ba4e87df3fc6b0ce9739fe9700f2efc570776e57
[safe/jmp/linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52         /* Incremented by the number of inactive pages that were scanned */
53         unsigned long nr_scanned;
54
55         /* Number of pages freed so far during a call to shrink_zones() */
56         unsigned long nr_reclaimed;
57
58         /* How many pages shrink_list() should reclaim */
59         unsigned long nr_to_reclaim;
60
61         unsigned long hibernation_mode;
62
63         /* This context's GFP mask */
64         gfp_t gfp_mask;
65
66         int may_writepage;
67
68         /* Can mapped pages be reclaimed? */
69         int may_unmap;
70
71         /* Can pages be swapped as part of reclaim? */
72         int may_swap;
73
74         int swappiness;
75
76         int all_unreclaimable;
77
78         int order;
79
80         /* Which cgroup do we reclaim from */
81         struct mem_cgroup *mem_cgroup;
82
83         /*
84          * Nodemask of nodes allowed by the caller. If NULL, all nodes
85          * are scanned.
86          */
87         nodemask_t      *nodemask;
88
89         /* Pluggable isolate pages callback */
90         unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91                         unsigned long *scanned, int order, int mode,
92                         struct zone *z, struct mem_cgroup *mem_cont,
93                         int active, int file);
94 };
95
96 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97
98 #ifdef ARCH_HAS_PREFETCH
99 #define prefetch_prev_lru_page(_page, _base, _field)                    \
100         do {                                                            \
101                 if ((_page)->lru.prev != _base) {                       \
102                         struct page *prev;                              \
103                                                                         \
104                         prev = lru_to_page(&(_page->lru));              \
105                         prefetch(&prev->_field);                        \
106                 }                                                       \
107         } while (0)
108 #else
109 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110 #endif
111
112 #ifdef ARCH_HAS_PREFETCHW
113 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
114         do {                                                            \
115                 if ((_page)->lru.prev != _base) {                       \
116                         struct page *prev;                              \
117                                                                         \
118                         prev = lru_to_page(&(_page->lru));              \
119                         prefetchw(&prev->_field);                       \
120                 }                                                       \
121         } while (0)
122 #else
123 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124 #endif
125
126 /*
127  * From 0 .. 100.  Higher means more swappy.
128  */
129 int vm_swappiness = 60;
130 long vm_total_pages;    /* The total number of pages which the VM controls */
131
132 static LIST_HEAD(shrinker_list);
133 static DECLARE_RWSEM(shrinker_rwsem);
134
135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
136 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
137 #else
138 #define scanning_global_lru(sc) (1)
139 #endif
140
141 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142                                                   struct scan_control *sc)
143 {
144         if (!scanning_global_lru(sc))
145                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146
147         return &zone->reclaim_stat;
148 }
149
150 static unsigned long zone_nr_lru_pages(struct zone *zone,
151                                 struct scan_control *sc, enum lru_list lru)
152 {
153         if (!scanning_global_lru(sc))
154                 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155
156         return zone_page_state(zone, NR_LRU_BASE + lru);
157 }
158
159
160 /*
161  * Add a shrinker callback to be called from the vm
162  */
163 void register_shrinker(struct shrinker *shrinker)
164 {
165         shrinker->nr = 0;
166         down_write(&shrinker_rwsem);
167         list_add_tail(&shrinker->list, &shrinker_list);
168         up_write(&shrinker_rwsem);
169 }
170 EXPORT_SYMBOL(register_shrinker);
171
172 /*
173  * Remove one
174  */
175 void unregister_shrinker(struct shrinker *shrinker)
176 {
177         down_write(&shrinker_rwsem);
178         list_del(&shrinker->list);
179         up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(unregister_shrinker);
182
183 #define SHRINK_BATCH 128
184 /*
185  * Call the shrink functions to age shrinkable caches
186  *
187  * Here we assume it costs one seek to replace a lru page and that it also
188  * takes a seek to recreate a cache object.  With this in mind we age equal
189  * percentages of the lru and ageable caches.  This should balance the seeks
190  * generated by these structures.
191  *
192  * If the vm encountered mapped pages on the LRU it increase the pressure on
193  * slab to avoid swapping.
194  *
195  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196  *
197  * `lru_pages' represents the number of on-LRU pages in all the zones which
198  * are eligible for the caller's allocation attempt.  It is used for balancing
199  * slab reclaim versus page reclaim.
200  *
201  * Returns the number of slab objects which we shrunk.
202  */
203 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204                         unsigned long lru_pages)
205 {
206         struct shrinker *shrinker;
207         unsigned long ret = 0;
208
209         if (scanned == 0)
210                 scanned = SWAP_CLUSTER_MAX;
211
212         if (!down_read_trylock(&shrinker_rwsem))
213                 return 1;       /* Assume we'll be able to shrink next time */
214
215         list_for_each_entry(shrinker, &shrinker_list, list) {
216                 unsigned long long delta;
217                 unsigned long total_scan;
218                 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
219
220                 delta = (4 * scanned) / shrinker->seeks;
221                 delta *= max_pass;
222                 do_div(delta, lru_pages + 1);
223                 shrinker->nr += delta;
224                 if (shrinker->nr < 0) {
225                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
226                                "delete nr=%ld\n",
227                                shrinker->shrink, shrinker->nr);
228                         shrinker->nr = max_pass;
229                 }
230
231                 /*
232                  * Avoid risking looping forever due to too large nr value:
233                  * never try to free more than twice the estimate number of
234                  * freeable entries.
235                  */
236                 if (shrinker->nr > max_pass * 2)
237                         shrinker->nr = max_pass * 2;
238
239                 total_scan = shrinker->nr;
240                 shrinker->nr = 0;
241
242                 while (total_scan >= SHRINK_BATCH) {
243                         long this_scan = SHRINK_BATCH;
244                         int shrink_ret;
245                         int nr_before;
246
247                         nr_before = (*shrinker->shrink)(0, gfp_mask);
248                         shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
249                         if (shrink_ret == -1)
250                                 break;
251                         if (shrink_ret < nr_before)
252                                 ret += nr_before - shrink_ret;
253                         count_vm_events(SLABS_SCANNED, this_scan);
254                         total_scan -= this_scan;
255
256                         cond_resched();
257                 }
258
259                 shrinker->nr += total_scan;
260         }
261         up_read(&shrinker_rwsem);
262         return ret;
263 }
264
265 /* Called without lock on whether page is mapped, so answer is unstable */
266 static inline int page_mapping_inuse(struct page *page)
267 {
268         struct address_space *mapping;
269
270         /* Page is in somebody's page tables. */
271         if (page_mapped(page))
272                 return 1;
273
274         /* Be more reluctant to reclaim swapcache than pagecache */
275         if (PageSwapCache(page))
276                 return 1;
277
278         mapping = page_mapping(page);
279         if (!mapping)
280                 return 0;
281
282         /* File is mmap'd by somebody? */
283         return mapping_mapped(mapping);
284 }
285
286 static inline int is_page_cache_freeable(struct page *page)
287 {
288         /*
289          * A freeable page cache page is referenced only by the caller
290          * that isolated the page, the page cache radix tree and
291          * optional buffer heads at page->private.
292          */
293         return page_count(page) - page_has_private(page) == 2;
294 }
295
296 static int may_write_to_queue(struct backing_dev_info *bdi)
297 {
298         if (current->flags & PF_SWAPWRITE)
299                 return 1;
300         if (!bdi_write_congested(bdi))
301                 return 1;
302         if (bdi == current->backing_dev_info)
303                 return 1;
304         return 0;
305 }
306
307 /*
308  * We detected a synchronous write error writing a page out.  Probably
309  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
310  * fsync(), msync() or close().
311  *
312  * The tricky part is that after writepage we cannot touch the mapping: nothing
313  * prevents it from being freed up.  But we have a ref on the page and once
314  * that page is locked, the mapping is pinned.
315  *
316  * We're allowed to run sleeping lock_page() here because we know the caller has
317  * __GFP_FS.
318  */
319 static void handle_write_error(struct address_space *mapping,
320                                 struct page *page, int error)
321 {
322         lock_page(page);
323         if (page_mapping(page) == mapping)
324                 mapping_set_error(mapping, error);
325         unlock_page(page);
326 }
327
328 /* Request for sync pageout. */
329 enum pageout_io {
330         PAGEOUT_IO_ASYNC,
331         PAGEOUT_IO_SYNC,
332 };
333
334 /* possible outcome of pageout() */
335 typedef enum {
336         /* failed to write page out, page is locked */
337         PAGE_KEEP,
338         /* move page to the active list, page is locked */
339         PAGE_ACTIVATE,
340         /* page has been sent to the disk successfully, page is unlocked */
341         PAGE_SUCCESS,
342         /* page is clean and locked */
343         PAGE_CLEAN,
344 } pageout_t;
345
346 /*
347  * pageout is called by shrink_page_list() for each dirty page.
348  * Calls ->writepage().
349  */
350 static pageout_t pageout(struct page *page, struct address_space *mapping,
351                                                 enum pageout_io sync_writeback)
352 {
353         /*
354          * If the page is dirty, only perform writeback if that write
355          * will be non-blocking.  To prevent this allocation from being
356          * stalled by pagecache activity.  But note that there may be
357          * stalls if we need to run get_block().  We could test
358          * PagePrivate for that.
359          *
360          * If this process is currently in __generic_file_aio_write() against
361          * this page's queue, we can perform writeback even if that
362          * will block.
363          *
364          * If the page is swapcache, write it back even if that would
365          * block, for some throttling. This happens by accident, because
366          * swap_backing_dev_info is bust: it doesn't reflect the
367          * congestion state of the swapdevs.  Easy to fix, if needed.
368          */
369         if (!is_page_cache_freeable(page))
370                 return PAGE_KEEP;
371         if (!mapping) {
372                 /*
373                  * Some data journaling orphaned pages can have
374                  * page->mapping == NULL while being dirty with clean buffers.
375                  */
376                 if (page_has_private(page)) {
377                         if (try_to_free_buffers(page)) {
378                                 ClearPageDirty(page);
379                                 printk("%s: orphaned page\n", __func__);
380                                 return PAGE_CLEAN;
381                         }
382                 }
383                 return PAGE_KEEP;
384         }
385         if (mapping->a_ops->writepage == NULL)
386                 return PAGE_ACTIVATE;
387         if (!may_write_to_queue(mapping->backing_dev_info))
388                 return PAGE_KEEP;
389
390         if (clear_page_dirty_for_io(page)) {
391                 int res;
392                 struct writeback_control wbc = {
393                         .sync_mode = WB_SYNC_NONE,
394                         .nr_to_write = SWAP_CLUSTER_MAX,
395                         .range_start = 0,
396                         .range_end = LLONG_MAX,
397                         .nonblocking = 1,
398                         .for_reclaim = 1,
399                 };
400
401                 SetPageReclaim(page);
402                 res = mapping->a_ops->writepage(page, &wbc);
403                 if (res < 0)
404                         handle_write_error(mapping, page, res);
405                 if (res == AOP_WRITEPAGE_ACTIVATE) {
406                         ClearPageReclaim(page);
407                         return PAGE_ACTIVATE;
408                 }
409
410                 /*
411                  * Wait on writeback if requested to. This happens when
412                  * direct reclaiming a large contiguous area and the
413                  * first attempt to free a range of pages fails.
414                  */
415                 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
416                         wait_on_page_writeback(page);
417
418                 if (!PageWriteback(page)) {
419                         /* synchronous write or broken a_ops? */
420                         ClearPageReclaim(page);
421                 }
422                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
423                 return PAGE_SUCCESS;
424         }
425
426         return PAGE_CLEAN;
427 }
428
429 /*
430  * Same as remove_mapping, but if the page is removed from the mapping, it
431  * gets returned with a refcount of 0.
432  */
433 static int __remove_mapping(struct address_space *mapping, struct page *page)
434 {
435         BUG_ON(!PageLocked(page));
436         BUG_ON(mapping != page_mapping(page));
437
438         spin_lock_irq(&mapping->tree_lock);
439         /*
440          * The non racy check for a busy page.
441          *
442          * Must be careful with the order of the tests. When someone has
443          * a ref to the page, it may be possible that they dirty it then
444          * drop the reference. So if PageDirty is tested before page_count
445          * here, then the following race may occur:
446          *
447          * get_user_pages(&page);
448          * [user mapping goes away]
449          * write_to(page);
450          *                              !PageDirty(page)    [good]
451          * SetPageDirty(page);
452          * put_page(page);
453          *                              !page_count(page)   [good, discard it]
454          *
455          * [oops, our write_to data is lost]
456          *
457          * Reversing the order of the tests ensures such a situation cannot
458          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
459          * load is not satisfied before that of page->_count.
460          *
461          * Note that if SetPageDirty is always performed via set_page_dirty,
462          * and thus under tree_lock, then this ordering is not required.
463          */
464         if (!page_freeze_refs(page, 2))
465                 goto cannot_free;
466         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
467         if (unlikely(PageDirty(page))) {
468                 page_unfreeze_refs(page, 2);
469                 goto cannot_free;
470         }
471
472         if (PageSwapCache(page)) {
473                 swp_entry_t swap = { .val = page_private(page) };
474                 __delete_from_swap_cache(page);
475                 spin_unlock_irq(&mapping->tree_lock);
476                 swapcache_free(swap, page);
477         } else {
478                 __remove_from_page_cache(page);
479                 spin_unlock_irq(&mapping->tree_lock);
480                 mem_cgroup_uncharge_cache_page(page);
481         }
482
483         return 1;
484
485 cannot_free:
486         spin_unlock_irq(&mapping->tree_lock);
487         return 0;
488 }
489
490 /*
491  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
492  * someone else has a ref on the page, abort and return 0.  If it was
493  * successfully detached, return 1.  Assumes the caller has a single ref on
494  * this page.
495  */
496 int remove_mapping(struct address_space *mapping, struct page *page)
497 {
498         if (__remove_mapping(mapping, page)) {
499                 /*
500                  * Unfreezing the refcount with 1 rather than 2 effectively
501                  * drops the pagecache ref for us without requiring another
502                  * atomic operation.
503                  */
504                 page_unfreeze_refs(page, 1);
505                 return 1;
506         }
507         return 0;
508 }
509
510 /**
511  * putback_lru_page - put previously isolated page onto appropriate LRU list
512  * @page: page to be put back to appropriate lru list
513  *
514  * Add previously isolated @page to appropriate LRU list.
515  * Page may still be unevictable for other reasons.
516  *
517  * lru_lock must not be held, interrupts must be enabled.
518  */
519 void putback_lru_page(struct page *page)
520 {
521         int lru;
522         int active = !!TestClearPageActive(page);
523         int was_unevictable = PageUnevictable(page);
524
525         VM_BUG_ON(PageLRU(page));
526
527 redo:
528         ClearPageUnevictable(page);
529
530         if (page_evictable(page, NULL)) {
531                 /*
532                  * For evictable pages, we can use the cache.
533                  * In event of a race, worst case is we end up with an
534                  * unevictable page on [in]active list.
535                  * We know how to handle that.
536                  */
537                 lru = active + page_lru_base_type(page);
538                 lru_cache_add_lru(page, lru);
539         } else {
540                 /*
541                  * Put unevictable pages directly on zone's unevictable
542                  * list.
543                  */
544                 lru = LRU_UNEVICTABLE;
545                 add_page_to_unevictable_list(page);
546                 /*
547                  * When racing with an mlock clearing (page is
548                  * unlocked), make sure that if the other thread does
549                  * not observe our setting of PG_lru and fails
550                  * isolation, we see PG_mlocked cleared below and move
551                  * the page back to the evictable list.
552                  *
553                  * The other side is TestClearPageMlocked().
554                  */
555                 smp_mb();
556         }
557
558         /*
559          * page's status can change while we move it among lru. If an evictable
560          * page is on unevictable list, it never be freed. To avoid that,
561          * check after we added it to the list, again.
562          */
563         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
564                 if (!isolate_lru_page(page)) {
565                         put_page(page);
566                         goto redo;
567                 }
568                 /* This means someone else dropped this page from LRU
569                  * So, it will be freed or putback to LRU again. There is
570                  * nothing to do here.
571                  */
572         }
573
574         if (was_unevictable && lru != LRU_UNEVICTABLE)
575                 count_vm_event(UNEVICTABLE_PGRESCUED);
576         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
577                 count_vm_event(UNEVICTABLE_PGCULLED);
578
579         put_page(page);         /* drop ref from isolate */
580 }
581
582 enum page_references {
583         PAGEREF_RECLAIM,
584         PAGEREF_RECLAIM_CLEAN,
585         PAGEREF_ACTIVATE,
586 };
587
588 static enum page_references page_check_references(struct page *page,
589                                                   struct scan_control *sc)
590 {
591         unsigned long vm_flags;
592         int referenced;
593
594         referenced = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
595         if (!referenced)
596                 return PAGEREF_RECLAIM;
597
598         /* Lumpy reclaim - ignore references */
599         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
600                 return PAGEREF_RECLAIM;
601
602         /*
603          * Mlock lost the isolation race with us.  Let try_to_unmap()
604          * move the page to the unevictable list.
605          */
606         if (vm_flags & VM_LOCKED)
607                 return PAGEREF_RECLAIM;
608
609         if (page_mapping_inuse(page))
610                 return PAGEREF_ACTIVATE;
611
612         /* Reclaim if clean, defer dirty pages to writeback */
613         return PAGEREF_RECLAIM_CLEAN;
614 }
615
616 /*
617  * shrink_page_list() returns the number of reclaimed pages
618  */
619 static unsigned long shrink_page_list(struct list_head *page_list,
620                                         struct scan_control *sc,
621                                         enum pageout_io sync_writeback)
622 {
623         LIST_HEAD(ret_pages);
624         struct pagevec freed_pvec;
625         int pgactivate = 0;
626         unsigned long nr_reclaimed = 0;
627
628         cond_resched();
629
630         pagevec_init(&freed_pvec, 1);
631         while (!list_empty(page_list)) {
632                 enum page_references references;
633                 struct address_space *mapping;
634                 struct page *page;
635                 int may_enter_fs;
636
637                 cond_resched();
638
639                 page = lru_to_page(page_list);
640                 list_del(&page->lru);
641
642                 if (!trylock_page(page))
643                         goto keep;
644
645                 VM_BUG_ON(PageActive(page));
646
647                 sc->nr_scanned++;
648
649                 if (unlikely(!page_evictable(page, NULL)))
650                         goto cull_mlocked;
651
652                 if (!sc->may_unmap && page_mapped(page))
653                         goto keep_locked;
654
655                 /* Double the slab pressure for mapped and swapcache pages */
656                 if (page_mapped(page) || PageSwapCache(page))
657                         sc->nr_scanned++;
658
659                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
660                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
661
662                 if (PageWriteback(page)) {
663                         /*
664                          * Synchronous reclaim is performed in two passes,
665                          * first an asynchronous pass over the list to
666                          * start parallel writeback, and a second synchronous
667                          * pass to wait for the IO to complete.  Wait here
668                          * for any page for which writeback has already
669                          * started.
670                          */
671                         if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
672                                 wait_on_page_writeback(page);
673                         else
674                                 goto keep_locked;
675                 }
676
677                 references = page_check_references(page, sc);
678                 switch (references) {
679                 case PAGEREF_ACTIVATE:
680                         goto activate_locked;
681                 case PAGEREF_RECLAIM:
682                 case PAGEREF_RECLAIM_CLEAN:
683                         ; /* try to reclaim the page below */
684                 }
685
686                 /*
687                  * Anonymous process memory has backing store?
688                  * Try to allocate it some swap space here.
689                  */
690                 if (PageAnon(page) && !PageSwapCache(page)) {
691                         if (!(sc->gfp_mask & __GFP_IO))
692                                 goto keep_locked;
693                         if (!add_to_swap(page))
694                                 goto activate_locked;
695                         may_enter_fs = 1;
696                 }
697
698                 mapping = page_mapping(page);
699
700                 /*
701                  * The page is mapped into the page tables of one or more
702                  * processes. Try to unmap it here.
703                  */
704                 if (page_mapped(page) && mapping) {
705                         switch (try_to_unmap(page, TTU_UNMAP)) {
706                         case SWAP_FAIL:
707                                 goto activate_locked;
708                         case SWAP_AGAIN:
709                                 goto keep_locked;
710                         case SWAP_MLOCK:
711                                 goto cull_mlocked;
712                         case SWAP_SUCCESS:
713                                 ; /* try to free the page below */
714                         }
715                 }
716
717                 if (PageDirty(page)) {
718                         if (references == PAGEREF_RECLAIM_CLEAN)
719                                 goto keep_locked;
720                         if (!may_enter_fs)
721                                 goto keep_locked;
722                         if (!sc->may_writepage)
723                                 goto keep_locked;
724
725                         /* Page is dirty, try to write it out here */
726                         switch (pageout(page, mapping, sync_writeback)) {
727                         case PAGE_KEEP:
728                                 goto keep_locked;
729                         case PAGE_ACTIVATE:
730                                 goto activate_locked;
731                         case PAGE_SUCCESS:
732                                 if (PageWriteback(page) || PageDirty(page))
733                                         goto keep;
734                                 /*
735                                  * A synchronous write - probably a ramdisk.  Go
736                                  * ahead and try to reclaim the page.
737                                  */
738                                 if (!trylock_page(page))
739                                         goto keep;
740                                 if (PageDirty(page) || PageWriteback(page))
741                                         goto keep_locked;
742                                 mapping = page_mapping(page);
743                         case PAGE_CLEAN:
744                                 ; /* try to free the page below */
745                         }
746                 }
747
748                 /*
749                  * If the page has buffers, try to free the buffer mappings
750                  * associated with this page. If we succeed we try to free
751                  * the page as well.
752                  *
753                  * We do this even if the page is PageDirty().
754                  * try_to_release_page() does not perform I/O, but it is
755                  * possible for a page to have PageDirty set, but it is actually
756                  * clean (all its buffers are clean).  This happens if the
757                  * buffers were written out directly, with submit_bh(). ext3
758                  * will do this, as well as the blockdev mapping.
759                  * try_to_release_page() will discover that cleanness and will
760                  * drop the buffers and mark the page clean - it can be freed.
761                  *
762                  * Rarely, pages can have buffers and no ->mapping.  These are
763                  * the pages which were not successfully invalidated in
764                  * truncate_complete_page().  We try to drop those buffers here
765                  * and if that worked, and the page is no longer mapped into
766                  * process address space (page_count == 1) it can be freed.
767                  * Otherwise, leave the page on the LRU so it is swappable.
768                  */
769                 if (page_has_private(page)) {
770                         if (!try_to_release_page(page, sc->gfp_mask))
771                                 goto activate_locked;
772                         if (!mapping && page_count(page) == 1) {
773                                 unlock_page(page);
774                                 if (put_page_testzero(page))
775                                         goto free_it;
776                                 else {
777                                         /*
778                                          * rare race with speculative reference.
779                                          * the speculative reference will free
780                                          * this page shortly, so we may
781                                          * increment nr_reclaimed here (and
782                                          * leave it off the LRU).
783                                          */
784                                         nr_reclaimed++;
785                                         continue;
786                                 }
787                         }
788                 }
789
790                 if (!mapping || !__remove_mapping(mapping, page))
791                         goto keep_locked;
792
793                 /*
794                  * At this point, we have no other references and there is
795                  * no way to pick any more up (removed from LRU, removed
796                  * from pagecache). Can use non-atomic bitops now (and
797                  * we obviously don't have to worry about waking up a process
798                  * waiting on the page lock, because there are no references.
799                  */
800                 __clear_page_locked(page);
801 free_it:
802                 nr_reclaimed++;
803                 if (!pagevec_add(&freed_pvec, page)) {
804                         __pagevec_free(&freed_pvec);
805                         pagevec_reinit(&freed_pvec);
806                 }
807                 continue;
808
809 cull_mlocked:
810                 if (PageSwapCache(page))
811                         try_to_free_swap(page);
812                 unlock_page(page);
813                 putback_lru_page(page);
814                 continue;
815
816 activate_locked:
817                 /* Not a candidate for swapping, so reclaim swap space. */
818                 if (PageSwapCache(page) && vm_swap_full())
819                         try_to_free_swap(page);
820                 VM_BUG_ON(PageActive(page));
821                 SetPageActive(page);
822                 pgactivate++;
823 keep_locked:
824                 unlock_page(page);
825 keep:
826                 list_add(&page->lru, &ret_pages);
827                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
828         }
829         list_splice(&ret_pages, page_list);
830         if (pagevec_count(&freed_pvec))
831                 __pagevec_free(&freed_pvec);
832         count_vm_events(PGACTIVATE, pgactivate);
833         return nr_reclaimed;
834 }
835
836 /* LRU Isolation modes. */
837 #define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
838 #define ISOLATE_ACTIVE 1        /* Isolate active pages. */
839 #define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
840
841 /*
842  * Attempt to remove the specified page from its LRU.  Only take this page
843  * if it is of the appropriate PageActive status.  Pages which are being
844  * freed elsewhere are also ignored.
845  *
846  * page:        page to consider
847  * mode:        one of the LRU isolation modes defined above
848  *
849  * returns 0 on success, -ve errno on failure.
850  */
851 int __isolate_lru_page(struct page *page, int mode, int file)
852 {
853         int ret = -EINVAL;
854
855         /* Only take pages on the LRU. */
856         if (!PageLRU(page))
857                 return ret;
858
859         /*
860          * When checking the active state, we need to be sure we are
861          * dealing with comparible boolean values.  Take the logical not
862          * of each.
863          */
864         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
865                 return ret;
866
867         if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
868                 return ret;
869
870         /*
871          * When this function is being called for lumpy reclaim, we
872          * initially look into all LRU pages, active, inactive and
873          * unevictable; only give shrink_page_list evictable pages.
874          */
875         if (PageUnevictable(page))
876                 return ret;
877
878         ret = -EBUSY;
879
880         if (likely(get_page_unless_zero(page))) {
881                 /*
882                  * Be careful not to clear PageLRU until after we're
883                  * sure the page is not being freed elsewhere -- the
884                  * page release code relies on it.
885                  */
886                 ClearPageLRU(page);
887                 ret = 0;
888         }
889
890         return ret;
891 }
892
893 /*
894  * zone->lru_lock is heavily contended.  Some of the functions that
895  * shrink the lists perform better by taking out a batch of pages
896  * and working on them outside the LRU lock.
897  *
898  * For pagecache intensive workloads, this function is the hottest
899  * spot in the kernel (apart from copy_*_user functions).
900  *
901  * Appropriate locks must be held before calling this function.
902  *
903  * @nr_to_scan: The number of pages to look through on the list.
904  * @src:        The LRU list to pull pages off.
905  * @dst:        The temp list to put pages on to.
906  * @scanned:    The number of pages that were scanned.
907  * @order:      The caller's attempted allocation order
908  * @mode:       One of the LRU isolation modes
909  * @file:       True [1] if isolating file [!anon] pages
910  *
911  * returns how many pages were moved onto *@dst.
912  */
913 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
914                 struct list_head *src, struct list_head *dst,
915                 unsigned long *scanned, int order, int mode, int file)
916 {
917         unsigned long nr_taken = 0;
918         unsigned long scan;
919
920         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
921                 struct page *page;
922                 unsigned long pfn;
923                 unsigned long end_pfn;
924                 unsigned long page_pfn;
925                 int zone_id;
926
927                 page = lru_to_page(src);
928                 prefetchw_prev_lru_page(page, src, flags);
929
930                 VM_BUG_ON(!PageLRU(page));
931
932                 switch (__isolate_lru_page(page, mode, file)) {
933                 case 0:
934                         list_move(&page->lru, dst);
935                         mem_cgroup_del_lru(page);
936                         nr_taken++;
937                         break;
938
939                 case -EBUSY:
940                         /* else it is being freed elsewhere */
941                         list_move(&page->lru, src);
942                         mem_cgroup_rotate_lru_list(page, page_lru(page));
943                         continue;
944
945                 default:
946                         BUG();
947                 }
948
949                 if (!order)
950                         continue;
951
952                 /*
953                  * Attempt to take all pages in the order aligned region
954                  * surrounding the tag page.  Only take those pages of
955                  * the same active state as that tag page.  We may safely
956                  * round the target page pfn down to the requested order
957                  * as the mem_map is guarenteed valid out to MAX_ORDER,
958                  * where that page is in a different zone we will detect
959                  * it from its zone id and abort this block scan.
960                  */
961                 zone_id = page_zone_id(page);
962                 page_pfn = page_to_pfn(page);
963                 pfn = page_pfn & ~((1 << order) - 1);
964                 end_pfn = pfn + (1 << order);
965                 for (; pfn < end_pfn; pfn++) {
966                         struct page *cursor_page;
967
968                         /* The target page is in the block, ignore it. */
969                         if (unlikely(pfn == page_pfn))
970                                 continue;
971
972                         /* Avoid holes within the zone. */
973                         if (unlikely(!pfn_valid_within(pfn)))
974                                 break;
975
976                         cursor_page = pfn_to_page(pfn);
977
978                         /* Check that we have not crossed a zone boundary. */
979                         if (unlikely(page_zone_id(cursor_page) != zone_id))
980                                 continue;
981
982                         /*
983                          * If we don't have enough swap space, reclaiming of
984                          * anon page which don't already have a swap slot is
985                          * pointless.
986                          */
987                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
988                                         !PageSwapCache(cursor_page))
989                                 continue;
990
991                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
992                                 list_move(&cursor_page->lru, dst);
993                                 mem_cgroup_del_lru(cursor_page);
994                                 nr_taken++;
995                                 scan++;
996                         }
997                 }
998         }
999
1000         *scanned = scan;
1001         return nr_taken;
1002 }
1003
1004 static unsigned long isolate_pages_global(unsigned long nr,
1005                                         struct list_head *dst,
1006                                         unsigned long *scanned, int order,
1007                                         int mode, struct zone *z,
1008                                         struct mem_cgroup *mem_cont,
1009                                         int active, int file)
1010 {
1011         int lru = LRU_BASE;
1012         if (active)
1013                 lru += LRU_ACTIVE;
1014         if (file)
1015                 lru += LRU_FILE;
1016         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1017                                                                 mode, file);
1018 }
1019
1020 /*
1021  * clear_active_flags() is a helper for shrink_active_list(), clearing
1022  * any active bits from the pages in the list.
1023  */
1024 static unsigned long clear_active_flags(struct list_head *page_list,
1025                                         unsigned int *count)
1026 {
1027         int nr_active = 0;
1028         int lru;
1029         struct page *page;
1030
1031         list_for_each_entry(page, page_list, lru) {
1032                 lru = page_lru_base_type(page);
1033                 if (PageActive(page)) {
1034                         lru += LRU_ACTIVE;
1035                         ClearPageActive(page);
1036                         nr_active++;
1037                 }
1038                 count[lru]++;
1039         }
1040
1041         return nr_active;
1042 }
1043
1044 /**
1045  * isolate_lru_page - tries to isolate a page from its LRU list
1046  * @page: page to isolate from its LRU list
1047  *
1048  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1049  * vmstat statistic corresponding to whatever LRU list the page was on.
1050  *
1051  * Returns 0 if the page was removed from an LRU list.
1052  * Returns -EBUSY if the page was not on an LRU list.
1053  *
1054  * The returned page will have PageLRU() cleared.  If it was found on
1055  * the active list, it will have PageActive set.  If it was found on
1056  * the unevictable list, it will have the PageUnevictable bit set. That flag
1057  * may need to be cleared by the caller before letting the page go.
1058  *
1059  * The vmstat statistic corresponding to the list on which the page was
1060  * found will be decremented.
1061  *
1062  * Restrictions:
1063  * (1) Must be called with an elevated refcount on the page. This is a
1064  *     fundamentnal difference from isolate_lru_pages (which is called
1065  *     without a stable reference).
1066  * (2) the lru_lock must not be held.
1067  * (3) interrupts must be enabled.
1068  */
1069 int isolate_lru_page(struct page *page)
1070 {
1071         int ret = -EBUSY;
1072
1073         if (PageLRU(page)) {
1074                 struct zone *zone = page_zone(page);
1075
1076                 spin_lock_irq(&zone->lru_lock);
1077                 if (PageLRU(page) && get_page_unless_zero(page)) {
1078                         int lru = page_lru(page);
1079                         ret = 0;
1080                         ClearPageLRU(page);
1081
1082                         del_page_from_lru_list(zone, page, lru);
1083                 }
1084                 spin_unlock_irq(&zone->lru_lock);
1085         }
1086         return ret;
1087 }
1088
1089 /*
1090  * Are there way too many processes in the direct reclaim path already?
1091  */
1092 static int too_many_isolated(struct zone *zone, int file,
1093                 struct scan_control *sc)
1094 {
1095         unsigned long inactive, isolated;
1096
1097         if (current_is_kswapd())
1098                 return 0;
1099
1100         if (!scanning_global_lru(sc))
1101                 return 0;
1102
1103         if (file) {
1104                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1105                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1106         } else {
1107                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1108                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1109         }
1110
1111         return isolated > inactive;
1112 }
1113
1114 /*
1115  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1116  * of reclaimed pages
1117  */
1118 static unsigned long shrink_inactive_list(unsigned long max_scan,
1119                         struct zone *zone, struct scan_control *sc,
1120                         int priority, int file)
1121 {
1122         LIST_HEAD(page_list);
1123         struct pagevec pvec;
1124         unsigned long nr_scanned = 0;
1125         unsigned long nr_reclaimed = 0;
1126         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1127         int lumpy_reclaim = 0;
1128
1129         while (unlikely(too_many_isolated(zone, file, sc))) {
1130                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1131
1132                 /* We are about to die and free our memory. Return now. */
1133                 if (fatal_signal_pending(current))
1134                         return SWAP_CLUSTER_MAX;
1135         }
1136
1137         /*
1138          * If we need a large contiguous chunk of memory, or have
1139          * trouble getting a small set of contiguous pages, we
1140          * will reclaim both active and inactive pages.
1141          *
1142          * We use the same threshold as pageout congestion_wait below.
1143          */
1144         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1145                 lumpy_reclaim = 1;
1146         else if (sc->order && priority < DEF_PRIORITY - 2)
1147                 lumpy_reclaim = 1;
1148
1149         pagevec_init(&pvec, 1);
1150
1151         lru_add_drain();
1152         spin_lock_irq(&zone->lru_lock);
1153         do {
1154                 struct page *page;
1155                 unsigned long nr_taken;
1156                 unsigned long nr_scan;
1157                 unsigned long nr_freed;
1158                 unsigned long nr_active;
1159                 unsigned int count[NR_LRU_LISTS] = { 0, };
1160                 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1161                 unsigned long nr_anon;
1162                 unsigned long nr_file;
1163
1164                 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1165                              &page_list, &nr_scan, sc->order, mode,
1166                                 zone, sc->mem_cgroup, 0, file);
1167
1168                 if (scanning_global_lru(sc)) {
1169                         zone->pages_scanned += nr_scan;
1170                         if (current_is_kswapd())
1171                                 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1172                                                        nr_scan);
1173                         else
1174                                 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1175                                                        nr_scan);
1176                 }
1177
1178                 if (nr_taken == 0)
1179                         goto done;
1180
1181                 nr_active = clear_active_flags(&page_list, count);
1182                 __count_vm_events(PGDEACTIVATE, nr_active);
1183
1184                 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1185                                                 -count[LRU_ACTIVE_FILE]);
1186                 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1187                                                 -count[LRU_INACTIVE_FILE]);
1188                 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1189                                                 -count[LRU_ACTIVE_ANON]);
1190                 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1191                                                 -count[LRU_INACTIVE_ANON]);
1192
1193                 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1194                 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1195                 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1196                 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1197
1198                 reclaim_stat->recent_scanned[0] += nr_anon;
1199                 reclaim_stat->recent_scanned[1] += nr_file;
1200
1201                 spin_unlock_irq(&zone->lru_lock);
1202
1203                 nr_scanned += nr_scan;
1204                 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1205
1206                 /*
1207                  * If we are direct reclaiming for contiguous pages and we do
1208                  * not reclaim everything in the list, try again and wait
1209                  * for IO to complete. This will stall high-order allocations
1210                  * but that should be acceptable to the caller
1211                  */
1212                 if (nr_freed < nr_taken && !current_is_kswapd() &&
1213                     lumpy_reclaim) {
1214                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1215
1216                         /*
1217                          * The attempt at page out may have made some
1218                          * of the pages active, mark them inactive again.
1219                          */
1220                         nr_active = clear_active_flags(&page_list, count);
1221                         count_vm_events(PGDEACTIVATE, nr_active);
1222
1223                         nr_freed += shrink_page_list(&page_list, sc,
1224                                                         PAGEOUT_IO_SYNC);
1225                 }
1226
1227                 nr_reclaimed += nr_freed;
1228
1229                 local_irq_disable();
1230                 if (current_is_kswapd())
1231                         __count_vm_events(KSWAPD_STEAL, nr_freed);
1232                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1233
1234                 spin_lock(&zone->lru_lock);
1235                 /*
1236                  * Put back any unfreeable pages.
1237                  */
1238                 while (!list_empty(&page_list)) {
1239                         int lru;
1240                         page = lru_to_page(&page_list);
1241                         VM_BUG_ON(PageLRU(page));
1242                         list_del(&page->lru);
1243                         if (unlikely(!page_evictable(page, NULL))) {
1244                                 spin_unlock_irq(&zone->lru_lock);
1245                                 putback_lru_page(page);
1246                                 spin_lock_irq(&zone->lru_lock);
1247                                 continue;
1248                         }
1249                         SetPageLRU(page);
1250                         lru = page_lru(page);
1251                         add_page_to_lru_list(zone, page, lru);
1252                         if (is_active_lru(lru)) {
1253                                 int file = is_file_lru(lru);
1254                                 reclaim_stat->recent_rotated[file]++;
1255                         }
1256                         if (!pagevec_add(&pvec, page)) {
1257                                 spin_unlock_irq(&zone->lru_lock);
1258                                 __pagevec_release(&pvec);
1259                                 spin_lock_irq(&zone->lru_lock);
1260                         }
1261                 }
1262                 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1263                 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1264
1265         } while (nr_scanned < max_scan);
1266
1267 done:
1268         spin_unlock_irq(&zone->lru_lock);
1269         pagevec_release(&pvec);
1270         return nr_reclaimed;
1271 }
1272
1273 /*
1274  * We are about to scan this zone at a certain priority level.  If that priority
1275  * level is smaller (ie: more urgent) than the previous priority, then note
1276  * that priority level within the zone.  This is done so that when the next
1277  * process comes in to scan this zone, it will immediately start out at this
1278  * priority level rather than having to build up its own scanning priority.
1279  * Here, this priority affects only the reclaim-mapped threshold.
1280  */
1281 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1282 {
1283         if (priority < zone->prev_priority)
1284                 zone->prev_priority = priority;
1285 }
1286
1287 /*
1288  * This moves pages from the active list to the inactive list.
1289  *
1290  * We move them the other way if the page is referenced by one or more
1291  * processes, from rmap.
1292  *
1293  * If the pages are mostly unmapped, the processing is fast and it is
1294  * appropriate to hold zone->lru_lock across the whole operation.  But if
1295  * the pages are mapped, the processing is slow (page_referenced()) so we
1296  * should drop zone->lru_lock around each page.  It's impossible to balance
1297  * this, so instead we remove the pages from the LRU while processing them.
1298  * It is safe to rely on PG_active against the non-LRU pages in here because
1299  * nobody will play with that bit on a non-LRU page.
1300  *
1301  * The downside is that we have to touch page->_count against each page.
1302  * But we had to alter page->flags anyway.
1303  */
1304
1305 static void move_active_pages_to_lru(struct zone *zone,
1306                                      struct list_head *list,
1307                                      enum lru_list lru)
1308 {
1309         unsigned long pgmoved = 0;
1310         struct pagevec pvec;
1311         struct page *page;
1312
1313         pagevec_init(&pvec, 1);
1314
1315         while (!list_empty(list)) {
1316                 page = lru_to_page(list);
1317
1318                 VM_BUG_ON(PageLRU(page));
1319                 SetPageLRU(page);
1320
1321                 list_move(&page->lru, &zone->lru[lru].list);
1322                 mem_cgroup_add_lru_list(page, lru);
1323                 pgmoved++;
1324
1325                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1326                         spin_unlock_irq(&zone->lru_lock);
1327                         if (buffer_heads_over_limit)
1328                                 pagevec_strip(&pvec);
1329                         __pagevec_release(&pvec);
1330                         spin_lock_irq(&zone->lru_lock);
1331                 }
1332         }
1333         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1334         if (!is_active_lru(lru))
1335                 __count_vm_events(PGDEACTIVATE, pgmoved);
1336 }
1337
1338 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1339                         struct scan_control *sc, int priority, int file)
1340 {
1341         unsigned long nr_taken;
1342         unsigned long pgscanned;
1343         unsigned long vm_flags;
1344         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1345         LIST_HEAD(l_active);
1346         LIST_HEAD(l_inactive);
1347         struct page *page;
1348         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1349         unsigned long nr_rotated = 0;
1350
1351         lru_add_drain();
1352         spin_lock_irq(&zone->lru_lock);
1353         nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1354                                         ISOLATE_ACTIVE, zone,
1355                                         sc->mem_cgroup, 1, file);
1356         /*
1357          * zone->pages_scanned is used for detect zone's oom
1358          * mem_cgroup remembers nr_scan by itself.
1359          */
1360         if (scanning_global_lru(sc)) {
1361                 zone->pages_scanned += pgscanned;
1362         }
1363         reclaim_stat->recent_scanned[file] += nr_taken;
1364
1365         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1366         if (file)
1367                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1368         else
1369                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1370         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1371         spin_unlock_irq(&zone->lru_lock);
1372
1373         while (!list_empty(&l_hold)) {
1374                 cond_resched();
1375                 page = lru_to_page(&l_hold);
1376                 list_del(&page->lru);
1377
1378                 if (unlikely(!page_evictable(page, NULL))) {
1379                         putback_lru_page(page);
1380                         continue;
1381                 }
1382
1383                 /* page_referenced clears PageReferenced */
1384                 if (page_mapping_inuse(page) &&
1385                     page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1386                         nr_rotated++;
1387                         /*
1388                          * Identify referenced, file-backed active pages and
1389                          * give them one more trip around the active list. So
1390                          * that executable code get better chances to stay in
1391                          * memory under moderate memory pressure.  Anon pages
1392                          * are not likely to be evicted by use-once streaming
1393                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1394                          * so we ignore them here.
1395                          */
1396                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1397                                 list_add(&page->lru, &l_active);
1398                                 continue;
1399                         }
1400                 }
1401
1402                 ClearPageActive(page);  /* we are de-activating */
1403                 list_add(&page->lru, &l_inactive);
1404         }
1405
1406         /*
1407          * Move pages back to the lru list.
1408          */
1409         spin_lock_irq(&zone->lru_lock);
1410         /*
1411          * Count referenced pages from currently used mappings as rotated,
1412          * even though only some of them are actually re-activated.  This
1413          * helps balance scan pressure between file and anonymous pages in
1414          * get_scan_ratio.
1415          */
1416         reclaim_stat->recent_rotated[file] += nr_rotated;
1417
1418         move_active_pages_to_lru(zone, &l_active,
1419                                                 LRU_ACTIVE + file * LRU_FILE);
1420         move_active_pages_to_lru(zone, &l_inactive,
1421                                                 LRU_BASE   + file * LRU_FILE);
1422         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1423         spin_unlock_irq(&zone->lru_lock);
1424 }
1425
1426 static int inactive_anon_is_low_global(struct zone *zone)
1427 {
1428         unsigned long active, inactive;
1429
1430         active = zone_page_state(zone, NR_ACTIVE_ANON);
1431         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1432
1433         if (inactive * zone->inactive_ratio < active)
1434                 return 1;
1435
1436         return 0;
1437 }
1438
1439 /**
1440  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1441  * @zone: zone to check
1442  * @sc:   scan control of this context
1443  *
1444  * Returns true if the zone does not have enough inactive anon pages,
1445  * meaning some active anon pages need to be deactivated.
1446  */
1447 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1448 {
1449         int low;
1450
1451         if (scanning_global_lru(sc))
1452                 low = inactive_anon_is_low_global(zone);
1453         else
1454                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1455         return low;
1456 }
1457
1458 static int inactive_file_is_low_global(struct zone *zone)
1459 {
1460         unsigned long active, inactive;
1461
1462         active = zone_page_state(zone, NR_ACTIVE_FILE);
1463         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1464
1465         return (active > inactive);
1466 }
1467
1468 /**
1469  * inactive_file_is_low - check if file pages need to be deactivated
1470  * @zone: zone to check
1471  * @sc:   scan control of this context
1472  *
1473  * When the system is doing streaming IO, memory pressure here
1474  * ensures that active file pages get deactivated, until more
1475  * than half of the file pages are on the inactive list.
1476  *
1477  * Once we get to that situation, protect the system's working
1478  * set from being evicted by disabling active file page aging.
1479  *
1480  * This uses a different ratio than the anonymous pages, because
1481  * the page cache uses a use-once replacement algorithm.
1482  */
1483 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1484 {
1485         int low;
1486
1487         if (scanning_global_lru(sc))
1488                 low = inactive_file_is_low_global(zone);
1489         else
1490                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1491         return low;
1492 }
1493
1494 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1495                                 int file)
1496 {
1497         if (file)
1498                 return inactive_file_is_low(zone, sc);
1499         else
1500                 return inactive_anon_is_low(zone, sc);
1501 }
1502
1503 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1504         struct zone *zone, struct scan_control *sc, int priority)
1505 {
1506         int file = is_file_lru(lru);
1507
1508         if (is_active_lru(lru)) {
1509                 if (inactive_list_is_low(zone, sc, file))
1510                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1511                 return 0;
1512         }
1513
1514         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1515 }
1516
1517 /*
1518  * Determine how aggressively the anon and file LRU lists should be
1519  * scanned.  The relative value of each set of LRU lists is determined
1520  * by looking at the fraction of the pages scanned we did rotate back
1521  * onto the active list instead of evict.
1522  *
1523  * percent[0] specifies how much pressure to put on ram/swap backed
1524  * memory, while percent[1] determines pressure on the file LRUs.
1525  */
1526 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1527                                         unsigned long *percent)
1528 {
1529         unsigned long anon, file, free;
1530         unsigned long anon_prio, file_prio;
1531         unsigned long ap, fp;
1532         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1533
1534         /* If we have no swap space, do not bother scanning anon pages. */
1535         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1536                 percent[0] = 0;
1537                 percent[1] = 100;
1538                 return;
1539         }
1540
1541         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1542                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1543         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1544                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1545
1546         if (scanning_global_lru(sc)) {
1547                 free  = zone_page_state(zone, NR_FREE_PAGES);
1548                 /* If we have very few page cache pages,
1549                    force-scan anon pages. */
1550                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1551                         percent[0] = 100;
1552                         percent[1] = 0;
1553                         return;
1554                 }
1555         }
1556
1557         /*
1558          * OK, so we have swap space and a fair amount of page cache
1559          * pages.  We use the recently rotated / recently scanned
1560          * ratios to determine how valuable each cache is.
1561          *
1562          * Because workloads change over time (and to avoid overflow)
1563          * we keep these statistics as a floating average, which ends
1564          * up weighing recent references more than old ones.
1565          *
1566          * anon in [0], file in [1]
1567          */
1568         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1569                 spin_lock_irq(&zone->lru_lock);
1570                 reclaim_stat->recent_scanned[0] /= 2;
1571                 reclaim_stat->recent_rotated[0] /= 2;
1572                 spin_unlock_irq(&zone->lru_lock);
1573         }
1574
1575         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1576                 spin_lock_irq(&zone->lru_lock);
1577                 reclaim_stat->recent_scanned[1] /= 2;
1578                 reclaim_stat->recent_rotated[1] /= 2;
1579                 spin_unlock_irq(&zone->lru_lock);
1580         }
1581
1582         /*
1583          * With swappiness at 100, anonymous and file have the same priority.
1584          * This scanning priority is essentially the inverse of IO cost.
1585          */
1586         anon_prio = sc->swappiness;
1587         file_prio = 200 - sc->swappiness;
1588
1589         /*
1590          * The amount of pressure on anon vs file pages is inversely
1591          * proportional to the fraction of recently scanned pages on
1592          * each list that were recently referenced and in active use.
1593          */
1594         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1595         ap /= reclaim_stat->recent_rotated[0] + 1;
1596
1597         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1598         fp /= reclaim_stat->recent_rotated[1] + 1;
1599
1600         /* Normalize to percentages */
1601         percent[0] = 100 * ap / (ap + fp + 1);
1602         percent[1] = 100 - percent[0];
1603 }
1604
1605 /*
1606  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1607  * until we collected @swap_cluster_max pages to scan.
1608  */
1609 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1610                                        unsigned long *nr_saved_scan)
1611 {
1612         unsigned long nr;
1613
1614         *nr_saved_scan += nr_to_scan;
1615         nr = *nr_saved_scan;
1616
1617         if (nr >= SWAP_CLUSTER_MAX)
1618                 *nr_saved_scan = 0;
1619         else
1620                 nr = 0;
1621
1622         return nr;
1623 }
1624
1625 /*
1626  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1627  */
1628 static void shrink_zone(int priority, struct zone *zone,
1629                                 struct scan_control *sc)
1630 {
1631         unsigned long nr[NR_LRU_LISTS];
1632         unsigned long nr_to_scan;
1633         unsigned long percent[2];       /* anon @ 0; file @ 1 */
1634         enum lru_list l;
1635         unsigned long nr_reclaimed = sc->nr_reclaimed;
1636         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1637         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1638
1639         get_scan_ratio(zone, sc, percent);
1640
1641         for_each_evictable_lru(l) {
1642                 int file = is_file_lru(l);
1643                 unsigned long scan;
1644
1645                 if (percent[file] == 0) {
1646                         nr[l] = 0;
1647                         continue;
1648                 }
1649
1650                 scan = zone_nr_lru_pages(zone, sc, l);
1651                 if (priority) {
1652                         scan >>= priority;
1653                         scan = (scan * percent[file]) / 100;
1654                 }
1655                 nr[l] = nr_scan_try_batch(scan,
1656                                           &reclaim_stat->nr_saved_scan[l]);
1657         }
1658
1659         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1660                                         nr[LRU_INACTIVE_FILE]) {
1661                 for_each_evictable_lru(l) {
1662                         if (nr[l]) {
1663                                 nr_to_scan = min_t(unsigned long,
1664                                                    nr[l], SWAP_CLUSTER_MAX);
1665                                 nr[l] -= nr_to_scan;
1666
1667                                 nr_reclaimed += shrink_list(l, nr_to_scan,
1668                                                             zone, sc, priority);
1669                         }
1670                 }
1671                 /*
1672                  * On large memory systems, scan >> priority can become
1673                  * really large. This is fine for the starting priority;
1674                  * we want to put equal scanning pressure on each zone.
1675                  * However, if the VM has a harder time of freeing pages,
1676                  * with multiple processes reclaiming pages, the total
1677                  * freeing target can get unreasonably large.
1678                  */
1679                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1680                         break;
1681         }
1682
1683         sc->nr_reclaimed = nr_reclaimed;
1684
1685         /*
1686          * Even if we did not try to evict anon pages at all, we want to
1687          * rebalance the anon lru active/inactive ratio.
1688          */
1689         if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1690                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1691
1692         throttle_vm_writeout(sc->gfp_mask);
1693 }
1694
1695 /*
1696  * This is the direct reclaim path, for page-allocating processes.  We only
1697  * try to reclaim pages from zones which will satisfy the caller's allocation
1698  * request.
1699  *
1700  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1701  * Because:
1702  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1703  *    allocation or
1704  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1705  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1706  *    zone defense algorithm.
1707  *
1708  * If a zone is deemed to be full of pinned pages then just give it a light
1709  * scan then give up on it.
1710  */
1711 static void shrink_zones(int priority, struct zonelist *zonelist,
1712                                         struct scan_control *sc)
1713 {
1714         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1715         struct zoneref *z;
1716         struct zone *zone;
1717
1718         sc->all_unreclaimable = 1;
1719         for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1720                                         sc->nodemask) {
1721                 if (!populated_zone(zone))
1722                         continue;
1723                 /*
1724                  * Take care memory controller reclaiming has small influence
1725                  * to global LRU.
1726                  */
1727                 if (scanning_global_lru(sc)) {
1728                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1729                                 continue;
1730                         note_zone_scanning_priority(zone, priority);
1731
1732                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1733                                 continue;       /* Let kswapd poll it */
1734                         sc->all_unreclaimable = 0;
1735                 } else {
1736                         /*
1737                          * Ignore cpuset limitation here. We just want to reduce
1738                          * # of used pages by us regardless of memory shortage.
1739                          */
1740                         sc->all_unreclaimable = 0;
1741                         mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1742                                                         priority);
1743                 }
1744
1745                 shrink_zone(priority, zone, sc);
1746         }
1747 }
1748
1749 /*
1750  * This is the main entry point to direct page reclaim.
1751  *
1752  * If a full scan of the inactive list fails to free enough memory then we
1753  * are "out of memory" and something needs to be killed.
1754  *
1755  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1756  * high - the zone may be full of dirty or under-writeback pages, which this
1757  * caller can't do much about.  We kick the writeback threads and take explicit
1758  * naps in the hope that some of these pages can be written.  But if the
1759  * allocating task holds filesystem locks which prevent writeout this might not
1760  * work, and the allocation attempt will fail.
1761  *
1762  * returns:     0, if no pages reclaimed
1763  *              else, the number of pages reclaimed
1764  */
1765 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1766                                         struct scan_control *sc)
1767 {
1768         int priority;
1769         unsigned long ret = 0;
1770         unsigned long total_scanned = 0;
1771         struct reclaim_state *reclaim_state = current->reclaim_state;
1772         unsigned long lru_pages = 0;
1773         struct zoneref *z;
1774         struct zone *zone;
1775         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1776         unsigned long writeback_threshold;
1777
1778         delayacct_freepages_start();
1779
1780         if (scanning_global_lru(sc))
1781                 count_vm_event(ALLOCSTALL);
1782         /*
1783          * mem_cgroup will not do shrink_slab.
1784          */
1785         if (scanning_global_lru(sc)) {
1786                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1787
1788                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1789                                 continue;
1790
1791                         lru_pages += zone_reclaimable_pages(zone);
1792                 }
1793         }
1794
1795         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1796                 sc->nr_scanned = 0;
1797                 if (!priority)
1798                         disable_swap_token();
1799                 shrink_zones(priority, zonelist, sc);
1800                 /*
1801                  * Don't shrink slabs when reclaiming memory from
1802                  * over limit cgroups
1803                  */
1804                 if (scanning_global_lru(sc)) {
1805                         shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1806                         if (reclaim_state) {
1807                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1808                                 reclaim_state->reclaimed_slab = 0;
1809                         }
1810                 }
1811                 total_scanned += sc->nr_scanned;
1812                 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1813                         ret = sc->nr_reclaimed;
1814                         goto out;
1815                 }
1816
1817                 /*
1818                  * Try to write back as many pages as we just scanned.  This
1819                  * tends to cause slow streaming writers to write data to the
1820                  * disk smoothly, at the dirtying rate, which is nice.   But
1821                  * that's undesirable in laptop mode, where we *want* lumpy
1822                  * writeout.  So in laptop mode, write out the whole world.
1823                  */
1824                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1825                 if (total_scanned > writeback_threshold) {
1826                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1827                         sc->may_writepage = 1;
1828                 }
1829
1830                 /* Take a nap, wait for some writeback to complete */
1831                 if (!sc->hibernation_mode && sc->nr_scanned &&
1832                     priority < DEF_PRIORITY - 2)
1833                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1834         }
1835         /* top priority shrink_zones still had more to do? don't OOM, then */
1836         if (!sc->all_unreclaimable && scanning_global_lru(sc))
1837                 ret = sc->nr_reclaimed;
1838 out:
1839         /*
1840          * Now that we've scanned all the zones at this priority level, note
1841          * that level within the zone so that the next thread which performs
1842          * scanning of this zone will immediately start out at this priority
1843          * level.  This affects only the decision whether or not to bring
1844          * mapped pages onto the inactive list.
1845          */
1846         if (priority < 0)
1847                 priority = 0;
1848
1849         if (scanning_global_lru(sc)) {
1850                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1851
1852                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1853                                 continue;
1854
1855                         zone->prev_priority = priority;
1856                 }
1857         } else
1858                 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1859
1860         delayacct_freepages_end();
1861
1862         return ret;
1863 }
1864
1865 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1866                                 gfp_t gfp_mask, nodemask_t *nodemask)
1867 {
1868         struct scan_control sc = {
1869                 .gfp_mask = gfp_mask,
1870                 .may_writepage = !laptop_mode,
1871                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1872                 .may_unmap = 1,
1873                 .may_swap = 1,
1874                 .swappiness = vm_swappiness,
1875                 .order = order,
1876                 .mem_cgroup = NULL,
1877                 .isolate_pages = isolate_pages_global,
1878                 .nodemask = nodemask,
1879         };
1880
1881         return do_try_to_free_pages(zonelist, &sc);
1882 }
1883
1884 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1885
1886 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1887                                                 gfp_t gfp_mask, bool noswap,
1888                                                 unsigned int swappiness,
1889                                                 struct zone *zone, int nid)
1890 {
1891         struct scan_control sc = {
1892                 .may_writepage = !laptop_mode,
1893                 .may_unmap = 1,
1894                 .may_swap = !noswap,
1895                 .swappiness = swappiness,
1896                 .order = 0,
1897                 .mem_cgroup = mem,
1898                 .isolate_pages = mem_cgroup_isolate_pages,
1899         };
1900         nodemask_t nm  = nodemask_of_node(nid);
1901
1902         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1903                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1904         sc.nodemask = &nm;
1905         sc.nr_reclaimed = 0;
1906         sc.nr_scanned = 0;
1907         /*
1908          * NOTE: Although we can get the priority field, using it
1909          * here is not a good idea, since it limits the pages we can scan.
1910          * if we don't reclaim here, the shrink_zone from balance_pgdat
1911          * will pick up pages from other mem cgroup's as well. We hack
1912          * the priority and make it zero.
1913          */
1914         shrink_zone(0, zone, &sc);
1915         return sc.nr_reclaimed;
1916 }
1917
1918 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1919                                            gfp_t gfp_mask,
1920                                            bool noswap,
1921                                            unsigned int swappiness)
1922 {
1923         struct zonelist *zonelist;
1924         struct scan_control sc = {
1925                 .may_writepage = !laptop_mode,
1926                 .may_unmap = 1,
1927                 .may_swap = !noswap,
1928                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1929                 .swappiness = swappiness,
1930                 .order = 0,
1931                 .mem_cgroup = mem_cont,
1932                 .isolate_pages = mem_cgroup_isolate_pages,
1933                 .nodemask = NULL, /* we don't care the placement */
1934         };
1935
1936         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1937                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1938         zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1939         return do_try_to_free_pages(zonelist, &sc);
1940 }
1941 #endif
1942
1943 /* is kswapd sleeping prematurely? */
1944 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1945 {
1946         int i;
1947
1948         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1949         if (remaining)
1950                 return 1;
1951
1952         /* If after HZ/10, a zone is below the high mark, it's premature */
1953         for (i = 0; i < pgdat->nr_zones; i++) {
1954                 struct zone *zone = pgdat->node_zones + i;
1955
1956                 if (!populated_zone(zone))
1957                         continue;
1958
1959                 if (zone->all_unreclaimable)
1960                         continue;
1961
1962                 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1963                                                                 0, 0))
1964                         return 1;
1965         }
1966
1967         return 0;
1968 }
1969
1970 /*
1971  * For kswapd, balance_pgdat() will work across all this node's zones until
1972  * they are all at high_wmark_pages(zone).
1973  *
1974  * Returns the number of pages which were actually freed.
1975  *
1976  * There is special handling here for zones which are full of pinned pages.
1977  * This can happen if the pages are all mlocked, or if they are all used by
1978  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1979  * What we do is to detect the case where all pages in the zone have been
1980  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1981  * dead and from now on, only perform a short scan.  Basically we're polling
1982  * the zone for when the problem goes away.
1983  *
1984  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1985  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1986  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1987  * lower zones regardless of the number of free pages in the lower zones. This
1988  * interoperates with the page allocator fallback scheme to ensure that aging
1989  * of pages is balanced across the zones.
1990  */
1991 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1992 {
1993         int all_zones_ok;
1994         int priority;
1995         int i;
1996         unsigned long total_scanned;
1997         struct reclaim_state *reclaim_state = current->reclaim_state;
1998         struct scan_control sc = {
1999                 .gfp_mask = GFP_KERNEL,
2000                 .may_unmap = 1,
2001                 .may_swap = 1,
2002                 /*
2003                  * kswapd doesn't want to be bailed out while reclaim. because
2004                  * we want to put equal scanning pressure on each zone.
2005                  */
2006                 .nr_to_reclaim = ULONG_MAX,
2007                 .swappiness = vm_swappiness,
2008                 .order = order,
2009                 .mem_cgroup = NULL,
2010                 .isolate_pages = isolate_pages_global,
2011         };
2012         /*
2013          * temp_priority is used to remember the scanning priority at which
2014          * this zone was successfully refilled to
2015          * free_pages == high_wmark_pages(zone).
2016          */
2017         int temp_priority[MAX_NR_ZONES];
2018
2019 loop_again:
2020         total_scanned = 0;
2021         sc.nr_reclaimed = 0;
2022         sc.may_writepage = !laptop_mode;
2023         count_vm_event(PAGEOUTRUN);
2024
2025         for (i = 0; i < pgdat->nr_zones; i++)
2026                 temp_priority[i] = DEF_PRIORITY;
2027
2028         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2029                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2030                 unsigned long lru_pages = 0;
2031                 int has_under_min_watermark_zone = 0;
2032
2033                 /* The swap token gets in the way of swapout... */
2034                 if (!priority)
2035                         disable_swap_token();
2036
2037                 all_zones_ok = 1;
2038
2039                 /*
2040                  * Scan in the highmem->dma direction for the highest
2041                  * zone which needs scanning
2042                  */
2043                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2044                         struct zone *zone = pgdat->node_zones + i;
2045
2046                         if (!populated_zone(zone))
2047                                 continue;
2048
2049                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2050                                 continue;
2051
2052                         /*
2053                          * Do some background aging of the anon list, to give
2054                          * pages a chance to be referenced before reclaiming.
2055                          */
2056                         if (inactive_anon_is_low(zone, &sc))
2057                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2058                                                         &sc, priority, 0);
2059
2060                         if (!zone_watermark_ok(zone, order,
2061                                         high_wmark_pages(zone), 0, 0)) {
2062                                 end_zone = i;
2063                                 break;
2064                         }
2065                 }
2066                 if (i < 0)
2067                         goto out;
2068
2069                 for (i = 0; i <= end_zone; i++) {
2070                         struct zone *zone = pgdat->node_zones + i;
2071
2072                         lru_pages += zone_reclaimable_pages(zone);
2073                 }
2074
2075                 /*
2076                  * Now scan the zone in the dma->highmem direction, stopping
2077                  * at the last zone which needs scanning.
2078                  *
2079                  * We do this because the page allocator works in the opposite
2080                  * direction.  This prevents the page allocator from allocating
2081                  * pages behind kswapd's direction of progress, which would
2082                  * cause too much scanning of the lower zones.
2083                  */
2084                 for (i = 0; i <= end_zone; i++) {
2085                         struct zone *zone = pgdat->node_zones + i;
2086                         int nr_slab;
2087                         int nid, zid;
2088
2089                         if (!populated_zone(zone))
2090                                 continue;
2091
2092                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2093                                 continue;
2094
2095                         temp_priority[i] = priority;
2096                         sc.nr_scanned = 0;
2097                         note_zone_scanning_priority(zone, priority);
2098
2099                         nid = pgdat->node_id;
2100                         zid = zone_idx(zone);
2101                         /*
2102                          * Call soft limit reclaim before calling shrink_zone.
2103                          * For now we ignore the return value
2104                          */
2105                         mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2106                                                         nid, zid);
2107                         /*
2108                          * We put equal pressure on every zone, unless one
2109                          * zone has way too many pages free already.
2110                          */
2111                         if (!zone_watermark_ok(zone, order,
2112                                         8*high_wmark_pages(zone), end_zone, 0))
2113                                 shrink_zone(priority, zone, &sc);
2114                         reclaim_state->reclaimed_slab = 0;
2115                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2116                                                 lru_pages);
2117                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2118                         total_scanned += sc.nr_scanned;
2119                         if (zone->all_unreclaimable)
2120                                 continue;
2121                         if (nr_slab == 0 &&
2122                             zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2123                                 zone->all_unreclaimable = 1;
2124                         /*
2125                          * If we've done a decent amount of scanning and
2126                          * the reclaim ratio is low, start doing writepage
2127                          * even in laptop mode
2128                          */
2129                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2130                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2131                                 sc.may_writepage = 1;
2132
2133                         if (!zone_watermark_ok(zone, order,
2134                                         high_wmark_pages(zone), end_zone, 0)) {
2135                                 all_zones_ok = 0;
2136                                 /*
2137                                  * We are still under min water mark.  This
2138                                  * means that we have a GFP_ATOMIC allocation
2139                                  * failure risk. Hurry up!
2140                                  */
2141                                 if (!zone_watermark_ok(zone, order,
2142                                             min_wmark_pages(zone), end_zone, 0))
2143                                         has_under_min_watermark_zone = 1;
2144                         }
2145
2146                 }
2147                 if (all_zones_ok)
2148                         break;          /* kswapd: all done */
2149                 /*
2150                  * OK, kswapd is getting into trouble.  Take a nap, then take
2151                  * another pass across the zones.
2152                  */
2153                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2154                         if (has_under_min_watermark_zone)
2155                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2156                         else
2157                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2158                 }
2159
2160                 /*
2161                  * We do this so kswapd doesn't build up large priorities for
2162                  * example when it is freeing in parallel with allocators. It
2163                  * matches the direct reclaim path behaviour in terms of impact
2164                  * on zone->*_priority.
2165                  */
2166                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2167                         break;
2168         }
2169 out:
2170         /*
2171          * Note within each zone the priority level at which this zone was
2172          * brought into a happy state.  So that the next thread which scans this
2173          * zone will start out at that priority level.
2174          */
2175         for (i = 0; i < pgdat->nr_zones; i++) {
2176                 struct zone *zone = pgdat->node_zones + i;
2177
2178                 zone->prev_priority = temp_priority[i];
2179         }
2180         if (!all_zones_ok) {
2181                 cond_resched();
2182
2183                 try_to_freeze();
2184
2185                 /*
2186                  * Fragmentation may mean that the system cannot be
2187                  * rebalanced for high-order allocations in all zones.
2188                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2189                  * it means the zones have been fully scanned and are still
2190                  * not balanced. For high-order allocations, there is
2191                  * little point trying all over again as kswapd may
2192                  * infinite loop.
2193                  *
2194                  * Instead, recheck all watermarks at order-0 as they
2195                  * are the most important. If watermarks are ok, kswapd will go
2196                  * back to sleep. High-order users can still perform direct
2197                  * reclaim if they wish.
2198                  */
2199                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2200                         order = sc.order = 0;
2201
2202                 goto loop_again;
2203         }
2204
2205         return sc.nr_reclaimed;
2206 }
2207
2208 /*
2209  * The background pageout daemon, started as a kernel thread
2210  * from the init process.
2211  *
2212  * This basically trickles out pages so that we have _some_
2213  * free memory available even if there is no other activity
2214  * that frees anything up. This is needed for things like routing
2215  * etc, where we otherwise might have all activity going on in
2216  * asynchronous contexts that cannot page things out.
2217  *
2218  * If there are applications that are active memory-allocators
2219  * (most normal use), this basically shouldn't matter.
2220  */
2221 static int kswapd(void *p)
2222 {
2223         unsigned long order;
2224         pg_data_t *pgdat = (pg_data_t*)p;
2225         struct task_struct *tsk = current;
2226         DEFINE_WAIT(wait);
2227         struct reclaim_state reclaim_state = {
2228                 .reclaimed_slab = 0,
2229         };
2230         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2231
2232         lockdep_set_current_reclaim_state(GFP_KERNEL);
2233
2234         if (!cpumask_empty(cpumask))
2235                 set_cpus_allowed_ptr(tsk, cpumask);
2236         current->reclaim_state = &reclaim_state;
2237
2238         /*
2239          * Tell the memory management that we're a "memory allocator",
2240          * and that if we need more memory we should get access to it
2241          * regardless (see "__alloc_pages()"). "kswapd" should
2242          * never get caught in the normal page freeing logic.
2243          *
2244          * (Kswapd normally doesn't need memory anyway, but sometimes
2245          * you need a small amount of memory in order to be able to
2246          * page out something else, and this flag essentially protects
2247          * us from recursively trying to free more memory as we're
2248          * trying to free the first piece of memory in the first place).
2249          */
2250         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2251         set_freezable();
2252
2253         order = 0;
2254         for ( ; ; ) {
2255                 unsigned long new_order;
2256                 int ret;
2257
2258                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2259                 new_order = pgdat->kswapd_max_order;
2260                 pgdat->kswapd_max_order = 0;
2261                 if (order < new_order) {
2262                         /*
2263                          * Don't sleep if someone wants a larger 'order'
2264                          * allocation
2265                          */
2266                         order = new_order;
2267                 } else {
2268                         if (!freezing(current) && !kthread_should_stop()) {
2269                                 long remaining = 0;
2270
2271                                 /* Try to sleep for a short interval */
2272                                 if (!sleeping_prematurely(pgdat, order, remaining)) {
2273                                         remaining = schedule_timeout(HZ/10);
2274                                         finish_wait(&pgdat->kswapd_wait, &wait);
2275                                         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2276                                 }
2277
2278                                 /*
2279                                  * After a short sleep, check if it was a
2280                                  * premature sleep. If not, then go fully
2281                                  * to sleep until explicitly woken up
2282                                  */
2283                                 if (!sleeping_prematurely(pgdat, order, remaining))
2284                                         schedule();
2285                                 else {
2286                                         if (remaining)
2287                                                 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2288                                         else
2289                                                 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2290                                 }
2291                         }
2292
2293                         order = pgdat->kswapd_max_order;
2294                 }
2295                 finish_wait(&pgdat->kswapd_wait, &wait);
2296
2297                 ret = try_to_freeze();
2298                 if (kthread_should_stop())
2299                         break;
2300
2301                 /*
2302                  * We can speed up thawing tasks if we don't call balance_pgdat
2303                  * after returning from the refrigerator
2304                  */
2305                 if (!ret)
2306                         balance_pgdat(pgdat, order);
2307         }
2308         return 0;
2309 }
2310
2311 /*
2312  * A zone is low on free memory, so wake its kswapd task to service it.
2313  */
2314 void wakeup_kswapd(struct zone *zone, int order)
2315 {
2316         pg_data_t *pgdat;
2317
2318         if (!populated_zone(zone))
2319                 return;
2320
2321         pgdat = zone->zone_pgdat;
2322         if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2323                 return;
2324         if (pgdat->kswapd_max_order < order)
2325                 pgdat->kswapd_max_order = order;
2326         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2327                 return;
2328         if (!waitqueue_active(&pgdat->kswapd_wait))
2329                 return;
2330         wake_up_interruptible(&pgdat->kswapd_wait);
2331 }
2332
2333 /*
2334  * The reclaimable count would be mostly accurate.
2335  * The less reclaimable pages may be
2336  * - mlocked pages, which will be moved to unevictable list when encountered
2337  * - mapped pages, which may require several travels to be reclaimed
2338  * - dirty pages, which is not "instantly" reclaimable
2339  */
2340 unsigned long global_reclaimable_pages(void)
2341 {
2342         int nr;
2343
2344         nr = global_page_state(NR_ACTIVE_FILE) +
2345              global_page_state(NR_INACTIVE_FILE);
2346
2347         if (nr_swap_pages > 0)
2348                 nr += global_page_state(NR_ACTIVE_ANON) +
2349                       global_page_state(NR_INACTIVE_ANON);
2350
2351         return nr;
2352 }
2353
2354 unsigned long zone_reclaimable_pages(struct zone *zone)
2355 {
2356         int nr;
2357
2358         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2359              zone_page_state(zone, NR_INACTIVE_FILE);
2360
2361         if (nr_swap_pages > 0)
2362                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2363                       zone_page_state(zone, NR_INACTIVE_ANON);
2364
2365         return nr;
2366 }
2367
2368 #ifdef CONFIG_HIBERNATION
2369 /*
2370  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2371  * freed pages.
2372  *
2373  * Rather than trying to age LRUs the aim is to preserve the overall
2374  * LRU order by reclaiming preferentially
2375  * inactive > active > active referenced > active mapped
2376  */
2377 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2378 {
2379         struct reclaim_state reclaim_state;
2380         struct scan_control sc = {
2381                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2382                 .may_swap = 1,
2383                 .may_unmap = 1,
2384                 .may_writepage = 1,
2385                 .nr_to_reclaim = nr_to_reclaim,
2386                 .hibernation_mode = 1,
2387                 .swappiness = vm_swappiness,
2388                 .order = 0,
2389                 .isolate_pages = isolate_pages_global,
2390         };
2391         struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2392         struct task_struct *p = current;
2393         unsigned long nr_reclaimed;
2394
2395         p->flags |= PF_MEMALLOC;
2396         lockdep_set_current_reclaim_state(sc.gfp_mask);
2397         reclaim_state.reclaimed_slab = 0;
2398         p->reclaim_state = &reclaim_state;
2399
2400         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2401
2402         p->reclaim_state = NULL;
2403         lockdep_clear_current_reclaim_state();
2404         p->flags &= ~PF_MEMALLOC;
2405
2406         return nr_reclaimed;
2407 }
2408 #endif /* CONFIG_HIBERNATION */
2409
2410 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2411    not required for correctness.  So if the last cpu in a node goes
2412    away, we get changed to run anywhere: as the first one comes back,
2413    restore their cpu bindings. */
2414 static int __devinit cpu_callback(struct notifier_block *nfb,
2415                                   unsigned long action, void *hcpu)
2416 {
2417         int nid;
2418
2419         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2420                 for_each_node_state(nid, N_HIGH_MEMORY) {
2421                         pg_data_t *pgdat = NODE_DATA(nid);
2422                         const struct cpumask *mask;
2423
2424                         mask = cpumask_of_node(pgdat->node_id);
2425
2426                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2427                                 /* One of our CPUs online: restore mask */
2428                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2429                 }
2430         }
2431         return NOTIFY_OK;
2432 }
2433
2434 /*
2435  * This kswapd start function will be called by init and node-hot-add.
2436  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2437  */
2438 int kswapd_run(int nid)
2439 {
2440         pg_data_t *pgdat = NODE_DATA(nid);
2441         int ret = 0;
2442
2443         if (pgdat->kswapd)
2444                 return 0;
2445
2446         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2447         if (IS_ERR(pgdat->kswapd)) {
2448                 /* failure at boot is fatal */
2449                 BUG_ON(system_state == SYSTEM_BOOTING);
2450                 printk("Failed to start kswapd on node %d\n",nid);
2451                 ret = -1;
2452         }
2453         return ret;
2454 }
2455
2456 /*
2457  * Called by memory hotplug when all memory in a node is offlined.
2458  */
2459 void kswapd_stop(int nid)
2460 {
2461         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2462
2463         if (kswapd)
2464                 kthread_stop(kswapd);
2465 }
2466
2467 static int __init kswapd_init(void)
2468 {
2469         int nid;
2470
2471         swap_setup();
2472         for_each_node_state(nid, N_HIGH_MEMORY)
2473                 kswapd_run(nid);
2474         hotcpu_notifier(cpu_callback, 0);
2475         return 0;
2476 }
2477
2478 module_init(kswapd_init)
2479
2480 #ifdef CONFIG_NUMA
2481 /*
2482  * Zone reclaim mode
2483  *
2484  * If non-zero call zone_reclaim when the number of free pages falls below
2485  * the watermarks.
2486  */
2487 int zone_reclaim_mode __read_mostly;
2488
2489 #define RECLAIM_OFF 0
2490 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2491 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2492 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2493
2494 /*
2495  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2496  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2497  * a zone.
2498  */
2499 #define ZONE_RECLAIM_PRIORITY 4
2500
2501 /*
2502  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2503  * occur.
2504  */
2505 int sysctl_min_unmapped_ratio = 1;
2506
2507 /*
2508  * If the number of slab pages in a zone grows beyond this percentage then
2509  * slab reclaim needs to occur.
2510  */
2511 int sysctl_min_slab_ratio = 5;
2512
2513 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2514 {
2515         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2516         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2517                 zone_page_state(zone, NR_ACTIVE_FILE);
2518
2519         /*
2520          * It's possible for there to be more file mapped pages than
2521          * accounted for by the pages on the file LRU lists because
2522          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2523          */
2524         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2525 }
2526
2527 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2528 static long zone_pagecache_reclaimable(struct zone *zone)
2529 {
2530         long nr_pagecache_reclaimable;
2531         long delta = 0;
2532
2533         /*
2534          * If RECLAIM_SWAP is set, then all file pages are considered
2535          * potentially reclaimable. Otherwise, we have to worry about
2536          * pages like swapcache and zone_unmapped_file_pages() provides
2537          * a better estimate
2538          */
2539         if (zone_reclaim_mode & RECLAIM_SWAP)
2540                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2541         else
2542                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2543
2544         /* If we can't clean pages, remove dirty pages from consideration */
2545         if (!(zone_reclaim_mode & RECLAIM_WRITE))
2546                 delta += zone_page_state(zone, NR_FILE_DIRTY);
2547
2548         /* Watch for any possible underflows due to delta */
2549         if (unlikely(delta > nr_pagecache_reclaimable))
2550                 delta = nr_pagecache_reclaimable;
2551
2552         return nr_pagecache_reclaimable - delta;
2553 }
2554
2555 /*
2556  * Try to free up some pages from this zone through reclaim.
2557  */
2558 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2559 {
2560         /* Minimum pages needed in order to stay on node */
2561         const unsigned long nr_pages = 1 << order;
2562         struct task_struct *p = current;
2563         struct reclaim_state reclaim_state;
2564         int priority;
2565         struct scan_control sc = {
2566                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2567                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2568                 .may_swap = 1,
2569                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2570                                        SWAP_CLUSTER_MAX),
2571                 .gfp_mask = gfp_mask,
2572                 .swappiness = vm_swappiness,
2573                 .order = order,
2574                 .isolate_pages = isolate_pages_global,
2575         };
2576         unsigned long slab_reclaimable;
2577
2578         disable_swap_token();
2579         cond_resched();
2580         /*
2581          * We need to be able to allocate from the reserves for RECLAIM_SWAP
2582          * and we also need to be able to write out pages for RECLAIM_WRITE
2583          * and RECLAIM_SWAP.
2584          */
2585         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2586         lockdep_set_current_reclaim_state(gfp_mask);
2587         reclaim_state.reclaimed_slab = 0;
2588         p->reclaim_state = &reclaim_state;
2589
2590         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2591                 /*
2592                  * Free memory by calling shrink zone with increasing
2593                  * priorities until we have enough memory freed.
2594                  */
2595                 priority = ZONE_RECLAIM_PRIORITY;
2596                 do {
2597                         note_zone_scanning_priority(zone, priority);
2598                         shrink_zone(priority, zone, &sc);
2599                         priority--;
2600                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2601         }
2602
2603         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2604         if (slab_reclaimable > zone->min_slab_pages) {
2605                 /*
2606                  * shrink_slab() does not currently allow us to determine how
2607                  * many pages were freed in this zone. So we take the current
2608                  * number of slab pages and shake the slab until it is reduced
2609                  * by the same nr_pages that we used for reclaiming unmapped
2610                  * pages.
2611                  *
2612                  * Note that shrink_slab will free memory on all zones and may
2613                  * take a long time.
2614                  */
2615                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2616                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2617                                 slab_reclaimable - nr_pages)
2618                         ;
2619
2620                 /*
2621                  * Update nr_reclaimed by the number of slab pages we
2622                  * reclaimed from this zone.
2623                  */
2624                 sc.nr_reclaimed += slab_reclaimable -
2625                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2626         }
2627
2628         p->reclaim_state = NULL;
2629         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2630         lockdep_clear_current_reclaim_state();
2631         return sc.nr_reclaimed >= nr_pages;
2632 }
2633
2634 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2635 {
2636         int node_id;
2637         int ret;
2638
2639         /*
2640          * Zone reclaim reclaims unmapped file backed pages and
2641          * slab pages if we are over the defined limits.
2642          *
2643          * A small portion of unmapped file backed pages is needed for
2644          * file I/O otherwise pages read by file I/O will be immediately
2645          * thrown out if the zone is overallocated. So we do not reclaim
2646          * if less than a specified percentage of the zone is used by
2647          * unmapped file backed pages.
2648          */
2649         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2650             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2651                 return ZONE_RECLAIM_FULL;
2652
2653         if (zone->all_unreclaimable)
2654                 return ZONE_RECLAIM_FULL;
2655
2656         /*
2657          * Do not scan if the allocation should not be delayed.
2658          */
2659         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2660                 return ZONE_RECLAIM_NOSCAN;
2661
2662         /*
2663          * Only run zone reclaim on the local zone or on zones that do not
2664          * have associated processors. This will favor the local processor
2665          * over remote processors and spread off node memory allocations
2666          * as wide as possible.
2667          */
2668         node_id = zone_to_nid(zone);
2669         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2670                 return ZONE_RECLAIM_NOSCAN;
2671
2672         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2673                 return ZONE_RECLAIM_NOSCAN;
2674
2675         ret = __zone_reclaim(zone, gfp_mask, order);
2676         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2677
2678         if (!ret)
2679                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2680
2681         return ret;
2682 }
2683 #endif
2684
2685 /*
2686  * page_evictable - test whether a page is evictable
2687  * @page: the page to test
2688  * @vma: the VMA in which the page is or will be mapped, may be NULL
2689  *
2690  * Test whether page is evictable--i.e., should be placed on active/inactive
2691  * lists vs unevictable list.  The vma argument is !NULL when called from the
2692  * fault path to determine how to instantate a new page.
2693  *
2694  * Reasons page might not be evictable:
2695  * (1) page's mapping marked unevictable
2696  * (2) page is part of an mlocked VMA
2697  *
2698  */
2699 int page_evictable(struct page *page, struct vm_area_struct *vma)
2700 {
2701
2702         if (mapping_unevictable(page_mapping(page)))
2703                 return 0;
2704
2705         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2706                 return 0;
2707
2708         return 1;
2709 }
2710
2711 /**
2712  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2713  * @page: page to check evictability and move to appropriate lru list
2714  * @zone: zone page is in
2715  *
2716  * Checks a page for evictability and moves the page to the appropriate
2717  * zone lru list.
2718  *
2719  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2720  * have PageUnevictable set.
2721  */
2722 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2723 {
2724         VM_BUG_ON(PageActive(page));
2725
2726 retry:
2727         ClearPageUnevictable(page);
2728         if (page_evictable(page, NULL)) {
2729                 enum lru_list l = page_lru_base_type(page);
2730
2731                 __dec_zone_state(zone, NR_UNEVICTABLE);
2732                 list_move(&page->lru, &zone->lru[l].list);
2733                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2734                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2735                 __count_vm_event(UNEVICTABLE_PGRESCUED);
2736         } else {
2737                 /*
2738                  * rotate unevictable list
2739                  */
2740                 SetPageUnevictable(page);
2741                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2742                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2743                 if (page_evictable(page, NULL))
2744                         goto retry;
2745         }
2746 }
2747
2748 /**
2749  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2750  * @mapping: struct address_space to scan for evictable pages
2751  *
2752  * Scan all pages in mapping.  Check unevictable pages for
2753  * evictability and move them to the appropriate zone lru list.
2754  */
2755 void scan_mapping_unevictable_pages(struct address_space *mapping)
2756 {
2757         pgoff_t next = 0;
2758         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2759                          PAGE_CACHE_SHIFT;
2760         struct zone *zone;
2761         struct pagevec pvec;
2762
2763         if (mapping->nrpages == 0)
2764                 return;
2765
2766         pagevec_init(&pvec, 0);
2767         while (next < end &&
2768                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2769                 int i;
2770                 int pg_scanned = 0;
2771
2772                 zone = NULL;
2773
2774                 for (i = 0; i < pagevec_count(&pvec); i++) {
2775                         struct page *page = pvec.pages[i];
2776                         pgoff_t page_index = page->index;
2777                         struct zone *pagezone = page_zone(page);
2778
2779                         pg_scanned++;
2780                         if (page_index > next)
2781                                 next = page_index;
2782                         next++;
2783
2784                         if (pagezone != zone) {
2785                                 if (zone)
2786                                         spin_unlock_irq(&zone->lru_lock);
2787                                 zone = pagezone;
2788                                 spin_lock_irq(&zone->lru_lock);
2789                         }
2790
2791                         if (PageLRU(page) && PageUnevictable(page))
2792                                 check_move_unevictable_page(page, zone);
2793                 }
2794                 if (zone)
2795                         spin_unlock_irq(&zone->lru_lock);
2796                 pagevec_release(&pvec);
2797
2798                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2799         }
2800
2801 }
2802
2803 /**
2804  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2805  * @zone - zone of which to scan the unevictable list
2806  *
2807  * Scan @zone's unevictable LRU lists to check for pages that have become
2808  * evictable.  Move those that have to @zone's inactive list where they
2809  * become candidates for reclaim, unless shrink_inactive_zone() decides
2810  * to reactivate them.  Pages that are still unevictable are rotated
2811  * back onto @zone's unevictable list.
2812  */
2813 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2814 static void scan_zone_unevictable_pages(struct zone *zone)
2815 {
2816         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2817         unsigned long scan;
2818         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2819
2820         while (nr_to_scan > 0) {
2821                 unsigned long batch_size = min(nr_to_scan,
2822                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
2823
2824                 spin_lock_irq(&zone->lru_lock);
2825                 for (scan = 0;  scan < batch_size; scan++) {
2826                         struct page *page = lru_to_page(l_unevictable);
2827
2828                         if (!trylock_page(page))
2829                                 continue;
2830
2831                         prefetchw_prev_lru_page(page, l_unevictable, flags);
2832
2833                         if (likely(PageLRU(page) && PageUnevictable(page)))
2834                                 check_move_unevictable_page(page, zone);
2835
2836                         unlock_page(page);
2837                 }
2838                 spin_unlock_irq(&zone->lru_lock);
2839
2840                 nr_to_scan -= batch_size;
2841         }
2842 }
2843
2844
2845 /**
2846  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2847  *
2848  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2849  * pages that have become evictable.  Move those back to the zones'
2850  * inactive list where they become candidates for reclaim.
2851  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2852  * and we add swap to the system.  As such, it runs in the context of a task
2853  * that has possibly/probably made some previously unevictable pages
2854  * evictable.
2855  */
2856 static void scan_all_zones_unevictable_pages(void)
2857 {
2858         struct zone *zone;
2859
2860         for_each_zone(zone) {
2861                 scan_zone_unevictable_pages(zone);
2862         }
2863 }
2864
2865 /*
2866  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2867  * all nodes' unevictable lists for evictable pages
2868  */
2869 unsigned long scan_unevictable_pages;
2870
2871 int scan_unevictable_handler(struct ctl_table *table, int write,
2872                            void __user *buffer,
2873                            size_t *length, loff_t *ppos)
2874 {
2875         proc_doulongvec_minmax(table, write, buffer, length, ppos);
2876
2877         if (write && *(unsigned long *)table->data)
2878                 scan_all_zones_unevictable_pages();
2879
2880         scan_unevictable_pages = 0;
2881         return 0;
2882 }
2883
2884 /*
2885  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2886  * a specified node's per zone unevictable lists for evictable pages.
2887  */
2888
2889 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2890                                           struct sysdev_attribute *attr,
2891                                           char *buf)
2892 {
2893         return sprintf(buf, "0\n");     /* always zero; should fit... */
2894 }
2895
2896 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2897                                            struct sysdev_attribute *attr,
2898                                         const char *buf, size_t count)
2899 {
2900         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2901         struct zone *zone;
2902         unsigned long res;
2903         unsigned long req = strict_strtoul(buf, 10, &res);
2904
2905         if (!req)
2906                 return 1;       /* zero is no-op */
2907
2908         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2909                 if (!populated_zone(zone))
2910                         continue;
2911                 scan_zone_unevictable_pages(zone);
2912         }
2913         return 1;
2914 }
2915
2916
2917 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2918                         read_scan_unevictable_node,
2919                         write_scan_unevictable_node);
2920
2921 int scan_unevictable_register_node(struct node *node)
2922 {
2923         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2924 }
2925
2926 void scan_unevictable_unregister_node(struct node *node)
2927 {
2928         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2929 }
2930