
1182  * try to reclaim pages from zones which will satisfy the caller's allocation
1183  * request.
1184  *
1185  * We reclaim from a zone even if that zone is over pages_high.  Because:
1186  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1187  *    allocation or
1188  * b) The zones may be over pages_high but they must go *over* pages_high to
1189  *    satisfy the `incremental min' zone defense algorithm.
1190  *
1191  * Returns the number of reclaimed pages.
1192  *
1193  * If a zone is deemed to be full of pinned pages then just give it a light
1194  * scan then give up on it.
1195  */
1196 static unsigned long shrink_zones(int priority, struct zone **zones,
1197                                         struct scan_control *sc)
1198 {
1199         unsigned long nr_reclaimed = 0;
1200         int i;
1201
1202         sc->all_unreclaimable = 1;
1203         for (i = 0; zones[i] != NULL; i++) {
1204                 struct zone *zone = zones[i];
1205
1206                 if (!populated_zone(zone))
1207                         continue;
1208
1209                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1210                         continue;
1211
1212                 note_zone_scanning_priority(zone, priority);
1213
1214                 if (zone_is_all_unreclaimable(zone) && priority != DEF_PRIORITY)
1215                         continue;       /* Let kswapd poll it */
1216
1217                 sc->all_unreclaimable = 0;
1218
1219                 nr_reclaimed += shrink_zone(priority, zone, sc);
1220         }
1221         return nr_reclaimed;
1222 }
1223  
1224 /*
1225  * This is the main entry point to direct page reclaim.
1226  *
1227  * If a full scan of the inactive list fails to free enough memory then we
1228  * are "out of memory" and something needs to be killed.
1229  *
1230  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1231  * high - the zone may be full of dirty or under-writeback pages, which this
1232  * caller can't do much about.  We kick pdflush and take explicit naps in the
1233  * hope that some of these pages can be written.  But if the allocating task
1234  * holds filesystem locks which prevent writeout this might not work, and the
1235  * allocation attempt will fail.
1236  */
1237 static unsigned long do_try_to_free_pages(struct zone **zones, gfp_t gfp_mask,
1238                                           struct scan_control *sc)
1239 {
1240         int priority;
1241         int ret = 0;
1242         unsigned long total_scanned = 0;
1243         unsigned long nr_reclaimed = 0;
1244         struct reclaim_state *reclaim_state = current->reclaim_state;
1245         unsigned long lru_pages = 0;
1246         int i;
1247
1248         count_vm_event(ALLOCSTALL);
1249
1250         for (i = 0; zones[i] != NULL; i++) {
1251                 struct zone *zone = zones[i];
1252
1253                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1254                         continue;
1255
1256                 lru_pages += zone_page_state(zone, NR_ACTIVE)
1257                                 + zone_page_state(zone, NR_INACTIVE);
1258         }
1259
1260         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1261                 sc->nr_scanned = 0;
1262                 if (!priority)
1263                         disable_swap_token();
1264                 nr_reclaimed += shrink_zones(priority, zones, sc);
1265                 /*
1266                  * Don't shrink slabs when reclaiming memory from
1267                  * over limit cgroups
1268                  */
1269                 if (sc->mem_cgroup == NULL)
1270                         shrink_slab(sc->nr_scanned, gfp_mask, lru_pages);
1271                 if (reclaim_state) {
1272                         nr_reclaimed += reclaim_state->reclaimed_slab;
1273                         reclaim_state->reclaimed_slab = 0;
1274                 }
1275                 total_scanned += sc->nr_scanned;
1276                 if (nr_reclaimed >= sc->swap_cluster_max) {
1277                         ret = 1;
1278                         goto out;
1279                 }
1280
1281                 /*
1282                  * Try to write back as many pages as we just scanned.  This
1283                  * tends to cause slow streaming writers to write data to the
1284                  * disk smoothly, at the dirtying rate, which is nice.   But
1285                  * that's undesirable in laptop mode, where we *want* lumpy
1286                  * writeout.  So in laptop mode, write out the whole world.
1287                  */
1288                 if (total_scanned > sc->swap_cluster_max +
1289                                         sc->swap_cluster_max / 2) {
1290                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1291                         sc->may_writepage = 1;
1292                 }
1293
1294                 /* Take a nap, wait for some writeback to complete */
1295                 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1296                         congestion_wait(WRITE, HZ/10);
1297         }
1298         /* top priority shrink_caches still had more to do? don't OOM, then */
1299         if (!sc->all_unreclaimable && sc->mem_cgroup == NULL)
1300                 ret = 1;
1301 out:
1302         /*
1303          * Now that we've scanned all the zones at this priority level, note
1304          * that level within the zone so that the next thread which performs
1305          * scanning of this zone will immediately start out at this priority
1306          * level.  This affects only the decision whether or not to bring
1307          * mapped pages onto the inactive list.
1308          */
1309         if (priority < 0)
1310                 priority = 0;
1311         for (i = 0; zones[i] != NULL; i++) {
1312                 struct zone *zone = zones[i];
1313
1314                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1315                         continue;
1316
1317                 zone->prev_priority = priority;
1318         }
1319         return ret;
1320 }
1321
1322 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1323 {
1324         struct scan_control sc = {
1325                 .gfp_mask = gfp_mask,
1326                 .may_writepage = !laptop_mode,
1327                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1328                 .may_swap = 1,
1329                 .swappiness = vm_swappiness,
1330                 .order = order,
1331                 .mem_cgroup = NULL,
1332                 .isolate_pages = isolate_pages_global,
1333         };
1334
1335         return do_try_to_free_pages(zones, gfp_mask, &sc);
1336 }
1337
1338 #ifdef CONFIG_CGROUP_MEM_CONT
1339
1340 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1341                                                 gfp_t gfp_mask)
1342 {
1343         struct scan_control sc = {
1344                 .gfp_mask = gfp_mask,
1345                 .may_writepage = !laptop_mode,
1346                 .may_swap = 1,
1347                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1348                 .swappiness = vm_swappiness,
1349                 .order = 0,
1350                 .mem_cgroup = mem_cont,
1351                 .isolate_pages = mem_cgroup_isolate_pages,
1352         };
1353         int node;
1354         struct zone **zones;
1355         int target_zone = gfp_zone(GFP_HIGHUSER_MOVABLE);
1356
1357         for_each_online_node(node) {
1358                 zones = NODE_DATA(node)->node_zonelists[target_zone].zones;
1359                 if (do_try_to_free_pages(zones, sc.gfp_mask, &sc))
1360                         return 1;
1361         }
1362         return 0;
1363 }
1364 #endif
1365
1366 /*
1367  * For kswapd, balance_pgdat() will work across all this node's zones until
1368  * they are all at pages_high.
1369  *
1370  * Returns the number of pages which were actually freed.
1371  *
1372  * There is special handling here for zones which are full of pinned pages.
1373  * This can happen if the pages are all mlocked, or if they are all used by
1374  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1375  * What we do is to detect the case where all pages in the zone have been
1376  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1377  * dead and from now on, only perform a short scan.  Basically we're polling
1378  * the zone for when the problem goes away.
1379  *
1380  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1381  * zones which have free_pages > pages_high, but once a zone is found to have
1382  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1383  * of the number of free pages in the lower zones.  This interoperates with
1384  * the page allocator fallback scheme to ensure that aging of pages is balanced
1385  * across the zones.
1386  */
1387 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1388 {
1389         int all_zones_ok;
1390         int priority;
1391         int i;
1392         unsigned long total_scanned;
1393         unsigned long nr_reclaimed;
1394         struct reclaim_state *reclaim_state = current->reclaim_state;
1395         struct scan_control sc = {
1396                 .gfp_mask = GFP_KERNEL,
1397                 .may_swap = 1,
1398                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1399                 .swappiness = vm_swappiness,
1400                 .order = order,
1401                 .mem_cgroup = NULL,
1402                 .isolate_pages = isolate_pages_global,
1403         };
1404         /*
1405          * temp_priority is used to remember the scanning priority at which
1406          * this zone was successfully refilled to free_pages == pages_high.
1407          */
1408         int temp_priority[MAX_NR_ZONES];
1409
1410 loop_again:
1411         total_scanned = 0;
1412         nr_reclaimed = 0;
1413         sc.may_writepage = !laptop_mode;
1414         count_vm_event(PAGEOUTRUN);
1415
1416         for (i = 0; i < pgdat->nr_zones; i++)
1417                 temp_priority[i] = DEF_PRIORITY;
1418
1419         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1420                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1421                 unsigned long lru_pages = 0;
1422
1423                 /* The swap token gets in the way of swapout... */
1424                 if (!priority)
1425                         disable_swap_token();
1426
1427                 all_zones_ok = 1;
1428
1429                 /*
1430                  * Scan in the highmem->dma direction for the highest
1431                  * zone which needs scanning
1432                  */
1433                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1434                         struct zone *zone = pgdat->node_zones + i;
1435
1436                         if (!populated_zone(zone))
1437                                 continue;
1438
1439                         if (zone_is_all_unreclaimable(zone) &&
1440                             priority != DEF_PRIORITY)
1441                                 continue;
1442
1443                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1444                                                0, 0)) {
1445                                 end_zone = i;
1446                                 break;
1447                         }
1448                 }
1449                 if (i < 0)
1450                         goto out;
1451
1452                 for (i = 0; i <= end_zone; i++) {
1453                         struct zone *zone = pgdat->node_zones + i;
1454
1455                         lru_pages += zone_page_state(zone, NR_ACTIVE)
1456                                         + zone_page_state(zone, NR_INACTIVE);
1457                 }
1458
1459                 /*
1460                  * Now scan the zone in the dma->highmem direction, stopping
1461                  * at the last zone which needs scanning.
1462                  *
1463                  * We do this because the page allocator works in the opposite
1464                  * direction.  This prevents the page allocator from allocating
1465                  * pages behind kswapd's direction of progress, which would
1466                  * cause too much scanning of the lower zones.
1467                  */
1468                 for (i = 0; i <= end_zone; i++) {
1469                         struct zone *zone = pgdat->node_zones + i;
1470                         int nr_slab;
1471
1472                         if (!populated_zone(zone))
1473                                 continue;
1474
1475                         if (zone_is_all_unreclaimable(zone) &&
1476                                         priority != DEF_PRIORITY)
1477                                 continue;
1478
1479                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1480                                                end_zone, 0))
1481                                 all_zones_ok = 0;
1482                         temp_priority[i] = priority;
1483                         sc.nr_scanned = 0;
1484                         note_zone_scanning_priority(zone, priority);
1485                         /*
1486                          * We put equal pressure on every zone, unless one
1487                          * zone has way too many pages free already.
1488                          */
1489                         if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1490                                                 end_zone, 0))
1491                                 nr_reclaimed += shrink_zone(priority, zone, &sc);
1492                         reclaim_state->reclaimed_slab = 0;
1493                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1494                                                 lru_pages);
1495                         nr_reclaimed += reclaim_state->reclaimed_slab;
1496                         total_scanned += sc.nr_scanned;
1497                         if (zone_is_all_unreclaimable(zone))
1498                                 continue;
1499                         if (nr_slab == 0 && zone->pages_scanned >=
1500                                 (zone_page_state(zone, NR_ACTIVE)
1501                                 + zone_page_state(zone, NR_INACTIVE)) * 6)
1502                                         zone_set_flag(zone,
1503                                                       ZONE_ALL_UNRECLAIMABLE);
1504                         /*
1505                          * If we've done a decent amount of scanning and
1506                          * the reclaim ratio is low, start doing writepage
1507                          * even in laptop mode
1508                          */
1509                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1510                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1511                                 sc.may_writepage = 1;
1512                 }
1513                 if (all_zones_ok)
1514                         break;          /* kswapd: all done */
1515                 /*
1516                  * OK, kswapd is getting into trouble.  Take a nap, then take
1517                  * another pass across the zones.
1518                  */
1519                 if (total_scanned && priority < DEF_PRIORITY - 2)
1520                         congestion_wait(WRITE, HZ/10);
1521
1522                 /*
1523                  * We do this so kswapd doesn't build up large priorities for
1524                  * example when it is freeing in parallel with allocators. It
1525                  * matches the direct reclaim path behaviour in terms of impact
1526                  * on zone->*_priority.
1527                  */
1528                 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1529                         break;
1530         }
1531 out:
1532         /*
1533          * Note within each zone the priority level at which this zone was
1534          * brought into a happy state.  So that the next thread which scans this
1535          * zone will start out at that priority level.
1536          */
1537         for (i = 0; i < pgdat->nr_zones; i++) {
1538                 struct zone *zone = pgdat->node_zones + i;
1539
1540                 zone->prev_priority = temp_priority[i];
1541         }
1542         if (!all_zones_ok) {
1543                 cond_resched();
1544
1545                 try_to_freeze();
1546
1547                 goto loop_again;
1548         }
1549
1550         return nr_reclaimed;
1551 }
1552
1553 /*
1554  * The background pageout daemon, started as a kernel thread
1555  * from the init process. 
1556  *
1557  * This basically trickles out pages so that we have _some_
1558  * free memory available even if there is no other activity
1559  * that frees anything up. This is needed for things like routing
1560  * etc, where we otherwise might have all activity going on in
1561  * asynchronous contexts that cannot page things out.
1562  *
1563  * If there are applications that are active memory-allocators
1564  * (most normal use), this basically shouldn't matter.
1565  */
1566 static int kswapd(void *p)
1567 {
1568         unsigned long order;
1569         pg_data_t *pgdat = (pg_data_t*)p;
1570         struct task_struct *tsk = current;
1571         DEFINE_WAIT(wait);
1572         struct reclaim_state reclaim_state = {
1573                 .reclaimed_slab = 0,
1574         };
1575         cpumask_t cpumask;
1576
1577         cpumask = node_to_cpumask(pgdat->node_id);
1578         if (!cpus_empty(cpumask))
1579                 set_cpus_allowed(tsk, cpumask);
1580         current->reclaim_state = &reclaim_state;
1581
1582         /*
1583          * Tell the memory management that we're a "memory allocator",
1584          * and that if we need more memory we should get access to it
1585          * regardless (see "__alloc_pages()"). "kswapd" should
1586          * never get caught in the normal page freeing logic.
1587          *
1588          * (Kswapd normally doesn't need memory anyway, but sometimes
1589          * you need a small amount of memory in order to be able to
1590          * page out something else, and this flag essentially protects
1591          * us from recursively trying to free more memory as we're
1592          * trying to free the first piece of memory in the first place).
1593          */
1594         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1595         set_freezable();
1596
1597         order = 0;
1598         for ( ; ; ) {
1599                 unsigned long new_order;
1600
1601                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1602                 new_order = pgdat->kswapd_max_order;
1603                 pgdat->kswapd_max_order = 0;
1604                 if (order < new_order) {
1605                         /*
1606                          * Don't sleep if someone wants a larger 'order'
1607                          * allocation
1608                          */
1609                         order = new_order;
1610                 } else {
1611                         if (!freezing(current))
1612                                 schedule();
1613
1614                         order = pgdat->kswapd_max_order;
1615                 }
1616                 finish_wait(&pgdat->kswapd_wait, &wait);
1617
1618                 if (!try_to_freeze()) {
1619                         /* We can speed up thawing tasks if we don't call
1620                          * balance_pgdat after returning from the refrigerator
1621                          */
1622                         balance_pgdat(pgdat, order);
1623                 }
1624         }
1625         return 0;
1626 }
1627
1628 /*
1629  * A zone is low on free memory, so wake its kswapd task to service it.
1630  */
1631 void wakeup_kswapd(struct zone *zone, int order)
1632 {
1633         pg_data_t *pgdat;
1634
1635         if (!populated_zone(zone))
1636                 return;
1637
1638         pgdat = zone->zone_pgdat;
1639         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1640                 return;
1641         if (pgdat->kswapd_max_order < order)
1642                 pgdat->kswapd_max_order = order;
1643         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1644                 return;
1645         if (!waitqueue_active(&pgdat->kswapd_wait))
1646                 return;
1647         wake_up_interruptible(&pgdat->kswapd_wait);
1648 }
1649
1650 #ifdef CONFIG_PM
1651 /*
1652  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1653  * from LRU lists system-wide, for given pass and priority, and returns the
1654  * number of reclaimed pages
1655  *
1656  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1657  */
1658 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1659                                       int pass, struct scan_control *sc)
1660 {
1661         struct zone *zone;
1662         unsigned long nr_to_scan, ret = 0;
1663
1664         for_each_zone(zone) {
1665
1666                 if (!populated_zone(zone))
1667                         continue;
1668
1669                 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1670                         continue;
1671
1672                 /* For pass = 0 we don't shrink the active list */
1673                 if (pass > 0) {
1674                         zone->nr_scan_active +=
1675                                 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1676                         if (zone->nr_scan_active >= nr_pages || pass > 3) {
1677                                 zone->nr_scan_active = 0;
1678                                 nr_to_scan = min(nr_pages,
1679                                         zone_page_state(zone, NR_ACTIVE));
1680                                 shrink_active_list(nr_to_scan, zone, sc, prio);
1681                         }
1682                 }
1683
1684                 zone->nr_scan_inactive +=
1685                         (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1686                 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1687                         zone->nr_scan_inactive = 0;
1688                         nr_to_scan = min(nr_pages,
1689                                 zone_page_state(zone, NR_INACTIVE));
1690                         ret += shrink_inactive_list(nr_to_scan, zone, sc);
1691                         if (ret >= nr_pages)
1692                                 return ret;
1693                 }
1694         }
1695
1696         return ret;
1697 }
1698
1699 static unsigned long count_lru_pages(void)
1700 {
1701         return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1702 }
1703
1704 /*
1705  * Try to free `nr_pages' of memory, system-wide, and return the number of
1706  * freed pages.
1707  *
1708  * Rather than trying to age LRUs the aim is to preserve the overall
1709  * LRU order by reclaiming preferentially
1710  * inactive > active > active referenced > active mapped
1711  */
1712 unsigned long shrink_all_memory(unsigned long nr_pages)
1713 {
1714         unsigned long lru_pages, nr_slab;
1715         unsigned long ret = 0;
1716         int pass;
1717         struct reclaim_state reclaim_state;
1718         struct scan_control sc = {
1719                 .gfp_mask = GFP_KERNEL,
1720                 .may_swap = 0,
1721                 .swap_cluster_max = nr_pages,
1722                 .may_writepage = 1,
1723                 .swappiness = vm_swappiness,
1724                 .isolate_pages = isolate_pages_global,
1725         };
1726
1727         current->reclaim_state = &reclaim_state;
1728
1729         lru_pages = count_lru_pages();
1730         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1731         /* If slab caches are huge, it's better to hit them first */
1732         while (nr_slab >= lru_pages) {
1733                 reclaim_state.reclaimed_slab = 0;
1734                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1735                 if (!reclaim_state.reclaimed_slab)
1736                         break;
1737
1738                 ret += reclaim_state.reclaimed_slab;
1739                 if (ret >= nr_pages)
1740                         goto out;
1741
1742                 nr_slab -= reclaim_state.reclaimed_slab;
1743         }
1744
1745         /*
1746          * We try to shrink LRUs in 5 passes:
1747          * 0 = Reclaim from inactive_list only
1748          * 1 = Reclaim from active list but don't reclaim mapped
1749          * 2 = 2nd pass of type 1
1750          * 3 = Reclaim mapped (normal reclaim)
1751          * 4 = 2nd pass of type 3
1752          */
1753         for (pass = 0; pass < 5; pass++) {
1754                 int prio;
1755
1756                 /* Force reclaiming mapped pages in the passes #3 and #4 */
1757                 if (pass > 2) {
1758                         sc.may_swap = 1;
1759                         sc.swappiness = 100;
1760                 }
1761
1762                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1763                         unsigned long nr_to_scan = nr_pages - ret;
1764
1765                         sc.nr_scanned = 0;
1766                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1767                         if (ret >= nr_pages)
1768                                 goto out;
1769
1770                         reclaim_state.reclaimed_slab = 0;
1771                         shrink_slab(sc.nr_scanned, sc.gfp_mask,
1772                                         count_lru_pages());
1773                         ret += reclaim_state.reclaimed_slab;
1774                         if (ret >= nr_pages)
1775                                 goto out;
1776
1777                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1778                                 congestion_wait(WRITE, HZ / 10);
1779                 }
1780         }
1781
1782         /*
1783          * If ret = 0, we could not shrink LRUs, but there may be something
1784          * in slab caches
1785          */
1786         if (!ret) {
1787                 do {
1788                         reclaim_state.reclaimed_slab = 0;
1789                         shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1790                         ret += reclaim_state.reclaimed_slab;
1791                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1792         }
1793
1794 out:
1795         current->reclaim_state = NULL;
1796
1797         return ret;
1798 }
1799 #endif
1800
1801 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1802    not required for correctness.  So if the last cpu in a node goes
1803    away, we get changed to run anywhere: as the first one comes back,
1804    restore their cpu bindings. */
1805 static int __devinit cpu_callback(struct notifier_block *nfb,
1806                                   unsigned long action, void *hcpu)
1807 {
1808         pg_data_t *pgdat;
1809         cpumask_t mask;
1810         int nid;
1811
1812         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1813                 for_each_node_state(nid, N_HIGH_MEMORY) {
1814                         pgdat = NODE_DATA(nid);
1815                         mask = node_to_cpumask(pgdat->node_id);
1816                         if (any_online_cpu(mask) != NR_CPUS)
1817                                 /* One of our CPUs online: restore mask */
1818                                 set_cpus_allowed(pgdat->kswapd, mask);
1819                 }
1820         }
1821         return NOTIFY_OK;
1822 }
1823
1824 /*
1825  * This kswapd start function will be called by init and node-hot-add.
1826  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1827  */
1828 int kswapd_run(int nid)
1829 {
1830         pg_data_t *pgdat = NODE_DATA(nid);
1831         int ret = 0;
1832
1833         if (pgdat->kswapd)
1834                 return 0;
1835
1836         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1837         if (IS_ERR(pgdat->kswapd)) {
1838                 /* failure at boot is fatal */
1839                 BUG_ON(system_state == SYSTEM_BOOTING);
1840                 printk("Failed to start kswapd on node %d\n",nid);
1841                 ret = -1;
1842         }
1843         return ret;
1844 }
1845
1846 static int __init kswapd_init(void)
1847 {
1848         int nid;
1849
1850         swap_setup();
1851         for_each_node_state(nid, N_HIGH_MEMORY)
1852                 kswapd_run(nid);
1853         hotcpu_notifier(cpu_callback, 0);
1854         return 0;
1855 }
1856
1857 module_init(kswapd_init)
1858
1859 #ifdef CONFIG_NUMA
1860 /*
1861  * Zone reclaim mode
1862  *
1863  * If non-zero call zone_reclaim when the number of free pages falls below
1864  * the watermarks.
1865  */
1866 int zone_reclaim_mode __read_mostly;
1867
1868 #define RECLAIM_OFF 0
1869 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1870 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1871 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1872
1873 /*
1874  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1875  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1876  * a zone.
1877  */
1878 #define ZONE_RECLAIM_PRIORITY 4
1879
1880 /*
1881  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1882  * occur.
1883  */
1884 int sysctl_min_unmapped_ratio = 1;
1885
1886 /*
1887  * If the number of slab pages in a zone grows beyond this percentage then
1888  * slab reclaim needs to occur.
1889  */
1890 int sysctl_min_slab_ratio = 5;
1891
1892 /*
1893  * Try to free up some pages from this zone through reclaim.
1894  */
1895 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1896 {
1897         /* Minimum pages needed in order to stay on node */
1898         const unsigned long nr_pages = 1 << order;
1899         struct task_struct *p = current;
1900         struct reclaim_state reclaim_state;
1901         int priority;
1902         unsigned long nr_reclaimed = 0;
1903         struct scan_control sc = {
1904                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1905                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1906                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1907                                         SWAP_CLUSTER_MAX),
1908                 .gfp_mask = gfp_mask,
1909                 .swappiness = vm_swappiness,
1910                 .isolate_pages = isolate_pages_global,
1911         };
1912         unsigned long slab_reclaimable;
1913
1914         disable_swap_token();
1915         cond_resched();
1916         /*
1917          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1918          * and we also need to be able to write out pages for RECLAIM_WRITE
1919          * and RECLAIM_SWAP.
1920          */
1921         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1922         reclaim_state.reclaimed_slab = 0;
1923         p->reclaim_state = &reclaim_state;
1924
1925         if (zone_page_state(zone, NR_FILE_PAGES) -
1926                 zone_page_state(zone, NR_FILE_MAPPED) >
1927                 zone->min_unmapped_pages) {
1928                 /*
1929                  * Free memory by calling shrink zone with increasing
1930                  * priorities until we have enough memory freed.
1931                  */
1932                 priority = ZONE_RECLAIM_PRIORITY;
1933                 do {
1934                         note_zone_scanning_priority(zone, priority);
1935                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1936                         priority--;
1937                 } while (priority >= 0 && nr_reclaimed < nr_pages);
1938         }
1939
1940         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1941         if (slab_reclaimable > zone->min_slab_pages) {
1942                 /*
1943                  * shrink_slab() does not currently allow us to determine how
1944                  * many pages were freed in this zone. So we take the current
1945                  * number of slab pages and shake the slab until it is reduced
1946                  * by the same nr_pages that we used for reclaiming unmapped
1947                  * pages.
1948                  *
1949                  * Note that shrink_slab will free memory on all zones and may
1950                  * take a long time.
1951                  */
1952                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1953                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1954                                 slab_reclaimable - nr_pages)
1955                         ;
1956
1957                 /*
1958                  * Update nr_reclaimed by the number of slab pages we
1959                  * reclaimed from this zone.
1960                  */
1961                 nr_reclaimed += slab_reclaimable -
1962                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1963         }
1964
1965         p->reclaim_state = NULL;
1966         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1967         return nr_reclaimed >= nr_pages;
1968 }
1969
1970 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1971 {
1972         int node_id;
1973         int ret;
1974
1975         /*
1976          * Zone reclaim reclaims unmapped file backed pages and
1977          * slab pages if we are over the defined limits.
1978          *
1979          * A small portion of unmapped file backed pages is needed for
1980          * file I/O otherwise pages read by file I/O will be immediately
1981          * thrown out if the zone is overallocated. So we do not reclaim
1982          * if less than a specified percentage of the zone is used by
1983          * unmapped file backed pages.
1984          */
1985         if (zone_page_state(zone, NR_FILE_PAGES) -
1986             zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1987             && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1988                         <= zone->min_slab_pages)
1989                 return 0;
1990
1991         if (zone_is_all_unreclaimable(zone))
1992                 return 0;
1993
1994         /*
1995          * Do not scan if the allocation should not be delayed.
1996          */
1997         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
1998                         return 0;
1999
2000         /*
2001          * Only run zone reclaim on the local zone or on zones that do not
2002          * have associated processors. This will favor the local processor
2003          * over remote processors and spread off node memory allocations
2004          * as wide as possible.
2005          */
2006         node_id = zone_to_nid(zone);
2007         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2008                 return 0;
2009
2010         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2011                 return 0;
2012         ret = __zone_reclaim(zone, gfp_mask, order);
2013         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2014
2015         return ret;
2016 }
2017 #endif