shmem_getpage return page locked
[safe/jmp/linux-2.6] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC     0x01021994
59
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN     VM_READ
71 #define SHMEM_TRUNCATE   VM_WRITE
72
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT    64
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81         SGP_READ,       /* don't exceed i_size, don't allocate page */
82         SGP_CACHE,      /* don't exceed i_size, may allocate page */
83         SGP_WRITE,      /* may exceed i_size, may allocate page */
84 };
85
86 static int shmem_getpage(struct inode *inode, unsigned long idx,
87                          struct page **pagep, enum sgp_type sgp, int *type);
88
89 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
90 {
91         /*
92          * The above definition of ENTRIES_PER_PAGE, and the use of
93          * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94          * might be reconsidered if it ever diverges from PAGE_SIZE.
95          *
96          * Mobility flags are masked out as swap vectors cannot move
97          */
98         return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
99                                 PAGE_CACHE_SHIFT-PAGE_SHIFT);
100 }
101
102 static inline void shmem_dir_free(struct page *page)
103 {
104         __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
105 }
106
107 static struct page **shmem_dir_map(struct page *page)
108 {
109         return (struct page **)kmap_atomic(page, KM_USER0);
110 }
111
112 static inline void shmem_dir_unmap(struct page **dir)
113 {
114         kunmap_atomic(dir, KM_USER0);
115 }
116
117 static swp_entry_t *shmem_swp_map(struct page *page)
118 {
119         return (swp_entry_t *)kmap_atomic(page, KM_USER1);
120 }
121
122 static inline void shmem_swp_balance_unmap(void)
123 {
124         /*
125          * When passing a pointer to an i_direct entry, to code which
126          * also handles indirect entries and so will shmem_swp_unmap,
127          * we must arrange for the preempt count to remain in balance.
128          * What kmap_atomic of a lowmem page does depends on config
129          * and architecture, so pretend to kmap_atomic some lowmem page.
130          */
131         (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
132 }
133
134 static inline void shmem_swp_unmap(swp_entry_t *entry)
135 {
136         kunmap_atomic(entry, KM_USER1);
137 }
138
139 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140 {
141         return sb->s_fs_info;
142 }
143
144 /*
145  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146  * for shared memory and for shared anonymous (/dev/zero) mappings
147  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148  * consistent with the pre-accounting of private mappings ...
149  */
150 static inline int shmem_acct_size(unsigned long flags, loff_t size)
151 {
152         return (flags & VM_ACCOUNT)?
153                 security_vm_enough_memory(VM_ACCT(size)): 0;
154 }
155
156 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157 {
158         if (flags & VM_ACCOUNT)
159                 vm_unacct_memory(VM_ACCT(size));
160 }
161
162 /*
163  * ... whereas tmpfs objects are accounted incrementally as
164  * pages are allocated, in order to allow huge sparse files.
165  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
166  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
167  */
168 static inline int shmem_acct_block(unsigned long flags)
169 {
170         return (flags & VM_ACCOUNT)?
171                 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
172 }
173
174 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
175 {
176         if (!(flags & VM_ACCOUNT))
177                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
178 }
179
180 static const struct super_operations shmem_ops;
181 static const struct address_space_operations shmem_aops;
182 static const struct file_operations shmem_file_operations;
183 static const struct inode_operations shmem_inode_operations;
184 static const struct inode_operations shmem_dir_inode_operations;
185 static const struct inode_operations shmem_special_inode_operations;
186 static struct vm_operations_struct shmem_vm_ops;
187
188 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
189         .ra_pages       = 0,    /* No readahead */
190         .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
191         .unplug_io_fn   = default_unplug_io_fn,
192 };
193
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_SPINLOCK(shmem_swaplist_lock);
196
197 static void shmem_free_blocks(struct inode *inode, long pages)
198 {
199         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200         if (sbinfo->max_blocks) {
201                 spin_lock(&sbinfo->stat_lock);
202                 sbinfo->free_blocks += pages;
203                 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
204                 spin_unlock(&sbinfo->stat_lock);
205         }
206 }
207
208 /*
209  * shmem_recalc_inode - recalculate the size of an inode
210  *
211  * @inode: inode to recalc
212  *
213  * We have to calculate the free blocks since the mm can drop
214  * undirtied hole pages behind our back.
215  *
216  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
217  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
218  *
219  * It has to be called with the spinlock held.
220  */
221 static void shmem_recalc_inode(struct inode *inode)
222 {
223         struct shmem_inode_info *info = SHMEM_I(inode);
224         long freed;
225
226         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
227         if (freed > 0) {
228                 info->alloced -= freed;
229                 shmem_unacct_blocks(info->flags, freed);
230                 shmem_free_blocks(inode, freed);
231         }
232 }
233
234 /*
235  * shmem_swp_entry - find the swap vector position in the info structure
236  *
237  * @info:  info structure for the inode
238  * @index: index of the page to find
239  * @page:  optional page to add to the structure. Has to be preset to
240  *         all zeros
241  *
242  * If there is no space allocated yet it will return NULL when
243  * page is NULL, else it will use the page for the needed block,
244  * setting it to NULL on return to indicate that it has been used.
245  *
246  * The swap vector is organized the following way:
247  *
248  * There are SHMEM_NR_DIRECT entries directly stored in the
249  * shmem_inode_info structure. So small files do not need an addional
250  * allocation.
251  *
252  * For pages with index > SHMEM_NR_DIRECT there is the pointer
253  * i_indirect which points to a page which holds in the first half
254  * doubly indirect blocks, in the second half triple indirect blocks:
255  *
256  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
257  * following layout (for SHMEM_NR_DIRECT == 16):
258  *
259  * i_indirect -> dir --> 16-19
260  *            |      +-> 20-23
261  *            |
262  *            +-->dir2 --> 24-27
263  *            |        +-> 28-31
264  *            |        +-> 32-35
265  *            |        +-> 36-39
266  *            |
267  *            +-->dir3 --> 40-43
268  *                     +-> 44-47
269  *                     +-> 48-51
270  *                     +-> 52-55
271  */
272 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
273 {
274         unsigned long offset;
275         struct page **dir;
276         struct page *subdir;
277
278         if (index < SHMEM_NR_DIRECT) {
279                 shmem_swp_balance_unmap();
280                 return info->i_direct+index;
281         }
282         if (!info->i_indirect) {
283                 if (page) {
284                         info->i_indirect = *page;
285                         *page = NULL;
286                 }
287                 return NULL;                    /* need another page */
288         }
289
290         index -= SHMEM_NR_DIRECT;
291         offset = index % ENTRIES_PER_PAGE;
292         index /= ENTRIES_PER_PAGE;
293         dir = shmem_dir_map(info->i_indirect);
294
295         if (index >= ENTRIES_PER_PAGE/2) {
296                 index -= ENTRIES_PER_PAGE/2;
297                 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
298                 index %= ENTRIES_PER_PAGE;
299                 subdir = *dir;
300                 if (!subdir) {
301                         if (page) {
302                                 *dir = *page;
303                                 *page = NULL;
304                         }
305                         shmem_dir_unmap(dir);
306                         return NULL;            /* need another page */
307                 }
308                 shmem_dir_unmap(dir);
309                 dir = shmem_dir_map(subdir);
310         }
311
312         dir += index;
313         subdir = *dir;
314         if (!subdir) {
315                 if (!page || !(subdir = *page)) {
316                         shmem_dir_unmap(dir);
317                         return NULL;            /* need a page */
318                 }
319                 *dir = subdir;
320                 *page = NULL;
321         }
322         shmem_dir_unmap(dir);
323         return shmem_swp_map(subdir) + offset;
324 }
325
326 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
327 {
328         long incdec = value? 1: -1;
329
330         entry->val = value;
331         info->swapped += incdec;
332         if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
333                 struct page *page = kmap_atomic_to_page(entry);
334                 set_page_private(page, page_private(page) + incdec);
335         }
336 }
337
338 /*
339  * shmem_swp_alloc - get the position of the swap entry for the page.
340  *                   If it does not exist allocate the entry.
341  *
342  * @info:       info structure for the inode
343  * @index:      index of the page to find
344  * @sgp:        check and recheck i_size? skip allocation?
345  */
346 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
347 {
348         struct inode *inode = &info->vfs_inode;
349         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
350         struct page *page = NULL;
351         swp_entry_t *entry;
352
353         if (sgp != SGP_WRITE &&
354             ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
355                 return ERR_PTR(-EINVAL);
356
357         while (!(entry = shmem_swp_entry(info, index, &page))) {
358                 if (sgp == SGP_READ)
359                         return shmem_swp_map(ZERO_PAGE(0));
360                 /*
361                  * Test free_blocks against 1 not 0, since we have 1 data
362                  * page (and perhaps indirect index pages) yet to allocate:
363                  * a waste to allocate index if we cannot allocate data.
364                  */
365                 if (sbinfo->max_blocks) {
366                         spin_lock(&sbinfo->stat_lock);
367                         if (sbinfo->free_blocks <= 1) {
368                                 spin_unlock(&sbinfo->stat_lock);
369                                 return ERR_PTR(-ENOSPC);
370                         }
371                         sbinfo->free_blocks--;
372                         inode->i_blocks += BLOCKS_PER_PAGE;
373                         spin_unlock(&sbinfo->stat_lock);
374                 }
375
376                 spin_unlock(&info->lock);
377                 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
378                 if (page)
379                         set_page_private(page, 0);
380                 spin_lock(&info->lock);
381
382                 if (!page) {
383                         shmem_free_blocks(inode, 1);
384                         return ERR_PTR(-ENOMEM);
385                 }
386                 if (sgp != SGP_WRITE &&
387                     ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
388                         entry = ERR_PTR(-EINVAL);
389                         break;
390                 }
391                 if (info->next_index <= index)
392                         info->next_index = index + 1;
393         }
394         if (page) {
395                 /* another task gave its page, or truncated the file */
396                 shmem_free_blocks(inode, 1);
397                 shmem_dir_free(page);
398         }
399         if (info->next_index <= index && !IS_ERR(entry))
400                 info->next_index = index + 1;
401         return entry;
402 }
403
404 /*
405  * shmem_free_swp - free some swap entries in a directory
406  *
407  * @dir:        pointer to the directory
408  * @edir:       pointer after last entry of the directory
409  * @punch_lock: pointer to spinlock when needed for the holepunch case
410  */
411 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
412                                                 spinlock_t *punch_lock)
413 {
414         spinlock_t *punch_unlock = NULL;
415         swp_entry_t *ptr;
416         int freed = 0;
417
418         for (ptr = dir; ptr < edir; ptr++) {
419                 if (ptr->val) {
420                         if (unlikely(punch_lock)) {
421                                 punch_unlock = punch_lock;
422                                 punch_lock = NULL;
423                                 spin_lock(punch_unlock);
424                                 if (!ptr->val)
425                                         continue;
426                         }
427                         free_swap_and_cache(*ptr);
428                         *ptr = (swp_entry_t){0};
429                         freed++;
430                 }
431         }
432         if (punch_unlock)
433                 spin_unlock(punch_unlock);
434         return freed;
435 }
436
437 static int shmem_map_and_free_swp(struct page *subdir, int offset,
438                 int limit, struct page ***dir, spinlock_t *punch_lock)
439 {
440         swp_entry_t *ptr;
441         int freed = 0;
442
443         ptr = shmem_swp_map(subdir);
444         for (; offset < limit; offset += LATENCY_LIMIT) {
445                 int size = limit - offset;
446                 if (size > LATENCY_LIMIT)
447                         size = LATENCY_LIMIT;
448                 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
449                                                         punch_lock);
450                 if (need_resched()) {
451                         shmem_swp_unmap(ptr);
452                         if (*dir) {
453                                 shmem_dir_unmap(*dir);
454                                 *dir = NULL;
455                         }
456                         cond_resched();
457                         ptr = shmem_swp_map(subdir);
458                 }
459         }
460         shmem_swp_unmap(ptr);
461         return freed;
462 }
463
464 static void shmem_free_pages(struct list_head *next)
465 {
466         struct page *page;
467         int freed = 0;
468
469         do {
470                 page = container_of(next, struct page, lru);
471                 next = next->next;
472                 shmem_dir_free(page);
473                 freed++;
474                 if (freed >= LATENCY_LIMIT) {
475                         cond_resched();
476                         freed = 0;
477                 }
478         } while (next);
479 }
480
481 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
482 {
483         struct shmem_inode_info *info = SHMEM_I(inode);
484         unsigned long idx;
485         unsigned long size;
486         unsigned long limit;
487         unsigned long stage;
488         unsigned long diroff;
489         struct page **dir;
490         struct page *topdir;
491         struct page *middir;
492         struct page *subdir;
493         swp_entry_t *ptr;
494         LIST_HEAD(pages_to_free);
495         long nr_pages_to_free = 0;
496         long nr_swaps_freed = 0;
497         int offset;
498         int freed;
499         int punch_hole;
500         spinlock_t *needs_lock;
501         spinlock_t *punch_lock;
502         unsigned long upper_limit;
503
504         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
505         idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
506         if (idx >= info->next_index)
507                 return;
508
509         spin_lock(&info->lock);
510         info->flags |= SHMEM_TRUNCATE;
511         if (likely(end == (loff_t) -1)) {
512                 limit = info->next_index;
513                 upper_limit = SHMEM_MAX_INDEX;
514                 info->next_index = idx;
515                 needs_lock = NULL;
516                 punch_hole = 0;
517         } else {
518                 if (end + 1 >= inode->i_size) { /* we may free a little more */
519                         limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
520                                                         PAGE_CACHE_SHIFT;
521                         upper_limit = SHMEM_MAX_INDEX;
522                 } else {
523                         limit = (end + 1) >> PAGE_CACHE_SHIFT;
524                         upper_limit = limit;
525                 }
526                 needs_lock = &info->lock;
527                 punch_hole = 1;
528         }
529
530         topdir = info->i_indirect;
531         if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
532                 info->i_indirect = NULL;
533                 nr_pages_to_free++;
534                 list_add(&topdir->lru, &pages_to_free);
535         }
536         spin_unlock(&info->lock);
537
538         if (info->swapped && idx < SHMEM_NR_DIRECT) {
539                 ptr = info->i_direct;
540                 size = limit;
541                 if (size > SHMEM_NR_DIRECT)
542                         size = SHMEM_NR_DIRECT;
543                 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
544         }
545
546         /*
547          * If there are no indirect blocks or we are punching a hole
548          * below indirect blocks, nothing to be done.
549          */
550         if (!topdir || limit <= SHMEM_NR_DIRECT)
551                 goto done2;
552
553         /*
554          * The truncation case has already dropped info->lock, and we're safe
555          * because i_size and next_index have already been lowered, preventing
556          * access beyond.  But in the punch_hole case, we still need to take
557          * the lock when updating the swap directory, because there might be
558          * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
559          * shmem_writepage.  However, whenever we find we can remove a whole
560          * directory page (not at the misaligned start or end of the range),
561          * we first NULLify its pointer in the level above, and then have no
562          * need to take the lock when updating its contents: needs_lock and
563          * punch_lock (either pointing to info->lock or NULL) manage this.
564          */
565
566         upper_limit -= SHMEM_NR_DIRECT;
567         limit -= SHMEM_NR_DIRECT;
568         idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
569         offset = idx % ENTRIES_PER_PAGE;
570         idx -= offset;
571
572         dir = shmem_dir_map(topdir);
573         stage = ENTRIES_PER_PAGEPAGE/2;
574         if (idx < ENTRIES_PER_PAGEPAGE/2) {
575                 middir = topdir;
576                 diroff = idx/ENTRIES_PER_PAGE;
577         } else {
578                 dir += ENTRIES_PER_PAGE/2;
579                 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
580                 while (stage <= idx)
581                         stage += ENTRIES_PER_PAGEPAGE;
582                 middir = *dir;
583                 if (*dir) {
584                         diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
585                                 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
586                         if (!diroff && !offset && upper_limit >= stage) {
587                                 if (needs_lock) {
588                                         spin_lock(needs_lock);
589                                         *dir = NULL;
590                                         spin_unlock(needs_lock);
591                                         needs_lock = NULL;
592                                 } else
593                                         *dir = NULL;
594                                 nr_pages_to_free++;
595                                 list_add(&middir->lru, &pages_to_free);
596                         }
597                         shmem_dir_unmap(dir);
598                         dir = shmem_dir_map(middir);
599                 } else {
600                         diroff = 0;
601                         offset = 0;
602                         idx = stage;
603                 }
604         }
605
606         for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
607                 if (unlikely(idx == stage)) {
608                         shmem_dir_unmap(dir);
609                         dir = shmem_dir_map(topdir) +
610                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
611                         while (!*dir) {
612                                 dir++;
613                                 idx += ENTRIES_PER_PAGEPAGE;
614                                 if (idx >= limit)
615                                         goto done1;
616                         }
617                         stage = idx + ENTRIES_PER_PAGEPAGE;
618                         middir = *dir;
619                         if (punch_hole)
620                                 needs_lock = &info->lock;
621                         if (upper_limit >= stage) {
622                                 if (needs_lock) {
623                                         spin_lock(needs_lock);
624                                         *dir = NULL;
625                                         spin_unlock(needs_lock);
626                                         needs_lock = NULL;
627                                 } else
628                                         *dir = NULL;
629                                 nr_pages_to_free++;
630                                 list_add(&middir->lru, &pages_to_free);
631                         }
632                         shmem_dir_unmap(dir);
633                         cond_resched();
634                         dir = shmem_dir_map(middir);
635                         diroff = 0;
636                 }
637                 punch_lock = needs_lock;
638                 subdir = dir[diroff];
639                 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
640                         if (needs_lock) {
641                                 spin_lock(needs_lock);
642                                 dir[diroff] = NULL;
643                                 spin_unlock(needs_lock);
644                                 punch_lock = NULL;
645                         } else
646                                 dir[diroff] = NULL;
647                         nr_pages_to_free++;
648                         list_add(&subdir->lru, &pages_to_free);
649                 }
650                 if (subdir && page_private(subdir) /* has swap entries */) {
651                         size = limit - idx;
652                         if (size > ENTRIES_PER_PAGE)
653                                 size = ENTRIES_PER_PAGE;
654                         freed = shmem_map_and_free_swp(subdir,
655                                         offset, size, &dir, punch_lock);
656                         if (!dir)
657                                 dir = shmem_dir_map(middir);
658                         nr_swaps_freed += freed;
659                         if (offset || punch_lock) {
660                                 spin_lock(&info->lock);
661                                 set_page_private(subdir,
662                                         page_private(subdir) - freed);
663                                 spin_unlock(&info->lock);
664                         } else
665                                 BUG_ON(page_private(subdir) != freed);
666                 }
667                 offset = 0;
668         }
669 done1:
670         shmem_dir_unmap(dir);
671 done2:
672         if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
673                 /*
674                  * Call truncate_inode_pages again: racing shmem_unuse_inode
675                  * may have swizzled a page in from swap since vmtruncate or
676                  * generic_delete_inode did it, before we lowered next_index.
677                  * Also, though shmem_getpage checks i_size before adding to
678                  * cache, no recheck after: so fix the narrow window there too.
679                  *
680                  * Recalling truncate_inode_pages_range and unmap_mapping_range
681                  * every time for punch_hole (which never got a chance to clear
682                  * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
683                  * yet hardly ever necessary: try to optimize them out later.
684                  */
685                 truncate_inode_pages_range(inode->i_mapping, start, end);
686                 if (punch_hole)
687                         unmap_mapping_range(inode->i_mapping, start,
688                                                         end - start, 1);
689         }
690
691         spin_lock(&info->lock);
692         info->flags &= ~SHMEM_TRUNCATE;
693         info->swapped -= nr_swaps_freed;
694         if (nr_pages_to_free)
695                 shmem_free_blocks(inode, nr_pages_to_free);
696         shmem_recalc_inode(inode);
697         spin_unlock(&info->lock);
698
699         /*
700          * Empty swap vector directory pages to be freed?
701          */
702         if (!list_empty(&pages_to_free)) {
703                 pages_to_free.prev->next = NULL;
704                 shmem_free_pages(pages_to_free.next);
705         }
706 }
707
708 static void shmem_truncate(struct inode *inode)
709 {
710         shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
711 }
712
713 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
714 {
715         struct inode *inode = dentry->d_inode;
716         struct page *page = NULL;
717         int error;
718
719         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
720                 if (attr->ia_size < inode->i_size) {
721                         /*
722                          * If truncating down to a partial page, then
723                          * if that page is already allocated, hold it
724                          * in memory until the truncation is over, so
725                          * truncate_partial_page cannnot miss it were
726                          * it assigned to swap.
727                          */
728                         if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
729                                 (void) shmem_getpage(inode,
730                                         attr->ia_size>>PAGE_CACHE_SHIFT,
731                                                 &page, SGP_READ, NULL);
732                                 if (page)
733                                         unlock_page(page);
734                         }
735                         /*
736                          * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737                          * detect if any pages might have been added to cache
738                          * after truncate_inode_pages.  But we needn't bother
739                          * if it's being fully truncated to zero-length: the
740                          * nrpages check is efficient enough in that case.
741                          */
742                         if (attr->ia_size) {
743                                 struct shmem_inode_info *info = SHMEM_I(inode);
744                                 spin_lock(&info->lock);
745                                 info->flags &= ~SHMEM_PAGEIN;
746                                 spin_unlock(&info->lock);
747                         }
748                 }
749         }
750
751         error = inode_change_ok(inode, attr);
752         if (!error)
753                 error = inode_setattr(inode, attr);
754 #ifdef CONFIG_TMPFS_POSIX_ACL
755         if (!error && (attr->ia_valid & ATTR_MODE))
756                 error = generic_acl_chmod(inode, &shmem_acl_ops);
757 #endif
758         if (page)
759                 page_cache_release(page);
760         return error;
761 }
762
763 static void shmem_delete_inode(struct inode *inode)
764 {
765         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766         struct shmem_inode_info *info = SHMEM_I(inode);
767
768         if (inode->i_op->truncate == shmem_truncate) {
769                 truncate_inode_pages(inode->i_mapping, 0);
770                 shmem_unacct_size(info->flags, inode->i_size);
771                 inode->i_size = 0;
772                 shmem_truncate(inode);
773                 if (!list_empty(&info->swaplist)) {
774                         spin_lock(&shmem_swaplist_lock);
775                         list_del_init(&info->swaplist);
776                         spin_unlock(&shmem_swaplist_lock);
777                 }
778         }
779         BUG_ON(inode->i_blocks);
780         if (sbinfo->max_inodes) {
781                 spin_lock(&sbinfo->stat_lock);
782                 sbinfo->free_inodes++;
783                 spin_unlock(&sbinfo->stat_lock);
784         }
785         clear_inode(inode);
786 }
787
788 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
789 {
790         swp_entry_t *ptr;
791
792         for (ptr = dir; ptr < edir; ptr++) {
793                 if (ptr->val == entry.val)
794                         return ptr - dir;
795         }
796         return -1;
797 }
798
799 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
800 {
801         struct inode *inode;
802         unsigned long idx;
803         unsigned long size;
804         unsigned long limit;
805         unsigned long stage;
806         struct page **dir;
807         struct page *subdir;
808         swp_entry_t *ptr;
809         int offset;
810
811         idx = 0;
812         ptr = info->i_direct;
813         spin_lock(&info->lock);
814         limit = info->next_index;
815         size = limit;
816         if (size > SHMEM_NR_DIRECT)
817                 size = SHMEM_NR_DIRECT;
818         offset = shmem_find_swp(entry, ptr, ptr+size);
819         if (offset >= 0) {
820                 shmem_swp_balance_unmap();
821                 goto found;
822         }
823         if (!info->i_indirect)
824                 goto lost2;
825
826         dir = shmem_dir_map(info->i_indirect);
827         stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
828
829         for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830                 if (unlikely(idx == stage)) {
831                         shmem_dir_unmap(dir-1);
832                         dir = shmem_dir_map(info->i_indirect) +
833                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834                         while (!*dir) {
835                                 dir++;
836                                 idx += ENTRIES_PER_PAGEPAGE;
837                                 if (idx >= limit)
838                                         goto lost1;
839                         }
840                         stage = idx + ENTRIES_PER_PAGEPAGE;
841                         subdir = *dir;
842                         shmem_dir_unmap(dir);
843                         dir = shmem_dir_map(subdir);
844                 }
845                 subdir = *dir;
846                 if (subdir && page_private(subdir)) {
847                         ptr = shmem_swp_map(subdir);
848                         size = limit - idx;
849                         if (size > ENTRIES_PER_PAGE)
850                                 size = ENTRIES_PER_PAGE;
851                         offset = shmem_find_swp(entry, ptr, ptr+size);
852                         if (offset >= 0) {
853                                 shmem_dir_unmap(dir);
854                                 goto found;
855                         }
856                         shmem_swp_unmap(ptr);
857                 }
858         }
859 lost1:
860         shmem_dir_unmap(dir-1);
861 lost2:
862         spin_unlock(&info->lock);
863         return 0;
864 found:
865         idx += offset;
866         inode = &info->vfs_inode;
867         if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868                 info->flags |= SHMEM_PAGEIN;
869                 shmem_swp_set(info, ptr + offset, 0);
870         }
871         shmem_swp_unmap(ptr);
872         spin_unlock(&info->lock);
873         /*
874          * Decrement swap count even when the entry is left behind:
875          * try_to_unuse will skip over mms, then reincrement count.
876          */
877         swap_free(entry);
878         return 1;
879 }
880
881 /*
882  * shmem_unuse() search for an eventually swapped out shmem page.
883  */
884 int shmem_unuse(swp_entry_t entry, struct page *page)
885 {
886         struct list_head *p, *next;
887         struct shmem_inode_info *info;
888         int found = 0;
889
890         spin_lock(&shmem_swaplist_lock);
891         list_for_each_safe(p, next, &shmem_swaplist) {
892                 info = list_entry(p, struct shmem_inode_info, swaplist);
893                 if (!info->swapped)
894                         list_del_init(&info->swaplist);
895                 else if (shmem_unuse_inode(info, entry, page)) {
896                         /* move head to start search for next from here */
897                         list_move_tail(&shmem_swaplist, &info->swaplist);
898                         found = 1;
899                         break;
900                 }
901         }
902         spin_unlock(&shmem_swaplist_lock);
903         return found;
904 }
905
906 /*
907  * Move the page from the page cache to the swap cache.
908  */
909 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
910 {
911         struct shmem_inode_info *info;
912         swp_entry_t *entry, swap;
913         struct address_space *mapping;
914         unsigned long index;
915         struct inode *inode;
916
917         BUG_ON(!PageLocked(page));
918         /*
919          * shmem_backing_dev_info's capabilities prevent regular writeback or
920          * sync from ever calling shmem_writepage; but a stacking filesystem
921          * may use the ->writepage of its underlying filesystem, in which case
922          * we want to do nothing when that underlying filesystem is tmpfs
923          * (writing out to swap is useful as a response to memory pressure, but
924          * of no use to stabilize the data) - just redirty the page, unlock it
925          * and claim success in this case.  AOP_WRITEPAGE_ACTIVATE, and the
926          * page_mapped check below, must be avoided unless we're in reclaim.
927          */
928         if (!wbc->for_reclaim) {
929                 set_page_dirty(page);
930                 unlock_page(page);
931                 return 0;
932         }
933         BUG_ON(page_mapped(page));
934
935         mapping = page->mapping;
936         index = page->index;
937         inode = mapping->host;
938         info = SHMEM_I(inode);
939         if (info->flags & VM_LOCKED)
940                 goto redirty;
941         swap = get_swap_page();
942         if (!swap.val)
943                 goto redirty;
944
945         spin_lock(&info->lock);
946         shmem_recalc_inode(inode);
947         if (index >= info->next_index) {
948                 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
949                 goto unlock;
950         }
951         entry = shmem_swp_entry(info, index, NULL);
952         BUG_ON(!entry);
953         BUG_ON(entry->val);
954
955         if (move_to_swap_cache(page, swap) == 0) {
956                 shmem_swp_set(info, entry, swap.val);
957                 shmem_swp_unmap(entry);
958                 spin_unlock(&info->lock);
959                 if (list_empty(&info->swaplist)) {
960                         spin_lock(&shmem_swaplist_lock);
961                         /* move instead of add in case we're racing */
962                         list_move_tail(&info->swaplist, &shmem_swaplist);
963                         spin_unlock(&shmem_swaplist_lock);
964                 }
965                 unlock_page(page);
966                 return 0;
967         }
968
969         shmem_swp_unmap(entry);
970 unlock:
971         spin_unlock(&info->lock);
972         swap_free(swap);
973 redirty:
974         set_page_dirty(page);
975         return AOP_WRITEPAGE_ACTIVATE;  /* Return with the page locked */
976 }
977
978 #ifdef CONFIG_NUMA
979 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
980 {
981         char *nodelist = strchr(value, ':');
982         int err = 1;
983
984         if (nodelist) {
985                 /* NUL-terminate policy string */
986                 *nodelist++ = '\0';
987                 if (nodelist_parse(nodelist, *policy_nodes))
988                         goto out;
989                 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
990                         goto out;
991         }
992         if (!strcmp(value, "default")) {
993                 *policy = MPOL_DEFAULT;
994                 /* Don't allow a nodelist */
995                 if (!nodelist)
996                         err = 0;
997         } else if (!strcmp(value, "prefer")) {
998                 *policy = MPOL_PREFERRED;
999                 /* Insist on a nodelist of one node only */
1000                 if (nodelist) {
1001                         char *rest = nodelist;
1002                         while (isdigit(*rest))
1003                                 rest++;
1004                         if (!*rest)
1005                                 err = 0;
1006                 }
1007         } else if (!strcmp(value, "bind")) {
1008                 *policy = MPOL_BIND;
1009                 /* Insist on a nodelist */
1010                 if (nodelist)
1011                         err = 0;
1012         } else if (!strcmp(value, "interleave")) {
1013                 *policy = MPOL_INTERLEAVE;
1014                 /*
1015                  * Default to online nodes with memory if no nodelist
1016                  */
1017                 if (!nodelist)
1018                         *policy_nodes = node_states[N_HIGH_MEMORY];
1019                 err = 0;
1020         }
1021 out:
1022         /* Restore string for error message */
1023         if (nodelist)
1024                 *--nodelist = ':';
1025         return err;
1026 }
1027
1028 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1029                         struct shmem_inode_info *info, unsigned long idx)
1030 {
1031         struct vm_area_struct pvma;
1032         struct page *page;
1033
1034         /* Create a pseudo vma that just contains the policy */
1035         pvma.vm_start = 0;
1036         pvma.vm_pgoff = idx;
1037         pvma.vm_ops = NULL;
1038         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1039         page = swapin_readahead(entry, gfp, &pvma, 0);
1040         mpol_free(pvma.vm_policy);
1041         return page;
1042 }
1043
1044 static struct page *shmem_alloc_page(gfp_t gfp,
1045                         struct shmem_inode_info *info, unsigned long idx)
1046 {
1047         struct vm_area_struct pvma;
1048         struct page *page;
1049
1050         /* Create a pseudo vma that just contains the policy */
1051         pvma.vm_start = 0;
1052         pvma.vm_pgoff = idx;
1053         pvma.vm_ops = NULL;
1054         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1055         page = alloc_page_vma(gfp, &pvma, 0);
1056         mpol_free(pvma.vm_policy);
1057         return page;
1058 }
1059 #else
1060 static inline int shmem_parse_mpol(char *value, int *policy,
1061                                                 nodemask_t *policy_nodes)
1062 {
1063         return 1;
1064 }
1065
1066 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1067                         struct shmem_inode_info *info, unsigned long idx)
1068 {
1069         return swapin_readahead(entry, gfp, NULL, 0);
1070 }
1071
1072 static inline struct page *shmem_alloc_page(gfp_t gfp,
1073                         struct shmem_inode_info *info, unsigned long idx)
1074 {
1075         return alloc_page(gfp);
1076 }
1077 #endif
1078
1079 /*
1080  * shmem_getpage - either get the page from swap or allocate a new one
1081  *
1082  * If we allocate a new one we do not mark it dirty. That's up to the
1083  * vm. If we swap it in we mark it dirty since we also free the swap
1084  * entry since a page cannot live in both the swap and page cache
1085  */
1086 static int shmem_getpage(struct inode *inode, unsigned long idx,
1087                         struct page **pagep, enum sgp_type sgp, int *type)
1088 {
1089         struct address_space *mapping = inode->i_mapping;
1090         struct shmem_inode_info *info = SHMEM_I(inode);
1091         struct shmem_sb_info *sbinfo;
1092         struct page *filepage = *pagep;
1093         struct page *swappage;
1094         swp_entry_t *entry;
1095         swp_entry_t swap;
1096         gfp_t gfp;
1097         int error;
1098
1099         if (idx >= SHMEM_MAX_INDEX)
1100                 return -EFBIG;
1101
1102         if (type)
1103                 *type = 0;
1104
1105         /*
1106          * Normally, filepage is NULL on entry, and either found
1107          * uptodate immediately, or allocated and zeroed, or read
1108          * in under swappage, which is then assigned to filepage.
1109          * But shmem_readpage and shmem_write_begin pass in a locked
1110          * filepage, which may be found not uptodate by other callers
1111          * too, and may need to be copied from the swappage read in.
1112          */
1113 repeat:
1114         if (!filepage)
1115                 filepage = find_lock_page(mapping, idx);
1116         if (filepage && PageUptodate(filepage))
1117                 goto done;
1118         error = 0;
1119         gfp = mapping_gfp_mask(mapping);
1120
1121         spin_lock(&info->lock);
1122         shmem_recalc_inode(inode);
1123         entry = shmem_swp_alloc(info, idx, sgp);
1124         if (IS_ERR(entry)) {
1125                 spin_unlock(&info->lock);
1126                 error = PTR_ERR(entry);
1127                 goto failed;
1128         }
1129         swap = *entry;
1130
1131         if (swap.val) {
1132                 /* Look it up and read it in.. */
1133                 swappage = lookup_swap_cache(swap);
1134                 if (!swappage) {
1135                         shmem_swp_unmap(entry);
1136                         /* here we actually do the io */
1137                         if (type && !(*type & VM_FAULT_MAJOR)) {
1138                                 __count_vm_event(PGMAJFAULT);
1139                                 *type |= VM_FAULT_MAJOR;
1140                         }
1141                         spin_unlock(&info->lock);
1142                         swappage = shmem_swapin(swap, gfp, info, idx);
1143                         if (!swappage) {
1144                                 spin_lock(&info->lock);
1145                                 entry = shmem_swp_alloc(info, idx, sgp);
1146                                 if (IS_ERR(entry))
1147                                         error = PTR_ERR(entry);
1148                                 else {
1149                                         if (entry->val == swap.val)
1150                                                 error = -ENOMEM;
1151                                         shmem_swp_unmap(entry);
1152                                 }
1153                                 spin_unlock(&info->lock);
1154                                 if (error)
1155                                         goto failed;
1156                                 goto repeat;
1157                         }
1158                         wait_on_page_locked(swappage);
1159                         page_cache_release(swappage);
1160                         goto repeat;
1161                 }
1162
1163                 /* We have to do this with page locked to prevent races */
1164                 if (TestSetPageLocked(swappage)) {
1165                         shmem_swp_unmap(entry);
1166                         spin_unlock(&info->lock);
1167                         wait_on_page_locked(swappage);
1168                         page_cache_release(swappage);
1169                         goto repeat;
1170                 }
1171                 if (PageWriteback(swappage)) {
1172                         shmem_swp_unmap(entry);
1173                         spin_unlock(&info->lock);
1174                         wait_on_page_writeback(swappage);
1175                         unlock_page(swappage);
1176                         page_cache_release(swappage);
1177                         goto repeat;
1178                 }
1179                 if (!PageUptodate(swappage)) {
1180                         shmem_swp_unmap(entry);
1181                         spin_unlock(&info->lock);
1182                         unlock_page(swappage);
1183                         page_cache_release(swappage);
1184                         error = -EIO;
1185                         goto failed;
1186                 }
1187
1188                 if (filepage) {
1189                         shmem_swp_set(info, entry, 0);
1190                         shmem_swp_unmap(entry);
1191                         delete_from_swap_cache(swappage);
1192                         spin_unlock(&info->lock);
1193                         copy_highpage(filepage, swappage);
1194                         unlock_page(swappage);
1195                         page_cache_release(swappage);
1196                         flush_dcache_page(filepage);
1197                         SetPageUptodate(filepage);
1198                         set_page_dirty(filepage);
1199                         swap_free(swap);
1200                 } else if (!(error = move_from_swap_cache(
1201                                 swappage, idx, mapping))) {
1202                         info->flags |= SHMEM_PAGEIN;
1203                         shmem_swp_set(info, entry, 0);
1204                         shmem_swp_unmap(entry);
1205                         spin_unlock(&info->lock);
1206                         filepage = swappage;
1207                         swap_free(swap);
1208                 } else {
1209                         shmem_swp_unmap(entry);
1210                         spin_unlock(&info->lock);
1211                         unlock_page(swappage);
1212                         page_cache_release(swappage);
1213                         if (error == -ENOMEM) {
1214                                 /* let kswapd refresh zone for GFP_ATOMICs */
1215                                 congestion_wait(WRITE, HZ/50);
1216                         }
1217                         goto repeat;
1218                 }
1219         } else if (sgp == SGP_READ && !filepage) {
1220                 shmem_swp_unmap(entry);
1221                 filepage = find_get_page(mapping, idx);
1222                 if (filepage &&
1223                     (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1224                         spin_unlock(&info->lock);
1225                         wait_on_page_locked(filepage);
1226                         page_cache_release(filepage);
1227                         filepage = NULL;
1228                         goto repeat;
1229                 }
1230                 spin_unlock(&info->lock);
1231         } else {
1232                 shmem_swp_unmap(entry);
1233                 sbinfo = SHMEM_SB(inode->i_sb);
1234                 if (sbinfo->max_blocks) {
1235                         spin_lock(&sbinfo->stat_lock);
1236                         if (sbinfo->free_blocks == 0 ||
1237                             shmem_acct_block(info->flags)) {
1238                                 spin_unlock(&sbinfo->stat_lock);
1239                                 spin_unlock(&info->lock);
1240                                 error = -ENOSPC;
1241                                 goto failed;
1242                         }
1243                         sbinfo->free_blocks--;
1244                         inode->i_blocks += BLOCKS_PER_PAGE;
1245                         spin_unlock(&sbinfo->stat_lock);
1246                 } else if (shmem_acct_block(info->flags)) {
1247                         spin_unlock(&info->lock);
1248                         error = -ENOSPC;
1249                         goto failed;
1250                 }
1251
1252                 if (!filepage) {
1253                         spin_unlock(&info->lock);
1254                         filepage = shmem_alloc_page(gfp, info, idx);
1255                         if (!filepage) {
1256                                 shmem_unacct_blocks(info->flags, 1);
1257                                 shmem_free_blocks(inode, 1);
1258                                 error = -ENOMEM;
1259                                 goto failed;
1260                         }
1261
1262                         spin_lock(&info->lock);
1263                         entry = shmem_swp_alloc(info, idx, sgp);
1264                         if (IS_ERR(entry))
1265                                 error = PTR_ERR(entry);
1266                         else {
1267                                 swap = *entry;
1268                                 shmem_swp_unmap(entry);
1269                         }
1270                         if (error || swap.val || 0 != add_to_page_cache_lru(
1271                                         filepage, mapping, idx, GFP_ATOMIC)) {
1272                                 spin_unlock(&info->lock);
1273                                 page_cache_release(filepage);
1274                                 shmem_unacct_blocks(info->flags, 1);
1275                                 shmem_free_blocks(inode, 1);
1276                                 filepage = NULL;
1277                                 if (error)
1278                                         goto failed;
1279                                 goto repeat;
1280                         }
1281                         info->flags |= SHMEM_PAGEIN;
1282                 }
1283
1284                 info->alloced++;
1285                 spin_unlock(&info->lock);
1286                 clear_highpage(filepage);
1287                 flush_dcache_page(filepage);
1288                 SetPageUptodate(filepage);
1289         }
1290 done:
1291         *pagep = filepage;
1292         return 0;
1293
1294 failed:
1295         if (*pagep != filepage) {
1296                 unlock_page(filepage);
1297                 page_cache_release(filepage);
1298         }
1299         return error;
1300 }
1301
1302 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1303 {
1304         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1305         int error;
1306         int ret;
1307
1308         if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1309                 return VM_FAULT_SIGBUS;
1310
1311         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1312         if (error)
1313                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1314
1315         mark_page_accessed(vmf->page);
1316         return ret | VM_FAULT_LOCKED;
1317 }
1318
1319 #ifdef CONFIG_NUMA
1320 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1321 {
1322         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1323         return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1324 }
1325
1326 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1327                                           unsigned long addr)
1328 {
1329         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1330         unsigned long idx;
1331
1332         idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1333         return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1334 }
1335 #endif
1336
1337 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1338 {
1339         struct inode *inode = file->f_path.dentry->d_inode;
1340         struct shmem_inode_info *info = SHMEM_I(inode);
1341         int retval = -ENOMEM;
1342
1343         spin_lock(&info->lock);
1344         if (lock && !(info->flags & VM_LOCKED)) {
1345                 if (!user_shm_lock(inode->i_size, user))
1346                         goto out_nomem;
1347                 info->flags |= VM_LOCKED;
1348         }
1349         if (!lock && (info->flags & VM_LOCKED) && user) {
1350                 user_shm_unlock(inode->i_size, user);
1351                 info->flags &= ~VM_LOCKED;
1352         }
1353         retval = 0;
1354 out_nomem:
1355         spin_unlock(&info->lock);
1356         return retval;
1357 }
1358
1359 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1360 {
1361         file_accessed(file);
1362         vma->vm_ops = &shmem_vm_ops;
1363         vma->vm_flags |= VM_CAN_NONLINEAR;
1364         return 0;
1365 }
1366
1367 static struct inode *
1368 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1369 {
1370         struct inode *inode;
1371         struct shmem_inode_info *info;
1372         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1373
1374         if (sbinfo->max_inodes) {
1375                 spin_lock(&sbinfo->stat_lock);
1376                 if (!sbinfo->free_inodes) {
1377                         spin_unlock(&sbinfo->stat_lock);
1378                         return NULL;
1379                 }
1380                 sbinfo->free_inodes--;
1381                 spin_unlock(&sbinfo->stat_lock);
1382         }
1383
1384         inode = new_inode(sb);
1385         if (inode) {
1386                 inode->i_mode = mode;
1387                 inode->i_uid = current->fsuid;
1388                 inode->i_gid = current->fsgid;
1389                 inode->i_blocks = 0;
1390                 inode->i_mapping->a_ops = &shmem_aops;
1391                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1392                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1393                 inode->i_generation = get_seconds();
1394                 info = SHMEM_I(inode);
1395                 memset(info, 0, (char *)inode - (char *)info);
1396                 spin_lock_init(&info->lock);
1397                 INIT_LIST_HEAD(&info->swaplist);
1398
1399                 switch (mode & S_IFMT) {
1400                 default:
1401                         inode->i_op = &shmem_special_inode_operations;
1402                         init_special_inode(inode, mode, dev);
1403                         break;
1404                 case S_IFREG:
1405                         inode->i_op = &shmem_inode_operations;
1406                         inode->i_fop = &shmem_file_operations;
1407                         mpol_shared_policy_init(&info->policy, sbinfo->policy,
1408                                                         &sbinfo->policy_nodes);
1409                         break;
1410                 case S_IFDIR:
1411                         inc_nlink(inode);
1412                         /* Some things misbehave if size == 0 on a directory */
1413                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1414                         inode->i_op = &shmem_dir_inode_operations;
1415                         inode->i_fop = &simple_dir_operations;
1416                         break;
1417                 case S_IFLNK:
1418                         /*
1419                          * Must not load anything in the rbtree,
1420                          * mpol_free_shared_policy will not be called.
1421                          */
1422                         mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1423                                                 NULL);
1424                         break;
1425                 }
1426         } else if (sbinfo->max_inodes) {
1427                 spin_lock(&sbinfo->stat_lock);
1428                 sbinfo->free_inodes++;
1429                 spin_unlock(&sbinfo->stat_lock);
1430         }
1431         return inode;
1432 }
1433
1434 #ifdef CONFIG_TMPFS
1435 static const struct inode_operations shmem_symlink_inode_operations;
1436 static const struct inode_operations shmem_symlink_inline_operations;
1437
1438 /*
1439  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1440  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1441  * below the loop driver, in the generic fashion that many filesystems support.
1442  */
1443 static int shmem_readpage(struct file *file, struct page *page)
1444 {
1445         struct inode *inode = page->mapping->host;
1446         int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1447         unlock_page(page);
1448         return error;
1449 }
1450
1451 static int
1452 shmem_write_begin(struct file *file, struct address_space *mapping,
1453                         loff_t pos, unsigned len, unsigned flags,
1454                         struct page **pagep, void **fsdata)
1455 {
1456         struct inode *inode = mapping->host;
1457         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1458         *pagep = NULL;
1459         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1460 }
1461
1462 static int
1463 shmem_write_end(struct file *file, struct address_space *mapping,
1464                         loff_t pos, unsigned len, unsigned copied,
1465                         struct page *page, void *fsdata)
1466 {
1467         struct inode *inode = mapping->host;
1468
1469         if (pos + copied > inode->i_size)
1470                 i_size_write(inode, pos + copied);
1471
1472         unlock_page(page);
1473         set_page_dirty(page);
1474         page_cache_release(page);
1475
1476         return copied;
1477 }
1478
1479 static ssize_t
1480 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1481 {
1482         struct inode    *inode = file->f_path.dentry->d_inode;
1483         loff_t          pos;
1484         unsigned long   written;
1485         ssize_t         err;
1486
1487         if ((ssize_t) count < 0)
1488                 return -EINVAL;
1489
1490         if (!access_ok(VERIFY_READ, buf, count))
1491                 return -EFAULT;
1492
1493         mutex_lock(&inode->i_mutex);
1494
1495         pos = *ppos;
1496         written = 0;
1497
1498         err = generic_write_checks(file, &pos, &count, 0);
1499         if (err || !count)
1500                 goto out;
1501
1502         err = remove_suid(file->f_path.dentry);
1503         if (err)
1504                 goto out;
1505
1506         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1507
1508         do {
1509                 struct page *page = NULL;
1510                 unsigned long bytes, index, offset;
1511                 char *kaddr;
1512                 int left;
1513
1514                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1515                 index = pos >> PAGE_CACHE_SHIFT;
1516                 bytes = PAGE_CACHE_SIZE - offset;
1517                 if (bytes > count)
1518                         bytes = count;
1519
1520                 /*
1521                  * We don't hold page lock across copy from user -
1522                  * what would it guard against? - so no deadlock here.
1523                  * But it still may be a good idea to prefault below.
1524                  */
1525
1526                 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1527                 if (err)
1528                         break;
1529
1530                 unlock_page(page);
1531                 left = bytes;
1532                 if (PageHighMem(page)) {
1533                         volatile unsigned char dummy;
1534                         __get_user(dummy, buf);
1535                         __get_user(dummy, buf + bytes - 1);
1536
1537                         kaddr = kmap_atomic(page, KM_USER0);
1538                         left = __copy_from_user_inatomic(kaddr + offset,
1539                                                         buf, bytes);
1540                         kunmap_atomic(kaddr, KM_USER0);
1541                 }
1542                 if (left) {
1543                         kaddr = kmap(page);
1544                         left = __copy_from_user(kaddr + offset, buf, bytes);
1545                         kunmap(page);
1546                 }
1547
1548                 written += bytes;
1549                 count -= bytes;
1550                 pos += bytes;
1551                 buf += bytes;
1552                 if (pos > inode->i_size)
1553                         i_size_write(inode, pos);
1554
1555                 flush_dcache_page(page);
1556                 set_page_dirty(page);
1557                 mark_page_accessed(page);
1558                 page_cache_release(page);
1559
1560                 if (left) {
1561                         pos -= left;
1562                         written -= left;
1563                         err = -EFAULT;
1564                         break;
1565                 }
1566
1567                 /*
1568                  * Our dirty pages are not counted in nr_dirty,
1569                  * and we do not attempt to balance dirty pages.
1570                  */
1571
1572                 cond_resched();
1573         } while (count);
1574
1575         *ppos = pos;
1576         if (written)
1577                 err = written;
1578 out:
1579         mutex_unlock(&inode->i_mutex);
1580         return err;
1581 }
1582
1583 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1584 {
1585         struct inode *inode = filp->f_path.dentry->d_inode;
1586         struct address_space *mapping = inode->i_mapping;
1587         unsigned long index, offset;
1588
1589         index = *ppos >> PAGE_CACHE_SHIFT;
1590         offset = *ppos & ~PAGE_CACHE_MASK;
1591
1592         for (;;) {
1593                 struct page *page = NULL;
1594                 unsigned long end_index, nr, ret;
1595                 loff_t i_size = i_size_read(inode);
1596
1597                 end_index = i_size >> PAGE_CACHE_SHIFT;
1598                 if (index > end_index)
1599                         break;
1600                 if (index == end_index) {
1601                         nr = i_size & ~PAGE_CACHE_MASK;
1602                         if (nr <= offset)
1603                                 break;
1604                 }
1605
1606                 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1607                 if (desc->error) {
1608                         if (desc->error == -EINVAL)
1609                                 desc->error = 0;
1610                         break;
1611                 }
1612                 if (page)
1613                         unlock_page(page);
1614
1615                 /*
1616                  * We must evaluate after, since reads (unlike writes)
1617                  * are called without i_mutex protection against truncate
1618                  */
1619                 nr = PAGE_CACHE_SIZE;
1620                 i_size = i_size_read(inode);
1621                 end_index = i_size >> PAGE_CACHE_SHIFT;
1622                 if (index == end_index) {
1623                         nr = i_size & ~PAGE_CACHE_MASK;
1624                         if (nr <= offset) {
1625                                 if (page)
1626                                         page_cache_release(page);
1627                                 break;
1628                         }
1629                 }
1630                 nr -= offset;
1631
1632                 if (page) {
1633                         /*
1634                          * If users can be writing to this page using arbitrary
1635                          * virtual addresses, take care about potential aliasing
1636                          * before reading the page on the kernel side.
1637                          */
1638                         if (mapping_writably_mapped(mapping))
1639                                 flush_dcache_page(page);
1640                         /*
1641                          * Mark the page accessed if we read the beginning.
1642                          */
1643                         if (!offset)
1644                                 mark_page_accessed(page);
1645                 } else {
1646                         page = ZERO_PAGE(0);
1647                         page_cache_get(page);
1648                 }
1649
1650                 /*
1651                  * Ok, we have the page, and it's up-to-date, so
1652                  * now we can copy it to user space...
1653                  *
1654                  * The actor routine returns how many bytes were actually used..
1655                  * NOTE! This may not be the same as how much of a user buffer
1656                  * we filled up (we may be padding etc), so we can only update
1657                  * "pos" here (the actor routine has to update the user buffer
1658                  * pointers and the remaining count).
1659                  */
1660                 ret = actor(desc, page, offset, nr);
1661                 offset += ret;
1662                 index += offset >> PAGE_CACHE_SHIFT;
1663                 offset &= ~PAGE_CACHE_MASK;
1664
1665                 page_cache_release(page);
1666                 if (ret != nr || !desc->count)
1667                         break;
1668
1669                 cond_resched();
1670         }
1671
1672         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1673         file_accessed(filp);
1674 }
1675
1676 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1677 {
1678         read_descriptor_t desc;
1679
1680         if ((ssize_t) count < 0)
1681                 return -EINVAL;
1682         if (!access_ok(VERIFY_WRITE, buf, count))
1683                 return -EFAULT;
1684         if (!count)
1685                 return 0;
1686
1687         desc.written = 0;
1688         desc.count = count;
1689         desc.arg.buf = buf;
1690         desc.error = 0;
1691
1692         do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1693         if (desc.written)
1694                 return desc.written;
1695         return desc.error;
1696 }
1697
1698 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1699 {
1700         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1701
1702         buf->f_type = TMPFS_MAGIC;
1703         buf->f_bsize = PAGE_CACHE_SIZE;
1704         buf->f_namelen = NAME_MAX;
1705         spin_lock(&sbinfo->stat_lock);
1706         if (sbinfo->max_blocks) {
1707                 buf->f_blocks = sbinfo->max_blocks;
1708                 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1709         }
1710         if (sbinfo->max_inodes) {
1711                 buf->f_files = sbinfo->max_inodes;
1712                 buf->f_ffree = sbinfo->free_inodes;
1713         }
1714         /* else leave those fields 0 like simple_statfs */
1715         spin_unlock(&sbinfo->stat_lock);
1716         return 0;
1717 }
1718
1719 /*
1720  * File creation. Allocate an inode, and we're done..
1721  */
1722 static int
1723 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1724 {
1725         struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1726         int error = -ENOSPC;
1727
1728         if (inode) {
1729                 error = security_inode_init_security(inode, dir, NULL, NULL,
1730                                                      NULL);
1731                 if (error) {
1732                         if (error != -EOPNOTSUPP) {
1733                                 iput(inode);
1734                                 return error;
1735                         }
1736                 }
1737                 error = shmem_acl_init(inode, dir);
1738                 if (error) {
1739                         iput(inode);
1740                         return error;
1741                 }
1742                 if (dir->i_mode & S_ISGID) {
1743                         inode->i_gid = dir->i_gid;
1744                         if (S_ISDIR(mode))
1745                                 inode->i_mode |= S_ISGID;
1746                 }
1747                 dir->i_size += BOGO_DIRENT_SIZE;
1748                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1749                 d_instantiate(dentry, inode);
1750                 dget(dentry); /* Extra count - pin the dentry in core */
1751         }
1752         return error;
1753 }
1754
1755 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1756 {
1757         int error;
1758
1759         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1760                 return error;
1761         inc_nlink(dir);
1762         return 0;
1763 }
1764
1765 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1766                 struct nameidata *nd)
1767 {
1768         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1769 }
1770
1771 /*
1772  * Link a file..
1773  */
1774 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1775 {
1776         struct inode *inode = old_dentry->d_inode;
1777         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1778
1779         /*
1780          * No ordinary (disk based) filesystem counts links as inodes;
1781          * but each new link needs a new dentry, pinning lowmem, and
1782          * tmpfs dentries cannot be pruned until they are unlinked.
1783          */
1784         if (sbinfo->max_inodes) {
1785                 spin_lock(&sbinfo->stat_lock);
1786                 if (!sbinfo->free_inodes) {
1787                         spin_unlock(&sbinfo->stat_lock);
1788                         return -ENOSPC;
1789                 }
1790                 sbinfo->free_inodes--;
1791                 spin_unlock(&sbinfo->stat_lock);
1792         }
1793
1794         dir->i_size += BOGO_DIRENT_SIZE;
1795         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1796         inc_nlink(inode);
1797         atomic_inc(&inode->i_count);    /* New dentry reference */
1798         dget(dentry);           /* Extra pinning count for the created dentry */
1799         d_instantiate(dentry, inode);
1800         return 0;
1801 }
1802
1803 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1804 {
1805         struct inode *inode = dentry->d_inode;
1806
1807         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1808                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1809                 if (sbinfo->max_inodes) {
1810                         spin_lock(&sbinfo->stat_lock);
1811                         sbinfo->free_inodes++;
1812                         spin_unlock(&sbinfo->stat_lock);
1813                 }
1814         }
1815
1816         dir->i_size -= BOGO_DIRENT_SIZE;
1817         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1818         drop_nlink(inode);
1819         dput(dentry);   /* Undo the count from "create" - this does all the work */
1820         return 0;
1821 }
1822
1823 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1824 {
1825         if (!simple_empty(dentry))
1826                 return -ENOTEMPTY;
1827
1828         drop_nlink(dentry->d_inode);
1829         drop_nlink(dir);
1830         return shmem_unlink(dir, dentry);
1831 }
1832
1833 /*
1834  * The VFS layer already does all the dentry stuff for rename,
1835  * we just have to decrement the usage count for the target if
1836  * it exists so that the VFS layer correctly free's it when it
1837  * gets overwritten.
1838  */
1839 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1840 {
1841         struct inode *inode = old_dentry->d_inode;
1842         int they_are_dirs = S_ISDIR(inode->i_mode);
1843
1844         if (!simple_empty(new_dentry))
1845                 return -ENOTEMPTY;
1846
1847         if (new_dentry->d_inode) {
1848                 (void) shmem_unlink(new_dir, new_dentry);
1849                 if (they_are_dirs)
1850                         drop_nlink(old_dir);
1851         } else if (they_are_dirs) {
1852                 drop_nlink(old_dir);
1853                 inc_nlink(new_dir);
1854         }
1855
1856         old_dir->i_size -= BOGO_DIRENT_SIZE;
1857         new_dir->i_size += BOGO_DIRENT_SIZE;
1858         old_dir->i_ctime = old_dir->i_mtime =
1859         new_dir->i_ctime = new_dir->i_mtime =
1860         inode->i_ctime = CURRENT_TIME;
1861         return 0;
1862 }
1863
1864 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1865 {
1866         int error;
1867         int len;
1868         struct inode *inode;
1869         struct page *page = NULL;
1870         char *kaddr;
1871         struct shmem_inode_info *info;
1872
1873         len = strlen(symname) + 1;
1874         if (len > PAGE_CACHE_SIZE)
1875                 return -ENAMETOOLONG;
1876
1877         inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1878         if (!inode)
1879                 return -ENOSPC;
1880
1881         error = security_inode_init_security(inode, dir, NULL, NULL,
1882                                              NULL);
1883         if (error) {
1884                 if (error != -EOPNOTSUPP) {
1885                         iput(inode);
1886                         return error;
1887                 }
1888                 error = 0;
1889         }
1890
1891         info = SHMEM_I(inode);
1892         inode->i_size = len-1;
1893         if (len <= (char *)inode - (char *)info) {
1894                 /* do it inline */
1895                 memcpy(info, symname, len);
1896                 inode->i_op = &shmem_symlink_inline_operations;
1897         } else {
1898                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1899                 if (error) {
1900                         iput(inode);
1901                         return error;
1902                 }
1903                 unlock_page(page);
1904                 inode->i_op = &shmem_symlink_inode_operations;
1905                 kaddr = kmap_atomic(page, KM_USER0);
1906                 memcpy(kaddr, symname, len);
1907                 kunmap_atomic(kaddr, KM_USER0);
1908                 set_page_dirty(page);
1909                 page_cache_release(page);
1910         }
1911         if (dir->i_mode & S_ISGID)
1912                 inode->i_gid = dir->i_gid;
1913         dir->i_size += BOGO_DIRENT_SIZE;
1914         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1915         d_instantiate(dentry, inode);
1916         dget(dentry);
1917         return 0;
1918 }
1919
1920 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1921 {
1922         nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1923         return NULL;
1924 }
1925
1926 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1927 {
1928         struct page *page = NULL;
1929         int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1930         nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1931         if (page)
1932                 unlock_page(page);
1933         return page;
1934 }
1935
1936 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1937 {
1938         if (!IS_ERR(nd_get_link(nd))) {
1939                 struct page *page = cookie;
1940                 kunmap(page);
1941                 mark_page_accessed(page);
1942                 page_cache_release(page);
1943         }
1944 }
1945
1946 static const struct inode_operations shmem_symlink_inline_operations = {
1947         .readlink       = generic_readlink,
1948         .follow_link    = shmem_follow_link_inline,
1949 };
1950
1951 static const struct inode_operations shmem_symlink_inode_operations = {
1952         .truncate       = shmem_truncate,
1953         .readlink       = generic_readlink,
1954         .follow_link    = shmem_follow_link,
1955         .put_link       = shmem_put_link,
1956 };
1957
1958 #ifdef CONFIG_TMPFS_POSIX_ACL
1959 /**
1960  * Superblocks without xattr inode operations will get security.* xattr
1961  * support from the VFS "for free". As soon as we have any other xattrs
1962  * like ACLs, we also need to implement the security.* handlers at
1963  * filesystem level, though.
1964  */
1965
1966 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1967                                         size_t list_len, const char *name,
1968                                         size_t name_len)
1969 {
1970         return security_inode_listsecurity(inode, list, list_len);
1971 }
1972
1973 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1974                                     void *buffer, size_t size)
1975 {
1976         if (strcmp(name, "") == 0)
1977                 return -EINVAL;
1978         return security_inode_getsecurity(inode, name, buffer, size,
1979                                           -EOPNOTSUPP);
1980 }
1981
1982 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1983                                     const void *value, size_t size, int flags)
1984 {
1985         if (strcmp(name, "") == 0)
1986                 return -EINVAL;
1987         return security_inode_setsecurity(inode, name, value, size, flags);
1988 }
1989
1990 static struct xattr_handler shmem_xattr_security_handler = {
1991         .prefix = XATTR_SECURITY_PREFIX,
1992         .list   = shmem_xattr_security_list,
1993         .get    = shmem_xattr_security_get,
1994         .set    = shmem_xattr_security_set,
1995 };
1996
1997 static struct xattr_handler *shmem_xattr_handlers[] = {
1998         &shmem_xattr_acl_access_handler,
1999         &shmem_xattr_acl_default_handler,
2000         &shmem_xattr_security_handler,
2001         NULL
2002 };
2003 #endif
2004
2005 static struct dentry *shmem_get_parent(struct dentry *child)
2006 {
2007         return ERR_PTR(-ESTALE);
2008 }
2009
2010 static int shmem_match(struct inode *ino, void *vfh)
2011 {
2012         __u32 *fh = vfh;
2013         __u64 inum = fh[2];
2014         inum = (inum << 32) | fh[1];
2015         return ino->i_ino == inum && fh[0] == ino->i_generation;
2016 }
2017
2018 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2019                 struct fid *fid, int fh_len, int fh_type)
2020 {
2021         struct inode *inode;
2022         struct dentry *dentry = NULL;
2023         u64 inum = fid->raw[2];
2024         inum = (inum << 32) | fid->raw[1];
2025
2026         if (fh_len < 3)
2027                 return NULL;
2028
2029         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2030                         shmem_match, fid->raw);
2031         if (inode) {
2032                 dentry = d_find_alias(inode);
2033                 iput(inode);
2034         }
2035
2036         return dentry;
2037 }
2038
2039 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2040                                 int connectable)
2041 {
2042         struct inode *inode = dentry->d_inode;
2043
2044         if (*len < 3)
2045                 return 255;
2046
2047         if (hlist_unhashed(&inode->i_hash)) {
2048                 /* Unfortunately insert_inode_hash is not idempotent,
2049                  * so as we hash inodes here rather than at creation
2050                  * time, we need a lock to ensure we only try
2051                  * to do it once
2052                  */
2053                 static DEFINE_SPINLOCK(lock);
2054                 spin_lock(&lock);
2055                 if (hlist_unhashed(&inode->i_hash))
2056                         __insert_inode_hash(inode,
2057                                             inode->i_ino + inode->i_generation);
2058                 spin_unlock(&lock);
2059         }
2060
2061         fh[0] = inode->i_generation;
2062         fh[1] = inode->i_ino;
2063         fh[2] = ((__u64)inode->i_ino) >> 32;
2064
2065         *len = 3;
2066         return 1;
2067 }
2068
2069 static const struct export_operations shmem_export_ops = {
2070         .get_parent     = shmem_get_parent,
2071         .encode_fh      = shmem_encode_fh,
2072         .fh_to_dentry   = shmem_fh_to_dentry,
2073 };
2074
2075 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2076         gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2077         int *policy, nodemask_t *policy_nodes)
2078 {
2079         char *this_char, *value, *rest;
2080
2081         while (options != NULL) {
2082                 this_char = options;
2083                 for (;;) {
2084                         /*
2085                          * NUL-terminate this option: unfortunately,
2086                          * mount options form a comma-separated list,
2087                          * but mpol's nodelist may also contain commas.
2088                          */
2089                         options = strchr(options, ',');
2090                         if (options == NULL)
2091                                 break;
2092                         options++;
2093                         if (!isdigit(*options)) {
2094                                 options[-1] = '\0';
2095                                 break;
2096                         }
2097                 }
2098                 if (!*this_char)
2099                         continue;
2100                 if ((value = strchr(this_char,'=')) != NULL) {
2101                         *value++ = 0;
2102                 } else {
2103                         printk(KERN_ERR
2104                             "tmpfs: No value for mount option '%s'\n",
2105                             this_char);
2106                         return 1;
2107                 }
2108
2109                 if (!strcmp(this_char,"size")) {
2110                         unsigned long long size;
2111                         size = memparse(value,&rest);
2112                         if (*rest == '%') {
2113                                 size <<= PAGE_SHIFT;
2114                                 size *= totalram_pages;
2115                                 do_div(size, 100);
2116                                 rest++;
2117                         }
2118                         if (*rest)
2119                                 goto bad_val;
2120                         *blocks = size >> PAGE_CACHE_SHIFT;
2121                 } else if (!strcmp(this_char,"nr_blocks")) {
2122                         *blocks = memparse(value,&rest);
2123                         if (*rest)
2124                                 goto bad_val;
2125                 } else if (!strcmp(this_char,"nr_inodes")) {
2126                         *inodes = memparse(value,&rest);
2127                         if (*rest)
2128                                 goto bad_val;
2129                 } else if (!strcmp(this_char,"mode")) {
2130                         if (!mode)
2131                                 continue;
2132                         *mode = simple_strtoul(value,&rest,8);
2133                         if (*rest)
2134                                 goto bad_val;
2135                 } else if (!strcmp(this_char,"uid")) {
2136                         if (!uid)
2137                                 continue;
2138                         *uid = simple_strtoul(value,&rest,0);
2139                         if (*rest)
2140                                 goto bad_val;
2141                 } else if (!strcmp(this_char,"gid")) {
2142                         if (!gid)
2143                                 continue;
2144                         *gid = simple_strtoul(value,&rest,0);
2145                         if (*rest)
2146                                 goto bad_val;
2147                 } else if (!strcmp(this_char,"mpol")) {
2148                         if (shmem_parse_mpol(value,policy,policy_nodes))
2149                                 goto bad_val;
2150                 } else {
2151                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2152                                this_char);
2153                         return 1;
2154                 }
2155         }
2156         return 0;
2157
2158 bad_val:
2159         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2160                value, this_char);
2161         return 1;
2162
2163 }
2164
2165 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2166 {
2167         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2168         unsigned long max_blocks = sbinfo->max_blocks;
2169         unsigned long max_inodes = sbinfo->max_inodes;
2170         int policy = sbinfo->policy;
2171         nodemask_t policy_nodes = sbinfo->policy_nodes;
2172         unsigned long blocks;
2173         unsigned long inodes;
2174         int error = -EINVAL;
2175
2176         if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2177                                 &max_inodes, &policy, &policy_nodes))
2178                 return error;
2179
2180         spin_lock(&sbinfo->stat_lock);
2181         blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2182         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2183         if (max_blocks < blocks)
2184                 goto out;
2185         if (max_inodes < inodes)
2186                 goto out;
2187         /*
2188          * Those tests also disallow limited->unlimited while any are in
2189          * use, so i_blocks will always be zero when max_blocks is zero;
2190          * but we must separately disallow unlimited->limited, because
2191          * in that case we have no record of how much is already in use.
2192          */
2193         if (max_blocks && !sbinfo->max_blocks)
2194                 goto out;
2195         if (max_inodes && !sbinfo->max_inodes)
2196                 goto out;
2197
2198         error = 0;
2199         sbinfo->max_blocks  = max_blocks;
2200         sbinfo->free_blocks = max_blocks - blocks;
2201         sbinfo->max_inodes  = max_inodes;
2202         sbinfo->free_inodes = max_inodes - inodes;
2203         sbinfo->policy = policy;
2204         sbinfo->policy_nodes = policy_nodes;
2205 out:
2206         spin_unlock(&sbinfo->stat_lock);
2207         return error;
2208 }
2209 #endif
2210
2211 static void shmem_put_super(struct super_block *sb)
2212 {
2213         kfree(sb->s_fs_info);
2214         sb->s_fs_info = NULL;
2215 }
2216
2217 static int shmem_fill_super(struct super_block *sb,
2218                             void *data, int silent)
2219 {
2220         struct inode *inode;
2221         struct dentry *root;
2222         int mode   = S_IRWXUGO | S_ISVTX;
2223         uid_t uid = current->fsuid;
2224         gid_t gid = current->fsgid;
2225         int err = -ENOMEM;
2226         struct shmem_sb_info *sbinfo;
2227         unsigned long blocks = 0;
2228         unsigned long inodes = 0;
2229         int policy = MPOL_DEFAULT;
2230         nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2231
2232 #ifdef CONFIG_TMPFS
2233         /*
2234          * Per default we only allow half of the physical ram per
2235          * tmpfs instance, limiting inodes to one per page of lowmem;
2236          * but the internal instance is left unlimited.
2237          */
2238         if (!(sb->s_flags & MS_NOUSER)) {
2239                 blocks = totalram_pages / 2;
2240                 inodes = totalram_pages - totalhigh_pages;
2241                 if (inodes > blocks)
2242                         inodes = blocks;
2243                 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2244                                         &inodes, &policy, &policy_nodes))
2245                         return -EINVAL;
2246         }
2247         sb->s_export_op = &shmem_export_ops;
2248 #else
2249         sb->s_flags |= MS_NOUSER;
2250 #endif
2251
2252         /* Round up to L1_CACHE_BYTES to resist false sharing */
2253         sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2254                                 L1_CACHE_BYTES), GFP_KERNEL);
2255         if (!sbinfo)
2256                 return -ENOMEM;
2257
2258         spin_lock_init(&sbinfo->stat_lock);
2259         sbinfo->max_blocks = blocks;
2260         sbinfo->free_blocks = blocks;
2261         sbinfo->max_inodes = inodes;
2262         sbinfo->free_inodes = inodes;
2263         sbinfo->policy = policy;
2264         sbinfo->policy_nodes = policy_nodes;
2265
2266         sb->s_fs_info = sbinfo;
2267         sb->s_maxbytes = SHMEM_MAX_BYTES;
2268         sb->s_blocksize = PAGE_CACHE_SIZE;
2269         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2270         sb->s_magic = TMPFS_MAGIC;
2271         sb->s_op = &shmem_ops;
2272         sb->s_time_gran = 1;
2273 #ifdef CONFIG_TMPFS_POSIX_ACL
2274         sb->s_xattr = shmem_xattr_handlers;
2275         sb->s_flags |= MS_POSIXACL;
2276 #endif
2277
2278         inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2279         if (!inode)
2280                 goto failed;
2281         inode->i_uid = uid;
2282         inode->i_gid = gid;
2283         root = d_alloc_root(inode);
2284         if (!root)
2285                 goto failed_iput;
2286         sb->s_root = root;
2287         return 0;
2288
2289 failed_iput:
2290         iput(inode);
2291 failed:
2292         shmem_put_super(sb);
2293         return err;
2294 }
2295
2296 static struct kmem_cache *shmem_inode_cachep;
2297
2298 static struct inode *shmem_alloc_inode(struct super_block *sb)
2299 {
2300         struct shmem_inode_info *p;
2301         p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2302         if (!p)
2303                 return NULL;
2304         return &p->vfs_inode;
2305 }
2306
2307 static void shmem_destroy_inode(struct inode *inode)
2308 {
2309         if ((inode->i_mode & S_IFMT) == S_IFREG) {
2310                 /* only struct inode is valid if it's an inline symlink */
2311                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2312         }
2313         shmem_acl_destroy_inode(inode);
2314         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2315 }
2316
2317 static void init_once(struct kmem_cache *cachep, void *foo)
2318 {
2319         struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2320
2321         inode_init_once(&p->vfs_inode);
2322 #ifdef CONFIG_TMPFS_POSIX_ACL
2323         p->i_acl = NULL;
2324         p->i_default_acl = NULL;
2325 #endif
2326 }
2327
2328 static int init_inodecache(void)
2329 {
2330         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2331                                 sizeof(struct shmem_inode_info),
2332                                 0, SLAB_PANIC, init_once);
2333         return 0;
2334 }
2335
2336 static void destroy_inodecache(void)
2337 {
2338         kmem_cache_destroy(shmem_inode_cachep);
2339 }
2340
2341 static const struct address_space_operations shmem_aops = {
2342         .writepage      = shmem_writepage,
2343         .set_page_dirty = __set_page_dirty_no_writeback,
2344 #ifdef CONFIG_TMPFS
2345         .readpage       = shmem_readpage,
2346         .write_begin    = shmem_write_begin,
2347         .write_end      = shmem_write_end,
2348 #endif
2349         .migratepage    = migrate_page,
2350 };
2351
2352 static const struct file_operations shmem_file_operations = {
2353         .mmap           = shmem_mmap,
2354 #ifdef CONFIG_TMPFS
2355         .llseek         = generic_file_llseek,
2356         .read           = shmem_file_read,
2357         .write          = shmem_file_write,
2358         .fsync          = simple_sync_file,
2359         .splice_read    = generic_file_splice_read,
2360         .splice_write   = generic_file_splice_write,
2361 #endif
2362 };
2363
2364 static const struct inode_operations shmem_inode_operations = {
2365         .truncate       = shmem_truncate,
2366         .setattr        = shmem_notify_change,
2367         .truncate_range = shmem_truncate_range,
2368 #ifdef CONFIG_TMPFS_POSIX_ACL
2369         .setxattr       = generic_setxattr,
2370         .getxattr       = generic_getxattr,
2371         .listxattr      = generic_listxattr,
2372         .removexattr    = generic_removexattr,
2373         .permission     = shmem_permission,
2374 #endif
2375
2376 };
2377
2378 static const struct inode_operations shmem_dir_inode_operations = {
2379 #ifdef CONFIG_TMPFS
2380         .create         = shmem_create,
2381         .lookup         = simple_lookup,
2382         .link           = shmem_link,
2383         .unlink         = shmem_unlink,
2384         .symlink        = shmem_symlink,
2385         .mkdir          = shmem_mkdir,
2386         .rmdir          = shmem_rmdir,
2387         .mknod          = shmem_mknod,
2388         .rename         = shmem_rename,
2389 #endif
2390 #ifdef CONFIG_TMPFS_POSIX_ACL
2391         .setattr        = shmem_notify_change,
2392         .setxattr       = generic_setxattr,
2393         .getxattr       = generic_getxattr,
2394         .listxattr      = generic_listxattr,
2395         .removexattr    = generic_removexattr,
2396         .permission     = shmem_permission,
2397 #endif
2398 };
2399
2400 static const struct inode_operations shmem_special_inode_operations = {
2401 #ifdef CONFIG_TMPFS_POSIX_ACL
2402         .setattr        = shmem_notify_change,
2403         .setxattr       = generic_setxattr,
2404         .getxattr       = generic_getxattr,
2405         .listxattr      = generic_listxattr,
2406         .removexattr    = generic_removexattr,
2407         .permission     = shmem_permission,
2408 #endif
2409 };
2410
2411 static const struct super_operations shmem_ops = {
2412         .alloc_inode    = shmem_alloc_inode,
2413         .destroy_inode  = shmem_destroy_inode,
2414 #ifdef CONFIG_TMPFS
2415         .statfs         = shmem_statfs,
2416         .remount_fs     = shmem_remount_fs,
2417 #endif
2418         .delete_inode   = shmem_delete_inode,
2419         .drop_inode     = generic_delete_inode,
2420         .put_super      = shmem_put_super,
2421 };
2422
2423 static struct vm_operations_struct shmem_vm_ops = {
2424         .fault          = shmem_fault,
2425 #ifdef CONFIG_NUMA
2426         .set_policy     = shmem_set_policy,
2427         .get_policy     = shmem_get_policy,
2428 #endif
2429 };
2430
2431
2432 static int shmem_get_sb(struct file_system_type *fs_type,
2433         int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2434 {
2435         return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2436 }
2437
2438 static struct file_system_type tmpfs_fs_type = {
2439         .owner          = THIS_MODULE,
2440         .name           = "tmpfs",
2441         .get_sb         = shmem_get_sb,
2442         .kill_sb        = kill_litter_super,
2443 };
2444 static struct vfsmount *shm_mnt;
2445
2446 static int __init init_tmpfs(void)
2447 {
2448         int error;
2449
2450         error = bdi_init(&shmem_backing_dev_info);
2451         if (error)
2452                 goto out4;
2453
2454         error = init_inodecache();
2455         if (error)
2456                 goto out3;
2457
2458         error = register_filesystem(&tmpfs_fs_type);
2459         if (error) {
2460                 printk(KERN_ERR "Could not register tmpfs\n");
2461                 goto out2;
2462         }
2463
2464         shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2465                                 tmpfs_fs_type.name, NULL);
2466         if (IS_ERR(shm_mnt)) {
2467                 error = PTR_ERR(shm_mnt);
2468                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2469                 goto out1;
2470         }
2471         return 0;
2472
2473 out1:
2474         unregister_filesystem(&tmpfs_fs_type);
2475 out2:
2476         destroy_inodecache();
2477 out3:
2478         bdi_destroy(&shmem_backing_dev_info);
2479 out4:
2480         shm_mnt = ERR_PTR(error);
2481         return error;
2482 }
2483 module_init(init_tmpfs)
2484
2485 /*
2486  * shmem_file_setup - get an unlinked file living in tmpfs
2487  *
2488  * @name: name for dentry (to be seen in /proc/<pid>/maps
2489  * @size: size to be set for the file
2490  *
2491  */
2492 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2493 {
2494         int error;
2495         struct file *file;
2496         struct inode *inode;
2497         struct dentry *dentry, *root;
2498         struct qstr this;
2499
2500         if (IS_ERR(shm_mnt))
2501                 return (void *)shm_mnt;
2502
2503         if (size < 0 || size > SHMEM_MAX_BYTES)
2504                 return ERR_PTR(-EINVAL);
2505
2506         if (shmem_acct_size(flags, size))
2507                 return ERR_PTR(-ENOMEM);
2508
2509         error = -ENOMEM;
2510         this.name = name;
2511         this.len = strlen(name);
2512         this.hash = 0; /* will go */
2513         root = shm_mnt->mnt_root;
2514         dentry = d_alloc(root, &this);
2515         if (!dentry)
2516                 goto put_memory;
2517
2518         error = -ENFILE;
2519         file = get_empty_filp();
2520         if (!file)
2521                 goto put_dentry;
2522
2523         error = -ENOSPC;
2524         inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2525         if (!inode)
2526                 goto close_file;
2527
2528         SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2529         d_instantiate(dentry, inode);
2530         inode->i_size = size;
2531         inode->i_nlink = 0;     /* It is unlinked */
2532         init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2533                         &shmem_file_operations);
2534         return file;
2535
2536 close_file:
2537         put_filp(file);
2538 put_dentry:
2539         dput(dentry);
2540 put_memory:
2541         shmem_unacct_size(flags, size);
2542         return ERR_PTR(error);
2543 }
2544
2545 /*
2546  * shmem_zero_setup - setup a shared anonymous mapping
2547  *
2548  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2549  */
2550 int shmem_zero_setup(struct vm_area_struct *vma)
2551 {
2552         struct file *file;
2553         loff_t size = vma->vm_end - vma->vm_start;
2554
2555         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2556         if (IS_ERR(file))
2557                 return PTR_ERR(file);
2558
2559         if (vma->vm_file)
2560                 fput(vma->vm_file);
2561         vma->vm_file = file;
2562         vma->vm_ops = &shmem_vm_ops;
2563         return 0;
2564 }