vmscan: split LRU lists into anon & file sets
[safe/jmp/linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
45
46 #include <linux/swapops.h>
47
48 #include "internal.h"
49
50 struct scan_control {
51         /* Incremented by the number of inactive pages that were scanned */
52         unsigned long nr_scanned;
53
54         /* This context's GFP mask */
55         gfp_t gfp_mask;
56
57         int may_writepage;
58
59         /* Can pages be swapped as part of reclaim? */
60         int may_swap;
61
62         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64          * In this context, it doesn't matter that we scan the
65          * whole list at once. */
66         int swap_cluster_max;
67
68         int swappiness;
69
70         int all_unreclaimable;
71
72         int order;
73
74         /* Which cgroup do we reclaim from */
75         struct mem_cgroup *mem_cgroup;
76
77         /* Pluggable isolate pages callback */
78         unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79                         unsigned long *scanned, int order, int mode,
80                         struct zone *z, struct mem_cgroup *mem_cont,
81                         int active, int file);
82 };
83
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field)                    \
88         do {                                                            \
89                 if ((_page)->lru.prev != _base) {                       \
90                         struct page *prev;                              \
91                                                                         \
92                         prev = lru_to_page(&(_page->lru));              \
93                         prefetch(&prev->_field);                        \
94                 }                                                       \
95         } while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
99
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetchw(&prev->_field);                       \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 /*
115  * From 0 .. 100.  Higher means more swappy.
116  */
117 int vm_swappiness = 60;
118 long vm_total_pages;    /* The total number of pages which the VM controls */
119
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
122
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc)     (!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc)     (1)
127 #endif
128
129 /*
130  * Add a shrinker callback to be called from the vm
131  */
132 void register_shrinker(struct shrinker *shrinker)
133 {
134         shrinker->nr = 0;
135         down_write(&shrinker_rwsem);
136         list_add_tail(&shrinker->list, &shrinker_list);
137         up_write(&shrinker_rwsem);
138 }
139 EXPORT_SYMBOL(register_shrinker);
140
141 /*
142  * Remove one
143  */
144 void unregister_shrinker(struct shrinker *shrinker)
145 {
146         down_write(&shrinker_rwsem);
147         list_del(&shrinker->list);
148         up_write(&shrinker_rwsem);
149 }
150 EXPORT_SYMBOL(unregister_shrinker);
151
152 #define SHRINK_BATCH 128
153 /*
154  * Call the shrink functions to age shrinkable caches
155  *
156  * Here we assume it costs one seek to replace a lru page and that it also
157  * takes a seek to recreate a cache object.  With this in mind we age equal
158  * percentages of the lru and ageable caches.  This should balance the seeks
159  * generated by these structures.
160  *
161  * If the vm encountered mapped pages on the LRU it increase the pressure on
162  * slab to avoid swapping.
163  *
164  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165  *
166  * `lru_pages' represents the number of on-LRU pages in all the zones which
167  * are eligible for the caller's allocation attempt.  It is used for balancing
168  * slab reclaim versus page reclaim.
169  *
170  * Returns the number of slab objects which we shrunk.
171  */
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173                         unsigned long lru_pages)
174 {
175         struct shrinker *shrinker;
176         unsigned long ret = 0;
177
178         if (scanned == 0)
179                 scanned = SWAP_CLUSTER_MAX;
180
181         if (!down_read_trylock(&shrinker_rwsem))
182                 return 1;       /* Assume we'll be able to shrink next time */
183
184         list_for_each_entry(shrinker, &shrinker_list, list) {
185                 unsigned long long delta;
186                 unsigned long total_scan;
187                 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
188
189                 delta = (4 * scanned) / shrinker->seeks;
190                 delta *= max_pass;
191                 do_div(delta, lru_pages + 1);
192                 shrinker->nr += delta;
193                 if (shrinker->nr < 0) {
194                         printk(KERN_ERR "%s: nr=%ld\n",
195                                         __func__, shrinker->nr);
196                         shrinker->nr = max_pass;
197                 }
198
199                 /*
200                  * Avoid risking looping forever due to too large nr value:
201                  * never try to free more than twice the estimate number of
202                  * freeable entries.
203                  */
204                 if (shrinker->nr > max_pass * 2)
205                         shrinker->nr = max_pass * 2;
206
207                 total_scan = shrinker->nr;
208                 shrinker->nr = 0;
209
210                 while (total_scan >= SHRINK_BATCH) {
211                         long this_scan = SHRINK_BATCH;
212                         int shrink_ret;
213                         int nr_before;
214
215                         nr_before = (*shrinker->shrink)(0, gfp_mask);
216                         shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217                         if (shrink_ret == -1)
218                                 break;
219                         if (shrink_ret < nr_before)
220                                 ret += nr_before - shrink_ret;
221                         count_vm_events(SLABS_SCANNED, this_scan);
222                         total_scan -= this_scan;
223
224                         cond_resched();
225                 }
226
227                 shrinker->nr += total_scan;
228         }
229         up_read(&shrinker_rwsem);
230         return ret;
231 }
232
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
235 {
236         struct address_space *mapping;
237
238         /* Page is in somebody's page tables. */
239         if (page_mapped(page))
240                 return 1;
241
242         /* Be more reluctant to reclaim swapcache than pagecache */
243         if (PageSwapCache(page))
244                 return 1;
245
246         mapping = page_mapping(page);
247         if (!mapping)
248                 return 0;
249
250         /* File is mmap'd by somebody? */
251         return mapping_mapped(mapping);
252 }
253
254 static inline int is_page_cache_freeable(struct page *page)
255 {
256         return page_count(page) - !!PagePrivate(page) == 2;
257 }
258
259 static int may_write_to_queue(struct backing_dev_info *bdi)
260 {
261         if (current->flags & PF_SWAPWRITE)
262                 return 1;
263         if (!bdi_write_congested(bdi))
264                 return 1;
265         if (bdi == current->backing_dev_info)
266                 return 1;
267         return 0;
268 }
269
270 /*
271  * We detected a synchronous write error writing a page out.  Probably
272  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
273  * fsync(), msync() or close().
274  *
275  * The tricky part is that after writepage we cannot touch the mapping: nothing
276  * prevents it from being freed up.  But we have a ref on the page and once
277  * that page is locked, the mapping is pinned.
278  *
279  * We're allowed to run sleeping lock_page() here because we know the caller has
280  * __GFP_FS.
281  */
282 static void handle_write_error(struct address_space *mapping,
283                                 struct page *page, int error)
284 {
285         lock_page(page);
286         if (page_mapping(page) == mapping)
287                 mapping_set_error(mapping, error);
288         unlock_page(page);
289 }
290
291 /* Request for sync pageout. */
292 enum pageout_io {
293         PAGEOUT_IO_ASYNC,
294         PAGEOUT_IO_SYNC,
295 };
296
297 /* possible outcome of pageout() */
298 typedef enum {
299         /* failed to write page out, page is locked */
300         PAGE_KEEP,
301         /* move page to the active list, page is locked */
302         PAGE_ACTIVATE,
303         /* page has been sent to the disk successfully, page is unlocked */
304         PAGE_SUCCESS,
305         /* page is clean and locked */
306         PAGE_CLEAN,
307 } pageout_t;
308
309 /*
310  * pageout is called by shrink_page_list() for each dirty page.
311  * Calls ->writepage().
312  */
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314                                                 enum pageout_io sync_writeback)
315 {
316         /*
317          * If the page is dirty, only perform writeback if that write
318          * will be non-blocking.  To prevent this allocation from being
319          * stalled by pagecache activity.  But note that there may be
320          * stalls if we need to run get_block().  We could test
321          * PagePrivate for that.
322          *
323          * If this process is currently in generic_file_write() against
324          * this page's queue, we can perform writeback even if that
325          * will block.
326          *
327          * If the page is swapcache, write it back even if that would
328          * block, for some throttling. This happens by accident, because
329          * swap_backing_dev_info is bust: it doesn't reflect the
330          * congestion state of the swapdevs.  Easy to fix, if needed.
331          * See swapfile.c:page_queue_congested().
332          */
333         if (!is_page_cache_freeable(page))
334                 return PAGE_KEEP;
335         if (!mapping) {
336                 /*
337                  * Some data journaling orphaned pages can have
338                  * page->mapping == NULL while being dirty with clean buffers.
339                  */
340                 if (PagePrivate(page)) {
341                         if (try_to_free_buffers(page)) {
342                                 ClearPageDirty(page);
343                                 printk("%s: orphaned page\n", __func__);
344                                 return PAGE_CLEAN;
345                         }
346                 }
347                 return PAGE_KEEP;
348         }
349         if (mapping->a_ops->writepage == NULL)
350                 return PAGE_ACTIVATE;
351         if (!may_write_to_queue(mapping->backing_dev_info))
352                 return PAGE_KEEP;
353
354         if (clear_page_dirty_for_io(page)) {
355                 int res;
356                 struct writeback_control wbc = {
357                         .sync_mode = WB_SYNC_NONE,
358                         .nr_to_write = SWAP_CLUSTER_MAX,
359                         .range_start = 0,
360                         .range_end = LLONG_MAX,
361                         .nonblocking = 1,
362                         .for_reclaim = 1,
363                 };
364
365                 SetPageReclaim(page);
366                 res = mapping->a_ops->writepage(page, &wbc);
367                 if (res < 0)
368                         handle_write_error(mapping, page, res);
369                 if (res == AOP_WRITEPAGE_ACTIVATE) {
370                         ClearPageReclaim(page);
371                         return PAGE_ACTIVATE;
372                 }
373
374                 /*
375                  * Wait on writeback if requested to. This happens when
376                  * direct reclaiming a large contiguous area and the
377                  * first attempt to free a range of pages fails.
378                  */
379                 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380                         wait_on_page_writeback(page);
381
382                 if (!PageWriteback(page)) {
383                         /* synchronous write or broken a_ops? */
384                         ClearPageReclaim(page);
385                 }
386                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
387                 return PAGE_SUCCESS;
388         }
389
390         return PAGE_CLEAN;
391 }
392
393 /*
394  * Same as remove_mapping, but if the page is removed from the mapping, it
395  * gets returned with a refcount of 0.
396  */
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
398 {
399         BUG_ON(!PageLocked(page));
400         BUG_ON(mapping != page_mapping(page));
401
402         spin_lock_irq(&mapping->tree_lock);
403         /*
404          * The non racy check for a busy page.
405          *
406          * Must be careful with the order of the tests. When someone has
407          * a ref to the page, it may be possible that they dirty it then
408          * drop the reference. So if PageDirty is tested before page_count
409          * here, then the following race may occur:
410          *
411          * get_user_pages(&page);
412          * [user mapping goes away]
413          * write_to(page);
414          *                              !PageDirty(page)    [good]
415          * SetPageDirty(page);
416          * put_page(page);
417          *                              !page_count(page)   [good, discard it]
418          *
419          * [oops, our write_to data is lost]
420          *
421          * Reversing the order of the tests ensures such a situation cannot
422          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423          * load is not satisfied before that of page->_count.
424          *
425          * Note that if SetPageDirty is always performed via set_page_dirty,
426          * and thus under tree_lock, then this ordering is not required.
427          */
428         if (!page_freeze_refs(page, 2))
429                 goto cannot_free;
430         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431         if (unlikely(PageDirty(page))) {
432                 page_unfreeze_refs(page, 2);
433                 goto cannot_free;
434         }
435
436         if (PageSwapCache(page)) {
437                 swp_entry_t swap = { .val = page_private(page) };
438                 __delete_from_swap_cache(page);
439                 spin_unlock_irq(&mapping->tree_lock);
440                 swap_free(swap);
441         } else {
442                 __remove_from_page_cache(page);
443                 spin_unlock_irq(&mapping->tree_lock);
444         }
445
446         return 1;
447
448 cannot_free:
449         spin_unlock_irq(&mapping->tree_lock);
450         return 0;
451 }
452
453 /*
454  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
455  * someone else has a ref on the page, abort and return 0.  If it was
456  * successfully detached, return 1.  Assumes the caller has a single ref on
457  * this page.
458  */
459 int remove_mapping(struct address_space *mapping, struct page *page)
460 {
461         if (__remove_mapping(mapping, page)) {
462                 /*
463                  * Unfreezing the refcount with 1 rather than 2 effectively
464                  * drops the pagecache ref for us without requiring another
465                  * atomic operation.
466                  */
467                 page_unfreeze_refs(page, 1);
468                 return 1;
469         }
470         return 0;
471 }
472
473 /*
474  * shrink_page_list() returns the number of reclaimed pages
475  */
476 static unsigned long shrink_page_list(struct list_head *page_list,
477                                         struct scan_control *sc,
478                                         enum pageout_io sync_writeback)
479 {
480         LIST_HEAD(ret_pages);
481         struct pagevec freed_pvec;
482         int pgactivate = 0;
483         unsigned long nr_reclaimed = 0;
484
485         cond_resched();
486
487         pagevec_init(&freed_pvec, 1);
488         while (!list_empty(page_list)) {
489                 struct address_space *mapping;
490                 struct page *page;
491                 int may_enter_fs;
492                 int referenced;
493
494                 cond_resched();
495
496                 page = lru_to_page(page_list);
497                 list_del(&page->lru);
498
499                 if (!trylock_page(page))
500                         goto keep;
501
502                 VM_BUG_ON(PageActive(page));
503
504                 sc->nr_scanned++;
505
506                 if (!sc->may_swap && page_mapped(page))
507                         goto keep_locked;
508
509                 /* Double the slab pressure for mapped and swapcache pages */
510                 if (page_mapped(page) || PageSwapCache(page))
511                         sc->nr_scanned++;
512
513                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
514                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
515
516                 if (PageWriteback(page)) {
517                         /*
518                          * Synchronous reclaim is performed in two passes,
519                          * first an asynchronous pass over the list to
520                          * start parallel writeback, and a second synchronous
521                          * pass to wait for the IO to complete.  Wait here
522                          * for any page for which writeback has already
523                          * started.
524                          */
525                         if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
526                                 wait_on_page_writeback(page);
527                         else
528                                 goto keep_locked;
529                 }
530
531                 referenced = page_referenced(page, 1, sc->mem_cgroup);
532                 /* In active use or really unfreeable?  Activate it. */
533                 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
534                                         referenced && page_mapping_inuse(page))
535                         goto activate_locked;
536
537 #ifdef CONFIG_SWAP
538                 /*
539                  * Anonymous process memory has backing store?
540                  * Try to allocate it some swap space here.
541                  */
542                 if (PageAnon(page) && !PageSwapCache(page))
543                         if (!add_to_swap(page, GFP_ATOMIC))
544                                 goto activate_locked;
545 #endif /* CONFIG_SWAP */
546
547                 mapping = page_mapping(page);
548
549                 /*
550                  * The page is mapped into the page tables of one or more
551                  * processes. Try to unmap it here.
552                  */
553                 if (page_mapped(page) && mapping) {
554                         switch (try_to_unmap(page, 0)) {
555                         case SWAP_FAIL:
556                                 goto activate_locked;
557                         case SWAP_AGAIN:
558                                 goto keep_locked;
559                         case SWAP_SUCCESS:
560                                 ; /* try to free the page below */
561                         }
562                 }
563
564                 if (PageDirty(page)) {
565                         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
566                                 goto keep_locked;
567                         if (!may_enter_fs)
568                                 goto keep_locked;
569                         if (!sc->may_writepage)
570                                 goto keep_locked;
571
572                         /* Page is dirty, try to write it out here */
573                         switch (pageout(page, mapping, sync_writeback)) {
574                         case PAGE_KEEP:
575                                 goto keep_locked;
576                         case PAGE_ACTIVATE:
577                                 goto activate_locked;
578                         case PAGE_SUCCESS:
579                                 if (PageWriteback(page) || PageDirty(page))
580                                         goto keep;
581                                 /*
582                                  * A synchronous write - probably a ramdisk.  Go
583                                  * ahead and try to reclaim the page.
584                                  */
585                                 if (!trylock_page(page))
586                                         goto keep;
587                                 if (PageDirty(page) || PageWriteback(page))
588                                         goto keep_locked;
589                                 mapping = page_mapping(page);
590                         case PAGE_CLEAN:
591                                 ; /* try to free the page below */
592                         }
593                 }
594
595                 /*
596                  * If the page has buffers, try to free the buffer mappings
597                  * associated with this page. If we succeed we try to free
598                  * the page as well.
599                  *
600                  * We do this even if the page is PageDirty().
601                  * try_to_release_page() does not perform I/O, but it is
602                  * possible for a page to have PageDirty set, but it is actually
603                  * clean (all its buffers are clean).  This happens if the
604                  * buffers were written out directly, with submit_bh(). ext3
605                  * will do this, as well as the blockdev mapping. 
606                  * try_to_release_page() will discover that cleanness and will
607                  * drop the buffers and mark the page clean - it can be freed.
608                  *
609                  * Rarely, pages can have buffers and no ->mapping.  These are
610                  * the pages which were not successfully invalidated in
611                  * truncate_complete_page().  We try to drop those buffers here
612                  * and if that worked, and the page is no longer mapped into
613                  * process address space (page_count == 1) it can be freed.
614                  * Otherwise, leave the page on the LRU so it is swappable.
615                  */
616                 if (PagePrivate(page)) {
617                         if (!try_to_release_page(page, sc->gfp_mask))
618                                 goto activate_locked;
619                         if (!mapping && page_count(page) == 1) {
620                                 unlock_page(page);
621                                 if (put_page_testzero(page))
622                                         goto free_it;
623                                 else {
624                                         /*
625                                          * rare race with speculative reference.
626                                          * the speculative reference will free
627                                          * this page shortly, so we may
628                                          * increment nr_reclaimed here (and
629                                          * leave it off the LRU).
630                                          */
631                                         nr_reclaimed++;
632                                         continue;
633                                 }
634                         }
635                 }
636
637                 if (!mapping || !__remove_mapping(mapping, page))
638                         goto keep_locked;
639
640                 unlock_page(page);
641 free_it:
642                 nr_reclaimed++;
643                 if (!pagevec_add(&freed_pvec, page)) {
644                         __pagevec_free(&freed_pvec);
645                         pagevec_reinit(&freed_pvec);
646                 }
647                 continue;
648
649 activate_locked:
650                 /* Not a candidate for swapping, so reclaim swap space. */
651                 if (PageSwapCache(page) && vm_swap_full())
652                         remove_exclusive_swap_page_ref(page);
653                 SetPageActive(page);
654                 pgactivate++;
655 keep_locked:
656                 unlock_page(page);
657 keep:
658                 list_add(&page->lru, &ret_pages);
659                 VM_BUG_ON(PageLRU(page));
660         }
661         list_splice(&ret_pages, page_list);
662         if (pagevec_count(&freed_pvec))
663                 __pagevec_free(&freed_pvec);
664         count_vm_events(PGACTIVATE, pgactivate);
665         return nr_reclaimed;
666 }
667
668 /* LRU Isolation modes. */
669 #define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
670 #define ISOLATE_ACTIVE 1        /* Isolate active pages. */
671 #define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
672
673 /*
674  * Attempt to remove the specified page from its LRU.  Only take this page
675  * if it is of the appropriate PageActive status.  Pages which are being
676  * freed elsewhere are also ignored.
677  *
678  * page:        page to consider
679  * mode:        one of the LRU isolation modes defined above
680  *
681  * returns 0 on success, -ve errno on failure.
682  */
683 int __isolate_lru_page(struct page *page, int mode, int file)
684 {
685         int ret = -EINVAL;
686
687         /* Only take pages on the LRU. */
688         if (!PageLRU(page))
689                 return ret;
690
691         /*
692          * When checking the active state, we need to be sure we are
693          * dealing with comparible boolean values.  Take the logical not
694          * of each.
695          */
696         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
697                 return ret;
698
699         if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
700                 return ret;
701
702         ret = -EBUSY;
703         if (likely(get_page_unless_zero(page))) {
704                 /*
705                  * Be careful not to clear PageLRU until after we're
706                  * sure the page is not being freed elsewhere -- the
707                  * page release code relies on it.
708                  */
709                 ClearPageLRU(page);
710                 ret = 0;
711         }
712
713         return ret;
714 }
715
716 /*
717  * zone->lru_lock is heavily contended.  Some of the functions that
718  * shrink the lists perform better by taking out a batch of pages
719  * and working on them outside the LRU lock.
720  *
721  * For pagecache intensive workloads, this function is the hottest
722  * spot in the kernel (apart from copy_*_user functions).
723  *
724  * Appropriate locks must be held before calling this function.
725  *
726  * @nr_to_scan: The number of pages to look through on the list.
727  * @src:        The LRU list to pull pages off.
728  * @dst:        The temp list to put pages on to.
729  * @scanned:    The number of pages that were scanned.
730  * @order:      The caller's attempted allocation order
731  * @mode:       One of the LRU isolation modes
732  * @file:       True [1] if isolating file [!anon] pages
733  *
734  * returns how many pages were moved onto *@dst.
735  */
736 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
737                 struct list_head *src, struct list_head *dst,
738                 unsigned long *scanned, int order, int mode, int file)
739 {
740         unsigned long nr_taken = 0;
741         unsigned long scan;
742
743         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
744                 struct page *page;
745                 unsigned long pfn;
746                 unsigned long end_pfn;
747                 unsigned long page_pfn;
748                 int zone_id;
749
750                 page = lru_to_page(src);
751                 prefetchw_prev_lru_page(page, src, flags);
752
753                 VM_BUG_ON(!PageLRU(page));
754
755                 switch (__isolate_lru_page(page, mode, file)) {
756                 case 0:
757                         list_move(&page->lru, dst);
758                         nr_taken++;
759                         break;
760
761                 case -EBUSY:
762                         /* else it is being freed elsewhere */
763                         list_move(&page->lru, src);
764                         continue;
765
766                 default:
767                         BUG();
768                 }
769
770                 if (!order)
771                         continue;
772
773                 /*
774                  * Attempt to take all pages in the order aligned region
775                  * surrounding the tag page.  Only take those pages of
776                  * the same active state as that tag page.  We may safely
777                  * round the target page pfn down to the requested order
778                  * as the mem_map is guarenteed valid out to MAX_ORDER,
779                  * where that page is in a different zone we will detect
780                  * it from its zone id and abort this block scan.
781                  */
782                 zone_id = page_zone_id(page);
783                 page_pfn = page_to_pfn(page);
784                 pfn = page_pfn & ~((1 << order) - 1);
785                 end_pfn = pfn + (1 << order);
786                 for (; pfn < end_pfn; pfn++) {
787                         struct page *cursor_page;
788
789                         /* The target page is in the block, ignore it. */
790                         if (unlikely(pfn == page_pfn))
791                                 continue;
792
793                         /* Avoid holes within the zone. */
794                         if (unlikely(!pfn_valid_within(pfn)))
795                                 break;
796
797                         cursor_page = pfn_to_page(pfn);
798
799                         /* Check that we have not crossed a zone boundary. */
800                         if (unlikely(page_zone_id(cursor_page) != zone_id))
801                                 continue;
802                         switch (__isolate_lru_page(cursor_page, mode, file)) {
803                         case 0:
804                                 list_move(&cursor_page->lru, dst);
805                                 nr_taken++;
806                                 scan++;
807                                 break;
808
809                         case -EBUSY:
810                                 /* else it is being freed elsewhere */
811                                 list_move(&cursor_page->lru, src);
812                         default:
813                                 break;
814                         }
815                 }
816         }
817
818         *scanned = scan;
819         return nr_taken;
820 }
821
822 static unsigned long isolate_pages_global(unsigned long nr,
823                                         struct list_head *dst,
824                                         unsigned long *scanned, int order,
825                                         int mode, struct zone *z,
826                                         struct mem_cgroup *mem_cont,
827                                         int active, int file)
828 {
829         int lru = LRU_BASE;
830         if (active)
831                 lru += LRU_ACTIVE;
832         if (file)
833                 lru += LRU_FILE;
834         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
835                                                                 mode, !!file);
836 }
837
838 /*
839  * clear_active_flags() is a helper for shrink_active_list(), clearing
840  * any active bits from the pages in the list.
841  */
842 static unsigned long clear_active_flags(struct list_head *page_list,
843                                         unsigned int *count)
844 {
845         int nr_active = 0;
846         int lru;
847         struct page *page;
848
849         list_for_each_entry(page, page_list, lru) {
850                 lru = page_is_file_cache(page);
851                 if (PageActive(page)) {
852                         lru += LRU_ACTIVE;
853                         ClearPageActive(page);
854                         nr_active++;
855                 }
856                 count[lru]++;
857         }
858
859         return nr_active;
860 }
861
862 /**
863  * isolate_lru_page - tries to isolate a page from its LRU list
864  * @page: page to isolate from its LRU list
865  *
866  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
867  * vmstat statistic corresponding to whatever LRU list the page was on.
868  *
869  * Returns 0 if the page was removed from an LRU list.
870  * Returns -EBUSY if the page was not on an LRU list.
871  *
872  * The returned page will have PageLRU() cleared.  If it was found on
873  * the active list, it will have PageActive set.  That flag may need
874  * to be cleared by the caller before letting the page go.
875  *
876  * The vmstat statistic corresponding to the list on which the page was
877  * found will be decremented.
878  *
879  * Restrictions:
880  * (1) Must be called with an elevated refcount on the page. This is a
881  *     fundamentnal difference from isolate_lru_pages (which is called
882  *     without a stable reference).
883  * (2) the lru_lock must not be held.
884  * (3) interrupts must be enabled.
885  */
886 int isolate_lru_page(struct page *page)
887 {
888         int ret = -EBUSY;
889
890         if (PageLRU(page)) {
891                 struct zone *zone = page_zone(page);
892
893                 spin_lock_irq(&zone->lru_lock);
894                 if (PageLRU(page) && get_page_unless_zero(page)) {
895                         int lru = LRU_BASE;
896                         ret = 0;
897                         ClearPageLRU(page);
898
899                         lru += page_is_file_cache(page) + !!PageActive(page);
900                         del_page_from_lru_list(zone, page, lru);
901                 }
902                 spin_unlock_irq(&zone->lru_lock);
903         }
904         return ret;
905 }
906
907 /*
908  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
909  * of reclaimed pages
910  */
911 static unsigned long shrink_inactive_list(unsigned long max_scan,
912                         struct zone *zone, struct scan_control *sc, int file)
913 {
914         LIST_HEAD(page_list);
915         struct pagevec pvec;
916         unsigned long nr_scanned = 0;
917         unsigned long nr_reclaimed = 0;
918
919         pagevec_init(&pvec, 1);
920
921         lru_add_drain();
922         spin_lock_irq(&zone->lru_lock);
923         do {
924                 struct page *page;
925                 unsigned long nr_taken;
926                 unsigned long nr_scan;
927                 unsigned long nr_freed;
928                 unsigned long nr_active;
929                 unsigned int count[NR_LRU_LISTS] = { 0, };
930                 int mode = (sc->order > PAGE_ALLOC_COSTLY_ORDER) ?
931                                         ISOLATE_BOTH : ISOLATE_INACTIVE;
932
933                 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
934                              &page_list, &nr_scan, sc->order, mode,
935                                 zone, sc->mem_cgroup, 0, file);
936                 nr_active = clear_active_flags(&page_list, count);
937                 __count_vm_events(PGDEACTIVATE, nr_active);
938
939                 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
940                                                 -count[LRU_ACTIVE_FILE]);
941                 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
942                                                 -count[LRU_INACTIVE_FILE]);
943                 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
944                                                 -count[LRU_ACTIVE_ANON]);
945                 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
946                                                 -count[LRU_INACTIVE_ANON]);
947
948                 if (scan_global_lru(sc)) {
949                         zone->pages_scanned += nr_scan;
950                         zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
951                         zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
952                         zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
953                         zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
954                 }
955                 spin_unlock_irq(&zone->lru_lock);
956
957                 nr_scanned += nr_scan;
958                 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
959
960                 /*
961                  * If we are direct reclaiming for contiguous pages and we do
962                  * not reclaim everything in the list, try again and wait
963                  * for IO to complete. This will stall high-order allocations
964                  * but that should be acceptable to the caller
965                  */
966                 if (nr_freed < nr_taken && !current_is_kswapd() &&
967                                         sc->order > PAGE_ALLOC_COSTLY_ORDER) {
968                         congestion_wait(WRITE, HZ/10);
969
970                         /*
971                          * The attempt at page out may have made some
972                          * of the pages active, mark them inactive again.
973                          */
974                         nr_active = clear_active_flags(&page_list, count);
975                         count_vm_events(PGDEACTIVATE, nr_active);
976
977                         nr_freed += shrink_page_list(&page_list, sc,
978                                                         PAGEOUT_IO_SYNC);
979                 }
980
981                 nr_reclaimed += nr_freed;
982                 local_irq_disable();
983                 if (current_is_kswapd()) {
984                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
985                         __count_vm_events(KSWAPD_STEAL, nr_freed);
986                 } else if (scan_global_lru(sc))
987                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
988
989                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
990
991                 if (nr_taken == 0)
992                         goto done;
993
994                 spin_lock(&zone->lru_lock);
995                 /*
996                  * Put back any unfreeable pages.
997                  */
998                 while (!list_empty(&page_list)) {
999                         page = lru_to_page(&page_list);
1000                         VM_BUG_ON(PageLRU(page));
1001                         SetPageLRU(page);
1002                         list_del(&page->lru);
1003                         add_page_to_lru_list(zone, page, page_lru(page));
1004                         if (PageActive(page) && scan_global_lru(sc)) {
1005                                 int file = !!page_is_file_cache(page);
1006                                 zone->recent_rotated[file]++;
1007                         }
1008                         if (!pagevec_add(&pvec, page)) {
1009                                 spin_unlock_irq(&zone->lru_lock);
1010                                 __pagevec_release(&pvec);
1011                                 spin_lock_irq(&zone->lru_lock);
1012                         }
1013                 }
1014         } while (nr_scanned < max_scan);
1015         spin_unlock(&zone->lru_lock);
1016 done:
1017         local_irq_enable();
1018         pagevec_release(&pvec);
1019         return nr_reclaimed;
1020 }
1021
1022 /*
1023  * We are about to scan this zone at a certain priority level.  If that priority
1024  * level is smaller (ie: more urgent) than the previous priority, then note
1025  * that priority level within the zone.  This is done so that when the next
1026  * process comes in to scan this zone, it will immediately start out at this
1027  * priority level rather than having to build up its own scanning priority.
1028  * Here, this priority affects only the reclaim-mapped threshold.
1029  */
1030 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1031 {
1032         if (priority < zone->prev_priority)
1033                 zone->prev_priority = priority;
1034 }
1035
1036 static inline int zone_is_near_oom(struct zone *zone)
1037 {
1038         return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1039 }
1040
1041 /*
1042  * This moves pages from the active list to the inactive list.
1043  *
1044  * We move them the other way if the page is referenced by one or more
1045  * processes, from rmap.
1046  *
1047  * If the pages are mostly unmapped, the processing is fast and it is
1048  * appropriate to hold zone->lru_lock across the whole operation.  But if
1049  * the pages are mapped, the processing is slow (page_referenced()) so we
1050  * should drop zone->lru_lock around each page.  It's impossible to balance
1051  * this, so instead we remove the pages from the LRU while processing them.
1052  * It is safe to rely on PG_active against the non-LRU pages in here because
1053  * nobody will play with that bit on a non-LRU page.
1054  *
1055  * The downside is that we have to touch page->_count against each page.
1056  * But we had to alter page->flags anyway.
1057  */
1058
1059
1060 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1061                         struct scan_control *sc, int priority, int file)
1062 {
1063         unsigned long pgmoved;
1064         int pgdeactivate = 0;
1065         unsigned long pgscanned;
1066         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1067         LIST_HEAD(l_active);
1068         LIST_HEAD(l_inactive);
1069         struct page *page;
1070         struct pagevec pvec;
1071         enum lru_list lru;
1072
1073         lru_add_drain();
1074         spin_lock_irq(&zone->lru_lock);
1075         pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1076                                         ISOLATE_ACTIVE, zone,
1077                                         sc->mem_cgroup, 1, file);
1078         /*
1079          * zone->pages_scanned is used for detect zone's oom
1080          * mem_cgroup remembers nr_scan by itself.
1081          */
1082         if (scan_global_lru(sc)) {
1083                 zone->pages_scanned += pgscanned;
1084                 zone->recent_scanned[!!file] += pgmoved;
1085         }
1086
1087         if (file)
1088                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1089         else
1090                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1091         spin_unlock_irq(&zone->lru_lock);
1092
1093         while (!list_empty(&l_hold)) {
1094                 cond_resched();
1095                 page = lru_to_page(&l_hold);
1096                 list_del(&page->lru);
1097                 list_add(&page->lru, &l_inactive);
1098         }
1099
1100         /*
1101          * Now put the pages back on the appropriate [file or anon] inactive
1102          * and active lists.
1103          */
1104         pagevec_init(&pvec, 1);
1105         pgmoved = 0;
1106         lru = LRU_BASE + file * LRU_FILE;
1107         spin_lock_irq(&zone->lru_lock);
1108         while (!list_empty(&l_inactive)) {
1109                 page = lru_to_page(&l_inactive);
1110                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1111                 VM_BUG_ON(PageLRU(page));
1112                 SetPageLRU(page);
1113                 VM_BUG_ON(!PageActive(page));
1114                 ClearPageActive(page);
1115
1116                 list_move(&page->lru, &zone->lru[lru].list);
1117                 mem_cgroup_move_lists(page, false);
1118                 pgmoved++;
1119                 if (!pagevec_add(&pvec, page)) {
1120                         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1121                         spin_unlock_irq(&zone->lru_lock);
1122                         pgdeactivate += pgmoved;
1123                         pgmoved = 0;
1124                         if (buffer_heads_over_limit)
1125                                 pagevec_strip(&pvec);
1126                         __pagevec_release(&pvec);
1127                         spin_lock_irq(&zone->lru_lock);
1128                 }
1129         }
1130         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1131         pgdeactivate += pgmoved;
1132         if (buffer_heads_over_limit) {
1133                 spin_unlock_irq(&zone->lru_lock);
1134                 pagevec_strip(&pvec);
1135                 spin_lock_irq(&zone->lru_lock);
1136         }
1137
1138         pgmoved = 0;
1139         lru = LRU_ACTIVE + file * LRU_FILE;
1140         while (!list_empty(&l_active)) {
1141                 page = lru_to_page(&l_active);
1142                 prefetchw_prev_lru_page(page, &l_active, flags);
1143                 VM_BUG_ON(PageLRU(page));
1144                 SetPageLRU(page);
1145                 VM_BUG_ON(!PageActive(page));
1146
1147                 list_move(&page->lru, &zone->lru[lru].list);
1148                 mem_cgroup_move_lists(page, true);
1149                 pgmoved++;
1150                 if (!pagevec_add(&pvec, page)) {
1151                         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1152                         pgmoved = 0;
1153                         spin_unlock_irq(&zone->lru_lock);
1154                         if (vm_swap_full())
1155                                 pagevec_swap_free(&pvec);
1156                         __pagevec_release(&pvec);
1157                         spin_lock_irq(&zone->lru_lock);
1158                 }
1159         }
1160         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1161         zone->recent_rotated[!!file] += pgmoved;
1162
1163         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1164         __count_vm_events(PGDEACTIVATE, pgdeactivate);
1165         spin_unlock_irq(&zone->lru_lock);
1166         if (vm_swap_full())
1167                 pagevec_swap_free(&pvec);
1168
1169         pagevec_release(&pvec);
1170 }
1171
1172 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1173         struct zone *zone, struct scan_control *sc, int priority)
1174 {
1175         int file = is_file_lru(lru);
1176
1177         if (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE) {
1178                 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1179                 return 0;
1180         }
1181         return shrink_inactive_list(nr_to_scan, zone, sc, file);
1182 }
1183
1184 /*
1185  * Determine how aggressively the anon and file LRU lists should be
1186  * scanned.  The relative value of each set of LRU lists is determined
1187  * by looking at the fraction of the pages scanned we did rotate back
1188  * onto the active list instead of evict.
1189  *
1190  * percent[0] specifies how much pressure to put on ram/swap backed
1191  * memory, while percent[1] determines pressure on the file LRUs.
1192  */
1193 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1194                                         unsigned long *percent)
1195 {
1196         unsigned long anon, file, free;
1197         unsigned long anon_prio, file_prio;
1198         unsigned long ap, fp;
1199
1200         anon  = zone_page_state(zone, NR_ACTIVE_ANON) +
1201                 zone_page_state(zone, NR_INACTIVE_ANON);
1202         file  = zone_page_state(zone, NR_ACTIVE_FILE) +
1203                 zone_page_state(zone, NR_INACTIVE_FILE);
1204         free  = zone_page_state(zone, NR_FREE_PAGES);
1205
1206         /* If we have no swap space, do not bother scanning anon pages. */
1207         if (nr_swap_pages <= 0) {
1208                 percent[0] = 0;
1209                 percent[1] = 100;
1210                 return;
1211         }
1212
1213         /* If we have very few page cache pages, force-scan anon pages. */
1214         if (unlikely(file + free <= zone->pages_high)) {
1215                 percent[0] = 100;
1216                 percent[1] = 0;
1217                 return;
1218         }
1219
1220         /*
1221          * OK, so we have swap space and a fair amount of page cache
1222          * pages.  We use the recently rotated / recently scanned
1223          * ratios to determine how valuable each cache is.
1224          *
1225          * Because workloads change over time (and to avoid overflow)
1226          * we keep these statistics as a floating average, which ends
1227          * up weighing recent references more than old ones.
1228          *
1229          * anon in [0], file in [1]
1230          */
1231         if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1232                 spin_lock_irq(&zone->lru_lock);
1233                 zone->recent_scanned[0] /= 2;
1234                 zone->recent_rotated[0] /= 2;
1235                 spin_unlock_irq(&zone->lru_lock);
1236         }
1237
1238         if (unlikely(zone->recent_scanned[1] > file / 4)) {
1239                 spin_lock_irq(&zone->lru_lock);
1240                 zone->recent_scanned[1] /= 2;
1241                 zone->recent_rotated[1] /= 2;
1242                 spin_unlock_irq(&zone->lru_lock);
1243         }
1244
1245         /*
1246          * With swappiness at 100, anonymous and file have the same priority.
1247          * This scanning priority is essentially the inverse of IO cost.
1248          */
1249         anon_prio = sc->swappiness;
1250         file_prio = 200 - sc->swappiness;
1251
1252         /*
1253          *                  anon       recent_rotated[0]
1254          * %anon = 100 * ----------- / ----------------- * IO cost
1255          *               anon + file      rotate_sum
1256          */
1257         ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1258         ap /= zone->recent_rotated[0] + 1;
1259
1260         fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1261         fp /= zone->recent_rotated[1] + 1;
1262
1263         /* Normalize to percentages */
1264         percent[0] = 100 * ap / (ap + fp + 1);
1265         percent[1] = 100 - percent[0];
1266 }
1267
1268
1269 /*
1270  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1271  */
1272 static unsigned long shrink_zone(int priority, struct zone *zone,
1273                                 struct scan_control *sc)
1274 {
1275         unsigned long nr[NR_LRU_LISTS];
1276         unsigned long nr_to_scan;
1277         unsigned long nr_reclaimed = 0;
1278         unsigned long percent[2];       /* anon @ 0; file @ 1 */
1279         enum lru_list l;
1280
1281         get_scan_ratio(zone, sc, percent);
1282
1283         for_each_lru(l) {
1284                 if (scan_global_lru(sc)) {
1285                         int file = is_file_lru(l);
1286                         int scan;
1287                         /*
1288                          * Add one to nr_to_scan just to make sure that the
1289                          * kernel will slowly sift through each list.
1290                          */
1291                         scan = zone_page_state(zone, NR_LRU_BASE + l);
1292                         if (priority) {
1293                                 scan >>= priority;
1294                                 scan = (scan * percent[file]) / 100;
1295                         }
1296                         zone->lru[l].nr_scan += scan + 1;
1297                         nr[l] = zone->lru[l].nr_scan;
1298                         if (nr[l] >= sc->swap_cluster_max)
1299                                 zone->lru[l].nr_scan = 0;
1300                         else
1301                                 nr[l] = 0;
1302                 } else {
1303                         /*
1304                          * This reclaim occurs not because zone memory shortage
1305                          * but because memory controller hits its limit.
1306                          * Don't modify zone reclaim related data.
1307                          */
1308                         nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1309                                                                 priority, l);
1310                 }
1311         }
1312
1313         while (nr[LRU_ACTIVE_ANON] || nr[LRU_INACTIVE_ANON] ||
1314                         nr[LRU_ACTIVE_FILE] || nr[LRU_INACTIVE_FILE]) {
1315                 for_each_lru(l) {
1316                         if (nr[l]) {
1317                                 nr_to_scan = min(nr[l],
1318                                         (unsigned long)sc->swap_cluster_max);
1319                                 nr[l] -= nr_to_scan;
1320
1321                                 nr_reclaimed += shrink_list(l, nr_to_scan,
1322                                                         zone, sc, priority);
1323                         }
1324                 }
1325         }
1326
1327         throttle_vm_writeout(sc->gfp_mask);
1328         return nr_reclaimed;
1329 }
1330
1331 /*
1332  * This is the direct reclaim path, for page-allocating processes.  We only
1333  * try to reclaim pages from zones which will satisfy the caller's allocation
1334  * request.
1335  *
1336  * We reclaim from a zone even if that zone is over pages_high.  Because:
1337  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1338  *    allocation or
1339  * b) The zones may be over pages_high but they must go *over* pages_high to
1340  *    satisfy the `incremental min' zone defense algorithm.
1341  *
1342  * Returns the number of reclaimed pages.
1343  *
1344  * If a zone is deemed to be full of pinned pages then just give it a light
1345  * scan then give up on it.
1346  */
1347 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1348                                         struct scan_control *sc)
1349 {
1350         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1351         unsigned long nr_reclaimed = 0;
1352         struct zoneref *z;
1353         struct zone *zone;
1354
1355         sc->all_unreclaimable = 1;
1356         for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1357                 if (!populated_zone(zone))
1358                         continue;
1359                 /*
1360                  * Take care memory controller reclaiming has small influence
1361                  * to global LRU.
1362                  */
1363                 if (scan_global_lru(sc)) {
1364                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1365                                 continue;
1366                         note_zone_scanning_priority(zone, priority);
1367
1368                         if (zone_is_all_unreclaimable(zone) &&
1369                                                 priority != DEF_PRIORITY)
1370                                 continue;       /* Let kswapd poll it */
1371                         sc->all_unreclaimable = 0;
1372                 } else {
1373                         /*
1374                          * Ignore cpuset limitation here. We just want to reduce
1375                          * # of used pages by us regardless of memory shortage.
1376                          */
1377                         sc->all_unreclaimable = 0;
1378                         mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1379                                                         priority);
1380                 }
1381
1382                 nr_reclaimed += shrink_zone(priority, zone, sc);
1383         }
1384
1385         return nr_reclaimed;
1386 }
1387
1388 /*
1389  * This is the main entry point to direct page reclaim.
1390  *
1391  * If a full scan of the inactive list fails to free enough memory then we
1392  * are "out of memory" and something needs to be killed.
1393  *
1394  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1395  * high - the zone may be full of dirty or under-writeback pages, which this
1396  * caller can't do much about.  We kick pdflush and take explicit naps in the
1397  * hope that some of these pages can be written.  But if the allocating task
1398  * holds filesystem locks which prevent writeout this might not work, and the
1399  * allocation attempt will fail.
1400  *
1401  * returns:     0, if no pages reclaimed
1402  *              else, the number of pages reclaimed
1403  */
1404 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1405                                         struct scan_control *sc)
1406 {
1407         int priority;
1408         unsigned long ret = 0;
1409         unsigned long total_scanned = 0;
1410         unsigned long nr_reclaimed = 0;
1411         struct reclaim_state *reclaim_state = current->reclaim_state;
1412         unsigned long lru_pages = 0;
1413         struct zoneref *z;
1414         struct zone *zone;
1415         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1416
1417         delayacct_freepages_start();
1418
1419         if (scan_global_lru(sc))
1420                 count_vm_event(ALLOCSTALL);
1421         /*
1422          * mem_cgroup will not do shrink_slab.
1423          */
1424         if (scan_global_lru(sc)) {
1425                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1426
1427                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1428                                 continue;
1429
1430                         lru_pages += zone_lru_pages(zone);
1431                 }
1432         }
1433
1434         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1435                 sc->nr_scanned = 0;
1436                 if (!priority)
1437                         disable_swap_token();
1438                 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1439                 /*
1440                  * Don't shrink slabs when reclaiming memory from
1441                  * over limit cgroups
1442                  */
1443                 if (scan_global_lru(sc)) {
1444                         shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1445                         if (reclaim_state) {
1446                                 nr_reclaimed += reclaim_state->reclaimed_slab;
1447                                 reclaim_state->reclaimed_slab = 0;
1448                         }
1449                 }
1450                 total_scanned += sc->nr_scanned;
1451                 if (nr_reclaimed >= sc->swap_cluster_max) {
1452                         ret = nr_reclaimed;
1453                         goto out;
1454                 }
1455
1456                 /*
1457                  * Try to write back as many pages as we just scanned.  This
1458                  * tends to cause slow streaming writers to write data to the
1459                  * disk smoothly, at the dirtying rate, which is nice.   But
1460                  * that's undesirable in laptop mode, where we *want* lumpy
1461                  * writeout.  So in laptop mode, write out the whole world.
1462                  */
1463                 if (total_scanned > sc->swap_cluster_max +
1464                                         sc->swap_cluster_max / 2) {
1465                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1466                         sc->may_writepage = 1;
1467                 }
1468
1469                 /* Take a nap, wait for some writeback to complete */
1470                 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1471                         congestion_wait(WRITE, HZ/10);
1472         }
1473         /* top priority shrink_zones still had more to do? don't OOM, then */
1474         if (!sc->all_unreclaimable && scan_global_lru(sc))
1475                 ret = nr_reclaimed;
1476 out:
1477         /*
1478          * Now that we've scanned all the zones at this priority level, note
1479          * that level within the zone so that the next thread which performs
1480          * scanning of this zone will immediately start out at this priority
1481          * level.  This affects only the decision whether or not to bring
1482          * mapped pages onto the inactive list.
1483          */
1484         if (priority < 0)
1485                 priority = 0;
1486
1487         if (scan_global_lru(sc)) {
1488                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1489
1490                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1491                                 continue;
1492
1493                         zone->prev_priority = priority;
1494                 }
1495         } else
1496                 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1497
1498         delayacct_freepages_end();
1499
1500         return ret;
1501 }
1502
1503 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1504                                                                 gfp_t gfp_mask)
1505 {
1506         struct scan_control sc = {
1507                 .gfp_mask = gfp_mask,
1508                 .may_writepage = !laptop_mode,
1509                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1510                 .may_swap = 1,
1511                 .swappiness = vm_swappiness,
1512                 .order = order,
1513                 .mem_cgroup = NULL,
1514                 .isolate_pages = isolate_pages_global,
1515         };
1516
1517         return do_try_to_free_pages(zonelist, &sc);
1518 }
1519
1520 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1521
1522 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1523                                                 gfp_t gfp_mask)
1524 {
1525         struct scan_control sc = {
1526                 .may_writepage = !laptop_mode,
1527                 .may_swap = 1,
1528                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1529                 .swappiness = vm_swappiness,
1530                 .order = 0,
1531                 .mem_cgroup = mem_cont,
1532                 .isolate_pages = mem_cgroup_isolate_pages,
1533         };
1534         struct zonelist *zonelist;
1535
1536         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1537                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1538         zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1539         return do_try_to_free_pages(zonelist, &sc);
1540 }
1541 #endif
1542
1543 /*
1544  * For kswapd, balance_pgdat() will work across all this node's zones until
1545  * they are all at pages_high.
1546  *
1547  * Returns the number of pages which were actually freed.
1548  *
1549  * There is special handling here for zones which are full of pinned pages.
1550  * This can happen if the pages are all mlocked, or if they are all used by
1551  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1552  * What we do is to detect the case where all pages in the zone have been
1553  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1554  * dead and from now on, only perform a short scan.  Basically we're polling
1555  * the zone for when the problem goes away.
1556  *
1557  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1558  * zones which have free_pages > pages_high, but once a zone is found to have
1559  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1560  * of the number of free pages in the lower zones.  This interoperates with
1561  * the page allocator fallback scheme to ensure that aging of pages is balanced
1562  * across the zones.
1563  */
1564 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1565 {
1566         int all_zones_ok;
1567         int priority;
1568         int i;
1569         unsigned long total_scanned;
1570         unsigned long nr_reclaimed;
1571         struct reclaim_state *reclaim_state = current->reclaim_state;
1572         struct scan_control sc = {
1573                 .gfp_mask = GFP_KERNEL,
1574                 .may_swap = 1,
1575                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1576                 .swappiness = vm_swappiness,
1577                 .order = order,
1578                 .mem_cgroup = NULL,
1579                 .isolate_pages = isolate_pages_global,
1580         };
1581         /*
1582          * temp_priority is used to remember the scanning priority at which
1583          * this zone was successfully refilled to free_pages == pages_high.
1584          */
1585         int temp_priority[MAX_NR_ZONES];
1586
1587 loop_again:
1588         total_scanned = 0;
1589         nr_reclaimed = 0;
1590         sc.may_writepage = !laptop_mode;
1591         count_vm_event(PAGEOUTRUN);
1592
1593         for (i = 0; i < pgdat->nr_zones; i++)
1594                 temp_priority[i] = DEF_PRIORITY;
1595
1596         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1597                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1598                 unsigned long lru_pages = 0;
1599
1600                 /* The swap token gets in the way of swapout... */
1601                 if (!priority)
1602                         disable_swap_token();
1603
1604                 all_zones_ok = 1;
1605
1606                 /*
1607                  * Scan in the highmem->dma direction for the highest
1608                  * zone which needs scanning
1609                  */
1610                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1611                         struct zone *zone = pgdat->node_zones + i;
1612
1613                         if (!populated_zone(zone))
1614                                 continue;
1615
1616                         if (zone_is_all_unreclaimable(zone) &&
1617                             priority != DEF_PRIORITY)
1618                                 continue;
1619
1620                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1621                                                0, 0)) {
1622                                 end_zone = i;
1623                                 break;
1624                         }
1625                 }
1626                 if (i < 0)
1627                         goto out;
1628
1629                 for (i = 0; i <= end_zone; i++) {
1630                         struct zone *zone = pgdat->node_zones + i;
1631
1632                         lru_pages += zone_lru_pages(zone);
1633                 }
1634
1635                 /*
1636                  * Now scan the zone in the dma->highmem direction, stopping
1637                  * at the last zone which needs scanning.
1638                  *
1639                  * We do this because the page allocator works in the opposite
1640                  * direction.  This prevents the page allocator from allocating
1641                  * pages behind kswapd's direction of progress, which would
1642                  * cause too much scanning of the lower zones.
1643                  */
1644                 for (i = 0; i <= end_zone; i++) {
1645                         struct zone *zone = pgdat->node_zones + i;
1646                         int nr_slab;
1647
1648                         if (!populated_zone(zone))
1649                                 continue;
1650
1651                         if (zone_is_all_unreclaimable(zone) &&
1652                                         priority != DEF_PRIORITY)
1653                                 continue;
1654
1655                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1656                                                end_zone, 0))
1657                                 all_zones_ok = 0;
1658                         temp_priority[i] = priority;
1659                         sc.nr_scanned = 0;
1660                         note_zone_scanning_priority(zone, priority);
1661                         /*
1662                          * We put equal pressure on every zone, unless one
1663                          * zone has way too many pages free already.
1664                          */
1665                         if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1666                                                 end_zone, 0))
1667                                 nr_reclaimed += shrink_zone(priority, zone, &sc);
1668                         reclaim_state->reclaimed_slab = 0;
1669                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1670                                                 lru_pages);
1671                         nr_reclaimed += reclaim_state->reclaimed_slab;
1672                         total_scanned += sc.nr_scanned;
1673                         if (zone_is_all_unreclaimable(zone))
1674                                 continue;
1675                         if (nr_slab == 0 && zone->pages_scanned >=
1676                                                 (zone_lru_pages(zone) * 6))
1677                                         zone_set_flag(zone,
1678                                                       ZONE_ALL_UNRECLAIMABLE);
1679                         /*
1680                          * If we've done a decent amount of scanning and
1681                          * the reclaim ratio is low, start doing writepage
1682                          * even in laptop mode
1683                          */
1684                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1685                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1686                                 sc.may_writepage = 1;
1687                 }
1688                 if (all_zones_ok)
1689                         break;          /* kswapd: all done */
1690                 /*
1691                  * OK, kswapd is getting into trouble.  Take a nap, then take
1692                  * another pass across the zones.
1693                  */
1694                 if (total_scanned && priority < DEF_PRIORITY - 2)
1695                         congestion_wait(WRITE, HZ/10);
1696
1697                 /*
1698                  * We do this so kswapd doesn't build up large priorities for
1699                  * example when it is freeing in parallel with allocators. It
1700                  * matches the direct reclaim path behaviour in terms of impact
1701                  * on zone->*_priority.
1702                  */
1703                 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1704                         break;
1705         }
1706 out:
1707         /*
1708          * Note within each zone the priority level at which this zone was
1709          * brought into a happy state.  So that the next thread which scans this
1710          * zone will start out at that priority level.
1711          */
1712         for (i = 0; i < pgdat->nr_zones; i++) {
1713                 struct zone *zone = pgdat->node_zones + i;
1714
1715                 zone->prev_priority = temp_priority[i];
1716         }
1717         if (!all_zones_ok) {
1718                 cond_resched();
1719
1720                 try_to_freeze();
1721
1722                 goto loop_again;
1723         }
1724
1725         return nr_reclaimed;
1726 }
1727
1728 /*
1729  * The background pageout daemon, started as a kernel thread
1730  * from the init process.
1731  *
1732  * This basically trickles out pages so that we have _some_
1733  * free memory available even if there is no other activity
1734  * that frees anything up. This is needed for things like routing
1735  * etc, where we otherwise might have all activity going on in
1736  * asynchronous contexts that cannot page things out.
1737  *
1738  * If there are applications that are active memory-allocators
1739  * (most normal use), this basically shouldn't matter.
1740  */
1741 static int kswapd(void *p)
1742 {
1743         unsigned long order;
1744         pg_data_t *pgdat = (pg_data_t*)p;
1745         struct task_struct *tsk = current;
1746         DEFINE_WAIT(wait);
1747         struct reclaim_state reclaim_state = {
1748                 .reclaimed_slab = 0,
1749         };
1750         node_to_cpumask_ptr(cpumask, pgdat->node_id);
1751
1752         if (!cpus_empty(*cpumask))
1753                 set_cpus_allowed_ptr(tsk, cpumask);
1754         current->reclaim_state = &reclaim_state;
1755
1756         /*
1757          * Tell the memory management that we're a "memory allocator",
1758          * and that if we need more memory we should get access to it
1759          * regardless (see "__alloc_pages()"). "kswapd" should
1760          * never get caught in the normal page freeing logic.
1761          *
1762          * (Kswapd normally doesn't need memory anyway, but sometimes
1763          * you need a small amount of memory in order to be able to
1764          * page out something else, and this flag essentially protects
1765          * us from recursively trying to free more memory as we're
1766          * trying to free the first piece of memory in the first place).
1767          */
1768         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1769         set_freezable();
1770
1771         order = 0;
1772         for ( ; ; ) {
1773                 unsigned long new_order;
1774
1775                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1776                 new_order = pgdat->kswapd_max_order;
1777                 pgdat->kswapd_max_order = 0;
1778                 if (order < new_order) {
1779                         /*
1780                          * Don't sleep if someone wants a larger 'order'
1781                          * allocation
1782                          */
1783                         order = new_order;
1784                 } else {
1785                         if (!freezing(current))
1786                                 schedule();
1787
1788                         order = pgdat->kswapd_max_order;
1789                 }
1790                 finish_wait(&pgdat->kswapd_wait, &wait);
1791
1792                 if (!try_to_freeze()) {
1793                         /* We can speed up thawing tasks if we don't call
1794                          * balance_pgdat after returning from the refrigerator
1795                          */
1796                         balance_pgdat(pgdat, order);
1797                 }
1798         }
1799         return 0;
1800 }
1801
1802 /*
1803  * A zone is low on free memory, so wake its kswapd task to service it.
1804  */
1805 void wakeup_kswapd(struct zone *zone, int order)
1806 {
1807         pg_data_t *pgdat;
1808
1809         if (!populated_zone(zone))
1810                 return;
1811
1812         pgdat = zone->zone_pgdat;
1813         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1814                 return;
1815         if (pgdat->kswapd_max_order < order)
1816                 pgdat->kswapd_max_order = order;
1817         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1818                 return;
1819         if (!waitqueue_active(&pgdat->kswapd_wait))
1820                 return;
1821         wake_up_interruptible(&pgdat->kswapd_wait);
1822 }
1823
1824 unsigned long global_lru_pages(void)
1825 {
1826         return global_page_state(NR_ACTIVE_ANON)
1827                 + global_page_state(NR_ACTIVE_FILE)
1828                 + global_page_state(NR_INACTIVE_ANON)
1829                 + global_page_state(NR_INACTIVE_FILE);
1830 }
1831
1832 #ifdef CONFIG_PM
1833 /*
1834  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1835  * from LRU lists system-wide, for given pass and priority, and returns the
1836  * number of reclaimed pages
1837  *
1838  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1839  */
1840 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1841                                       int pass, struct scan_control *sc)
1842 {
1843         struct zone *zone;
1844         unsigned long nr_to_scan, ret = 0;
1845         enum lru_list l;
1846
1847         for_each_zone(zone) {
1848
1849                 if (!populated_zone(zone))
1850                         continue;
1851
1852                 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1853                         continue;
1854
1855                 for_each_lru(l) {
1856                         /* For pass = 0 we don't shrink the active list */
1857                         if (pass == 0 &&
1858                                 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
1859                                 continue;
1860
1861                         zone->lru[l].nr_scan +=
1862                                 (zone_page_state(zone, NR_LRU_BASE + l)
1863                                                                 >> prio) + 1;
1864                         if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1865                                 zone->lru[l].nr_scan = 0;
1866                                 nr_to_scan = min(nr_pages,
1867                                         zone_page_state(zone,
1868                                                         NR_LRU_BASE + l));
1869                                 ret += shrink_list(l, nr_to_scan, zone,
1870                                                                 sc, prio);
1871                                 if (ret >= nr_pages)
1872                                         return ret;
1873                         }
1874                 }
1875         }
1876
1877         return ret;
1878 }
1879
1880 /*
1881  * Try to free `nr_pages' of memory, system-wide, and return the number of
1882  * freed pages.
1883  *
1884  * Rather than trying to age LRUs the aim is to preserve the overall
1885  * LRU order by reclaiming preferentially
1886  * inactive > active > active referenced > active mapped
1887  */
1888 unsigned long shrink_all_memory(unsigned long nr_pages)
1889 {
1890         unsigned long lru_pages, nr_slab;
1891         unsigned long ret = 0;
1892         int pass;
1893         struct reclaim_state reclaim_state;
1894         struct scan_control sc = {
1895                 .gfp_mask = GFP_KERNEL,
1896                 .may_swap = 0,
1897                 .swap_cluster_max = nr_pages,
1898                 .may_writepage = 1,
1899                 .swappiness = vm_swappiness,
1900                 .isolate_pages = isolate_pages_global,
1901         };
1902
1903         current->reclaim_state = &reclaim_state;
1904
1905         lru_pages = global_lru_pages();
1906         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1907         /* If slab caches are huge, it's better to hit them first */
1908         while (nr_slab >= lru_pages) {
1909                 reclaim_state.reclaimed_slab = 0;
1910                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1911                 if (!reclaim_state.reclaimed_slab)
1912                         break;
1913
1914                 ret += reclaim_state.reclaimed_slab;
1915                 if (ret >= nr_pages)
1916                         goto out;
1917
1918                 nr_slab -= reclaim_state.reclaimed_slab;
1919         }
1920
1921         /*
1922          * We try to shrink LRUs in 5 passes:
1923          * 0 = Reclaim from inactive_list only
1924          * 1 = Reclaim from active list but don't reclaim mapped
1925          * 2 = 2nd pass of type 1
1926          * 3 = Reclaim mapped (normal reclaim)
1927          * 4 = 2nd pass of type 3
1928          */
1929         for (pass = 0; pass < 5; pass++) {
1930                 int prio;
1931
1932                 /* Force reclaiming mapped pages in the passes #3 and #4 */
1933                 if (pass > 2) {
1934                         sc.may_swap = 1;
1935                         sc.swappiness = 100;
1936                 }
1937
1938                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1939                         unsigned long nr_to_scan = nr_pages - ret;
1940
1941                         sc.nr_scanned = 0;
1942                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1943                         if (ret >= nr_pages)
1944                                 goto out;
1945
1946                         reclaim_state.reclaimed_slab = 0;
1947                         shrink_slab(sc.nr_scanned, sc.gfp_mask,
1948                                         global_lru_pages());
1949                         ret += reclaim_state.reclaimed_slab;
1950                         if (ret >= nr_pages)
1951                                 goto out;
1952
1953                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1954                                 congestion_wait(WRITE, HZ / 10);
1955                 }
1956         }
1957
1958         /*
1959          * If ret = 0, we could not shrink LRUs, but there may be something
1960          * in slab caches
1961          */
1962         if (!ret) {
1963                 do {
1964                         reclaim_state.reclaimed_slab = 0;
1965                         shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
1966                         ret += reclaim_state.reclaimed_slab;
1967                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1968         }
1969
1970 out:
1971         current->reclaim_state = NULL;
1972
1973         return ret;
1974 }
1975 #endif
1976
1977 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1978    not required for correctness.  So if the last cpu in a node goes
1979    away, we get changed to run anywhere: as the first one comes back,
1980    restore their cpu bindings. */
1981 static int __devinit cpu_callback(struct notifier_block *nfb,
1982                                   unsigned long action, void *hcpu)
1983 {
1984         int nid;
1985
1986         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1987                 for_each_node_state(nid, N_HIGH_MEMORY) {
1988                         pg_data_t *pgdat = NODE_DATA(nid);
1989                         node_to_cpumask_ptr(mask, pgdat->node_id);
1990
1991                         if (any_online_cpu(*mask) < nr_cpu_ids)
1992                                 /* One of our CPUs online: restore mask */
1993                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1994                 }
1995         }
1996         return NOTIFY_OK;
1997 }
1998
1999 /*
2000  * This kswapd start function will be called by init and node-hot-add.
2001  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2002  */
2003 int kswapd_run(int nid)
2004 {
2005         pg_data_t *pgdat = NODE_DATA(nid);
2006         int ret = 0;
2007
2008         if (pgdat->kswapd)
2009                 return 0;
2010
2011         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2012         if (IS_ERR(pgdat->kswapd)) {
2013                 /* failure at boot is fatal */
2014                 BUG_ON(system_state == SYSTEM_BOOTING);
2015                 printk("Failed to start kswapd on node %d\n",nid);
2016                 ret = -1;
2017         }
2018         return ret;
2019 }
2020
2021 static int __init kswapd_init(void)
2022 {
2023         int nid;
2024
2025         swap_setup();
2026         for_each_node_state(nid, N_HIGH_MEMORY)
2027                 kswapd_run(nid);
2028         hotcpu_notifier(cpu_callback, 0);
2029         return 0;
2030 }
2031
2032 module_init(kswapd_init)
2033
2034 #ifdef CONFIG_NUMA
2035 /*
2036  * Zone reclaim mode
2037  *
2038  * If non-zero call zone_reclaim when the number of free pages falls below
2039  * the watermarks.
2040  */
2041 int zone_reclaim_mode __read_mostly;
2042
2043 #define RECLAIM_OFF 0
2044 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2045 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2046 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2047
2048 /*
2049  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2050  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2051  * a zone.
2052  */
2053 #define ZONE_RECLAIM_PRIORITY 4
2054
2055 /*
2056  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2057  * occur.
2058  */
2059 int sysctl_min_unmapped_ratio = 1;
2060
2061 /*
2062  * If the number of slab pages in a zone grows beyond this percentage then
2063  * slab reclaim needs to occur.
2064  */
2065 int sysctl_min_slab_ratio = 5;
2066
2067 /*
2068  * Try to free up some pages from this zone through reclaim.
2069  */
2070 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2071 {
2072         /* Minimum pages needed in order to stay on node */
2073         const unsigned long nr_pages = 1 << order;
2074         struct task_struct *p = current;
2075         struct reclaim_state reclaim_state;
2076         int priority;
2077         unsigned long nr_reclaimed = 0;
2078         struct scan_control sc = {
2079                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2080                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2081                 .swap_cluster_max = max_t(unsigned long, nr_pages,
2082                                         SWAP_CLUSTER_MAX),
2083                 .gfp_mask = gfp_mask,
2084                 .swappiness = vm_swappiness,
2085                 .isolate_pages = isolate_pages_global,
2086         };
2087         unsigned long slab_reclaimable;
2088
2089         disable_swap_token();
2090         cond_resched();
2091         /*
2092          * We need to be able to allocate from the reserves for RECLAIM_SWAP
2093          * and we also need to be able to write out pages for RECLAIM_WRITE
2094          * and RECLAIM_SWAP.
2095          */
2096         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2097         reclaim_state.reclaimed_slab = 0;
2098         p->reclaim_state = &reclaim_state;
2099
2100         if (zone_page_state(zone, NR_FILE_PAGES) -
2101                 zone_page_state(zone, NR_FILE_MAPPED) >
2102                 zone->min_unmapped_pages) {
2103                 /*
2104                  * Free memory by calling shrink zone with increasing
2105                  * priorities until we have enough memory freed.
2106                  */
2107                 priority = ZONE_RECLAIM_PRIORITY;
2108                 do {
2109                         note_zone_scanning_priority(zone, priority);
2110                         nr_reclaimed += shrink_zone(priority, zone, &sc);
2111                         priority--;
2112                 } while (priority >= 0 && nr_reclaimed < nr_pages);
2113         }
2114
2115         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2116         if (slab_reclaimable > zone->min_slab_pages) {
2117                 /*
2118                  * shrink_slab() does not currently allow us to determine how
2119                  * many pages were freed in this zone. So we take the current
2120                  * number of slab pages and shake the slab until it is reduced
2121                  * by the same nr_pages that we used for reclaiming unmapped
2122                  * pages.
2123                  *
2124                  * Note that shrink_slab will free memory on all zones and may
2125                  * take a long time.
2126                  */
2127                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2128                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2129                                 slab_reclaimable - nr_pages)
2130                         ;
2131
2132                 /*
2133                  * Update nr_reclaimed by the number of slab pages we
2134                  * reclaimed from this zone.
2135                  */
2136                 nr_reclaimed += slab_reclaimable -
2137                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2138         }
2139
2140         p->reclaim_state = NULL;
2141         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2142         return nr_reclaimed >= nr_pages;
2143 }
2144
2145 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2146 {
2147         int node_id;
2148         int ret;
2149
2150         /*
2151          * Zone reclaim reclaims unmapped file backed pages and
2152          * slab pages if we are over the defined limits.
2153          *
2154          * A small portion of unmapped file backed pages is needed for
2155          * file I/O otherwise pages read by file I/O will be immediately
2156          * thrown out if the zone is overallocated. So we do not reclaim
2157          * if less than a specified percentage of the zone is used by
2158          * unmapped file backed pages.
2159          */
2160         if (zone_page_state(zone, NR_FILE_PAGES) -
2161             zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2162             && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2163                         <= zone->min_slab_pages)
2164                 return 0;
2165
2166         if (zone_is_all_unreclaimable(zone))
2167                 return 0;
2168
2169         /*
2170          * Do not scan if the allocation should not be delayed.
2171          */
2172         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2173                         return 0;
2174
2175         /*
2176          * Only run zone reclaim on the local zone or on zones that do not
2177          * have associated processors. This will favor the local processor
2178          * over remote processors and spread off node memory allocations
2179          * as wide as possible.
2180          */
2181         node_id = zone_to_nid(zone);
2182         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2183                 return 0;
2184
2185         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2186                 return 0;
2187         ret = __zone_reclaim(zone, gfp_mask, order);
2188         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2189
2190         return ret;
2191 }
2192 #endif