mm: introduce zone_reclaim struct
[safe/jmp/linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52         /* Incremented by the number of inactive pages that were scanned */
53         unsigned long nr_scanned;
54
55         /* Number of pages freed so far during a call to shrink_zones() */
56         unsigned long nr_reclaimed;
57
58         /* This context's GFP mask */
59         gfp_t gfp_mask;
60
61         int may_writepage;
62
63         /* Can pages be swapped as part of reclaim? */
64         int may_swap;
65
66         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68          * In this context, it doesn't matter that we scan the
69          * whole list at once. */
70         int swap_cluster_max;
71
72         int swappiness;
73
74         int all_unreclaimable;
75
76         int order;
77
78         /* Which cgroup do we reclaim from */
79         struct mem_cgroup *mem_cgroup;
80
81         /* Pluggable isolate pages callback */
82         unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83                         unsigned long *scanned, int order, int mode,
84                         struct zone *z, struct mem_cgroup *mem_cont,
85                         int active, int file);
86 };
87
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field)                    \
92         do {                                                            \
93                 if ((_page)->lru.prev != _base) {                       \
94                         struct page *prev;                              \
95                                                                         \
96                         prev = lru_to_page(&(_page->lru));              \
97                         prefetch(&prev->_field);                        \
98                 }                                                       \
99         } while (0)
100 #else
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102 #endif
103
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetchw(&prev->_field);                       \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 /*
119  * From 0 .. 100.  Higher means more swappy.
120  */
121 int vm_swappiness = 60;
122 long vm_total_pages;    /* The total number of pages which the VM controls */
123
124 static LIST_HEAD(shrinker_list);
125 static DECLARE_RWSEM(shrinker_rwsem);
126
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scan_global_lru(sc)     (!(sc)->mem_cgroup)
129 #else
130 #define scan_global_lru(sc)     (1)
131 #endif
132
133 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134                                                   struct scan_control *sc)
135 {
136         return &zone->reclaim_stat;
137 }
138
139 /*
140  * Add a shrinker callback to be called from the vm
141  */
142 void register_shrinker(struct shrinker *shrinker)
143 {
144         shrinker->nr = 0;
145         down_write(&shrinker_rwsem);
146         list_add_tail(&shrinker->list, &shrinker_list);
147         up_write(&shrinker_rwsem);
148 }
149 EXPORT_SYMBOL(register_shrinker);
150
151 /*
152  * Remove one
153  */
154 void unregister_shrinker(struct shrinker *shrinker)
155 {
156         down_write(&shrinker_rwsem);
157         list_del(&shrinker->list);
158         up_write(&shrinker_rwsem);
159 }
160 EXPORT_SYMBOL(unregister_shrinker);
161
162 #define SHRINK_BATCH 128
163 /*
164  * Call the shrink functions to age shrinkable caches
165  *
166  * Here we assume it costs one seek to replace a lru page and that it also
167  * takes a seek to recreate a cache object.  With this in mind we age equal
168  * percentages of the lru and ageable caches.  This should balance the seeks
169  * generated by these structures.
170  *
171  * If the vm encountered mapped pages on the LRU it increase the pressure on
172  * slab to avoid swapping.
173  *
174  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
175  *
176  * `lru_pages' represents the number of on-LRU pages in all the zones which
177  * are eligible for the caller's allocation attempt.  It is used for balancing
178  * slab reclaim versus page reclaim.
179  *
180  * Returns the number of slab objects which we shrunk.
181  */
182 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
183                         unsigned long lru_pages)
184 {
185         struct shrinker *shrinker;
186         unsigned long ret = 0;
187
188         if (scanned == 0)
189                 scanned = SWAP_CLUSTER_MAX;
190
191         if (!down_read_trylock(&shrinker_rwsem))
192                 return 1;       /* Assume we'll be able to shrink next time */
193
194         list_for_each_entry(shrinker, &shrinker_list, list) {
195                 unsigned long long delta;
196                 unsigned long total_scan;
197                 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
198
199                 delta = (4 * scanned) / shrinker->seeks;
200                 delta *= max_pass;
201                 do_div(delta, lru_pages + 1);
202                 shrinker->nr += delta;
203                 if (shrinker->nr < 0) {
204                         printk(KERN_ERR "%s: nr=%ld\n",
205                                         __func__, shrinker->nr);
206                         shrinker->nr = max_pass;
207                 }
208
209                 /*
210                  * Avoid risking looping forever due to too large nr value:
211                  * never try to free more than twice the estimate number of
212                  * freeable entries.
213                  */
214                 if (shrinker->nr > max_pass * 2)
215                         shrinker->nr = max_pass * 2;
216
217                 total_scan = shrinker->nr;
218                 shrinker->nr = 0;
219
220                 while (total_scan >= SHRINK_BATCH) {
221                         long this_scan = SHRINK_BATCH;
222                         int shrink_ret;
223                         int nr_before;
224
225                         nr_before = (*shrinker->shrink)(0, gfp_mask);
226                         shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
227                         if (shrink_ret == -1)
228                                 break;
229                         if (shrink_ret < nr_before)
230                                 ret += nr_before - shrink_ret;
231                         count_vm_events(SLABS_SCANNED, this_scan);
232                         total_scan -= this_scan;
233
234                         cond_resched();
235                 }
236
237                 shrinker->nr += total_scan;
238         }
239         up_read(&shrinker_rwsem);
240         return ret;
241 }
242
243 /* Called without lock on whether page is mapped, so answer is unstable */
244 static inline int page_mapping_inuse(struct page *page)
245 {
246         struct address_space *mapping;
247
248         /* Page is in somebody's page tables. */
249         if (page_mapped(page))
250                 return 1;
251
252         /* Be more reluctant to reclaim swapcache than pagecache */
253         if (PageSwapCache(page))
254                 return 1;
255
256         mapping = page_mapping(page);
257         if (!mapping)
258                 return 0;
259
260         /* File is mmap'd by somebody? */
261         return mapping_mapped(mapping);
262 }
263
264 static inline int is_page_cache_freeable(struct page *page)
265 {
266         return page_count(page) - !!PagePrivate(page) == 2;
267 }
268
269 static int may_write_to_queue(struct backing_dev_info *bdi)
270 {
271         if (current->flags & PF_SWAPWRITE)
272                 return 1;
273         if (!bdi_write_congested(bdi))
274                 return 1;
275         if (bdi == current->backing_dev_info)
276                 return 1;
277         return 0;
278 }
279
280 /*
281  * We detected a synchronous write error writing a page out.  Probably
282  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
283  * fsync(), msync() or close().
284  *
285  * The tricky part is that after writepage we cannot touch the mapping: nothing
286  * prevents it from being freed up.  But we have a ref on the page and once
287  * that page is locked, the mapping is pinned.
288  *
289  * We're allowed to run sleeping lock_page() here because we know the caller has
290  * __GFP_FS.
291  */
292 static void handle_write_error(struct address_space *mapping,
293                                 struct page *page, int error)
294 {
295         lock_page(page);
296         if (page_mapping(page) == mapping)
297                 mapping_set_error(mapping, error);
298         unlock_page(page);
299 }
300
301 /* Request for sync pageout. */
302 enum pageout_io {
303         PAGEOUT_IO_ASYNC,
304         PAGEOUT_IO_SYNC,
305 };
306
307 /* possible outcome of pageout() */
308 typedef enum {
309         /* failed to write page out, page is locked */
310         PAGE_KEEP,
311         /* move page to the active list, page is locked */
312         PAGE_ACTIVATE,
313         /* page has been sent to the disk successfully, page is unlocked */
314         PAGE_SUCCESS,
315         /* page is clean and locked */
316         PAGE_CLEAN,
317 } pageout_t;
318
319 /*
320  * pageout is called by shrink_page_list() for each dirty page.
321  * Calls ->writepage().
322  */
323 static pageout_t pageout(struct page *page, struct address_space *mapping,
324                                                 enum pageout_io sync_writeback)
325 {
326         /*
327          * If the page is dirty, only perform writeback if that write
328          * will be non-blocking.  To prevent this allocation from being
329          * stalled by pagecache activity.  But note that there may be
330          * stalls if we need to run get_block().  We could test
331          * PagePrivate for that.
332          *
333          * If this process is currently in generic_file_write() against
334          * this page's queue, we can perform writeback even if that
335          * will block.
336          *
337          * If the page is swapcache, write it back even if that would
338          * block, for some throttling. This happens by accident, because
339          * swap_backing_dev_info is bust: it doesn't reflect the
340          * congestion state of the swapdevs.  Easy to fix, if needed.
341          * See swapfile.c:page_queue_congested().
342          */
343         if (!is_page_cache_freeable(page))
344                 return PAGE_KEEP;
345         if (!mapping) {
346                 /*
347                  * Some data journaling orphaned pages can have
348                  * page->mapping == NULL while being dirty with clean buffers.
349                  */
350                 if (PagePrivate(page)) {
351                         if (try_to_free_buffers(page)) {
352                                 ClearPageDirty(page);
353                                 printk("%s: orphaned page\n", __func__);
354                                 return PAGE_CLEAN;
355                         }
356                 }
357                 return PAGE_KEEP;
358         }
359         if (mapping->a_ops->writepage == NULL)
360                 return PAGE_ACTIVATE;
361         if (!may_write_to_queue(mapping->backing_dev_info))
362                 return PAGE_KEEP;
363
364         if (clear_page_dirty_for_io(page)) {
365                 int res;
366                 struct writeback_control wbc = {
367                         .sync_mode = WB_SYNC_NONE,
368                         .nr_to_write = SWAP_CLUSTER_MAX,
369                         .range_start = 0,
370                         .range_end = LLONG_MAX,
371                         .nonblocking = 1,
372                         .for_reclaim = 1,
373                 };
374
375                 SetPageReclaim(page);
376                 res = mapping->a_ops->writepage(page, &wbc);
377                 if (res < 0)
378                         handle_write_error(mapping, page, res);
379                 if (res == AOP_WRITEPAGE_ACTIVATE) {
380                         ClearPageReclaim(page);
381                         return PAGE_ACTIVATE;
382                 }
383
384                 /*
385                  * Wait on writeback if requested to. This happens when
386                  * direct reclaiming a large contiguous area and the
387                  * first attempt to free a range of pages fails.
388                  */
389                 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
390                         wait_on_page_writeback(page);
391
392                 if (!PageWriteback(page)) {
393                         /* synchronous write or broken a_ops? */
394                         ClearPageReclaim(page);
395                 }
396                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
397                 return PAGE_SUCCESS;
398         }
399
400         return PAGE_CLEAN;
401 }
402
403 /*
404  * Same as remove_mapping, but if the page is removed from the mapping, it
405  * gets returned with a refcount of 0.
406  */
407 static int __remove_mapping(struct address_space *mapping, struct page *page)
408 {
409         BUG_ON(!PageLocked(page));
410         BUG_ON(mapping != page_mapping(page));
411
412         spin_lock_irq(&mapping->tree_lock);
413         /*
414          * The non racy check for a busy page.
415          *
416          * Must be careful with the order of the tests. When someone has
417          * a ref to the page, it may be possible that they dirty it then
418          * drop the reference. So if PageDirty is tested before page_count
419          * here, then the following race may occur:
420          *
421          * get_user_pages(&page);
422          * [user mapping goes away]
423          * write_to(page);
424          *                              !PageDirty(page)    [good]
425          * SetPageDirty(page);
426          * put_page(page);
427          *                              !page_count(page)   [good, discard it]
428          *
429          * [oops, our write_to data is lost]
430          *
431          * Reversing the order of the tests ensures such a situation cannot
432          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
433          * load is not satisfied before that of page->_count.
434          *
435          * Note that if SetPageDirty is always performed via set_page_dirty,
436          * and thus under tree_lock, then this ordering is not required.
437          */
438         if (!page_freeze_refs(page, 2))
439                 goto cannot_free;
440         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
441         if (unlikely(PageDirty(page))) {
442                 page_unfreeze_refs(page, 2);
443                 goto cannot_free;
444         }
445
446         if (PageSwapCache(page)) {
447                 swp_entry_t swap = { .val = page_private(page) };
448                 __delete_from_swap_cache(page);
449                 spin_unlock_irq(&mapping->tree_lock);
450                 swap_free(swap);
451         } else {
452                 __remove_from_page_cache(page);
453                 spin_unlock_irq(&mapping->tree_lock);
454         }
455
456         return 1;
457
458 cannot_free:
459         spin_unlock_irq(&mapping->tree_lock);
460         return 0;
461 }
462
463 /*
464  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
465  * someone else has a ref on the page, abort and return 0.  If it was
466  * successfully detached, return 1.  Assumes the caller has a single ref on
467  * this page.
468  */
469 int remove_mapping(struct address_space *mapping, struct page *page)
470 {
471         if (__remove_mapping(mapping, page)) {
472                 /*
473                  * Unfreezing the refcount with 1 rather than 2 effectively
474                  * drops the pagecache ref for us without requiring another
475                  * atomic operation.
476                  */
477                 page_unfreeze_refs(page, 1);
478                 return 1;
479         }
480         return 0;
481 }
482
483 /**
484  * putback_lru_page - put previously isolated page onto appropriate LRU list
485  * @page: page to be put back to appropriate lru list
486  *
487  * Add previously isolated @page to appropriate LRU list.
488  * Page may still be unevictable for other reasons.
489  *
490  * lru_lock must not be held, interrupts must be enabled.
491  */
492 #ifdef CONFIG_UNEVICTABLE_LRU
493 void putback_lru_page(struct page *page)
494 {
495         int lru;
496         int active = !!TestClearPageActive(page);
497         int was_unevictable = PageUnevictable(page);
498
499         VM_BUG_ON(PageLRU(page));
500
501 redo:
502         ClearPageUnevictable(page);
503
504         if (page_evictable(page, NULL)) {
505                 /*
506                  * For evictable pages, we can use the cache.
507                  * In event of a race, worst case is we end up with an
508                  * unevictable page on [in]active list.
509                  * We know how to handle that.
510                  */
511                 lru = active + page_is_file_cache(page);
512                 lru_cache_add_lru(page, lru);
513         } else {
514                 /*
515                  * Put unevictable pages directly on zone's unevictable
516                  * list.
517                  */
518                 lru = LRU_UNEVICTABLE;
519                 add_page_to_unevictable_list(page);
520         }
521
522         /*
523          * page's status can change while we move it among lru. If an evictable
524          * page is on unevictable list, it never be freed. To avoid that,
525          * check after we added it to the list, again.
526          */
527         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
528                 if (!isolate_lru_page(page)) {
529                         put_page(page);
530                         goto redo;
531                 }
532                 /* This means someone else dropped this page from LRU
533                  * So, it will be freed or putback to LRU again. There is
534                  * nothing to do here.
535                  */
536         }
537
538         if (was_unevictable && lru != LRU_UNEVICTABLE)
539                 count_vm_event(UNEVICTABLE_PGRESCUED);
540         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
541                 count_vm_event(UNEVICTABLE_PGCULLED);
542
543         put_page(page);         /* drop ref from isolate */
544 }
545
546 #else /* CONFIG_UNEVICTABLE_LRU */
547
548 void putback_lru_page(struct page *page)
549 {
550         int lru;
551         VM_BUG_ON(PageLRU(page));
552
553         lru = !!TestClearPageActive(page) + page_is_file_cache(page);
554         lru_cache_add_lru(page, lru);
555         put_page(page);
556 }
557 #endif /* CONFIG_UNEVICTABLE_LRU */
558
559
560 /*
561  * shrink_page_list() returns the number of reclaimed pages
562  */
563 static unsigned long shrink_page_list(struct list_head *page_list,
564                                         struct scan_control *sc,
565                                         enum pageout_io sync_writeback)
566 {
567         LIST_HEAD(ret_pages);
568         struct pagevec freed_pvec;
569         int pgactivate = 0;
570         unsigned long nr_reclaimed = 0;
571
572         cond_resched();
573
574         pagevec_init(&freed_pvec, 1);
575         while (!list_empty(page_list)) {
576                 struct address_space *mapping;
577                 struct page *page;
578                 int may_enter_fs;
579                 int referenced;
580
581                 cond_resched();
582
583                 page = lru_to_page(page_list);
584                 list_del(&page->lru);
585
586                 if (!trylock_page(page))
587                         goto keep;
588
589                 VM_BUG_ON(PageActive(page));
590
591                 sc->nr_scanned++;
592
593                 if (unlikely(!page_evictable(page, NULL)))
594                         goto cull_mlocked;
595
596                 if (!sc->may_swap && page_mapped(page))
597                         goto keep_locked;
598
599                 /* Double the slab pressure for mapped and swapcache pages */
600                 if (page_mapped(page) || PageSwapCache(page))
601                         sc->nr_scanned++;
602
603                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
604                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
605
606                 if (PageWriteback(page)) {
607                         /*
608                          * Synchronous reclaim is performed in two passes,
609                          * first an asynchronous pass over the list to
610                          * start parallel writeback, and a second synchronous
611                          * pass to wait for the IO to complete.  Wait here
612                          * for any page for which writeback has already
613                          * started.
614                          */
615                         if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
616                                 wait_on_page_writeback(page);
617                         else
618                                 goto keep_locked;
619                 }
620
621                 referenced = page_referenced(page, 1, sc->mem_cgroup);
622                 /* In active use or really unfreeable?  Activate it. */
623                 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
624                                         referenced && page_mapping_inuse(page))
625                         goto activate_locked;
626
627                 /*
628                  * Anonymous process memory has backing store?
629                  * Try to allocate it some swap space here.
630                  */
631                 if (PageAnon(page) && !PageSwapCache(page)) {
632                         if (!(sc->gfp_mask & __GFP_IO))
633                                 goto keep_locked;
634                         if (!add_to_swap(page))
635                                 goto activate_locked;
636                         may_enter_fs = 1;
637                 }
638
639                 mapping = page_mapping(page);
640
641                 /*
642                  * The page is mapped into the page tables of one or more
643                  * processes. Try to unmap it here.
644                  */
645                 if (page_mapped(page) && mapping) {
646                         switch (try_to_unmap(page, 0)) {
647                         case SWAP_FAIL:
648                                 goto activate_locked;
649                         case SWAP_AGAIN:
650                                 goto keep_locked;
651                         case SWAP_MLOCK:
652                                 goto cull_mlocked;
653                         case SWAP_SUCCESS:
654                                 ; /* try to free the page below */
655                         }
656                 }
657
658                 if (PageDirty(page)) {
659                         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
660                                 goto keep_locked;
661                         if (!may_enter_fs)
662                                 goto keep_locked;
663                         if (!sc->may_writepage)
664                                 goto keep_locked;
665
666                         /* Page is dirty, try to write it out here */
667                         switch (pageout(page, mapping, sync_writeback)) {
668                         case PAGE_KEEP:
669                                 goto keep_locked;
670                         case PAGE_ACTIVATE:
671                                 goto activate_locked;
672                         case PAGE_SUCCESS:
673                                 if (PageWriteback(page) || PageDirty(page))
674                                         goto keep;
675                                 /*
676                                  * A synchronous write - probably a ramdisk.  Go
677                                  * ahead and try to reclaim the page.
678                                  */
679                                 if (!trylock_page(page))
680                                         goto keep;
681                                 if (PageDirty(page) || PageWriteback(page))
682                                         goto keep_locked;
683                                 mapping = page_mapping(page);
684                         case PAGE_CLEAN:
685                                 ; /* try to free the page below */
686                         }
687                 }
688
689                 /*
690                  * If the page has buffers, try to free the buffer mappings
691                  * associated with this page. If we succeed we try to free
692                  * the page as well.
693                  *
694                  * We do this even if the page is PageDirty().
695                  * try_to_release_page() does not perform I/O, but it is
696                  * possible for a page to have PageDirty set, but it is actually
697                  * clean (all its buffers are clean).  This happens if the
698                  * buffers were written out directly, with submit_bh(). ext3
699                  * will do this, as well as the blockdev mapping.
700                  * try_to_release_page() will discover that cleanness and will
701                  * drop the buffers and mark the page clean - it can be freed.
702                  *
703                  * Rarely, pages can have buffers and no ->mapping.  These are
704                  * the pages which were not successfully invalidated in
705                  * truncate_complete_page().  We try to drop those buffers here
706                  * and if that worked, and the page is no longer mapped into
707                  * process address space (page_count == 1) it can be freed.
708                  * Otherwise, leave the page on the LRU so it is swappable.
709                  */
710                 if (PagePrivate(page)) {
711                         if (!try_to_release_page(page, sc->gfp_mask))
712                                 goto activate_locked;
713                         if (!mapping && page_count(page) == 1) {
714                                 unlock_page(page);
715                                 if (put_page_testzero(page))
716                                         goto free_it;
717                                 else {
718                                         /*
719                                          * rare race with speculative reference.
720                                          * the speculative reference will free
721                                          * this page shortly, so we may
722                                          * increment nr_reclaimed here (and
723                                          * leave it off the LRU).
724                                          */
725                                         nr_reclaimed++;
726                                         continue;
727                                 }
728                         }
729                 }
730
731                 if (!mapping || !__remove_mapping(mapping, page))
732                         goto keep_locked;
733
734                 /*
735                  * At this point, we have no other references and there is
736                  * no way to pick any more up (removed from LRU, removed
737                  * from pagecache). Can use non-atomic bitops now (and
738                  * we obviously don't have to worry about waking up a process
739                  * waiting on the page lock, because there are no references.
740                  */
741                 __clear_page_locked(page);
742 free_it:
743                 nr_reclaimed++;
744                 if (!pagevec_add(&freed_pvec, page)) {
745                         __pagevec_free(&freed_pvec);
746                         pagevec_reinit(&freed_pvec);
747                 }
748                 continue;
749
750 cull_mlocked:
751                 if (PageSwapCache(page))
752                         try_to_free_swap(page);
753                 unlock_page(page);
754                 putback_lru_page(page);
755                 continue;
756
757 activate_locked:
758                 /* Not a candidate for swapping, so reclaim swap space. */
759                 if (PageSwapCache(page) && vm_swap_full())
760                         try_to_free_swap(page);
761                 VM_BUG_ON(PageActive(page));
762                 SetPageActive(page);
763                 pgactivate++;
764 keep_locked:
765                 unlock_page(page);
766 keep:
767                 list_add(&page->lru, &ret_pages);
768                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
769         }
770         list_splice(&ret_pages, page_list);
771         if (pagevec_count(&freed_pvec))
772                 __pagevec_free(&freed_pvec);
773         count_vm_events(PGACTIVATE, pgactivate);
774         return nr_reclaimed;
775 }
776
777 /* LRU Isolation modes. */
778 #define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
779 #define ISOLATE_ACTIVE 1        /* Isolate active pages. */
780 #define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
781
782 /*
783  * Attempt to remove the specified page from its LRU.  Only take this page
784  * if it is of the appropriate PageActive status.  Pages which are being
785  * freed elsewhere are also ignored.
786  *
787  * page:        page to consider
788  * mode:        one of the LRU isolation modes defined above
789  *
790  * returns 0 on success, -ve errno on failure.
791  */
792 int __isolate_lru_page(struct page *page, int mode, int file)
793 {
794         int ret = -EINVAL;
795
796         /* Only take pages on the LRU. */
797         if (!PageLRU(page))
798                 return ret;
799
800         /*
801          * When checking the active state, we need to be sure we are
802          * dealing with comparible boolean values.  Take the logical not
803          * of each.
804          */
805         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
806                 return ret;
807
808         if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
809                 return ret;
810
811         /*
812          * When this function is being called for lumpy reclaim, we
813          * initially look into all LRU pages, active, inactive and
814          * unevictable; only give shrink_page_list evictable pages.
815          */
816         if (PageUnevictable(page))
817                 return ret;
818
819         ret = -EBUSY;
820
821         if (likely(get_page_unless_zero(page))) {
822                 /*
823                  * Be careful not to clear PageLRU until after we're
824                  * sure the page is not being freed elsewhere -- the
825                  * page release code relies on it.
826                  */
827                 ClearPageLRU(page);
828                 ret = 0;
829                 mem_cgroup_del_lru(page);
830         }
831
832         return ret;
833 }
834
835 /*
836  * zone->lru_lock is heavily contended.  Some of the functions that
837  * shrink the lists perform better by taking out a batch of pages
838  * and working on them outside the LRU lock.
839  *
840  * For pagecache intensive workloads, this function is the hottest
841  * spot in the kernel (apart from copy_*_user functions).
842  *
843  * Appropriate locks must be held before calling this function.
844  *
845  * @nr_to_scan: The number of pages to look through on the list.
846  * @src:        The LRU list to pull pages off.
847  * @dst:        The temp list to put pages on to.
848  * @scanned:    The number of pages that were scanned.
849  * @order:      The caller's attempted allocation order
850  * @mode:       One of the LRU isolation modes
851  * @file:       True [1] if isolating file [!anon] pages
852  *
853  * returns how many pages were moved onto *@dst.
854  */
855 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
856                 struct list_head *src, struct list_head *dst,
857                 unsigned long *scanned, int order, int mode, int file)
858 {
859         unsigned long nr_taken = 0;
860         unsigned long scan;
861
862         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
863                 struct page *page;
864                 unsigned long pfn;
865                 unsigned long end_pfn;
866                 unsigned long page_pfn;
867                 int zone_id;
868
869                 page = lru_to_page(src);
870                 prefetchw_prev_lru_page(page, src, flags);
871
872                 VM_BUG_ON(!PageLRU(page));
873
874                 switch (__isolate_lru_page(page, mode, file)) {
875                 case 0:
876                         list_move(&page->lru, dst);
877                         nr_taken++;
878                         break;
879
880                 case -EBUSY:
881                         /* else it is being freed elsewhere */
882                         list_move(&page->lru, src);
883                         continue;
884
885                 default:
886                         BUG();
887                 }
888
889                 if (!order)
890                         continue;
891
892                 /*
893                  * Attempt to take all pages in the order aligned region
894                  * surrounding the tag page.  Only take those pages of
895                  * the same active state as that tag page.  We may safely
896                  * round the target page pfn down to the requested order
897                  * as the mem_map is guarenteed valid out to MAX_ORDER,
898                  * where that page is in a different zone we will detect
899                  * it from its zone id and abort this block scan.
900                  */
901                 zone_id = page_zone_id(page);
902                 page_pfn = page_to_pfn(page);
903                 pfn = page_pfn & ~((1 << order) - 1);
904                 end_pfn = pfn + (1 << order);
905                 for (; pfn < end_pfn; pfn++) {
906                         struct page *cursor_page;
907
908                         /* The target page is in the block, ignore it. */
909                         if (unlikely(pfn == page_pfn))
910                                 continue;
911
912                         /* Avoid holes within the zone. */
913                         if (unlikely(!pfn_valid_within(pfn)))
914                                 break;
915
916                         cursor_page = pfn_to_page(pfn);
917
918                         /* Check that we have not crossed a zone boundary. */
919                         if (unlikely(page_zone_id(cursor_page) != zone_id))
920                                 continue;
921                         switch (__isolate_lru_page(cursor_page, mode, file)) {
922                         case 0:
923                                 list_move(&cursor_page->lru, dst);
924                                 nr_taken++;
925                                 scan++;
926                                 break;
927
928                         case -EBUSY:
929                                 /* else it is being freed elsewhere */
930                                 list_move(&cursor_page->lru, src);
931                         default:
932                                 break;  /* ! on LRU or wrong list */
933                         }
934                 }
935         }
936
937         *scanned = scan;
938         return nr_taken;
939 }
940
941 static unsigned long isolate_pages_global(unsigned long nr,
942                                         struct list_head *dst,
943                                         unsigned long *scanned, int order,
944                                         int mode, struct zone *z,
945                                         struct mem_cgroup *mem_cont,
946                                         int active, int file)
947 {
948         int lru = LRU_BASE;
949         if (active)
950                 lru += LRU_ACTIVE;
951         if (file)
952                 lru += LRU_FILE;
953         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
954                                                                 mode, !!file);
955 }
956
957 /*
958  * clear_active_flags() is a helper for shrink_active_list(), clearing
959  * any active bits from the pages in the list.
960  */
961 static unsigned long clear_active_flags(struct list_head *page_list,
962                                         unsigned int *count)
963 {
964         int nr_active = 0;
965         int lru;
966         struct page *page;
967
968         list_for_each_entry(page, page_list, lru) {
969                 lru = page_is_file_cache(page);
970                 if (PageActive(page)) {
971                         lru += LRU_ACTIVE;
972                         ClearPageActive(page);
973                         nr_active++;
974                 }
975                 count[lru]++;
976         }
977
978         return nr_active;
979 }
980
981 /**
982  * isolate_lru_page - tries to isolate a page from its LRU list
983  * @page: page to isolate from its LRU list
984  *
985  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
986  * vmstat statistic corresponding to whatever LRU list the page was on.
987  *
988  * Returns 0 if the page was removed from an LRU list.
989  * Returns -EBUSY if the page was not on an LRU list.
990  *
991  * The returned page will have PageLRU() cleared.  If it was found on
992  * the active list, it will have PageActive set.  If it was found on
993  * the unevictable list, it will have the PageUnevictable bit set. That flag
994  * may need to be cleared by the caller before letting the page go.
995  *
996  * The vmstat statistic corresponding to the list on which the page was
997  * found will be decremented.
998  *
999  * Restrictions:
1000  * (1) Must be called with an elevated refcount on the page. This is a
1001  *     fundamentnal difference from isolate_lru_pages (which is called
1002  *     without a stable reference).
1003  * (2) the lru_lock must not be held.
1004  * (3) interrupts must be enabled.
1005  */
1006 int isolate_lru_page(struct page *page)
1007 {
1008         int ret = -EBUSY;
1009
1010         if (PageLRU(page)) {
1011                 struct zone *zone = page_zone(page);
1012
1013                 spin_lock_irq(&zone->lru_lock);
1014                 if (PageLRU(page) && get_page_unless_zero(page)) {
1015                         int lru = page_lru(page);
1016                         ret = 0;
1017                         ClearPageLRU(page);
1018
1019                         del_page_from_lru_list(zone, page, lru);
1020                 }
1021                 spin_unlock_irq(&zone->lru_lock);
1022         }
1023         return ret;
1024 }
1025
1026 /*
1027  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1028  * of reclaimed pages
1029  */
1030 static unsigned long shrink_inactive_list(unsigned long max_scan,
1031                         struct zone *zone, struct scan_control *sc,
1032                         int priority, int file)
1033 {
1034         LIST_HEAD(page_list);
1035         struct pagevec pvec;
1036         unsigned long nr_scanned = 0;
1037         unsigned long nr_reclaimed = 0;
1038         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1039
1040         pagevec_init(&pvec, 1);
1041
1042         lru_add_drain();
1043         spin_lock_irq(&zone->lru_lock);
1044         do {
1045                 struct page *page;
1046                 unsigned long nr_taken;
1047                 unsigned long nr_scan;
1048                 unsigned long nr_freed;
1049                 unsigned long nr_active;
1050                 unsigned int count[NR_LRU_LISTS] = { 0, };
1051                 int mode = ISOLATE_INACTIVE;
1052
1053                 /*
1054                  * If we need a large contiguous chunk of memory, or have
1055                  * trouble getting a small set of contiguous pages, we
1056                  * will reclaim both active and inactive pages.
1057                  *
1058                  * We use the same threshold as pageout congestion_wait below.
1059                  */
1060                 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1061                         mode = ISOLATE_BOTH;
1062                 else if (sc->order && priority < DEF_PRIORITY - 2)
1063                         mode = ISOLATE_BOTH;
1064
1065                 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1066                              &page_list, &nr_scan, sc->order, mode,
1067                                 zone, sc->mem_cgroup, 0, file);
1068                 nr_active = clear_active_flags(&page_list, count);
1069                 __count_vm_events(PGDEACTIVATE, nr_active);
1070
1071                 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1072                                                 -count[LRU_ACTIVE_FILE]);
1073                 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1074                                                 -count[LRU_INACTIVE_FILE]);
1075                 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1076                                                 -count[LRU_ACTIVE_ANON]);
1077                 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1078                                                 -count[LRU_INACTIVE_ANON]);
1079
1080                 if (scan_global_lru(sc)) {
1081                         zone->pages_scanned += nr_scan;
1082                         reclaim_stat->recent_scanned[0] +=
1083                                                       count[LRU_INACTIVE_ANON];
1084                         reclaim_stat->recent_scanned[0] +=
1085                                                       count[LRU_ACTIVE_ANON];
1086                         reclaim_stat->recent_scanned[1] +=
1087                                                       count[LRU_INACTIVE_FILE];
1088                         reclaim_stat->recent_scanned[1] +=
1089                                                       count[LRU_ACTIVE_FILE];
1090                 }
1091                 spin_unlock_irq(&zone->lru_lock);
1092
1093                 nr_scanned += nr_scan;
1094                 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1095
1096                 /*
1097                  * If we are direct reclaiming for contiguous pages and we do
1098                  * not reclaim everything in the list, try again and wait
1099                  * for IO to complete. This will stall high-order allocations
1100                  * but that should be acceptable to the caller
1101                  */
1102                 if (nr_freed < nr_taken && !current_is_kswapd() &&
1103                                         sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1104                         congestion_wait(WRITE, HZ/10);
1105
1106                         /*
1107                          * The attempt at page out may have made some
1108                          * of the pages active, mark them inactive again.
1109                          */
1110                         nr_active = clear_active_flags(&page_list, count);
1111                         count_vm_events(PGDEACTIVATE, nr_active);
1112
1113                         nr_freed += shrink_page_list(&page_list, sc,
1114                                                         PAGEOUT_IO_SYNC);
1115                 }
1116
1117                 nr_reclaimed += nr_freed;
1118                 local_irq_disable();
1119                 if (current_is_kswapd()) {
1120                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1121                         __count_vm_events(KSWAPD_STEAL, nr_freed);
1122                 } else if (scan_global_lru(sc))
1123                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1124
1125                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1126
1127                 if (nr_taken == 0)
1128                         goto done;
1129
1130                 spin_lock(&zone->lru_lock);
1131                 /*
1132                  * Put back any unfreeable pages.
1133                  */
1134                 while (!list_empty(&page_list)) {
1135                         int lru;
1136                         page = lru_to_page(&page_list);
1137                         VM_BUG_ON(PageLRU(page));
1138                         list_del(&page->lru);
1139                         if (unlikely(!page_evictable(page, NULL))) {
1140                                 spin_unlock_irq(&zone->lru_lock);
1141                                 putback_lru_page(page);
1142                                 spin_lock_irq(&zone->lru_lock);
1143                                 continue;
1144                         }
1145                         SetPageLRU(page);
1146                         lru = page_lru(page);
1147                         add_page_to_lru_list(zone, page, lru);
1148                         if (PageActive(page) && scan_global_lru(sc)) {
1149                                 int file = !!page_is_file_cache(page);
1150                                 reclaim_stat->recent_rotated[file]++;
1151                         }
1152                         if (!pagevec_add(&pvec, page)) {
1153                                 spin_unlock_irq(&zone->lru_lock);
1154                                 __pagevec_release(&pvec);
1155                                 spin_lock_irq(&zone->lru_lock);
1156                         }
1157                 }
1158         } while (nr_scanned < max_scan);
1159         spin_unlock(&zone->lru_lock);
1160 done:
1161         local_irq_enable();
1162         pagevec_release(&pvec);
1163         return nr_reclaimed;
1164 }
1165
1166 /*
1167  * We are about to scan this zone at a certain priority level.  If that priority
1168  * level is smaller (ie: more urgent) than the previous priority, then note
1169  * that priority level within the zone.  This is done so that when the next
1170  * process comes in to scan this zone, it will immediately start out at this
1171  * priority level rather than having to build up its own scanning priority.
1172  * Here, this priority affects only the reclaim-mapped threshold.
1173  */
1174 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1175 {
1176         if (priority < zone->prev_priority)
1177                 zone->prev_priority = priority;
1178 }
1179
1180 /*
1181  * This moves pages from the active list to the inactive list.
1182  *
1183  * We move them the other way if the page is referenced by one or more
1184  * processes, from rmap.
1185  *
1186  * If the pages are mostly unmapped, the processing is fast and it is
1187  * appropriate to hold zone->lru_lock across the whole operation.  But if
1188  * the pages are mapped, the processing is slow (page_referenced()) so we
1189  * should drop zone->lru_lock around each page.  It's impossible to balance
1190  * this, so instead we remove the pages from the LRU while processing them.
1191  * It is safe to rely on PG_active against the non-LRU pages in here because
1192  * nobody will play with that bit on a non-LRU page.
1193  *
1194  * The downside is that we have to touch page->_count against each page.
1195  * But we had to alter page->flags anyway.
1196  */
1197
1198
1199 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1200                         struct scan_control *sc, int priority, int file)
1201 {
1202         unsigned long pgmoved;
1203         int pgdeactivate = 0;
1204         unsigned long pgscanned;
1205         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1206         LIST_HEAD(l_inactive);
1207         struct page *page;
1208         struct pagevec pvec;
1209         enum lru_list lru;
1210         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1211
1212         lru_add_drain();
1213         spin_lock_irq(&zone->lru_lock);
1214         pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1215                                         ISOLATE_ACTIVE, zone,
1216                                         sc->mem_cgroup, 1, file);
1217         /*
1218          * zone->pages_scanned is used for detect zone's oom
1219          * mem_cgroup remembers nr_scan by itself.
1220          */
1221         if (scan_global_lru(sc)) {
1222                 zone->pages_scanned += pgscanned;
1223                 reclaim_stat->recent_scanned[!!file] += pgmoved;
1224         }
1225
1226         if (file)
1227                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1228         else
1229                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1230         spin_unlock_irq(&zone->lru_lock);
1231
1232         pgmoved = 0;
1233         while (!list_empty(&l_hold)) {
1234                 cond_resched();
1235                 page = lru_to_page(&l_hold);
1236                 list_del(&page->lru);
1237
1238                 if (unlikely(!page_evictable(page, NULL))) {
1239                         putback_lru_page(page);
1240                         continue;
1241                 }
1242
1243                 /* page_referenced clears PageReferenced */
1244                 if (page_mapping_inuse(page) &&
1245                     page_referenced(page, 0, sc->mem_cgroup))
1246                         pgmoved++;
1247
1248                 list_add(&page->lru, &l_inactive);
1249         }
1250
1251         /*
1252          * Move the pages to the [file or anon] inactive list.
1253          */
1254         pagevec_init(&pvec, 1);
1255         pgmoved = 0;
1256         lru = LRU_BASE + file * LRU_FILE;
1257
1258         spin_lock_irq(&zone->lru_lock);
1259         /*
1260          * Count referenced pages from currently used mappings as
1261          * rotated, even though they are moved to the inactive list.
1262          * This helps balance scan pressure between file and anonymous
1263          * pages in get_scan_ratio.
1264          */
1265         if (scan_global_lru(sc))
1266                 reclaim_stat->recent_rotated[!!file] += pgmoved;
1267
1268         while (!list_empty(&l_inactive)) {
1269                 page = lru_to_page(&l_inactive);
1270                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1271                 VM_BUG_ON(PageLRU(page));
1272                 SetPageLRU(page);
1273                 VM_BUG_ON(!PageActive(page));
1274                 ClearPageActive(page);
1275
1276                 list_move(&page->lru, &zone->lru[lru].list);
1277                 mem_cgroup_add_lru_list(page, lru);
1278                 pgmoved++;
1279                 if (!pagevec_add(&pvec, page)) {
1280                         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1281                         spin_unlock_irq(&zone->lru_lock);
1282                         pgdeactivate += pgmoved;
1283                         pgmoved = 0;
1284                         if (buffer_heads_over_limit)
1285                                 pagevec_strip(&pvec);
1286                         __pagevec_release(&pvec);
1287                         spin_lock_irq(&zone->lru_lock);
1288                 }
1289         }
1290         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1291         pgdeactivate += pgmoved;
1292         if (buffer_heads_over_limit) {
1293                 spin_unlock_irq(&zone->lru_lock);
1294                 pagevec_strip(&pvec);
1295                 spin_lock_irq(&zone->lru_lock);
1296         }
1297         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1298         __count_vm_events(PGDEACTIVATE, pgdeactivate);
1299         spin_unlock_irq(&zone->lru_lock);
1300         if (vm_swap_full())
1301                 pagevec_swap_free(&pvec);
1302
1303         pagevec_release(&pvec);
1304 }
1305
1306 /**
1307  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1308  * @zone: zone to check
1309  *
1310  * Returns true if the zone does not have enough inactive anon pages,
1311  * meaning some active anon pages need to be deactivated.
1312  */
1313 static int inactive_anon_is_low(struct zone *zone)
1314 {
1315         unsigned long active, inactive;
1316
1317         active = zone_page_state(zone, NR_ACTIVE_ANON);
1318         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1319
1320         if (inactive * zone->inactive_ratio < active)
1321                 return 1;
1322
1323         return 0;
1324 }
1325
1326 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1327         struct zone *zone, struct scan_control *sc, int priority)
1328 {
1329         int file = is_file_lru(lru);
1330
1331         if (lru == LRU_ACTIVE_FILE) {
1332                 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1333                 return 0;
1334         }
1335
1336         if (lru == LRU_ACTIVE_ANON &&
1337             (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1338                 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1339                 return 0;
1340         }
1341         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1342 }
1343
1344 /*
1345  * Determine how aggressively the anon and file LRU lists should be
1346  * scanned.  The relative value of each set of LRU lists is determined
1347  * by looking at the fraction of the pages scanned we did rotate back
1348  * onto the active list instead of evict.
1349  *
1350  * percent[0] specifies how much pressure to put on ram/swap backed
1351  * memory, while percent[1] determines pressure on the file LRUs.
1352  */
1353 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1354                                         unsigned long *percent)
1355 {
1356         unsigned long anon, file, free;
1357         unsigned long anon_prio, file_prio;
1358         unsigned long ap, fp;
1359         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1360
1361         /* If we have no swap space, do not bother scanning anon pages. */
1362         if (nr_swap_pages <= 0) {
1363                 percent[0] = 0;
1364                 percent[1] = 100;
1365                 return;
1366         }
1367
1368         anon  = zone_page_state(zone, NR_ACTIVE_ANON) +
1369                 zone_page_state(zone, NR_INACTIVE_ANON);
1370         file  = zone_page_state(zone, NR_ACTIVE_FILE) +
1371                 zone_page_state(zone, NR_INACTIVE_FILE);
1372         free  = zone_page_state(zone, NR_FREE_PAGES);
1373
1374         /* If we have very few page cache pages, force-scan anon pages. */
1375         if (unlikely(file + free <= zone->pages_high)) {
1376                 percent[0] = 100;
1377                 percent[1] = 0;
1378                 return;
1379         }
1380
1381         /*
1382          * OK, so we have swap space and a fair amount of page cache
1383          * pages.  We use the recently rotated / recently scanned
1384          * ratios to determine how valuable each cache is.
1385          *
1386          * Because workloads change over time (and to avoid overflow)
1387          * we keep these statistics as a floating average, which ends
1388          * up weighing recent references more than old ones.
1389          *
1390          * anon in [0], file in [1]
1391          */
1392         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1393                 spin_lock_irq(&zone->lru_lock);
1394                 reclaim_stat->recent_scanned[0] /= 2;
1395                 reclaim_stat->recent_rotated[0] /= 2;
1396                 spin_unlock_irq(&zone->lru_lock);
1397         }
1398
1399         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1400                 spin_lock_irq(&zone->lru_lock);
1401                 reclaim_stat->recent_scanned[1] /= 2;
1402                 reclaim_stat->recent_rotated[1] /= 2;
1403                 spin_unlock_irq(&zone->lru_lock);
1404         }
1405
1406         /*
1407          * With swappiness at 100, anonymous and file have the same priority.
1408          * This scanning priority is essentially the inverse of IO cost.
1409          */
1410         anon_prio = sc->swappiness;
1411         file_prio = 200 - sc->swappiness;
1412
1413         /*
1414          * The amount of pressure on anon vs file pages is inversely
1415          * proportional to the fraction of recently scanned pages on
1416          * each list that were recently referenced and in active use.
1417          */
1418         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1419         ap /= reclaim_stat->recent_rotated[0] + 1;
1420
1421         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1422         fp /= reclaim_stat->recent_rotated[1] + 1;
1423
1424         /* Normalize to percentages */
1425         percent[0] = 100 * ap / (ap + fp + 1);
1426         percent[1] = 100 - percent[0];
1427 }
1428
1429
1430 /*
1431  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1432  */
1433 static void shrink_zone(int priority, struct zone *zone,
1434                                 struct scan_control *sc)
1435 {
1436         unsigned long nr[NR_LRU_LISTS];
1437         unsigned long nr_to_scan;
1438         unsigned long percent[2];       /* anon @ 0; file @ 1 */
1439         enum lru_list l;
1440         unsigned long nr_reclaimed = sc->nr_reclaimed;
1441         unsigned long swap_cluster_max = sc->swap_cluster_max;
1442
1443         get_scan_ratio(zone, sc, percent);
1444
1445         for_each_evictable_lru(l) {
1446                 if (scan_global_lru(sc)) {
1447                         int file = is_file_lru(l);
1448                         int scan;
1449
1450                         scan = zone_page_state(zone, NR_LRU_BASE + l);
1451                         if (priority) {
1452                                 scan >>= priority;
1453                                 scan = (scan * percent[file]) / 100;
1454                         }
1455                         zone->lru[l].nr_scan += scan;
1456                         nr[l] = zone->lru[l].nr_scan;
1457                         if (nr[l] >= swap_cluster_max)
1458                                 zone->lru[l].nr_scan = 0;
1459                         else
1460                                 nr[l] = 0;
1461                 } else {
1462                         /*
1463                          * This reclaim occurs not because zone memory shortage
1464                          * but because memory controller hits its limit.
1465                          * Don't modify zone reclaim related data.
1466                          */
1467                         nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1468                                                                 priority, l);
1469                 }
1470         }
1471
1472         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1473                                         nr[LRU_INACTIVE_FILE]) {
1474                 for_each_evictable_lru(l) {
1475                         if (nr[l]) {
1476                                 nr_to_scan = min(nr[l], swap_cluster_max);
1477                                 nr[l] -= nr_to_scan;
1478
1479                                 nr_reclaimed += shrink_list(l, nr_to_scan,
1480                                                             zone, sc, priority);
1481                         }
1482                 }
1483                 /*
1484                  * On large memory systems, scan >> priority can become
1485                  * really large. This is fine for the starting priority;
1486                  * we want to put equal scanning pressure on each zone.
1487                  * However, if the VM has a harder time of freeing pages,
1488                  * with multiple processes reclaiming pages, the total
1489                  * freeing target can get unreasonably large.
1490                  */
1491                 if (nr_reclaimed > swap_cluster_max &&
1492                         priority < DEF_PRIORITY && !current_is_kswapd())
1493                         break;
1494         }
1495
1496         sc->nr_reclaimed = nr_reclaimed;
1497
1498         /*
1499          * Even if we did not try to evict anon pages at all, we want to
1500          * rebalance the anon lru active/inactive ratio.
1501          */
1502         if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1503                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1504         else if (!scan_global_lru(sc))
1505                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1506
1507         throttle_vm_writeout(sc->gfp_mask);
1508 }
1509
1510 /*
1511  * This is the direct reclaim path, for page-allocating processes.  We only
1512  * try to reclaim pages from zones which will satisfy the caller's allocation
1513  * request.
1514  *
1515  * We reclaim from a zone even if that zone is over pages_high.  Because:
1516  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1517  *    allocation or
1518  * b) The zones may be over pages_high but they must go *over* pages_high to
1519  *    satisfy the `incremental min' zone defense algorithm.
1520  *
1521  * If a zone is deemed to be full of pinned pages then just give it a light
1522  * scan then give up on it.
1523  */
1524 static void shrink_zones(int priority, struct zonelist *zonelist,
1525                                         struct scan_control *sc)
1526 {
1527         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1528         struct zoneref *z;
1529         struct zone *zone;
1530
1531         sc->all_unreclaimable = 1;
1532         for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1533                 if (!populated_zone(zone))
1534                         continue;
1535                 /*
1536                  * Take care memory controller reclaiming has small influence
1537                  * to global LRU.
1538                  */
1539                 if (scan_global_lru(sc)) {
1540                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1541                                 continue;
1542                         note_zone_scanning_priority(zone, priority);
1543
1544                         if (zone_is_all_unreclaimable(zone) &&
1545                                                 priority != DEF_PRIORITY)
1546                                 continue;       /* Let kswapd poll it */
1547                         sc->all_unreclaimable = 0;
1548                 } else {
1549                         /*
1550                          * Ignore cpuset limitation here. We just want to reduce
1551                          * # of used pages by us regardless of memory shortage.
1552                          */
1553                         sc->all_unreclaimable = 0;
1554                         mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1555                                                         priority);
1556                 }
1557
1558                 shrink_zone(priority, zone, sc);
1559         }
1560 }
1561
1562 /*
1563  * This is the main entry point to direct page reclaim.
1564  *
1565  * If a full scan of the inactive list fails to free enough memory then we
1566  * are "out of memory" and something needs to be killed.
1567  *
1568  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1569  * high - the zone may be full of dirty or under-writeback pages, which this
1570  * caller can't do much about.  We kick pdflush and take explicit naps in the
1571  * hope that some of these pages can be written.  But if the allocating task
1572  * holds filesystem locks which prevent writeout this might not work, and the
1573  * allocation attempt will fail.
1574  *
1575  * returns:     0, if no pages reclaimed
1576  *              else, the number of pages reclaimed
1577  */
1578 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1579                                         struct scan_control *sc)
1580 {
1581         int priority;
1582         unsigned long ret = 0;
1583         unsigned long total_scanned = 0;
1584         struct reclaim_state *reclaim_state = current->reclaim_state;
1585         unsigned long lru_pages = 0;
1586         struct zoneref *z;
1587         struct zone *zone;
1588         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1589
1590         delayacct_freepages_start();
1591
1592         if (scan_global_lru(sc))
1593                 count_vm_event(ALLOCSTALL);
1594         /*
1595          * mem_cgroup will not do shrink_slab.
1596          */
1597         if (scan_global_lru(sc)) {
1598                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1599
1600                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1601                                 continue;
1602
1603                         lru_pages += zone_lru_pages(zone);
1604                 }
1605         }
1606
1607         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1608                 sc->nr_scanned = 0;
1609                 if (!priority)
1610                         disable_swap_token();
1611                 shrink_zones(priority, zonelist, sc);
1612                 /*
1613                  * Don't shrink slabs when reclaiming memory from
1614                  * over limit cgroups
1615                  */
1616                 if (scan_global_lru(sc)) {
1617                         shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1618                         if (reclaim_state) {
1619                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1620                                 reclaim_state->reclaimed_slab = 0;
1621                         }
1622                 }
1623                 total_scanned += sc->nr_scanned;
1624                 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1625                         ret = sc->nr_reclaimed;
1626                         goto out;
1627                 }
1628
1629                 /*
1630                  * Try to write back as many pages as we just scanned.  This
1631                  * tends to cause slow streaming writers to write data to the
1632                  * disk smoothly, at the dirtying rate, which is nice.   But
1633                  * that's undesirable in laptop mode, where we *want* lumpy
1634                  * writeout.  So in laptop mode, write out the whole world.
1635                  */
1636                 if (total_scanned > sc->swap_cluster_max +
1637                                         sc->swap_cluster_max / 2) {
1638                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1639                         sc->may_writepage = 1;
1640                 }
1641
1642                 /* Take a nap, wait for some writeback to complete */
1643                 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1644                         congestion_wait(WRITE, HZ/10);
1645         }
1646         /* top priority shrink_zones still had more to do? don't OOM, then */
1647         if (!sc->all_unreclaimable && scan_global_lru(sc))
1648                 ret = sc->nr_reclaimed;
1649 out:
1650         /*
1651          * Now that we've scanned all the zones at this priority level, note
1652          * that level within the zone so that the next thread which performs
1653          * scanning of this zone will immediately start out at this priority
1654          * level.  This affects only the decision whether or not to bring
1655          * mapped pages onto the inactive list.
1656          */
1657         if (priority < 0)
1658                 priority = 0;
1659
1660         if (scan_global_lru(sc)) {
1661                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1662
1663                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1664                                 continue;
1665
1666                         zone->prev_priority = priority;
1667                 }
1668         } else
1669                 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1670
1671         delayacct_freepages_end();
1672
1673         return ret;
1674 }
1675
1676 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1677                                                                 gfp_t gfp_mask)
1678 {
1679         struct scan_control sc = {
1680                 .gfp_mask = gfp_mask,
1681                 .may_writepage = !laptop_mode,
1682                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1683                 .may_swap = 1,
1684                 .swappiness = vm_swappiness,
1685                 .order = order,
1686                 .mem_cgroup = NULL,
1687                 .isolate_pages = isolate_pages_global,
1688         };
1689
1690         return do_try_to_free_pages(zonelist, &sc);
1691 }
1692
1693 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1694
1695 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1696                                                 gfp_t gfp_mask,
1697                                            bool noswap)
1698 {
1699         struct scan_control sc = {
1700                 .may_writepage = !laptop_mode,
1701                 .may_swap = 1,
1702                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1703                 .swappiness = vm_swappiness,
1704                 .order = 0,
1705                 .mem_cgroup = mem_cont,
1706                 .isolate_pages = mem_cgroup_isolate_pages,
1707         };
1708         struct zonelist *zonelist;
1709
1710         if (noswap)
1711                 sc.may_swap = 0;
1712
1713         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1714                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1715         zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1716         return do_try_to_free_pages(zonelist, &sc);
1717 }
1718 #endif
1719
1720 /*
1721  * For kswapd, balance_pgdat() will work across all this node's zones until
1722  * they are all at pages_high.
1723  *
1724  * Returns the number of pages which were actually freed.
1725  *
1726  * There is special handling here for zones which are full of pinned pages.
1727  * This can happen if the pages are all mlocked, or if they are all used by
1728  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1729  * What we do is to detect the case where all pages in the zone have been
1730  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1731  * dead and from now on, only perform a short scan.  Basically we're polling
1732  * the zone for when the problem goes away.
1733  *
1734  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1735  * zones which have free_pages > pages_high, but once a zone is found to have
1736  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1737  * of the number of free pages in the lower zones.  This interoperates with
1738  * the page allocator fallback scheme to ensure that aging of pages is balanced
1739  * across the zones.
1740  */
1741 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1742 {
1743         int all_zones_ok;
1744         int priority;
1745         int i;
1746         unsigned long total_scanned;
1747         struct reclaim_state *reclaim_state = current->reclaim_state;
1748         struct scan_control sc = {
1749                 .gfp_mask = GFP_KERNEL,
1750                 .may_swap = 1,
1751                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1752                 .swappiness = vm_swappiness,
1753                 .order = order,
1754                 .mem_cgroup = NULL,
1755                 .isolate_pages = isolate_pages_global,
1756         };
1757         /*
1758          * temp_priority is used to remember the scanning priority at which
1759          * this zone was successfully refilled to free_pages == pages_high.
1760          */
1761         int temp_priority[MAX_NR_ZONES];
1762
1763 loop_again:
1764         total_scanned = 0;
1765         sc.nr_reclaimed = 0;
1766         sc.may_writepage = !laptop_mode;
1767         count_vm_event(PAGEOUTRUN);
1768
1769         for (i = 0; i < pgdat->nr_zones; i++)
1770                 temp_priority[i] = DEF_PRIORITY;
1771
1772         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1773                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1774                 unsigned long lru_pages = 0;
1775
1776                 /* The swap token gets in the way of swapout... */
1777                 if (!priority)
1778                         disable_swap_token();
1779
1780                 all_zones_ok = 1;
1781
1782                 /*
1783                  * Scan in the highmem->dma direction for the highest
1784                  * zone which needs scanning
1785                  */
1786                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1787                         struct zone *zone = pgdat->node_zones + i;
1788
1789                         if (!populated_zone(zone))
1790                                 continue;
1791
1792                         if (zone_is_all_unreclaimable(zone) &&
1793                             priority != DEF_PRIORITY)
1794                                 continue;
1795
1796                         /*
1797                          * Do some background aging of the anon list, to give
1798                          * pages a chance to be referenced before reclaiming.
1799                          */
1800                         if (inactive_anon_is_low(zone))
1801                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1802                                                         &sc, priority, 0);
1803
1804                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1805                                                0, 0)) {
1806                                 end_zone = i;
1807                                 break;
1808                         }
1809                 }
1810                 if (i < 0)
1811                         goto out;
1812
1813                 for (i = 0; i <= end_zone; i++) {
1814                         struct zone *zone = pgdat->node_zones + i;
1815
1816                         lru_pages += zone_lru_pages(zone);
1817                 }
1818
1819                 /*
1820                  * Now scan the zone in the dma->highmem direction, stopping
1821                  * at the last zone which needs scanning.
1822                  *
1823                  * We do this because the page allocator works in the opposite
1824                  * direction.  This prevents the page allocator from allocating
1825                  * pages behind kswapd's direction of progress, which would
1826                  * cause too much scanning of the lower zones.
1827                  */
1828                 for (i = 0; i <= end_zone; i++) {
1829                         struct zone *zone = pgdat->node_zones + i;
1830                         int nr_slab;
1831
1832                         if (!populated_zone(zone))
1833                                 continue;
1834
1835                         if (zone_is_all_unreclaimable(zone) &&
1836                                         priority != DEF_PRIORITY)
1837                                 continue;
1838
1839                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1840                                                end_zone, 0))
1841                                 all_zones_ok = 0;
1842                         temp_priority[i] = priority;
1843                         sc.nr_scanned = 0;
1844                         note_zone_scanning_priority(zone, priority);
1845                         /*
1846                          * We put equal pressure on every zone, unless one
1847                          * zone has way too many pages free already.
1848                          */
1849                         if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1850                                                 end_zone, 0))
1851                                 shrink_zone(priority, zone, &sc);
1852                         reclaim_state->reclaimed_slab = 0;
1853                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1854                                                 lru_pages);
1855                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1856                         total_scanned += sc.nr_scanned;
1857                         if (zone_is_all_unreclaimable(zone))
1858                                 continue;
1859                         if (nr_slab == 0 && zone->pages_scanned >=
1860                                                 (zone_lru_pages(zone) * 6))
1861                                         zone_set_flag(zone,
1862                                                       ZONE_ALL_UNRECLAIMABLE);
1863                         /*
1864                          * If we've done a decent amount of scanning and
1865                          * the reclaim ratio is low, start doing writepage
1866                          * even in laptop mode
1867                          */
1868                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1869                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1870                                 sc.may_writepage = 1;
1871                 }
1872                 if (all_zones_ok)
1873                         break;          /* kswapd: all done */
1874                 /*
1875                  * OK, kswapd is getting into trouble.  Take a nap, then take
1876                  * another pass across the zones.
1877                  */
1878                 if (total_scanned && priority < DEF_PRIORITY - 2)
1879                         congestion_wait(WRITE, HZ/10);
1880
1881                 /*
1882                  * We do this so kswapd doesn't build up large priorities for
1883                  * example when it is freeing in parallel with allocators. It
1884                  * matches the direct reclaim path behaviour in terms of impact
1885                  * on zone->*_priority.
1886                  */
1887                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1888                         break;
1889         }
1890 out:
1891         /*
1892          * Note within each zone the priority level at which this zone was
1893          * brought into a happy state.  So that the next thread which scans this
1894          * zone will start out at that priority level.
1895          */
1896         for (i = 0; i < pgdat->nr_zones; i++) {
1897                 struct zone *zone = pgdat->node_zones + i;
1898
1899                 zone->prev_priority = temp_priority[i];
1900         }
1901         if (!all_zones_ok) {
1902                 cond_resched();
1903
1904                 try_to_freeze();
1905
1906                 /*
1907                  * Fragmentation may mean that the system cannot be
1908                  * rebalanced for high-order allocations in all zones.
1909                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1910                  * it means the zones have been fully scanned and are still
1911                  * not balanced. For high-order allocations, there is
1912                  * little point trying all over again as kswapd may
1913                  * infinite loop.
1914                  *
1915                  * Instead, recheck all watermarks at order-0 as they
1916                  * are the most important. If watermarks are ok, kswapd will go
1917                  * back to sleep. High-order users can still perform direct
1918                  * reclaim if they wish.
1919                  */
1920                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1921                         order = sc.order = 0;
1922
1923                 goto loop_again;
1924         }
1925
1926         return sc.nr_reclaimed;
1927 }
1928
1929 /*
1930  * The background pageout daemon, started as a kernel thread
1931  * from the init process.
1932  *
1933  * This basically trickles out pages so that we have _some_
1934  * free memory available even if there is no other activity
1935  * that frees anything up. This is needed for things like routing
1936  * etc, where we otherwise might have all activity going on in
1937  * asynchronous contexts that cannot page things out.
1938  *
1939  * If there are applications that are active memory-allocators
1940  * (most normal use), this basically shouldn't matter.
1941  */
1942 static int kswapd(void *p)
1943 {
1944         unsigned long order;
1945         pg_data_t *pgdat = (pg_data_t*)p;
1946         struct task_struct *tsk = current;
1947         DEFINE_WAIT(wait);
1948         struct reclaim_state reclaim_state = {
1949                 .reclaimed_slab = 0,
1950         };
1951         node_to_cpumask_ptr(cpumask, pgdat->node_id);
1952
1953         if (!cpumask_empty(cpumask))
1954                 set_cpus_allowed_ptr(tsk, cpumask);
1955         current->reclaim_state = &reclaim_state;
1956
1957         /*
1958          * Tell the memory management that we're a "memory allocator",
1959          * and that if we need more memory we should get access to it
1960          * regardless (see "__alloc_pages()"). "kswapd" should
1961          * never get caught in the normal page freeing logic.
1962          *
1963          * (Kswapd normally doesn't need memory anyway, but sometimes
1964          * you need a small amount of memory in order to be able to
1965          * page out something else, and this flag essentially protects
1966          * us from recursively trying to free more memory as we're
1967          * trying to free the first piece of memory in the first place).
1968          */
1969         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1970         set_freezable();
1971
1972         order = 0;
1973         for ( ; ; ) {
1974                 unsigned long new_order;
1975
1976                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1977                 new_order = pgdat->kswapd_max_order;
1978                 pgdat->kswapd_max_order = 0;
1979                 if (order < new_order) {
1980                         /*
1981                          * Don't sleep if someone wants a larger 'order'
1982                          * allocation
1983                          */
1984                         order = new_order;
1985                 } else {
1986                         if (!freezing(current))
1987                                 schedule();
1988
1989                         order = pgdat->kswapd_max_order;
1990                 }
1991                 finish_wait(&pgdat->kswapd_wait, &wait);
1992
1993                 if (!try_to_freeze()) {
1994                         /* We can speed up thawing tasks if we don't call
1995                          * balance_pgdat after returning from the refrigerator
1996                          */
1997                         balance_pgdat(pgdat, order);
1998                 }
1999         }
2000         return 0;
2001 }
2002
2003 /*
2004  * A zone is low on free memory, so wake its kswapd task to service it.
2005  */
2006 void wakeup_kswapd(struct zone *zone, int order)
2007 {
2008         pg_data_t *pgdat;
2009
2010         if (!populated_zone(zone))
2011                 return;
2012
2013         pgdat = zone->zone_pgdat;
2014         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2015                 return;
2016         if (pgdat->kswapd_max_order < order)
2017                 pgdat->kswapd_max_order = order;
2018         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2019                 return;
2020         if (!waitqueue_active(&pgdat->kswapd_wait))
2021                 return;
2022         wake_up_interruptible(&pgdat->kswapd_wait);
2023 }
2024
2025 unsigned long global_lru_pages(void)
2026 {
2027         return global_page_state(NR_ACTIVE_ANON)
2028                 + global_page_state(NR_ACTIVE_FILE)
2029                 + global_page_state(NR_INACTIVE_ANON)
2030                 + global_page_state(NR_INACTIVE_FILE);
2031 }
2032
2033 #ifdef CONFIG_PM
2034 /*
2035  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2036  * from LRU lists system-wide, for given pass and priority, and returns the
2037  * number of reclaimed pages
2038  *
2039  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2040  */
2041 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2042                                       int pass, struct scan_control *sc)
2043 {
2044         struct zone *zone;
2045         unsigned long nr_to_scan, ret = 0;
2046         enum lru_list l;
2047
2048         for_each_zone(zone) {
2049
2050                 if (!populated_zone(zone))
2051                         continue;
2052
2053                 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2054                         continue;
2055
2056                 for_each_evictable_lru(l) {
2057                         /* For pass = 0, we don't shrink the active list */
2058                         if (pass == 0 &&
2059                                 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2060                                 continue;
2061
2062                         zone->lru[l].nr_scan +=
2063                                 (zone_page_state(zone, NR_LRU_BASE + l)
2064                                                                 >> prio) + 1;
2065                         if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2066                                 zone->lru[l].nr_scan = 0;
2067                                 nr_to_scan = min(nr_pages,
2068                                         zone_page_state(zone,
2069                                                         NR_LRU_BASE + l));
2070                                 ret += shrink_list(l, nr_to_scan, zone,
2071                                                                 sc, prio);
2072                                 if (ret >= nr_pages)
2073                                         return ret;
2074                         }
2075                 }
2076         }
2077
2078         return ret;
2079 }
2080
2081 /*
2082  * Try to free `nr_pages' of memory, system-wide, and return the number of
2083  * freed pages.
2084  *
2085  * Rather than trying to age LRUs the aim is to preserve the overall
2086  * LRU order by reclaiming preferentially
2087  * inactive > active > active referenced > active mapped
2088  */
2089 unsigned long shrink_all_memory(unsigned long nr_pages)
2090 {
2091         unsigned long lru_pages, nr_slab;
2092         unsigned long ret = 0;
2093         int pass;
2094         struct reclaim_state reclaim_state;
2095         struct scan_control sc = {
2096                 .gfp_mask = GFP_KERNEL,
2097                 .may_swap = 0,
2098                 .swap_cluster_max = nr_pages,
2099                 .may_writepage = 1,
2100                 .swappiness = vm_swappiness,
2101                 .isolate_pages = isolate_pages_global,
2102         };
2103
2104         current->reclaim_state = &reclaim_state;
2105
2106         lru_pages = global_lru_pages();
2107         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2108         /* If slab caches are huge, it's better to hit them first */
2109         while (nr_slab >= lru_pages) {
2110                 reclaim_state.reclaimed_slab = 0;
2111                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2112                 if (!reclaim_state.reclaimed_slab)
2113                         break;
2114
2115                 ret += reclaim_state.reclaimed_slab;
2116                 if (ret >= nr_pages)
2117                         goto out;
2118
2119                 nr_slab -= reclaim_state.reclaimed_slab;
2120         }
2121
2122         /*
2123          * We try to shrink LRUs in 5 passes:
2124          * 0 = Reclaim from inactive_list only
2125          * 1 = Reclaim from active list but don't reclaim mapped
2126          * 2 = 2nd pass of type 1
2127          * 3 = Reclaim mapped (normal reclaim)
2128          * 4 = 2nd pass of type 3
2129          */
2130         for (pass = 0; pass < 5; pass++) {
2131                 int prio;
2132
2133                 /* Force reclaiming mapped pages in the passes #3 and #4 */
2134                 if (pass > 2) {
2135                         sc.may_swap = 1;
2136                         sc.swappiness = 100;
2137                 }
2138
2139                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2140                         unsigned long nr_to_scan = nr_pages - ret;
2141
2142                         sc.nr_scanned = 0;
2143                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2144                         if (ret >= nr_pages)
2145                                 goto out;
2146
2147                         reclaim_state.reclaimed_slab = 0;
2148                         shrink_slab(sc.nr_scanned, sc.gfp_mask,
2149                                         global_lru_pages());
2150                         ret += reclaim_state.reclaimed_slab;
2151                         if (ret >= nr_pages)
2152                                 goto out;
2153
2154                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2155                                 congestion_wait(WRITE, HZ / 10);
2156                 }
2157         }
2158
2159         /*
2160          * If ret = 0, we could not shrink LRUs, but there may be something
2161          * in slab caches
2162          */
2163         if (!ret) {
2164                 do {
2165                         reclaim_state.reclaimed_slab = 0;
2166                         shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2167                         ret += reclaim_state.reclaimed_slab;
2168                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2169         }
2170
2171 out:
2172         current->reclaim_state = NULL;
2173
2174         return ret;
2175 }
2176 #endif
2177
2178 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2179    not required for correctness.  So if the last cpu in a node goes
2180    away, we get changed to run anywhere: as the first one comes back,
2181    restore their cpu bindings. */
2182 static int __devinit cpu_callback(struct notifier_block *nfb,
2183                                   unsigned long action, void *hcpu)
2184 {
2185         int nid;
2186
2187         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2188                 for_each_node_state(nid, N_HIGH_MEMORY) {
2189                         pg_data_t *pgdat = NODE_DATA(nid);
2190                         node_to_cpumask_ptr(mask, pgdat->node_id);
2191
2192                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2193                                 /* One of our CPUs online: restore mask */
2194                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2195                 }
2196         }
2197         return NOTIFY_OK;
2198 }
2199
2200 /*
2201  * This kswapd start function will be called by init and node-hot-add.
2202  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2203  */
2204 int kswapd_run(int nid)
2205 {
2206         pg_data_t *pgdat = NODE_DATA(nid);
2207         int ret = 0;
2208
2209         if (pgdat->kswapd)
2210                 return 0;
2211
2212         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2213         if (IS_ERR(pgdat->kswapd)) {
2214                 /* failure at boot is fatal */
2215                 BUG_ON(system_state == SYSTEM_BOOTING);
2216                 printk("Failed to start kswapd on node %d\n",nid);
2217                 ret = -1;
2218         }
2219         return ret;
2220 }
2221
2222 static int __init kswapd_init(void)
2223 {
2224         int nid;
2225
2226         swap_setup();
2227         for_each_node_state(nid, N_HIGH_MEMORY)
2228                 kswapd_run(nid);
2229         hotcpu_notifier(cpu_callback, 0);
2230         return 0;
2231 }
2232
2233 module_init(kswapd_init)
2234
2235 #ifdef CONFIG_NUMA
2236 /*
2237  * Zone reclaim mode
2238  *
2239  * If non-zero call zone_reclaim when the number of free pages falls below
2240  * the watermarks.
2241  */
2242 int zone_reclaim_mode __read_mostly;
2243
2244 #define RECLAIM_OFF 0
2245 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2246 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2247 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2248
2249 /*
2250  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2251  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2252  * a zone.
2253  */
2254 #define ZONE_RECLAIM_PRIORITY 4
2255
2256 /*
2257  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2258  * occur.
2259  */
2260 int sysctl_min_unmapped_ratio = 1;
2261
2262 /*
2263  * If the number of slab pages in a zone grows beyond this percentage then
2264  * slab reclaim needs to occur.
2265  */
2266 int sysctl_min_slab_ratio = 5;
2267
2268 /*
2269  * Try to free up some pages from this zone through reclaim.
2270  */
2271 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2272 {
2273         /* Minimum pages needed in order to stay on node */
2274         const unsigned long nr_pages = 1 << order;
2275         struct task_struct *p = current;
2276         struct reclaim_state reclaim_state;
2277         int priority;
2278         struct scan_control sc = {
2279                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2280                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2281                 .swap_cluster_max = max_t(unsigned long, nr_pages,
2282                                         SWAP_CLUSTER_MAX),
2283                 .gfp_mask = gfp_mask,
2284                 .swappiness = vm_swappiness,
2285                 .isolate_pages = isolate_pages_global,
2286         };
2287         unsigned long slab_reclaimable;
2288
2289         disable_swap_token();
2290         cond_resched();
2291         /*
2292          * We need to be able to allocate from the reserves for RECLAIM_SWAP
2293          * and we also need to be able to write out pages for RECLAIM_WRITE
2294          * and RECLAIM_SWAP.
2295          */
2296         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2297         reclaim_state.reclaimed_slab = 0;
2298         p->reclaim_state = &reclaim_state;
2299
2300         if (zone_page_state(zone, NR_FILE_PAGES) -
2301                 zone_page_state(zone, NR_FILE_MAPPED) >
2302                 zone->min_unmapped_pages) {
2303                 /*
2304                  * Free memory by calling shrink zone with increasing
2305                  * priorities until we have enough memory freed.
2306                  */
2307                 priority = ZONE_RECLAIM_PRIORITY;
2308                 do {
2309                         note_zone_scanning_priority(zone, priority);
2310                         shrink_zone(priority, zone, &sc);
2311                         priority--;
2312                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2313         }
2314
2315         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2316         if (slab_reclaimable > zone->min_slab_pages) {
2317                 /*
2318                  * shrink_slab() does not currently allow us to determine how
2319                  * many pages were freed in this zone. So we take the current
2320                  * number of slab pages and shake the slab until it is reduced
2321                  * by the same nr_pages that we used for reclaiming unmapped
2322                  * pages.
2323                  *
2324                  * Note that shrink_slab will free memory on all zones and may
2325                  * take a long time.
2326                  */
2327                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2328                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2329                                 slab_reclaimable - nr_pages)
2330                         ;
2331
2332                 /*
2333                  * Update nr_reclaimed by the number of slab pages we
2334                  * reclaimed from this zone.
2335                  */
2336                 sc.nr_reclaimed += slab_reclaimable -
2337                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2338         }
2339
2340         p->reclaim_state = NULL;
2341         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2342         return sc.nr_reclaimed >= nr_pages;
2343 }
2344
2345 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2346 {
2347         int node_id;
2348         int ret;
2349
2350         /*
2351          * Zone reclaim reclaims unmapped file backed pages and
2352          * slab pages if we are over the defined limits.
2353          *
2354          * A small portion of unmapped file backed pages is needed for
2355          * file I/O otherwise pages read by file I/O will be immediately
2356          * thrown out if the zone is overallocated. So we do not reclaim
2357          * if less than a specified percentage of the zone is used by
2358          * unmapped file backed pages.
2359          */
2360         if (zone_page_state(zone, NR_FILE_PAGES) -
2361             zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2362             && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2363                         <= zone->min_slab_pages)
2364                 return 0;
2365
2366         if (zone_is_all_unreclaimable(zone))
2367                 return 0;
2368
2369         /*
2370          * Do not scan if the allocation should not be delayed.
2371          */
2372         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2373                         return 0;
2374
2375         /*
2376          * Only run zone reclaim on the local zone or on zones that do not
2377          * have associated processors. This will favor the local processor
2378          * over remote processors and spread off node memory allocations
2379          * as wide as possible.
2380          */
2381         node_id = zone_to_nid(zone);
2382         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2383                 return 0;
2384
2385         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2386                 return 0;
2387         ret = __zone_reclaim(zone, gfp_mask, order);
2388         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2389
2390         return ret;
2391 }
2392 #endif
2393
2394 #ifdef CONFIG_UNEVICTABLE_LRU
2395 /*
2396  * page_evictable - test whether a page is evictable
2397  * @page: the page to test
2398  * @vma: the VMA in which the page is or will be mapped, may be NULL
2399  *
2400  * Test whether page is evictable--i.e., should be placed on active/inactive
2401  * lists vs unevictable list.  The vma argument is !NULL when called from the
2402  * fault path to determine how to instantate a new page.
2403  *
2404  * Reasons page might not be evictable:
2405  * (1) page's mapping marked unevictable
2406  * (2) page is part of an mlocked VMA
2407  *
2408  */
2409 int page_evictable(struct page *page, struct vm_area_struct *vma)
2410 {
2411
2412         if (mapping_unevictable(page_mapping(page)))
2413                 return 0;
2414
2415         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2416                 return 0;
2417
2418         return 1;
2419 }
2420
2421 /**
2422  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2423  * @page: page to check evictability and move to appropriate lru list
2424  * @zone: zone page is in
2425  *
2426  * Checks a page for evictability and moves the page to the appropriate
2427  * zone lru list.
2428  *
2429  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2430  * have PageUnevictable set.
2431  */
2432 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2433 {
2434         VM_BUG_ON(PageActive(page));
2435
2436 retry:
2437         ClearPageUnevictable(page);
2438         if (page_evictable(page, NULL)) {
2439                 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2440
2441                 __dec_zone_state(zone, NR_UNEVICTABLE);
2442                 list_move(&page->lru, &zone->lru[l].list);
2443                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2444                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2445                 __count_vm_event(UNEVICTABLE_PGRESCUED);
2446         } else {
2447                 /*
2448                  * rotate unevictable list
2449                  */
2450                 SetPageUnevictable(page);
2451                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2452                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2453                 if (page_evictable(page, NULL))
2454                         goto retry;
2455         }
2456 }
2457
2458 /**
2459  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2460  * @mapping: struct address_space to scan for evictable pages
2461  *
2462  * Scan all pages in mapping.  Check unevictable pages for
2463  * evictability and move them to the appropriate zone lru list.
2464  */
2465 void scan_mapping_unevictable_pages(struct address_space *mapping)
2466 {
2467         pgoff_t next = 0;
2468         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2469                          PAGE_CACHE_SHIFT;
2470         struct zone *zone;
2471         struct pagevec pvec;
2472
2473         if (mapping->nrpages == 0)
2474                 return;
2475
2476         pagevec_init(&pvec, 0);
2477         while (next < end &&
2478                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2479                 int i;
2480                 int pg_scanned = 0;
2481
2482                 zone = NULL;
2483
2484                 for (i = 0; i < pagevec_count(&pvec); i++) {
2485                         struct page *page = pvec.pages[i];
2486                         pgoff_t page_index = page->index;
2487                         struct zone *pagezone = page_zone(page);
2488
2489                         pg_scanned++;
2490                         if (page_index > next)
2491                                 next = page_index;
2492                         next++;
2493
2494                         if (pagezone != zone) {
2495                                 if (zone)
2496                                         spin_unlock_irq(&zone->lru_lock);
2497                                 zone = pagezone;
2498                                 spin_lock_irq(&zone->lru_lock);
2499                         }
2500
2501                         if (PageLRU(page) && PageUnevictable(page))
2502                                 check_move_unevictable_page(page, zone);
2503                 }
2504                 if (zone)
2505                         spin_unlock_irq(&zone->lru_lock);
2506                 pagevec_release(&pvec);
2507
2508                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2509         }
2510
2511 }
2512
2513 /**
2514  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2515  * @zone - zone of which to scan the unevictable list
2516  *
2517  * Scan @zone's unevictable LRU lists to check for pages that have become
2518  * evictable.  Move those that have to @zone's inactive list where they
2519  * become candidates for reclaim, unless shrink_inactive_zone() decides
2520  * to reactivate them.  Pages that are still unevictable are rotated
2521  * back onto @zone's unevictable list.
2522  */
2523 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2524 static void scan_zone_unevictable_pages(struct zone *zone)
2525 {
2526         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2527         unsigned long scan;
2528         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2529
2530         while (nr_to_scan > 0) {
2531                 unsigned long batch_size = min(nr_to_scan,
2532                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
2533
2534                 spin_lock_irq(&zone->lru_lock);
2535                 for (scan = 0;  scan < batch_size; scan++) {
2536                         struct page *page = lru_to_page(l_unevictable);
2537
2538                         if (!trylock_page(page))
2539                                 continue;
2540
2541                         prefetchw_prev_lru_page(page, l_unevictable, flags);
2542
2543                         if (likely(PageLRU(page) && PageUnevictable(page)))
2544                                 check_move_unevictable_page(page, zone);
2545
2546                         unlock_page(page);
2547                 }
2548                 spin_unlock_irq(&zone->lru_lock);
2549
2550                 nr_to_scan -= batch_size;
2551         }
2552 }
2553
2554
2555 /**
2556  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2557  *
2558  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2559  * pages that have become evictable.  Move those back to the zones'
2560  * inactive list where they become candidates for reclaim.
2561  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2562  * and we add swap to the system.  As such, it runs in the context of a task
2563  * that has possibly/probably made some previously unevictable pages
2564  * evictable.
2565  */
2566 static void scan_all_zones_unevictable_pages(void)
2567 {
2568         struct zone *zone;
2569
2570         for_each_zone(zone) {
2571                 scan_zone_unevictable_pages(zone);
2572         }
2573 }
2574
2575 /*
2576  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2577  * all nodes' unevictable lists for evictable pages
2578  */
2579 unsigned long scan_unevictable_pages;
2580
2581 int scan_unevictable_handler(struct ctl_table *table, int write,
2582                            struct file *file, void __user *buffer,
2583                            size_t *length, loff_t *ppos)
2584 {
2585         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2586
2587         if (write && *(unsigned long *)table->data)
2588                 scan_all_zones_unevictable_pages();
2589
2590         scan_unevictable_pages = 0;
2591         return 0;
2592 }
2593
2594 /*
2595  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2596  * a specified node's per zone unevictable lists for evictable pages.
2597  */
2598
2599 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2600                                           struct sysdev_attribute *attr,
2601                                           char *buf)
2602 {
2603         return sprintf(buf, "0\n");     /* always zero; should fit... */
2604 }
2605
2606 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2607                                            struct sysdev_attribute *attr,
2608                                         const char *buf, size_t count)
2609 {
2610         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2611         struct zone *zone;
2612         unsigned long res;
2613         unsigned long req = strict_strtoul(buf, 10, &res);
2614
2615         if (!req)
2616                 return 1;       /* zero is no-op */
2617
2618         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2619                 if (!populated_zone(zone))
2620                         continue;
2621                 scan_zone_unevictable_pages(zone);
2622         }
2623         return 1;
2624 }
2625
2626
2627 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2628                         read_scan_unevictable_node,
2629                         write_scan_unevictable_node);
2630
2631 int scan_unevictable_register_node(struct node *node)
2632 {
2633         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2634 }
2635
2636 void scan_unevictable_unregister_node(struct node *node)
2637 {
2638         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2639 }
2640
2641 #endif