memcg: add inactive_anon_is_low()
[safe/jmp/linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52         /* Incremented by the number of inactive pages that were scanned */
53         unsigned long nr_scanned;
54
55         /* Number of pages freed so far during a call to shrink_zones() */
56         unsigned long nr_reclaimed;
57
58         /* This context's GFP mask */
59         gfp_t gfp_mask;
60
61         int may_writepage;
62
63         /* Can pages be swapped as part of reclaim? */
64         int may_swap;
65
66         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68          * In this context, it doesn't matter that we scan the
69          * whole list at once. */
70         int swap_cluster_max;
71
72         int swappiness;
73
74         int all_unreclaimable;
75
76         int order;
77
78         /* Which cgroup do we reclaim from */
79         struct mem_cgroup *mem_cgroup;
80
81         /* Pluggable isolate pages callback */
82         unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83                         unsigned long *scanned, int order, int mode,
84                         struct zone *z, struct mem_cgroup *mem_cont,
85                         int active, int file);
86 };
87
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field)                    \
92         do {                                                            \
93                 if ((_page)->lru.prev != _base) {                       \
94                         struct page *prev;                              \
95                                                                         \
96                         prev = lru_to_page(&(_page->lru));              \
97                         prefetch(&prev->_field);                        \
98                 }                                                       \
99         } while (0)
100 #else
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102 #endif
103
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
106         do {                                                            \
107                 if ((_page)->lru.prev != _base) {                       \
108                         struct page *prev;                              \
109                                                                         \
110                         prev = lru_to_page(&(_page->lru));              \
111                         prefetchw(&prev->_field);                       \
112                 }                                                       \
113         } while (0)
114 #else
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 /*
119  * From 0 .. 100.  Higher means more swappy.
120  */
121 int vm_swappiness = 60;
122 long vm_total_pages;    /* The total number of pages which the VM controls */
123
124 static LIST_HEAD(shrinker_list);
125 static DECLARE_RWSEM(shrinker_rwsem);
126
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scan_global_lru(sc)     (!(sc)->mem_cgroup)
129 #else
130 #define scan_global_lru(sc)     (1)
131 #endif
132
133 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134                                                   struct scan_control *sc)
135 {
136         return &zone->reclaim_stat;
137 }
138
139 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
140                                    enum lru_list lru)
141 {
142         return zone_page_state(zone, NR_LRU_BASE + lru);
143 }
144
145
146 /*
147  * Add a shrinker callback to be called from the vm
148  */
149 void register_shrinker(struct shrinker *shrinker)
150 {
151         shrinker->nr = 0;
152         down_write(&shrinker_rwsem);
153         list_add_tail(&shrinker->list, &shrinker_list);
154         up_write(&shrinker_rwsem);
155 }
156 EXPORT_SYMBOL(register_shrinker);
157
158 /*
159  * Remove one
160  */
161 void unregister_shrinker(struct shrinker *shrinker)
162 {
163         down_write(&shrinker_rwsem);
164         list_del(&shrinker->list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(unregister_shrinker);
168
169 #define SHRINK_BATCH 128
170 /*
171  * Call the shrink functions to age shrinkable caches
172  *
173  * Here we assume it costs one seek to replace a lru page and that it also
174  * takes a seek to recreate a cache object.  With this in mind we age equal
175  * percentages of the lru and ageable caches.  This should balance the seeks
176  * generated by these structures.
177  *
178  * If the vm encountered mapped pages on the LRU it increase the pressure on
179  * slab to avoid swapping.
180  *
181  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
182  *
183  * `lru_pages' represents the number of on-LRU pages in all the zones which
184  * are eligible for the caller's allocation attempt.  It is used for balancing
185  * slab reclaim versus page reclaim.
186  *
187  * Returns the number of slab objects which we shrunk.
188  */
189 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
190                         unsigned long lru_pages)
191 {
192         struct shrinker *shrinker;
193         unsigned long ret = 0;
194
195         if (scanned == 0)
196                 scanned = SWAP_CLUSTER_MAX;
197
198         if (!down_read_trylock(&shrinker_rwsem))
199                 return 1;       /* Assume we'll be able to shrink next time */
200
201         list_for_each_entry(shrinker, &shrinker_list, list) {
202                 unsigned long long delta;
203                 unsigned long total_scan;
204                 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
205
206                 delta = (4 * scanned) / shrinker->seeks;
207                 delta *= max_pass;
208                 do_div(delta, lru_pages + 1);
209                 shrinker->nr += delta;
210                 if (shrinker->nr < 0) {
211                         printk(KERN_ERR "%s: nr=%ld\n",
212                                         __func__, shrinker->nr);
213                         shrinker->nr = max_pass;
214                 }
215
216                 /*
217                  * Avoid risking looping forever due to too large nr value:
218                  * never try to free more than twice the estimate number of
219                  * freeable entries.
220                  */
221                 if (shrinker->nr > max_pass * 2)
222                         shrinker->nr = max_pass * 2;
223
224                 total_scan = shrinker->nr;
225                 shrinker->nr = 0;
226
227                 while (total_scan >= SHRINK_BATCH) {
228                         long this_scan = SHRINK_BATCH;
229                         int shrink_ret;
230                         int nr_before;
231
232                         nr_before = (*shrinker->shrink)(0, gfp_mask);
233                         shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
234                         if (shrink_ret == -1)
235                                 break;
236                         if (shrink_ret < nr_before)
237                                 ret += nr_before - shrink_ret;
238                         count_vm_events(SLABS_SCANNED, this_scan);
239                         total_scan -= this_scan;
240
241                         cond_resched();
242                 }
243
244                 shrinker->nr += total_scan;
245         }
246         up_read(&shrinker_rwsem);
247         return ret;
248 }
249
250 /* Called without lock on whether page is mapped, so answer is unstable */
251 static inline int page_mapping_inuse(struct page *page)
252 {
253         struct address_space *mapping;
254
255         /* Page is in somebody's page tables. */
256         if (page_mapped(page))
257                 return 1;
258
259         /* Be more reluctant to reclaim swapcache than pagecache */
260         if (PageSwapCache(page))
261                 return 1;
262
263         mapping = page_mapping(page);
264         if (!mapping)
265                 return 0;
266
267         /* File is mmap'd by somebody? */
268         return mapping_mapped(mapping);
269 }
270
271 static inline int is_page_cache_freeable(struct page *page)
272 {
273         return page_count(page) - !!PagePrivate(page) == 2;
274 }
275
276 static int may_write_to_queue(struct backing_dev_info *bdi)
277 {
278         if (current->flags & PF_SWAPWRITE)
279                 return 1;
280         if (!bdi_write_congested(bdi))
281                 return 1;
282         if (bdi == current->backing_dev_info)
283                 return 1;
284         return 0;
285 }
286
287 /*
288  * We detected a synchronous write error writing a page out.  Probably
289  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
290  * fsync(), msync() or close().
291  *
292  * The tricky part is that after writepage we cannot touch the mapping: nothing
293  * prevents it from being freed up.  But we have a ref on the page and once
294  * that page is locked, the mapping is pinned.
295  *
296  * We're allowed to run sleeping lock_page() here because we know the caller has
297  * __GFP_FS.
298  */
299 static void handle_write_error(struct address_space *mapping,
300                                 struct page *page, int error)
301 {
302         lock_page(page);
303         if (page_mapping(page) == mapping)
304                 mapping_set_error(mapping, error);
305         unlock_page(page);
306 }
307
308 /* Request for sync pageout. */
309 enum pageout_io {
310         PAGEOUT_IO_ASYNC,
311         PAGEOUT_IO_SYNC,
312 };
313
314 /* possible outcome of pageout() */
315 typedef enum {
316         /* failed to write page out, page is locked */
317         PAGE_KEEP,
318         /* move page to the active list, page is locked */
319         PAGE_ACTIVATE,
320         /* page has been sent to the disk successfully, page is unlocked */
321         PAGE_SUCCESS,
322         /* page is clean and locked */
323         PAGE_CLEAN,
324 } pageout_t;
325
326 /*
327  * pageout is called by shrink_page_list() for each dirty page.
328  * Calls ->writepage().
329  */
330 static pageout_t pageout(struct page *page, struct address_space *mapping,
331                                                 enum pageout_io sync_writeback)
332 {
333         /*
334          * If the page is dirty, only perform writeback if that write
335          * will be non-blocking.  To prevent this allocation from being
336          * stalled by pagecache activity.  But note that there may be
337          * stalls if we need to run get_block().  We could test
338          * PagePrivate for that.
339          *
340          * If this process is currently in generic_file_write() against
341          * this page's queue, we can perform writeback even if that
342          * will block.
343          *
344          * If the page is swapcache, write it back even if that would
345          * block, for some throttling. This happens by accident, because
346          * swap_backing_dev_info is bust: it doesn't reflect the
347          * congestion state of the swapdevs.  Easy to fix, if needed.
348          * See swapfile.c:page_queue_congested().
349          */
350         if (!is_page_cache_freeable(page))
351                 return PAGE_KEEP;
352         if (!mapping) {
353                 /*
354                  * Some data journaling orphaned pages can have
355                  * page->mapping == NULL while being dirty with clean buffers.
356                  */
357                 if (PagePrivate(page)) {
358                         if (try_to_free_buffers(page)) {
359                                 ClearPageDirty(page);
360                                 printk("%s: orphaned page\n", __func__);
361                                 return PAGE_CLEAN;
362                         }
363                 }
364                 return PAGE_KEEP;
365         }
366         if (mapping->a_ops->writepage == NULL)
367                 return PAGE_ACTIVATE;
368         if (!may_write_to_queue(mapping->backing_dev_info))
369                 return PAGE_KEEP;
370
371         if (clear_page_dirty_for_io(page)) {
372                 int res;
373                 struct writeback_control wbc = {
374                         .sync_mode = WB_SYNC_NONE,
375                         .nr_to_write = SWAP_CLUSTER_MAX,
376                         .range_start = 0,
377                         .range_end = LLONG_MAX,
378                         .nonblocking = 1,
379                         .for_reclaim = 1,
380                 };
381
382                 SetPageReclaim(page);
383                 res = mapping->a_ops->writepage(page, &wbc);
384                 if (res < 0)
385                         handle_write_error(mapping, page, res);
386                 if (res == AOP_WRITEPAGE_ACTIVATE) {
387                         ClearPageReclaim(page);
388                         return PAGE_ACTIVATE;
389                 }
390
391                 /*
392                  * Wait on writeback if requested to. This happens when
393                  * direct reclaiming a large contiguous area and the
394                  * first attempt to free a range of pages fails.
395                  */
396                 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
397                         wait_on_page_writeback(page);
398
399                 if (!PageWriteback(page)) {
400                         /* synchronous write or broken a_ops? */
401                         ClearPageReclaim(page);
402                 }
403                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
404                 return PAGE_SUCCESS;
405         }
406
407         return PAGE_CLEAN;
408 }
409
410 /*
411  * Same as remove_mapping, but if the page is removed from the mapping, it
412  * gets returned with a refcount of 0.
413  */
414 static int __remove_mapping(struct address_space *mapping, struct page *page)
415 {
416         BUG_ON(!PageLocked(page));
417         BUG_ON(mapping != page_mapping(page));
418
419         spin_lock_irq(&mapping->tree_lock);
420         /*
421          * The non racy check for a busy page.
422          *
423          * Must be careful with the order of the tests. When someone has
424          * a ref to the page, it may be possible that they dirty it then
425          * drop the reference. So if PageDirty is tested before page_count
426          * here, then the following race may occur:
427          *
428          * get_user_pages(&page);
429          * [user mapping goes away]
430          * write_to(page);
431          *                              !PageDirty(page)    [good]
432          * SetPageDirty(page);
433          * put_page(page);
434          *                              !page_count(page)   [good, discard it]
435          *
436          * [oops, our write_to data is lost]
437          *
438          * Reversing the order of the tests ensures such a situation cannot
439          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
440          * load is not satisfied before that of page->_count.
441          *
442          * Note that if SetPageDirty is always performed via set_page_dirty,
443          * and thus under tree_lock, then this ordering is not required.
444          */
445         if (!page_freeze_refs(page, 2))
446                 goto cannot_free;
447         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
448         if (unlikely(PageDirty(page))) {
449                 page_unfreeze_refs(page, 2);
450                 goto cannot_free;
451         }
452
453         if (PageSwapCache(page)) {
454                 swp_entry_t swap = { .val = page_private(page) };
455                 __delete_from_swap_cache(page);
456                 spin_unlock_irq(&mapping->tree_lock);
457                 swap_free(swap);
458         } else {
459                 __remove_from_page_cache(page);
460                 spin_unlock_irq(&mapping->tree_lock);
461         }
462
463         return 1;
464
465 cannot_free:
466         spin_unlock_irq(&mapping->tree_lock);
467         return 0;
468 }
469
470 /*
471  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
472  * someone else has a ref on the page, abort and return 0.  If it was
473  * successfully detached, return 1.  Assumes the caller has a single ref on
474  * this page.
475  */
476 int remove_mapping(struct address_space *mapping, struct page *page)
477 {
478         if (__remove_mapping(mapping, page)) {
479                 /*
480                  * Unfreezing the refcount with 1 rather than 2 effectively
481                  * drops the pagecache ref for us without requiring another
482                  * atomic operation.
483                  */
484                 page_unfreeze_refs(page, 1);
485                 return 1;
486         }
487         return 0;
488 }
489
490 /**
491  * putback_lru_page - put previously isolated page onto appropriate LRU list
492  * @page: page to be put back to appropriate lru list
493  *
494  * Add previously isolated @page to appropriate LRU list.
495  * Page may still be unevictable for other reasons.
496  *
497  * lru_lock must not be held, interrupts must be enabled.
498  */
499 #ifdef CONFIG_UNEVICTABLE_LRU
500 void putback_lru_page(struct page *page)
501 {
502         int lru;
503         int active = !!TestClearPageActive(page);
504         int was_unevictable = PageUnevictable(page);
505
506         VM_BUG_ON(PageLRU(page));
507
508 redo:
509         ClearPageUnevictable(page);
510
511         if (page_evictable(page, NULL)) {
512                 /*
513                  * For evictable pages, we can use the cache.
514                  * In event of a race, worst case is we end up with an
515                  * unevictable page on [in]active list.
516                  * We know how to handle that.
517                  */
518                 lru = active + page_is_file_cache(page);
519                 lru_cache_add_lru(page, lru);
520         } else {
521                 /*
522                  * Put unevictable pages directly on zone's unevictable
523                  * list.
524                  */
525                 lru = LRU_UNEVICTABLE;
526                 add_page_to_unevictable_list(page);
527         }
528
529         /*
530          * page's status can change while we move it among lru. If an evictable
531          * page is on unevictable list, it never be freed. To avoid that,
532          * check after we added it to the list, again.
533          */
534         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
535                 if (!isolate_lru_page(page)) {
536                         put_page(page);
537                         goto redo;
538                 }
539                 /* This means someone else dropped this page from LRU
540                  * So, it will be freed or putback to LRU again. There is
541                  * nothing to do here.
542                  */
543         }
544
545         if (was_unevictable && lru != LRU_UNEVICTABLE)
546                 count_vm_event(UNEVICTABLE_PGRESCUED);
547         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
548                 count_vm_event(UNEVICTABLE_PGCULLED);
549
550         put_page(page);         /* drop ref from isolate */
551 }
552
553 #else /* CONFIG_UNEVICTABLE_LRU */
554
555 void putback_lru_page(struct page *page)
556 {
557         int lru;
558         VM_BUG_ON(PageLRU(page));
559
560         lru = !!TestClearPageActive(page) + page_is_file_cache(page);
561         lru_cache_add_lru(page, lru);
562         put_page(page);
563 }
564 #endif /* CONFIG_UNEVICTABLE_LRU */
565
566
567 /*
568  * shrink_page_list() returns the number of reclaimed pages
569  */
570 static unsigned long shrink_page_list(struct list_head *page_list,
571                                         struct scan_control *sc,
572                                         enum pageout_io sync_writeback)
573 {
574         LIST_HEAD(ret_pages);
575         struct pagevec freed_pvec;
576         int pgactivate = 0;
577         unsigned long nr_reclaimed = 0;
578
579         cond_resched();
580
581         pagevec_init(&freed_pvec, 1);
582         while (!list_empty(page_list)) {
583                 struct address_space *mapping;
584                 struct page *page;
585                 int may_enter_fs;
586                 int referenced;
587
588                 cond_resched();
589
590                 page = lru_to_page(page_list);
591                 list_del(&page->lru);
592
593                 if (!trylock_page(page))
594                         goto keep;
595
596                 VM_BUG_ON(PageActive(page));
597
598                 sc->nr_scanned++;
599
600                 if (unlikely(!page_evictable(page, NULL)))
601                         goto cull_mlocked;
602
603                 if (!sc->may_swap && page_mapped(page))
604                         goto keep_locked;
605
606                 /* Double the slab pressure for mapped and swapcache pages */
607                 if (page_mapped(page) || PageSwapCache(page))
608                         sc->nr_scanned++;
609
610                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
611                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
612
613                 if (PageWriteback(page)) {
614                         /*
615                          * Synchronous reclaim is performed in two passes,
616                          * first an asynchronous pass over the list to
617                          * start parallel writeback, and a second synchronous
618                          * pass to wait for the IO to complete.  Wait here
619                          * for any page for which writeback has already
620                          * started.
621                          */
622                         if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
623                                 wait_on_page_writeback(page);
624                         else
625                                 goto keep_locked;
626                 }
627
628                 referenced = page_referenced(page, 1, sc->mem_cgroup);
629                 /* In active use or really unfreeable?  Activate it. */
630                 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
631                                         referenced && page_mapping_inuse(page))
632                         goto activate_locked;
633
634                 /*
635                  * Anonymous process memory has backing store?
636                  * Try to allocate it some swap space here.
637                  */
638                 if (PageAnon(page) && !PageSwapCache(page)) {
639                         if (!(sc->gfp_mask & __GFP_IO))
640                                 goto keep_locked;
641                         if (!add_to_swap(page))
642                                 goto activate_locked;
643                         may_enter_fs = 1;
644                 }
645
646                 mapping = page_mapping(page);
647
648                 /*
649                  * The page is mapped into the page tables of one or more
650                  * processes. Try to unmap it here.
651                  */
652                 if (page_mapped(page) && mapping) {
653                         switch (try_to_unmap(page, 0)) {
654                         case SWAP_FAIL:
655                                 goto activate_locked;
656                         case SWAP_AGAIN:
657                                 goto keep_locked;
658                         case SWAP_MLOCK:
659                                 goto cull_mlocked;
660                         case SWAP_SUCCESS:
661                                 ; /* try to free the page below */
662                         }
663                 }
664
665                 if (PageDirty(page)) {
666                         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
667                                 goto keep_locked;
668                         if (!may_enter_fs)
669                                 goto keep_locked;
670                         if (!sc->may_writepage)
671                                 goto keep_locked;
672
673                         /* Page is dirty, try to write it out here */
674                         switch (pageout(page, mapping, sync_writeback)) {
675                         case PAGE_KEEP:
676                                 goto keep_locked;
677                         case PAGE_ACTIVATE:
678                                 goto activate_locked;
679                         case PAGE_SUCCESS:
680                                 if (PageWriteback(page) || PageDirty(page))
681                                         goto keep;
682                                 /*
683                                  * A synchronous write - probably a ramdisk.  Go
684                                  * ahead and try to reclaim the page.
685                                  */
686                                 if (!trylock_page(page))
687                                         goto keep;
688                                 if (PageDirty(page) || PageWriteback(page))
689                                         goto keep_locked;
690                                 mapping = page_mapping(page);
691                         case PAGE_CLEAN:
692                                 ; /* try to free the page below */
693                         }
694                 }
695
696                 /*
697                  * If the page has buffers, try to free the buffer mappings
698                  * associated with this page. If we succeed we try to free
699                  * the page as well.
700                  *
701                  * We do this even if the page is PageDirty().
702                  * try_to_release_page() does not perform I/O, but it is
703                  * possible for a page to have PageDirty set, but it is actually
704                  * clean (all its buffers are clean).  This happens if the
705                  * buffers were written out directly, with submit_bh(). ext3
706                  * will do this, as well as the blockdev mapping.
707                  * try_to_release_page() will discover that cleanness and will
708                  * drop the buffers and mark the page clean - it can be freed.
709                  *
710                  * Rarely, pages can have buffers and no ->mapping.  These are
711                  * the pages which were not successfully invalidated in
712                  * truncate_complete_page().  We try to drop those buffers here
713                  * and if that worked, and the page is no longer mapped into
714                  * process address space (page_count == 1) it can be freed.
715                  * Otherwise, leave the page on the LRU so it is swappable.
716                  */
717                 if (PagePrivate(page)) {
718                         if (!try_to_release_page(page, sc->gfp_mask))
719                                 goto activate_locked;
720                         if (!mapping && page_count(page) == 1) {
721                                 unlock_page(page);
722                                 if (put_page_testzero(page))
723                                         goto free_it;
724                                 else {
725                                         /*
726                                          * rare race with speculative reference.
727                                          * the speculative reference will free
728                                          * this page shortly, so we may
729                                          * increment nr_reclaimed here (and
730                                          * leave it off the LRU).
731                                          */
732                                         nr_reclaimed++;
733                                         continue;
734                                 }
735                         }
736                 }
737
738                 if (!mapping || !__remove_mapping(mapping, page))
739                         goto keep_locked;
740
741                 /*
742                  * At this point, we have no other references and there is
743                  * no way to pick any more up (removed from LRU, removed
744                  * from pagecache). Can use non-atomic bitops now (and
745                  * we obviously don't have to worry about waking up a process
746                  * waiting on the page lock, because there are no references.
747                  */
748                 __clear_page_locked(page);
749 free_it:
750                 nr_reclaimed++;
751                 if (!pagevec_add(&freed_pvec, page)) {
752                         __pagevec_free(&freed_pvec);
753                         pagevec_reinit(&freed_pvec);
754                 }
755                 continue;
756
757 cull_mlocked:
758                 if (PageSwapCache(page))
759                         try_to_free_swap(page);
760                 unlock_page(page);
761                 putback_lru_page(page);
762                 continue;
763
764 activate_locked:
765                 /* Not a candidate for swapping, so reclaim swap space. */
766                 if (PageSwapCache(page) && vm_swap_full())
767                         try_to_free_swap(page);
768                 VM_BUG_ON(PageActive(page));
769                 SetPageActive(page);
770                 pgactivate++;
771 keep_locked:
772                 unlock_page(page);
773 keep:
774                 list_add(&page->lru, &ret_pages);
775                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
776         }
777         list_splice(&ret_pages, page_list);
778         if (pagevec_count(&freed_pvec))
779                 __pagevec_free(&freed_pvec);
780         count_vm_events(PGACTIVATE, pgactivate);
781         return nr_reclaimed;
782 }
783
784 /* LRU Isolation modes. */
785 #define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
786 #define ISOLATE_ACTIVE 1        /* Isolate active pages. */
787 #define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
788
789 /*
790  * Attempt to remove the specified page from its LRU.  Only take this page
791  * if it is of the appropriate PageActive status.  Pages which are being
792  * freed elsewhere are also ignored.
793  *
794  * page:        page to consider
795  * mode:        one of the LRU isolation modes defined above
796  *
797  * returns 0 on success, -ve errno on failure.
798  */
799 int __isolate_lru_page(struct page *page, int mode, int file)
800 {
801         int ret = -EINVAL;
802
803         /* Only take pages on the LRU. */
804         if (!PageLRU(page))
805                 return ret;
806
807         /*
808          * When checking the active state, we need to be sure we are
809          * dealing with comparible boolean values.  Take the logical not
810          * of each.
811          */
812         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
813                 return ret;
814
815         if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
816                 return ret;
817
818         /*
819          * When this function is being called for lumpy reclaim, we
820          * initially look into all LRU pages, active, inactive and
821          * unevictable; only give shrink_page_list evictable pages.
822          */
823         if (PageUnevictable(page))
824                 return ret;
825
826         ret = -EBUSY;
827
828         if (likely(get_page_unless_zero(page))) {
829                 /*
830                  * Be careful not to clear PageLRU until after we're
831                  * sure the page is not being freed elsewhere -- the
832                  * page release code relies on it.
833                  */
834                 ClearPageLRU(page);
835                 ret = 0;
836                 mem_cgroup_del_lru(page);
837         }
838
839         return ret;
840 }
841
842 /*
843  * zone->lru_lock is heavily contended.  Some of the functions that
844  * shrink the lists perform better by taking out a batch of pages
845  * and working on them outside the LRU lock.
846  *
847  * For pagecache intensive workloads, this function is the hottest
848  * spot in the kernel (apart from copy_*_user functions).
849  *
850  * Appropriate locks must be held before calling this function.
851  *
852  * @nr_to_scan: The number of pages to look through on the list.
853  * @src:        The LRU list to pull pages off.
854  * @dst:        The temp list to put pages on to.
855  * @scanned:    The number of pages that were scanned.
856  * @order:      The caller's attempted allocation order
857  * @mode:       One of the LRU isolation modes
858  * @file:       True [1] if isolating file [!anon] pages
859  *
860  * returns how many pages were moved onto *@dst.
861  */
862 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
863                 struct list_head *src, struct list_head *dst,
864                 unsigned long *scanned, int order, int mode, int file)
865 {
866         unsigned long nr_taken = 0;
867         unsigned long scan;
868
869         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
870                 struct page *page;
871                 unsigned long pfn;
872                 unsigned long end_pfn;
873                 unsigned long page_pfn;
874                 int zone_id;
875
876                 page = lru_to_page(src);
877                 prefetchw_prev_lru_page(page, src, flags);
878
879                 VM_BUG_ON(!PageLRU(page));
880
881                 switch (__isolate_lru_page(page, mode, file)) {
882                 case 0:
883                         list_move(&page->lru, dst);
884                         nr_taken++;
885                         break;
886
887                 case -EBUSY:
888                         /* else it is being freed elsewhere */
889                         list_move(&page->lru, src);
890                         continue;
891
892                 default:
893                         BUG();
894                 }
895
896                 if (!order)
897                         continue;
898
899                 /*
900                  * Attempt to take all pages in the order aligned region
901                  * surrounding the tag page.  Only take those pages of
902                  * the same active state as that tag page.  We may safely
903                  * round the target page pfn down to the requested order
904                  * as the mem_map is guarenteed valid out to MAX_ORDER,
905                  * where that page is in a different zone we will detect
906                  * it from its zone id and abort this block scan.
907                  */
908                 zone_id = page_zone_id(page);
909                 page_pfn = page_to_pfn(page);
910                 pfn = page_pfn & ~((1 << order) - 1);
911                 end_pfn = pfn + (1 << order);
912                 for (; pfn < end_pfn; pfn++) {
913                         struct page *cursor_page;
914
915                         /* The target page is in the block, ignore it. */
916                         if (unlikely(pfn == page_pfn))
917                                 continue;
918
919                         /* Avoid holes within the zone. */
920                         if (unlikely(!pfn_valid_within(pfn)))
921                                 break;
922
923                         cursor_page = pfn_to_page(pfn);
924
925                         /* Check that we have not crossed a zone boundary. */
926                         if (unlikely(page_zone_id(cursor_page) != zone_id))
927                                 continue;
928                         switch (__isolate_lru_page(cursor_page, mode, file)) {
929                         case 0:
930                                 list_move(&cursor_page->lru, dst);
931                                 nr_taken++;
932                                 scan++;
933                                 break;
934
935                         case -EBUSY:
936                                 /* else it is being freed elsewhere */
937                                 list_move(&cursor_page->lru, src);
938                         default:
939                                 break;  /* ! on LRU or wrong list */
940                         }
941                 }
942         }
943
944         *scanned = scan;
945         return nr_taken;
946 }
947
948 static unsigned long isolate_pages_global(unsigned long nr,
949                                         struct list_head *dst,
950                                         unsigned long *scanned, int order,
951                                         int mode, struct zone *z,
952                                         struct mem_cgroup *mem_cont,
953                                         int active, int file)
954 {
955         int lru = LRU_BASE;
956         if (active)
957                 lru += LRU_ACTIVE;
958         if (file)
959                 lru += LRU_FILE;
960         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
961                                                                 mode, !!file);
962 }
963
964 /*
965  * clear_active_flags() is a helper for shrink_active_list(), clearing
966  * any active bits from the pages in the list.
967  */
968 static unsigned long clear_active_flags(struct list_head *page_list,
969                                         unsigned int *count)
970 {
971         int nr_active = 0;
972         int lru;
973         struct page *page;
974
975         list_for_each_entry(page, page_list, lru) {
976                 lru = page_is_file_cache(page);
977                 if (PageActive(page)) {
978                         lru += LRU_ACTIVE;
979                         ClearPageActive(page);
980                         nr_active++;
981                 }
982                 count[lru]++;
983         }
984
985         return nr_active;
986 }
987
988 /**
989  * isolate_lru_page - tries to isolate a page from its LRU list
990  * @page: page to isolate from its LRU list
991  *
992  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
993  * vmstat statistic corresponding to whatever LRU list the page was on.
994  *
995  * Returns 0 if the page was removed from an LRU list.
996  * Returns -EBUSY if the page was not on an LRU list.
997  *
998  * The returned page will have PageLRU() cleared.  If it was found on
999  * the active list, it will have PageActive set.  If it was found on
1000  * the unevictable list, it will have the PageUnevictable bit set. That flag
1001  * may need to be cleared by the caller before letting the page go.
1002  *
1003  * The vmstat statistic corresponding to the list on which the page was
1004  * found will be decremented.
1005  *
1006  * Restrictions:
1007  * (1) Must be called with an elevated refcount on the page. This is a
1008  *     fundamentnal difference from isolate_lru_pages (which is called
1009  *     without a stable reference).
1010  * (2) the lru_lock must not be held.
1011  * (3) interrupts must be enabled.
1012  */
1013 int isolate_lru_page(struct page *page)
1014 {
1015         int ret = -EBUSY;
1016
1017         if (PageLRU(page)) {
1018                 struct zone *zone = page_zone(page);
1019
1020                 spin_lock_irq(&zone->lru_lock);
1021                 if (PageLRU(page) && get_page_unless_zero(page)) {
1022                         int lru = page_lru(page);
1023                         ret = 0;
1024                         ClearPageLRU(page);
1025
1026                         del_page_from_lru_list(zone, page, lru);
1027                 }
1028                 spin_unlock_irq(&zone->lru_lock);
1029         }
1030         return ret;
1031 }
1032
1033 /*
1034  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1035  * of reclaimed pages
1036  */
1037 static unsigned long shrink_inactive_list(unsigned long max_scan,
1038                         struct zone *zone, struct scan_control *sc,
1039                         int priority, int file)
1040 {
1041         LIST_HEAD(page_list);
1042         struct pagevec pvec;
1043         unsigned long nr_scanned = 0;
1044         unsigned long nr_reclaimed = 0;
1045         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1046
1047         pagevec_init(&pvec, 1);
1048
1049         lru_add_drain();
1050         spin_lock_irq(&zone->lru_lock);
1051         do {
1052                 struct page *page;
1053                 unsigned long nr_taken;
1054                 unsigned long nr_scan;
1055                 unsigned long nr_freed;
1056                 unsigned long nr_active;
1057                 unsigned int count[NR_LRU_LISTS] = { 0, };
1058                 int mode = ISOLATE_INACTIVE;
1059
1060                 /*
1061                  * If we need a large contiguous chunk of memory, or have
1062                  * trouble getting a small set of contiguous pages, we
1063                  * will reclaim both active and inactive pages.
1064                  *
1065                  * We use the same threshold as pageout congestion_wait below.
1066                  */
1067                 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1068                         mode = ISOLATE_BOTH;
1069                 else if (sc->order && priority < DEF_PRIORITY - 2)
1070                         mode = ISOLATE_BOTH;
1071
1072                 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1073                              &page_list, &nr_scan, sc->order, mode,
1074                                 zone, sc->mem_cgroup, 0, file);
1075                 nr_active = clear_active_flags(&page_list, count);
1076                 __count_vm_events(PGDEACTIVATE, nr_active);
1077
1078                 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1079                                                 -count[LRU_ACTIVE_FILE]);
1080                 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1081                                                 -count[LRU_INACTIVE_FILE]);
1082                 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1083                                                 -count[LRU_ACTIVE_ANON]);
1084                 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1085                                                 -count[LRU_INACTIVE_ANON]);
1086
1087                 if (scan_global_lru(sc)) {
1088                         zone->pages_scanned += nr_scan;
1089                         reclaim_stat->recent_scanned[0] +=
1090                                                       count[LRU_INACTIVE_ANON];
1091                         reclaim_stat->recent_scanned[0] +=
1092                                                       count[LRU_ACTIVE_ANON];
1093                         reclaim_stat->recent_scanned[1] +=
1094                                                       count[LRU_INACTIVE_FILE];
1095                         reclaim_stat->recent_scanned[1] +=
1096                                                       count[LRU_ACTIVE_FILE];
1097                 }
1098                 spin_unlock_irq(&zone->lru_lock);
1099
1100                 nr_scanned += nr_scan;
1101                 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1102
1103                 /*
1104                  * If we are direct reclaiming for contiguous pages and we do
1105                  * not reclaim everything in the list, try again and wait
1106                  * for IO to complete. This will stall high-order allocations
1107                  * but that should be acceptable to the caller
1108                  */
1109                 if (nr_freed < nr_taken && !current_is_kswapd() &&
1110                                         sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1111                         congestion_wait(WRITE, HZ/10);
1112
1113                         /*
1114                          * The attempt at page out may have made some
1115                          * of the pages active, mark them inactive again.
1116                          */
1117                         nr_active = clear_active_flags(&page_list, count);
1118                         count_vm_events(PGDEACTIVATE, nr_active);
1119
1120                         nr_freed += shrink_page_list(&page_list, sc,
1121                                                         PAGEOUT_IO_SYNC);
1122                 }
1123
1124                 nr_reclaimed += nr_freed;
1125                 local_irq_disable();
1126                 if (current_is_kswapd()) {
1127                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1128                         __count_vm_events(KSWAPD_STEAL, nr_freed);
1129                 } else if (scan_global_lru(sc))
1130                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1131
1132                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1133
1134                 if (nr_taken == 0)
1135                         goto done;
1136
1137                 spin_lock(&zone->lru_lock);
1138                 /*
1139                  * Put back any unfreeable pages.
1140                  */
1141                 while (!list_empty(&page_list)) {
1142                         int lru;
1143                         page = lru_to_page(&page_list);
1144                         VM_BUG_ON(PageLRU(page));
1145                         list_del(&page->lru);
1146                         if (unlikely(!page_evictable(page, NULL))) {
1147                                 spin_unlock_irq(&zone->lru_lock);
1148                                 putback_lru_page(page);
1149                                 spin_lock_irq(&zone->lru_lock);
1150                                 continue;
1151                         }
1152                         SetPageLRU(page);
1153                         lru = page_lru(page);
1154                         add_page_to_lru_list(zone, page, lru);
1155                         if (PageActive(page) && scan_global_lru(sc)) {
1156                                 int file = !!page_is_file_cache(page);
1157                                 reclaim_stat->recent_rotated[file]++;
1158                         }
1159                         if (!pagevec_add(&pvec, page)) {
1160                                 spin_unlock_irq(&zone->lru_lock);
1161                                 __pagevec_release(&pvec);
1162                                 spin_lock_irq(&zone->lru_lock);
1163                         }
1164                 }
1165         } while (nr_scanned < max_scan);
1166         spin_unlock(&zone->lru_lock);
1167 done:
1168         local_irq_enable();
1169         pagevec_release(&pvec);
1170         return nr_reclaimed;
1171 }
1172
1173 /*
1174  * We are about to scan this zone at a certain priority level.  If that priority
1175  * level is smaller (ie: more urgent) than the previous priority, then note
1176  * that priority level within the zone.  This is done so that when the next
1177  * process comes in to scan this zone, it will immediately start out at this
1178  * priority level rather than having to build up its own scanning priority.
1179  * Here, this priority affects only the reclaim-mapped threshold.
1180  */
1181 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1182 {
1183         if (priority < zone->prev_priority)
1184                 zone->prev_priority = priority;
1185 }
1186
1187 /*
1188  * This moves pages from the active list to the inactive list.
1189  *
1190  * We move them the other way if the page is referenced by one or more
1191  * processes, from rmap.
1192  *
1193  * If the pages are mostly unmapped, the processing is fast and it is
1194  * appropriate to hold zone->lru_lock across the whole operation.  But if
1195  * the pages are mapped, the processing is slow (page_referenced()) so we
1196  * should drop zone->lru_lock around each page.  It's impossible to balance
1197  * this, so instead we remove the pages from the LRU while processing them.
1198  * It is safe to rely on PG_active against the non-LRU pages in here because
1199  * nobody will play with that bit on a non-LRU page.
1200  *
1201  * The downside is that we have to touch page->_count against each page.
1202  * But we had to alter page->flags anyway.
1203  */
1204
1205
1206 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1207                         struct scan_control *sc, int priority, int file)
1208 {
1209         unsigned long pgmoved;
1210         int pgdeactivate = 0;
1211         unsigned long pgscanned;
1212         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1213         LIST_HEAD(l_inactive);
1214         struct page *page;
1215         struct pagevec pvec;
1216         enum lru_list lru;
1217         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1218
1219         lru_add_drain();
1220         spin_lock_irq(&zone->lru_lock);
1221         pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1222                                         ISOLATE_ACTIVE, zone,
1223                                         sc->mem_cgroup, 1, file);
1224         /*
1225          * zone->pages_scanned is used for detect zone's oom
1226          * mem_cgroup remembers nr_scan by itself.
1227          */
1228         if (scan_global_lru(sc)) {
1229                 zone->pages_scanned += pgscanned;
1230                 reclaim_stat->recent_scanned[!!file] += pgmoved;
1231         }
1232
1233         if (file)
1234                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1235         else
1236                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1237         spin_unlock_irq(&zone->lru_lock);
1238
1239         pgmoved = 0;
1240         while (!list_empty(&l_hold)) {
1241                 cond_resched();
1242                 page = lru_to_page(&l_hold);
1243                 list_del(&page->lru);
1244
1245                 if (unlikely(!page_evictable(page, NULL))) {
1246                         putback_lru_page(page);
1247                         continue;
1248                 }
1249
1250                 /* page_referenced clears PageReferenced */
1251                 if (page_mapping_inuse(page) &&
1252                     page_referenced(page, 0, sc->mem_cgroup))
1253                         pgmoved++;
1254
1255                 list_add(&page->lru, &l_inactive);
1256         }
1257
1258         /*
1259          * Move the pages to the [file or anon] inactive list.
1260          */
1261         pagevec_init(&pvec, 1);
1262         pgmoved = 0;
1263         lru = LRU_BASE + file * LRU_FILE;
1264
1265         spin_lock_irq(&zone->lru_lock);
1266         /*
1267          * Count referenced pages from currently used mappings as
1268          * rotated, even though they are moved to the inactive list.
1269          * This helps balance scan pressure between file and anonymous
1270          * pages in get_scan_ratio.
1271          */
1272         if (scan_global_lru(sc))
1273                 reclaim_stat->recent_rotated[!!file] += pgmoved;
1274
1275         while (!list_empty(&l_inactive)) {
1276                 page = lru_to_page(&l_inactive);
1277                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1278                 VM_BUG_ON(PageLRU(page));
1279                 SetPageLRU(page);
1280                 VM_BUG_ON(!PageActive(page));
1281                 ClearPageActive(page);
1282
1283                 list_move(&page->lru, &zone->lru[lru].list);
1284                 mem_cgroup_add_lru_list(page, lru);
1285                 pgmoved++;
1286                 if (!pagevec_add(&pvec, page)) {
1287                         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1288                         spin_unlock_irq(&zone->lru_lock);
1289                         pgdeactivate += pgmoved;
1290                         pgmoved = 0;
1291                         if (buffer_heads_over_limit)
1292                                 pagevec_strip(&pvec);
1293                         __pagevec_release(&pvec);
1294                         spin_lock_irq(&zone->lru_lock);
1295                 }
1296         }
1297         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1298         pgdeactivate += pgmoved;
1299         if (buffer_heads_over_limit) {
1300                 spin_unlock_irq(&zone->lru_lock);
1301                 pagevec_strip(&pvec);
1302                 spin_lock_irq(&zone->lru_lock);
1303         }
1304         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1305         __count_vm_events(PGDEACTIVATE, pgdeactivate);
1306         spin_unlock_irq(&zone->lru_lock);
1307         if (vm_swap_full())
1308                 pagevec_swap_free(&pvec);
1309
1310         pagevec_release(&pvec);
1311 }
1312
1313 static int inactive_anon_is_low_global(struct zone *zone)
1314 {
1315         unsigned long active, inactive;
1316
1317         active = zone_page_state(zone, NR_ACTIVE_ANON);
1318         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1319
1320         if (inactive * zone->inactive_ratio < active)
1321                 return 1;
1322
1323         return 0;
1324 }
1325
1326 /**
1327  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1328  * @zone: zone to check
1329  * @sc:   scan control of this context
1330  *
1331  * Returns true if the zone does not have enough inactive anon pages,
1332  * meaning some active anon pages need to be deactivated.
1333  */
1334 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1335 {
1336         int low;
1337
1338         if (scan_global_lru(sc))
1339                 low = inactive_anon_is_low_global(zone);
1340         else
1341                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1342         return low;
1343 }
1344
1345 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1346         struct zone *zone, struct scan_control *sc, int priority)
1347 {
1348         int file = is_file_lru(lru);
1349
1350         if (lru == LRU_ACTIVE_FILE) {
1351                 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1352                 return 0;
1353         }
1354
1355         if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1356                 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1357                 return 0;
1358         }
1359         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1360 }
1361
1362 /*
1363  * Determine how aggressively the anon and file LRU lists should be
1364  * scanned.  The relative value of each set of LRU lists is determined
1365  * by looking at the fraction of the pages scanned we did rotate back
1366  * onto the active list instead of evict.
1367  *
1368  * percent[0] specifies how much pressure to put on ram/swap backed
1369  * memory, while percent[1] determines pressure on the file LRUs.
1370  */
1371 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1372                                         unsigned long *percent)
1373 {
1374         unsigned long anon, file, free;
1375         unsigned long anon_prio, file_prio;
1376         unsigned long ap, fp;
1377         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1378
1379         /* If we have no swap space, do not bother scanning anon pages. */
1380         if (nr_swap_pages <= 0) {
1381                 percent[0] = 0;
1382                 percent[1] = 100;
1383                 return;
1384         }
1385
1386         anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1387                 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1388         file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1389                 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1390
1391         if (scan_global_lru(sc)) {
1392                 free  = zone_page_state(zone, NR_FREE_PAGES);
1393                 /* If we have very few page cache pages,
1394                    force-scan anon pages. */
1395                 if (unlikely(file + free <= zone->pages_high)) {
1396                         percent[0] = 100;
1397                         percent[1] = 0;
1398                         return;
1399                 }
1400         }
1401
1402         /*
1403          * OK, so we have swap space and a fair amount of page cache
1404          * pages.  We use the recently rotated / recently scanned
1405          * ratios to determine how valuable each cache is.
1406          *
1407          * Because workloads change over time (and to avoid overflow)
1408          * we keep these statistics as a floating average, which ends
1409          * up weighing recent references more than old ones.
1410          *
1411          * anon in [0], file in [1]
1412          */
1413         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1414                 spin_lock_irq(&zone->lru_lock);
1415                 reclaim_stat->recent_scanned[0] /= 2;
1416                 reclaim_stat->recent_rotated[0] /= 2;
1417                 spin_unlock_irq(&zone->lru_lock);
1418         }
1419
1420         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1421                 spin_lock_irq(&zone->lru_lock);
1422                 reclaim_stat->recent_scanned[1] /= 2;
1423                 reclaim_stat->recent_rotated[1] /= 2;
1424                 spin_unlock_irq(&zone->lru_lock);
1425         }
1426
1427         /*
1428          * With swappiness at 100, anonymous and file have the same priority.
1429          * This scanning priority is essentially the inverse of IO cost.
1430          */
1431         anon_prio = sc->swappiness;
1432         file_prio = 200 - sc->swappiness;
1433
1434         /*
1435          * The amount of pressure on anon vs file pages is inversely
1436          * proportional to the fraction of recently scanned pages on
1437          * each list that were recently referenced and in active use.
1438          */
1439         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1440         ap /= reclaim_stat->recent_rotated[0] + 1;
1441
1442         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1443         fp /= reclaim_stat->recent_rotated[1] + 1;
1444
1445         /* Normalize to percentages */
1446         percent[0] = 100 * ap / (ap + fp + 1);
1447         percent[1] = 100 - percent[0];
1448 }
1449
1450
1451 /*
1452  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1453  */
1454 static void shrink_zone(int priority, struct zone *zone,
1455                                 struct scan_control *sc)
1456 {
1457         unsigned long nr[NR_LRU_LISTS];
1458         unsigned long nr_to_scan;
1459         unsigned long percent[2];       /* anon @ 0; file @ 1 */
1460         enum lru_list l;
1461         unsigned long nr_reclaimed = sc->nr_reclaimed;
1462         unsigned long swap_cluster_max = sc->swap_cluster_max;
1463
1464         get_scan_ratio(zone, sc, percent);
1465
1466         for_each_evictable_lru(l) {
1467                 if (scan_global_lru(sc)) {
1468                         int file = is_file_lru(l);
1469                         int scan;
1470
1471                         scan = zone_page_state(zone, NR_LRU_BASE + l);
1472                         if (priority) {
1473                                 scan >>= priority;
1474                                 scan = (scan * percent[file]) / 100;
1475                         }
1476                         zone->lru[l].nr_scan += scan;
1477                         nr[l] = zone->lru[l].nr_scan;
1478                         if (nr[l] >= swap_cluster_max)
1479                                 zone->lru[l].nr_scan = 0;
1480                         else
1481                                 nr[l] = 0;
1482                 } else {
1483                         /*
1484                          * This reclaim occurs not because zone memory shortage
1485                          * but because memory controller hits its limit.
1486                          * Don't modify zone reclaim related data.
1487                          */
1488                         nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1489                                                                 priority, l);
1490                 }
1491         }
1492
1493         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1494                                         nr[LRU_INACTIVE_FILE]) {
1495                 for_each_evictable_lru(l) {
1496                         if (nr[l]) {
1497                                 nr_to_scan = min(nr[l], swap_cluster_max);
1498                                 nr[l] -= nr_to_scan;
1499
1500                                 nr_reclaimed += shrink_list(l, nr_to_scan,
1501                                                             zone, sc, priority);
1502                         }
1503                 }
1504                 /*
1505                  * On large memory systems, scan >> priority can become
1506                  * really large. This is fine for the starting priority;
1507                  * we want to put equal scanning pressure on each zone.
1508                  * However, if the VM has a harder time of freeing pages,
1509                  * with multiple processes reclaiming pages, the total
1510                  * freeing target can get unreasonably large.
1511                  */
1512                 if (nr_reclaimed > swap_cluster_max &&
1513                         priority < DEF_PRIORITY && !current_is_kswapd())
1514                         break;
1515         }
1516
1517         sc->nr_reclaimed = nr_reclaimed;
1518
1519         /*
1520          * Even if we did not try to evict anon pages at all, we want to
1521          * rebalance the anon lru active/inactive ratio.
1522          */
1523         if (inactive_anon_is_low(zone, sc))
1524                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1525
1526         throttle_vm_writeout(sc->gfp_mask);
1527 }
1528
1529 /*
1530  * This is the direct reclaim path, for page-allocating processes.  We only
1531  * try to reclaim pages from zones which will satisfy the caller's allocation
1532  * request.
1533  *
1534  * We reclaim from a zone even if that zone is over pages_high.  Because:
1535  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1536  *    allocation or
1537  * b) The zones may be over pages_high but they must go *over* pages_high to
1538  *    satisfy the `incremental min' zone defense algorithm.
1539  *
1540  * If a zone is deemed to be full of pinned pages then just give it a light
1541  * scan then give up on it.
1542  */
1543 static void shrink_zones(int priority, struct zonelist *zonelist,
1544                                         struct scan_control *sc)
1545 {
1546         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1547         struct zoneref *z;
1548         struct zone *zone;
1549
1550         sc->all_unreclaimable = 1;
1551         for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1552                 if (!populated_zone(zone))
1553                         continue;
1554                 /*
1555                  * Take care memory controller reclaiming has small influence
1556                  * to global LRU.
1557                  */
1558                 if (scan_global_lru(sc)) {
1559                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1560                                 continue;
1561                         note_zone_scanning_priority(zone, priority);
1562
1563                         if (zone_is_all_unreclaimable(zone) &&
1564                                                 priority != DEF_PRIORITY)
1565                                 continue;       /* Let kswapd poll it */
1566                         sc->all_unreclaimable = 0;
1567                 } else {
1568                         /*
1569                          * Ignore cpuset limitation here. We just want to reduce
1570                          * # of used pages by us regardless of memory shortage.
1571                          */
1572                         sc->all_unreclaimable = 0;
1573                         mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1574                                                         priority);
1575                 }
1576
1577                 shrink_zone(priority, zone, sc);
1578         }
1579 }
1580
1581 /*
1582  * This is the main entry point to direct page reclaim.
1583  *
1584  * If a full scan of the inactive list fails to free enough memory then we
1585  * are "out of memory" and something needs to be killed.
1586  *
1587  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1588  * high - the zone may be full of dirty or under-writeback pages, which this
1589  * caller can't do much about.  We kick pdflush and take explicit naps in the
1590  * hope that some of these pages can be written.  But if the allocating task
1591  * holds filesystem locks which prevent writeout this might not work, and the
1592  * allocation attempt will fail.
1593  *
1594  * returns:     0, if no pages reclaimed
1595  *              else, the number of pages reclaimed
1596  */
1597 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1598                                         struct scan_control *sc)
1599 {
1600         int priority;
1601         unsigned long ret = 0;
1602         unsigned long total_scanned = 0;
1603         struct reclaim_state *reclaim_state = current->reclaim_state;
1604         unsigned long lru_pages = 0;
1605         struct zoneref *z;
1606         struct zone *zone;
1607         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1608
1609         delayacct_freepages_start();
1610
1611         if (scan_global_lru(sc))
1612                 count_vm_event(ALLOCSTALL);
1613         /*
1614          * mem_cgroup will not do shrink_slab.
1615          */
1616         if (scan_global_lru(sc)) {
1617                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1618
1619                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1620                                 continue;
1621
1622                         lru_pages += zone_lru_pages(zone);
1623                 }
1624         }
1625
1626         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1627                 sc->nr_scanned = 0;
1628                 if (!priority)
1629                         disable_swap_token();
1630                 shrink_zones(priority, zonelist, sc);
1631                 /*
1632                  * Don't shrink slabs when reclaiming memory from
1633                  * over limit cgroups
1634                  */
1635                 if (scan_global_lru(sc)) {
1636                         shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1637                         if (reclaim_state) {
1638                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1639                                 reclaim_state->reclaimed_slab = 0;
1640                         }
1641                 }
1642                 total_scanned += sc->nr_scanned;
1643                 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1644                         ret = sc->nr_reclaimed;
1645                         goto out;
1646                 }
1647
1648                 /*
1649                  * Try to write back as many pages as we just scanned.  This
1650                  * tends to cause slow streaming writers to write data to the
1651                  * disk smoothly, at the dirtying rate, which is nice.   But
1652                  * that's undesirable in laptop mode, where we *want* lumpy
1653                  * writeout.  So in laptop mode, write out the whole world.
1654                  */
1655                 if (total_scanned > sc->swap_cluster_max +
1656                                         sc->swap_cluster_max / 2) {
1657                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1658                         sc->may_writepage = 1;
1659                 }
1660
1661                 /* Take a nap, wait for some writeback to complete */
1662                 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1663                         congestion_wait(WRITE, HZ/10);
1664         }
1665         /* top priority shrink_zones still had more to do? don't OOM, then */
1666         if (!sc->all_unreclaimable && scan_global_lru(sc))
1667                 ret = sc->nr_reclaimed;
1668 out:
1669         /*
1670          * Now that we've scanned all the zones at this priority level, note
1671          * that level within the zone so that the next thread which performs
1672          * scanning of this zone will immediately start out at this priority
1673          * level.  This affects only the decision whether or not to bring
1674          * mapped pages onto the inactive list.
1675          */
1676         if (priority < 0)
1677                 priority = 0;
1678
1679         if (scan_global_lru(sc)) {
1680                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1681
1682                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1683                                 continue;
1684
1685                         zone->prev_priority = priority;
1686                 }
1687         } else
1688                 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1689
1690         delayacct_freepages_end();
1691
1692         return ret;
1693 }
1694
1695 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1696                                                                 gfp_t gfp_mask)
1697 {
1698         struct scan_control sc = {
1699                 .gfp_mask = gfp_mask,
1700                 .may_writepage = !laptop_mode,
1701                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1702                 .may_swap = 1,
1703                 .swappiness = vm_swappiness,
1704                 .order = order,
1705                 .mem_cgroup = NULL,
1706                 .isolate_pages = isolate_pages_global,
1707         };
1708
1709         return do_try_to_free_pages(zonelist, &sc);
1710 }
1711
1712 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1713
1714 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1715                                                 gfp_t gfp_mask,
1716                                            bool noswap)
1717 {
1718         struct scan_control sc = {
1719                 .may_writepage = !laptop_mode,
1720                 .may_swap = 1,
1721                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1722                 .swappiness = vm_swappiness,
1723                 .order = 0,
1724                 .mem_cgroup = mem_cont,
1725                 .isolate_pages = mem_cgroup_isolate_pages,
1726         };
1727         struct zonelist *zonelist;
1728
1729         if (noswap)
1730                 sc.may_swap = 0;
1731
1732         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1733                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1734         zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1735         return do_try_to_free_pages(zonelist, &sc);
1736 }
1737 #endif
1738
1739 /*
1740  * For kswapd, balance_pgdat() will work across all this node's zones until
1741  * they are all at pages_high.
1742  *
1743  * Returns the number of pages which were actually freed.
1744  *
1745  * There is special handling here for zones which are full of pinned pages.
1746  * This can happen if the pages are all mlocked, or if they are all used by
1747  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1748  * What we do is to detect the case where all pages in the zone have been
1749  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1750  * dead and from now on, only perform a short scan.  Basically we're polling
1751  * the zone for when the problem goes away.
1752  *
1753  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1754  * zones which have free_pages > pages_high, but once a zone is found to have
1755  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1756  * of the number of free pages in the lower zones.  This interoperates with
1757  * the page allocator fallback scheme to ensure that aging of pages is balanced
1758  * across the zones.
1759  */
1760 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1761 {
1762         int all_zones_ok;
1763         int priority;
1764         int i;
1765         unsigned long total_scanned;
1766         struct reclaim_state *reclaim_state = current->reclaim_state;
1767         struct scan_control sc = {
1768                 .gfp_mask = GFP_KERNEL,
1769                 .may_swap = 1,
1770                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1771                 .swappiness = vm_swappiness,
1772                 .order = order,
1773                 .mem_cgroup = NULL,
1774                 .isolate_pages = isolate_pages_global,
1775         };
1776         /*
1777          * temp_priority is used to remember the scanning priority at which
1778          * this zone was successfully refilled to free_pages == pages_high.
1779          */
1780         int temp_priority[MAX_NR_ZONES];
1781
1782 loop_again:
1783         total_scanned = 0;
1784         sc.nr_reclaimed = 0;
1785         sc.may_writepage = !laptop_mode;
1786         count_vm_event(PAGEOUTRUN);
1787
1788         for (i = 0; i < pgdat->nr_zones; i++)
1789                 temp_priority[i] = DEF_PRIORITY;
1790
1791         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1792                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1793                 unsigned long lru_pages = 0;
1794
1795                 /* The swap token gets in the way of swapout... */
1796                 if (!priority)
1797                         disable_swap_token();
1798
1799                 all_zones_ok = 1;
1800
1801                 /*
1802                  * Scan in the highmem->dma direction for the highest
1803                  * zone which needs scanning
1804                  */
1805                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1806                         struct zone *zone = pgdat->node_zones + i;
1807
1808                         if (!populated_zone(zone))
1809                                 continue;
1810
1811                         if (zone_is_all_unreclaimable(zone) &&
1812                             priority != DEF_PRIORITY)
1813                                 continue;
1814
1815                         /*
1816                          * Do some background aging of the anon list, to give
1817                          * pages a chance to be referenced before reclaiming.
1818                          */
1819                         if (inactive_anon_is_low(zone, &sc))
1820                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1821                                                         &sc, priority, 0);
1822
1823                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1824                                                0, 0)) {
1825                                 end_zone = i;
1826                                 break;
1827                         }
1828                 }
1829                 if (i < 0)
1830                         goto out;
1831
1832                 for (i = 0; i <= end_zone; i++) {
1833                         struct zone *zone = pgdat->node_zones + i;
1834
1835                         lru_pages += zone_lru_pages(zone);
1836                 }
1837
1838                 /*
1839                  * Now scan the zone in the dma->highmem direction, stopping
1840                  * at the last zone which needs scanning.
1841                  *
1842                  * We do this because the page allocator works in the opposite
1843                  * direction.  This prevents the page allocator from allocating
1844                  * pages behind kswapd's direction of progress, which would
1845                  * cause too much scanning of the lower zones.
1846                  */
1847                 for (i = 0; i <= end_zone; i++) {
1848                         struct zone *zone = pgdat->node_zones + i;
1849                         int nr_slab;
1850
1851                         if (!populated_zone(zone))
1852                                 continue;
1853
1854                         if (zone_is_all_unreclaimable(zone) &&
1855                                         priority != DEF_PRIORITY)
1856                                 continue;
1857
1858                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1859                                                end_zone, 0))
1860                                 all_zones_ok = 0;
1861                         temp_priority[i] = priority;
1862                         sc.nr_scanned = 0;
1863                         note_zone_scanning_priority(zone, priority);
1864                         /*
1865                          * We put equal pressure on every zone, unless one
1866                          * zone has way too many pages free already.
1867                          */
1868                         if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1869                                                 end_zone, 0))
1870                                 shrink_zone(priority, zone, &sc);
1871                         reclaim_state->reclaimed_slab = 0;
1872                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1873                                                 lru_pages);
1874                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1875                         total_scanned += sc.nr_scanned;
1876                         if (zone_is_all_unreclaimable(zone))
1877                                 continue;
1878                         if (nr_slab == 0 && zone->pages_scanned >=
1879                                                 (zone_lru_pages(zone) * 6))
1880                                         zone_set_flag(zone,
1881                                                       ZONE_ALL_UNRECLAIMABLE);
1882                         /*
1883                          * If we've done a decent amount of scanning and
1884                          * the reclaim ratio is low, start doing writepage
1885                          * even in laptop mode
1886                          */
1887                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1888                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1889                                 sc.may_writepage = 1;
1890                 }
1891                 if (all_zones_ok)
1892                         break;          /* kswapd: all done */
1893                 /*
1894                  * OK, kswapd is getting into trouble.  Take a nap, then take
1895                  * another pass across the zones.
1896                  */
1897                 if (total_scanned && priority < DEF_PRIORITY - 2)
1898                         congestion_wait(WRITE, HZ/10);
1899
1900                 /*
1901                  * We do this so kswapd doesn't build up large priorities for
1902                  * example when it is freeing in parallel with allocators. It
1903                  * matches the direct reclaim path behaviour in terms of impact
1904                  * on zone->*_priority.
1905                  */
1906                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1907                         break;
1908         }
1909 out:
1910         /*
1911          * Note within each zone the priority level at which this zone was
1912          * brought into a happy state.  So that the next thread which scans this
1913          * zone will start out at that priority level.
1914          */
1915         for (i = 0; i < pgdat->nr_zones; i++) {
1916                 struct zone *zone = pgdat->node_zones + i;
1917
1918                 zone->prev_priority = temp_priority[i];
1919         }
1920         if (!all_zones_ok) {
1921                 cond_resched();
1922
1923                 try_to_freeze();
1924
1925                 /*
1926                  * Fragmentation may mean that the system cannot be
1927                  * rebalanced for high-order allocations in all zones.
1928                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1929                  * it means the zones have been fully scanned and are still
1930                  * not balanced. For high-order allocations, there is
1931                  * little point trying all over again as kswapd may
1932                  * infinite loop.
1933                  *
1934                  * Instead, recheck all watermarks at order-0 as they
1935                  * are the most important. If watermarks are ok, kswapd will go
1936                  * back to sleep. High-order users can still perform direct
1937                  * reclaim if they wish.
1938                  */
1939                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1940                         order = sc.order = 0;
1941
1942                 goto loop_again;
1943         }
1944
1945         return sc.nr_reclaimed;
1946 }
1947
1948 /*
1949  * The background pageout daemon, started as a kernel thread
1950  * from the init process.
1951  *
1952  * This basically trickles out pages so that we have _some_
1953  * free memory available even if there is no other activity
1954  * that frees anything up. This is needed for things like routing
1955  * etc, where we otherwise might have all activity going on in
1956  * asynchronous contexts that cannot page things out.
1957  *
1958  * If there are applications that are active memory-allocators
1959  * (most normal use), this basically shouldn't matter.
1960  */
1961 static int kswapd(void *p)
1962 {
1963         unsigned long order;
1964         pg_data_t *pgdat = (pg_data_t*)p;
1965         struct task_struct *tsk = current;
1966         DEFINE_WAIT(wait);
1967         struct reclaim_state reclaim_state = {
1968                 .reclaimed_slab = 0,
1969         };
1970         node_to_cpumask_ptr(cpumask, pgdat->node_id);
1971
1972         if (!cpumask_empty(cpumask))
1973                 set_cpus_allowed_ptr(tsk, cpumask);
1974         current->reclaim_state = &reclaim_state;
1975
1976         /*
1977          * Tell the memory management that we're a "memory allocator",
1978          * and that if we need more memory we should get access to it
1979          * regardless (see "__alloc_pages()"). "kswapd" should
1980          * never get caught in the normal page freeing logic.
1981          *
1982          * (Kswapd normally doesn't need memory anyway, but sometimes
1983          * you need a small amount of memory in order to be able to
1984          * page out something else, and this flag essentially protects
1985          * us from recursively trying to free more memory as we're
1986          * trying to free the first piece of memory in the first place).
1987          */
1988         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1989         set_freezable();
1990
1991         order = 0;
1992         for ( ; ; ) {
1993                 unsigned long new_order;
1994
1995                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1996                 new_order = pgdat->kswapd_max_order;
1997                 pgdat->kswapd_max_order = 0;
1998                 if (order < new_order) {
1999                         /*
2000                          * Don't sleep if someone wants a larger 'order'
2001                          * allocation
2002                          */
2003                         order = new_order;
2004                 } else {
2005                         if (!freezing(current))
2006                                 schedule();
2007
2008                         order = pgdat->kswapd_max_order;
2009                 }
2010                 finish_wait(&pgdat->kswapd_wait, &wait);
2011
2012                 if (!try_to_freeze()) {
2013                         /* We can speed up thawing tasks if we don't call
2014                          * balance_pgdat after returning from the refrigerator
2015                          */
2016                         balance_pgdat(pgdat, order);
2017                 }
2018         }
2019         return 0;
2020 }
2021
2022 /*
2023  * A zone is low on free memory, so wake its kswapd task to service it.
2024  */
2025 void wakeup_kswapd(struct zone *zone, int order)
2026 {
2027         pg_data_t *pgdat;
2028
2029         if (!populated_zone(zone))
2030                 return;
2031
2032         pgdat = zone->zone_pgdat;
2033         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2034                 return;
2035         if (pgdat->kswapd_max_order < order)
2036                 pgdat->kswapd_max_order = order;
2037         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2038                 return;
2039         if (!waitqueue_active(&pgdat->kswapd_wait))
2040                 return;
2041         wake_up_interruptible(&pgdat->kswapd_wait);
2042 }
2043
2044 unsigned long global_lru_pages(void)
2045 {
2046         return global_page_state(NR_ACTIVE_ANON)
2047                 + global_page_state(NR_ACTIVE_FILE)
2048                 + global_page_state(NR_INACTIVE_ANON)
2049                 + global_page_state(NR_INACTIVE_FILE);
2050 }
2051
2052 #ifdef CONFIG_PM
2053 /*
2054  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2055  * from LRU lists system-wide, for given pass and priority, and returns the
2056  * number of reclaimed pages
2057  *
2058  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2059  */
2060 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2061                                       int pass, struct scan_control *sc)
2062 {
2063         struct zone *zone;
2064         unsigned long nr_to_scan, ret = 0;
2065         enum lru_list l;
2066
2067         for_each_zone(zone) {
2068
2069                 if (!populated_zone(zone))
2070                         continue;
2071
2072                 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2073                         continue;
2074
2075                 for_each_evictable_lru(l) {
2076                         /* For pass = 0, we don't shrink the active list */
2077                         if (pass == 0 &&
2078                                 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2079                                 continue;
2080
2081                         zone->lru[l].nr_scan +=
2082                                 (zone_page_state(zone, NR_LRU_BASE + l)
2083                                                                 >> prio) + 1;
2084                         if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2085                                 zone->lru[l].nr_scan = 0;
2086                                 nr_to_scan = min(nr_pages,
2087                                         zone_page_state(zone,
2088                                                         NR_LRU_BASE + l));
2089                                 ret += shrink_list(l, nr_to_scan, zone,
2090                                                                 sc, prio);
2091                                 if (ret >= nr_pages)
2092                                         return ret;
2093                         }
2094                 }
2095         }
2096
2097         return ret;
2098 }
2099
2100 /*
2101  * Try to free `nr_pages' of memory, system-wide, and return the number of
2102  * freed pages.
2103  *
2104  * Rather than trying to age LRUs the aim is to preserve the overall
2105  * LRU order by reclaiming preferentially
2106  * inactive > active > active referenced > active mapped
2107  */
2108 unsigned long shrink_all_memory(unsigned long nr_pages)
2109 {
2110         unsigned long lru_pages, nr_slab;
2111         unsigned long ret = 0;
2112         int pass;
2113         struct reclaim_state reclaim_state;
2114         struct scan_control sc = {
2115                 .gfp_mask = GFP_KERNEL,
2116                 .may_swap = 0,
2117                 .swap_cluster_max = nr_pages,
2118                 .may_writepage = 1,
2119                 .swappiness = vm_swappiness,
2120                 .isolate_pages = isolate_pages_global,
2121         };
2122
2123         current->reclaim_state = &reclaim_state;
2124
2125         lru_pages = global_lru_pages();
2126         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2127         /* If slab caches are huge, it's better to hit them first */
2128         while (nr_slab >= lru_pages) {
2129                 reclaim_state.reclaimed_slab = 0;
2130                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2131                 if (!reclaim_state.reclaimed_slab)
2132                         break;
2133
2134                 ret += reclaim_state.reclaimed_slab;
2135                 if (ret >= nr_pages)
2136                         goto out;
2137
2138                 nr_slab -= reclaim_state.reclaimed_slab;
2139         }
2140
2141         /*
2142          * We try to shrink LRUs in 5 passes:
2143          * 0 = Reclaim from inactive_list only
2144          * 1 = Reclaim from active list but don't reclaim mapped
2145          * 2 = 2nd pass of type 1
2146          * 3 = Reclaim mapped (normal reclaim)
2147          * 4 = 2nd pass of type 3
2148          */
2149         for (pass = 0; pass < 5; pass++) {
2150                 int prio;
2151
2152                 /* Force reclaiming mapped pages in the passes #3 and #4 */
2153                 if (pass > 2) {
2154                         sc.may_swap = 1;
2155                         sc.swappiness = 100;
2156                 }
2157
2158                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2159                         unsigned long nr_to_scan = nr_pages - ret;
2160
2161                         sc.nr_scanned = 0;
2162                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2163                         if (ret >= nr_pages)
2164                                 goto out;
2165
2166                         reclaim_state.reclaimed_slab = 0;
2167                         shrink_slab(sc.nr_scanned, sc.gfp_mask,
2168                                         global_lru_pages());
2169                         ret += reclaim_state.reclaimed_slab;
2170                         if (ret >= nr_pages)
2171                                 goto out;
2172
2173                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2174                                 congestion_wait(WRITE, HZ / 10);
2175                 }
2176         }
2177
2178         /*
2179          * If ret = 0, we could not shrink LRUs, but there may be something
2180          * in slab caches
2181          */
2182         if (!ret) {
2183                 do {
2184                         reclaim_state.reclaimed_slab = 0;
2185                         shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2186                         ret += reclaim_state.reclaimed_slab;
2187                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2188         }
2189
2190 out:
2191         current->reclaim_state = NULL;
2192
2193         return ret;
2194 }
2195 #endif
2196
2197 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2198    not required for correctness.  So if the last cpu in a node goes
2199    away, we get changed to run anywhere: as the first one comes back,
2200    restore their cpu bindings. */
2201 static int __devinit cpu_callback(struct notifier_block *nfb,
2202                                   unsigned long action, void *hcpu)
2203 {
2204         int nid;
2205
2206         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2207                 for_each_node_state(nid, N_HIGH_MEMORY) {
2208                         pg_data_t *pgdat = NODE_DATA(nid);
2209                         node_to_cpumask_ptr(mask, pgdat->node_id);
2210
2211                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2212                                 /* One of our CPUs online: restore mask */
2213                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2214                 }
2215         }
2216         return NOTIFY_OK;
2217 }
2218
2219 /*
2220  * This kswapd start function will be called by init and node-hot-add.
2221  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2222  */
2223 int kswapd_run(int nid)
2224 {
2225         pg_data_t *pgdat = NODE_DATA(nid);
2226         int ret = 0;
2227
2228         if (pgdat->kswapd)
2229                 return 0;
2230
2231         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2232         if (IS_ERR(pgdat->kswapd)) {
2233                 /* failure at boot is fatal */
2234                 BUG_ON(system_state == SYSTEM_BOOTING);
2235                 printk("Failed to start kswapd on node %d\n",nid);
2236                 ret = -1;
2237         }
2238         return ret;
2239 }
2240
2241 static int __init kswapd_init(void)
2242 {
2243         int nid;
2244
2245         swap_setup();
2246         for_each_node_state(nid, N_HIGH_MEMORY)
2247                 kswapd_run(nid);
2248         hotcpu_notifier(cpu_callback, 0);
2249         return 0;
2250 }
2251
2252 module_init(kswapd_init)
2253
2254 #ifdef CONFIG_NUMA
2255 /*
2256  * Zone reclaim mode
2257  *
2258  * If non-zero call zone_reclaim when the number of free pages falls below
2259  * the watermarks.
2260  */
2261 int zone_reclaim_mode __read_mostly;
2262
2263 #define RECLAIM_OFF 0
2264 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2265 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2266 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2267
2268 /*
2269  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2270  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2271  * a zone.
2272  */
2273 #define ZONE_RECLAIM_PRIORITY 4
2274
2275 /*
2276  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2277  * occur.
2278  */
2279 int sysctl_min_unmapped_ratio = 1;
2280
2281 /*
2282  * If the number of slab pages in a zone grows beyond this percentage then
2283  * slab reclaim needs to occur.
2284  */
2285 int sysctl_min_slab_ratio = 5;
2286
2287 /*
2288  * Try to free up some pages from this zone through reclaim.
2289  */
2290 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2291 {
2292         /* Minimum pages needed in order to stay on node */
2293         const unsigned long nr_pages = 1 << order;
2294         struct task_struct *p = current;
2295         struct reclaim_state reclaim_state;
2296         int priority;
2297         struct scan_control sc = {
2298                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2299                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2300                 .swap_cluster_max = max_t(unsigned long, nr_pages,
2301                                         SWAP_CLUSTER_MAX),
2302                 .gfp_mask = gfp_mask,
2303                 .swappiness = vm_swappiness,
2304                 .isolate_pages = isolate_pages_global,
2305         };
2306         unsigned long slab_reclaimable;
2307
2308         disable_swap_token();
2309         cond_resched();
2310         /*
2311          * We need to be able to allocate from the reserves for RECLAIM_SWAP
2312          * and we also need to be able to write out pages for RECLAIM_WRITE
2313          * and RECLAIM_SWAP.
2314          */
2315         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2316         reclaim_state.reclaimed_slab = 0;
2317         p->reclaim_state = &reclaim_state;
2318
2319         if (zone_page_state(zone, NR_FILE_PAGES) -
2320                 zone_page_state(zone, NR_FILE_MAPPED) >
2321                 zone->min_unmapped_pages) {
2322                 /*
2323                  * Free memory by calling shrink zone with increasing
2324                  * priorities until we have enough memory freed.
2325                  */
2326                 priority = ZONE_RECLAIM_PRIORITY;
2327                 do {
2328                         note_zone_scanning_priority(zone, priority);
2329                         shrink_zone(priority, zone, &sc);
2330                         priority--;
2331                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2332         }
2333
2334         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2335         if (slab_reclaimable > zone->min_slab_pages) {
2336                 /*
2337                  * shrink_slab() does not currently allow us to determine how
2338                  * many pages were freed in this zone. So we take the current
2339                  * number of slab pages and shake the slab until it is reduced
2340                  * by the same nr_pages that we used for reclaiming unmapped
2341                  * pages.
2342                  *
2343                  * Note that shrink_slab will free memory on all zones and may
2344                  * take a long time.
2345                  */
2346                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2347                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2348                                 slab_reclaimable - nr_pages)
2349                         ;
2350
2351                 /*
2352                  * Update nr_reclaimed by the number of slab pages we
2353                  * reclaimed from this zone.
2354                  */
2355                 sc.nr_reclaimed += slab_reclaimable -
2356                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2357         }
2358
2359         p->reclaim_state = NULL;
2360         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2361         return sc.nr_reclaimed >= nr_pages;
2362 }
2363
2364 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2365 {
2366         int node_id;
2367         int ret;
2368
2369         /*
2370          * Zone reclaim reclaims unmapped file backed pages and
2371          * slab pages if we are over the defined limits.
2372          *
2373          * A small portion of unmapped file backed pages is needed for
2374          * file I/O otherwise pages read by file I/O will be immediately
2375          * thrown out if the zone is overallocated. So we do not reclaim
2376          * if less than a specified percentage of the zone is used by
2377          * unmapped file backed pages.
2378          */
2379         if (zone_page_state(zone, NR_FILE_PAGES) -
2380             zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2381             && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2382                         <= zone->min_slab_pages)
2383                 return 0;
2384
2385         if (zone_is_all_unreclaimable(zone))
2386                 return 0;
2387
2388         /*
2389          * Do not scan if the allocation should not be delayed.
2390          */
2391         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2392                         return 0;
2393
2394         /*
2395          * Only run zone reclaim on the local zone or on zones that do not
2396          * have associated processors. This will favor the local processor
2397          * over remote processors and spread off node memory allocations
2398          * as wide as possible.
2399          */
2400         node_id = zone_to_nid(zone);
2401         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2402                 return 0;
2403
2404         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2405                 return 0;
2406         ret = __zone_reclaim(zone, gfp_mask, order);
2407         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2408
2409         return ret;
2410 }
2411 #endif
2412
2413 #ifdef CONFIG_UNEVICTABLE_LRU
2414 /*
2415  * page_evictable - test whether a page is evictable
2416  * @page: the page to test
2417  * @vma: the VMA in which the page is or will be mapped, may be NULL
2418  *
2419  * Test whether page is evictable--i.e., should be placed on active/inactive
2420  * lists vs unevictable list.  The vma argument is !NULL when called from the
2421  * fault path to determine how to instantate a new page.
2422  *
2423  * Reasons page might not be evictable:
2424  * (1) page's mapping marked unevictable
2425  * (2) page is part of an mlocked VMA
2426  *
2427  */
2428 int page_evictable(struct page *page, struct vm_area_struct *vma)
2429 {
2430
2431         if (mapping_unevictable(page_mapping(page)))
2432                 return 0;
2433
2434         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2435                 return 0;
2436
2437         return 1;
2438 }
2439
2440 /**
2441  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2442  * @page: page to check evictability and move to appropriate lru list
2443  * @zone: zone page is in
2444  *
2445  * Checks a page for evictability and moves the page to the appropriate
2446  * zone lru list.
2447  *
2448  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2449  * have PageUnevictable set.
2450  */
2451 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2452 {
2453         VM_BUG_ON(PageActive(page));
2454
2455 retry:
2456         ClearPageUnevictable(page);
2457         if (page_evictable(page, NULL)) {
2458                 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2459
2460                 __dec_zone_state(zone, NR_UNEVICTABLE);
2461                 list_move(&page->lru, &zone->lru[l].list);
2462                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2463                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2464                 __count_vm_event(UNEVICTABLE_PGRESCUED);
2465         } else {
2466                 /*
2467                  * rotate unevictable list
2468                  */
2469                 SetPageUnevictable(page);
2470                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2471                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2472                 if (page_evictable(page, NULL))
2473                         goto retry;
2474         }
2475 }
2476
2477 /**
2478  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2479  * @mapping: struct address_space to scan for evictable pages
2480  *
2481  * Scan all pages in mapping.  Check unevictable pages for
2482  * evictability and move them to the appropriate zone lru list.
2483  */
2484 void scan_mapping_unevictable_pages(struct address_space *mapping)
2485 {
2486         pgoff_t next = 0;
2487         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2488                          PAGE_CACHE_SHIFT;
2489         struct zone *zone;
2490         struct pagevec pvec;
2491
2492         if (mapping->nrpages == 0)
2493                 return;
2494
2495         pagevec_init(&pvec, 0);
2496         while (next < end &&
2497                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2498                 int i;
2499                 int pg_scanned = 0;
2500
2501                 zone = NULL;
2502
2503                 for (i = 0; i < pagevec_count(&pvec); i++) {
2504                         struct page *page = pvec.pages[i];
2505                         pgoff_t page_index = page->index;
2506                         struct zone *pagezone = page_zone(page);
2507
2508                         pg_scanned++;
2509                         if (page_index > next)
2510                                 next = page_index;
2511                         next++;
2512
2513                         if (pagezone != zone) {
2514                                 if (zone)
2515                                         spin_unlock_irq(&zone->lru_lock);
2516                                 zone = pagezone;
2517                                 spin_lock_irq(&zone->lru_lock);
2518                         }
2519
2520                         if (PageLRU(page) && PageUnevictable(page))
2521                                 check_move_unevictable_page(page, zone);
2522                 }
2523                 if (zone)
2524                         spin_unlock_irq(&zone->lru_lock);
2525                 pagevec_release(&pvec);
2526
2527                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2528         }
2529
2530 }
2531
2532 /**
2533  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2534  * @zone - zone of which to scan the unevictable list
2535  *
2536  * Scan @zone's unevictable LRU lists to check for pages that have become
2537  * evictable.  Move those that have to @zone's inactive list where they
2538  * become candidates for reclaim, unless shrink_inactive_zone() decides
2539  * to reactivate them.  Pages that are still unevictable are rotated
2540  * back onto @zone's unevictable list.
2541  */
2542 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2543 static void scan_zone_unevictable_pages(struct zone *zone)
2544 {
2545         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2546         unsigned long scan;
2547         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2548
2549         while (nr_to_scan > 0) {
2550                 unsigned long batch_size = min(nr_to_scan,
2551                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
2552
2553                 spin_lock_irq(&zone->lru_lock);
2554                 for (scan = 0;  scan < batch_size; scan++) {
2555                         struct page *page = lru_to_page(l_unevictable);
2556
2557                         if (!trylock_page(page))
2558                                 continue;
2559
2560                         prefetchw_prev_lru_page(page, l_unevictable, flags);
2561
2562                         if (likely(PageLRU(page) && PageUnevictable(page)))
2563                                 check_move_unevictable_page(page, zone);
2564
2565                         unlock_page(page);
2566                 }
2567                 spin_unlock_irq(&zone->lru_lock);
2568
2569                 nr_to_scan -= batch_size;
2570         }
2571 }
2572
2573
2574 /**
2575  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2576  *
2577  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2578  * pages that have become evictable.  Move those back to the zones'
2579  * inactive list where they become candidates for reclaim.
2580  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2581  * and we add swap to the system.  As such, it runs in the context of a task
2582  * that has possibly/probably made some previously unevictable pages
2583  * evictable.
2584  */
2585 static void scan_all_zones_unevictable_pages(void)
2586 {
2587         struct zone *zone;
2588
2589         for_each_zone(zone) {
2590                 scan_zone_unevictable_pages(zone);
2591         }
2592 }
2593
2594 /*
2595  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2596  * all nodes' unevictable lists for evictable pages
2597  */
2598 unsigned long scan_unevictable_pages;
2599
2600 int scan_unevictable_handler(struct ctl_table *table, int write,
2601                            struct file *file, void __user *buffer,
2602                            size_t *length, loff_t *ppos)
2603 {
2604         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2605
2606         if (write && *(unsigned long *)table->data)
2607                 scan_all_zones_unevictable_pages();
2608
2609         scan_unevictable_pages = 0;
2610         return 0;
2611 }
2612
2613 /*
2614  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2615  * a specified node's per zone unevictable lists for evictable pages.
2616  */
2617
2618 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2619                                           struct sysdev_attribute *attr,
2620                                           char *buf)
2621 {
2622         return sprintf(buf, "0\n");     /* always zero; should fit... */
2623 }
2624
2625 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2626                                            struct sysdev_attribute *attr,
2627                                         const char *buf, size_t count)
2628 {
2629         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2630         struct zone *zone;
2631         unsigned long res;
2632         unsigned long req = strict_strtoul(buf, 10, &res);
2633
2634         if (!req)
2635                 return 1;       /* zero is no-op */
2636
2637         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2638                 if (!populated_zone(zone))
2639                         continue;
2640                 scan_zone_unevictable_pages(zone);
2641         }
2642         return 1;
2643 }
2644
2645
2646 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2647                         read_scan_unevictable_node,
2648                         write_scan_unevictable_node);
2649
2650 int scan_unevictable_register_node(struct node *node)
2651 {
2652         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2653 }
2654
2655 void scan_unevictable_unregister_node(struct node *node)
2656 {
2657         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2658 }
2659
2660 #endif