tmpfs: make shmem_unuse more preemptible
[safe/jmp/linux-2.6] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC     0x01021994
59
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN     VM_READ
71 #define SHMEM_TRUNCATE   VM_WRITE
72
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT    64
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81         SGP_READ,       /* don't exceed i_size, don't allocate page */
82         SGP_CACHE,      /* don't exceed i_size, may allocate page */
83         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
84         SGP_WRITE,      /* may exceed i_size, may allocate page */
85 };
86
87 static int shmem_getpage(struct inode *inode, unsigned long idx,
88                          struct page **pagep, enum sgp_type sgp, int *type);
89
90 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91 {
92         /*
93          * The above definition of ENTRIES_PER_PAGE, and the use of
94          * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95          * might be reconsidered if it ever diverges from PAGE_SIZE.
96          *
97          * Mobility flags are masked out as swap vectors cannot move
98          */
99         return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
100                                 PAGE_CACHE_SHIFT-PAGE_SHIFT);
101 }
102
103 static inline void shmem_dir_free(struct page *page)
104 {
105         __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
106 }
107
108 static struct page **shmem_dir_map(struct page *page)
109 {
110         return (struct page **)kmap_atomic(page, KM_USER0);
111 }
112
113 static inline void shmem_dir_unmap(struct page **dir)
114 {
115         kunmap_atomic(dir, KM_USER0);
116 }
117
118 static swp_entry_t *shmem_swp_map(struct page *page)
119 {
120         return (swp_entry_t *)kmap_atomic(page, KM_USER1);
121 }
122
123 static inline void shmem_swp_balance_unmap(void)
124 {
125         /*
126          * When passing a pointer to an i_direct entry, to code which
127          * also handles indirect entries and so will shmem_swp_unmap,
128          * we must arrange for the preempt count to remain in balance.
129          * What kmap_atomic of a lowmem page does depends on config
130          * and architecture, so pretend to kmap_atomic some lowmem page.
131          */
132         (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
133 }
134
135 static inline void shmem_swp_unmap(swp_entry_t *entry)
136 {
137         kunmap_atomic(entry, KM_USER1);
138 }
139
140 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
141 {
142         return sb->s_fs_info;
143 }
144
145 /*
146  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
147  * for shared memory and for shared anonymous (/dev/zero) mappings
148  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
149  * consistent with the pre-accounting of private mappings ...
150  */
151 static inline int shmem_acct_size(unsigned long flags, loff_t size)
152 {
153         return (flags & VM_ACCOUNT)?
154                 security_vm_enough_memory(VM_ACCT(size)): 0;
155 }
156
157 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
158 {
159         if (flags & VM_ACCOUNT)
160                 vm_unacct_memory(VM_ACCT(size));
161 }
162
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow huge sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags)
170 {
171         return (flags & VM_ACCOUNT)?
172                 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
173 }
174
175 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
176 {
177         if (!(flags & VM_ACCOUNT))
178                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
179 }
180
181 static const struct super_operations shmem_ops;
182 static const struct address_space_operations shmem_aops;
183 static const struct file_operations shmem_file_operations;
184 static const struct inode_operations shmem_inode_operations;
185 static const struct inode_operations shmem_dir_inode_operations;
186 static const struct inode_operations shmem_special_inode_operations;
187 static struct vm_operations_struct shmem_vm_ops;
188
189 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
190         .ra_pages       = 0,    /* No readahead */
191         .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
192         .unplug_io_fn   = default_unplug_io_fn,
193 };
194
195 static LIST_HEAD(shmem_swaplist);
196 static DEFINE_MUTEX(shmem_swaplist_mutex);
197
198 static void shmem_free_blocks(struct inode *inode, long pages)
199 {
200         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
201         if (sbinfo->max_blocks) {
202                 spin_lock(&sbinfo->stat_lock);
203                 sbinfo->free_blocks += pages;
204                 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
205                 spin_unlock(&sbinfo->stat_lock);
206         }
207 }
208
209 static int shmem_reserve_inode(struct super_block *sb)
210 {
211         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
212         if (sbinfo->max_inodes) {
213                 spin_lock(&sbinfo->stat_lock);
214                 if (!sbinfo->free_inodes) {
215                         spin_unlock(&sbinfo->stat_lock);
216                         return -ENOSPC;
217                 }
218                 sbinfo->free_inodes--;
219                 spin_unlock(&sbinfo->stat_lock);
220         }
221         return 0;
222 }
223
224 static void shmem_free_inode(struct super_block *sb)
225 {
226         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
227         if (sbinfo->max_inodes) {
228                 spin_lock(&sbinfo->stat_lock);
229                 sbinfo->free_inodes++;
230                 spin_unlock(&sbinfo->stat_lock);
231         }
232 }
233
234 /*
235  * shmem_recalc_inode - recalculate the size of an inode
236  *
237  * @inode: inode to recalc
238  *
239  * We have to calculate the free blocks since the mm can drop
240  * undirtied hole pages behind our back.
241  *
242  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
243  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
244  *
245  * It has to be called with the spinlock held.
246  */
247 static void shmem_recalc_inode(struct inode *inode)
248 {
249         struct shmem_inode_info *info = SHMEM_I(inode);
250         long freed;
251
252         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
253         if (freed > 0) {
254                 info->alloced -= freed;
255                 shmem_unacct_blocks(info->flags, freed);
256                 shmem_free_blocks(inode, freed);
257         }
258 }
259
260 /*
261  * shmem_swp_entry - find the swap vector position in the info structure
262  *
263  * @info:  info structure for the inode
264  * @index: index of the page to find
265  * @page:  optional page to add to the structure. Has to be preset to
266  *         all zeros
267  *
268  * If there is no space allocated yet it will return NULL when
269  * page is NULL, else it will use the page for the needed block,
270  * setting it to NULL on return to indicate that it has been used.
271  *
272  * The swap vector is organized the following way:
273  *
274  * There are SHMEM_NR_DIRECT entries directly stored in the
275  * shmem_inode_info structure. So small files do not need an addional
276  * allocation.
277  *
278  * For pages with index > SHMEM_NR_DIRECT there is the pointer
279  * i_indirect which points to a page which holds in the first half
280  * doubly indirect blocks, in the second half triple indirect blocks:
281  *
282  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
283  * following layout (for SHMEM_NR_DIRECT == 16):
284  *
285  * i_indirect -> dir --> 16-19
286  *            |      +-> 20-23
287  *            |
288  *            +-->dir2 --> 24-27
289  *            |        +-> 28-31
290  *            |        +-> 32-35
291  *            |        +-> 36-39
292  *            |
293  *            +-->dir3 --> 40-43
294  *                     +-> 44-47
295  *                     +-> 48-51
296  *                     +-> 52-55
297  */
298 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
299 {
300         unsigned long offset;
301         struct page **dir;
302         struct page *subdir;
303
304         if (index < SHMEM_NR_DIRECT) {
305                 shmem_swp_balance_unmap();
306                 return info->i_direct+index;
307         }
308         if (!info->i_indirect) {
309                 if (page) {
310                         info->i_indirect = *page;
311                         *page = NULL;
312                 }
313                 return NULL;                    /* need another page */
314         }
315
316         index -= SHMEM_NR_DIRECT;
317         offset = index % ENTRIES_PER_PAGE;
318         index /= ENTRIES_PER_PAGE;
319         dir = shmem_dir_map(info->i_indirect);
320
321         if (index >= ENTRIES_PER_PAGE/2) {
322                 index -= ENTRIES_PER_PAGE/2;
323                 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
324                 index %= ENTRIES_PER_PAGE;
325                 subdir = *dir;
326                 if (!subdir) {
327                         if (page) {
328                                 *dir = *page;
329                                 *page = NULL;
330                         }
331                         shmem_dir_unmap(dir);
332                         return NULL;            /* need another page */
333                 }
334                 shmem_dir_unmap(dir);
335                 dir = shmem_dir_map(subdir);
336         }
337
338         dir += index;
339         subdir = *dir;
340         if (!subdir) {
341                 if (!page || !(subdir = *page)) {
342                         shmem_dir_unmap(dir);
343                         return NULL;            /* need a page */
344                 }
345                 *dir = subdir;
346                 *page = NULL;
347         }
348         shmem_dir_unmap(dir);
349         return shmem_swp_map(subdir) + offset;
350 }
351
352 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
353 {
354         long incdec = value? 1: -1;
355
356         entry->val = value;
357         info->swapped += incdec;
358         if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
359                 struct page *page = kmap_atomic_to_page(entry);
360                 set_page_private(page, page_private(page) + incdec);
361         }
362 }
363
364 /*
365  * shmem_swp_alloc - get the position of the swap entry for the page.
366  *                   If it does not exist allocate the entry.
367  *
368  * @info:       info structure for the inode
369  * @index:      index of the page to find
370  * @sgp:        check and recheck i_size? skip allocation?
371  */
372 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
373 {
374         struct inode *inode = &info->vfs_inode;
375         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
376         struct page *page = NULL;
377         swp_entry_t *entry;
378
379         if (sgp != SGP_WRITE &&
380             ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
381                 return ERR_PTR(-EINVAL);
382
383         while (!(entry = shmem_swp_entry(info, index, &page))) {
384                 if (sgp == SGP_READ)
385                         return shmem_swp_map(ZERO_PAGE(0));
386                 /*
387                  * Test free_blocks against 1 not 0, since we have 1 data
388                  * page (and perhaps indirect index pages) yet to allocate:
389                  * a waste to allocate index if we cannot allocate data.
390                  */
391                 if (sbinfo->max_blocks) {
392                         spin_lock(&sbinfo->stat_lock);
393                         if (sbinfo->free_blocks <= 1) {
394                                 spin_unlock(&sbinfo->stat_lock);
395                                 return ERR_PTR(-ENOSPC);
396                         }
397                         sbinfo->free_blocks--;
398                         inode->i_blocks += BLOCKS_PER_PAGE;
399                         spin_unlock(&sbinfo->stat_lock);
400                 }
401
402                 spin_unlock(&info->lock);
403                 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
404                 if (page)
405                         set_page_private(page, 0);
406                 spin_lock(&info->lock);
407
408                 if (!page) {
409                         shmem_free_blocks(inode, 1);
410                         return ERR_PTR(-ENOMEM);
411                 }
412                 if (sgp != SGP_WRITE &&
413                     ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
414                         entry = ERR_PTR(-EINVAL);
415                         break;
416                 }
417                 if (info->next_index <= index)
418                         info->next_index = index + 1;
419         }
420         if (page) {
421                 /* another task gave its page, or truncated the file */
422                 shmem_free_blocks(inode, 1);
423                 shmem_dir_free(page);
424         }
425         if (info->next_index <= index && !IS_ERR(entry))
426                 info->next_index = index + 1;
427         return entry;
428 }
429
430 /*
431  * shmem_free_swp - free some swap entries in a directory
432  *
433  * @dir:        pointer to the directory
434  * @edir:       pointer after last entry of the directory
435  * @punch_lock: pointer to spinlock when needed for the holepunch case
436  */
437 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
438                                                 spinlock_t *punch_lock)
439 {
440         spinlock_t *punch_unlock = NULL;
441         swp_entry_t *ptr;
442         int freed = 0;
443
444         for (ptr = dir; ptr < edir; ptr++) {
445                 if (ptr->val) {
446                         if (unlikely(punch_lock)) {
447                                 punch_unlock = punch_lock;
448                                 punch_lock = NULL;
449                                 spin_lock(punch_unlock);
450                                 if (!ptr->val)
451                                         continue;
452                         }
453                         free_swap_and_cache(*ptr);
454                         *ptr = (swp_entry_t){0};
455                         freed++;
456                 }
457         }
458         if (punch_unlock)
459                 spin_unlock(punch_unlock);
460         return freed;
461 }
462
463 static int shmem_map_and_free_swp(struct page *subdir, int offset,
464                 int limit, struct page ***dir, spinlock_t *punch_lock)
465 {
466         swp_entry_t *ptr;
467         int freed = 0;
468
469         ptr = shmem_swp_map(subdir);
470         for (; offset < limit; offset += LATENCY_LIMIT) {
471                 int size = limit - offset;
472                 if (size > LATENCY_LIMIT)
473                         size = LATENCY_LIMIT;
474                 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
475                                                         punch_lock);
476                 if (need_resched()) {
477                         shmem_swp_unmap(ptr);
478                         if (*dir) {
479                                 shmem_dir_unmap(*dir);
480                                 *dir = NULL;
481                         }
482                         cond_resched();
483                         ptr = shmem_swp_map(subdir);
484                 }
485         }
486         shmem_swp_unmap(ptr);
487         return freed;
488 }
489
490 static void shmem_free_pages(struct list_head *next)
491 {
492         struct page *page;
493         int freed = 0;
494
495         do {
496                 page = container_of(next, struct page, lru);
497                 next = next->next;
498                 shmem_dir_free(page);
499                 freed++;
500                 if (freed >= LATENCY_LIMIT) {
501                         cond_resched();
502                         freed = 0;
503                 }
504         } while (next);
505 }
506
507 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
508 {
509         struct shmem_inode_info *info = SHMEM_I(inode);
510         unsigned long idx;
511         unsigned long size;
512         unsigned long limit;
513         unsigned long stage;
514         unsigned long diroff;
515         struct page **dir;
516         struct page *topdir;
517         struct page *middir;
518         struct page *subdir;
519         swp_entry_t *ptr;
520         LIST_HEAD(pages_to_free);
521         long nr_pages_to_free = 0;
522         long nr_swaps_freed = 0;
523         int offset;
524         int freed;
525         int punch_hole;
526         spinlock_t *needs_lock;
527         spinlock_t *punch_lock;
528         unsigned long upper_limit;
529
530         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
531         idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
532         if (idx >= info->next_index)
533                 return;
534
535         spin_lock(&info->lock);
536         info->flags |= SHMEM_TRUNCATE;
537         if (likely(end == (loff_t) -1)) {
538                 limit = info->next_index;
539                 upper_limit = SHMEM_MAX_INDEX;
540                 info->next_index = idx;
541                 needs_lock = NULL;
542                 punch_hole = 0;
543         } else {
544                 if (end + 1 >= inode->i_size) { /* we may free a little more */
545                         limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
546                                                         PAGE_CACHE_SHIFT;
547                         upper_limit = SHMEM_MAX_INDEX;
548                 } else {
549                         limit = (end + 1) >> PAGE_CACHE_SHIFT;
550                         upper_limit = limit;
551                 }
552                 needs_lock = &info->lock;
553                 punch_hole = 1;
554         }
555
556         topdir = info->i_indirect;
557         if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
558                 info->i_indirect = NULL;
559                 nr_pages_to_free++;
560                 list_add(&topdir->lru, &pages_to_free);
561         }
562         spin_unlock(&info->lock);
563
564         if (info->swapped && idx < SHMEM_NR_DIRECT) {
565                 ptr = info->i_direct;
566                 size = limit;
567                 if (size > SHMEM_NR_DIRECT)
568                         size = SHMEM_NR_DIRECT;
569                 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
570         }
571
572         /*
573          * If there are no indirect blocks or we are punching a hole
574          * below indirect blocks, nothing to be done.
575          */
576         if (!topdir || limit <= SHMEM_NR_DIRECT)
577                 goto done2;
578
579         /*
580          * The truncation case has already dropped info->lock, and we're safe
581          * because i_size and next_index have already been lowered, preventing
582          * access beyond.  But in the punch_hole case, we still need to take
583          * the lock when updating the swap directory, because there might be
584          * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
585          * shmem_writepage.  However, whenever we find we can remove a whole
586          * directory page (not at the misaligned start or end of the range),
587          * we first NULLify its pointer in the level above, and then have no
588          * need to take the lock when updating its contents: needs_lock and
589          * punch_lock (either pointing to info->lock or NULL) manage this.
590          */
591
592         upper_limit -= SHMEM_NR_DIRECT;
593         limit -= SHMEM_NR_DIRECT;
594         idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
595         offset = idx % ENTRIES_PER_PAGE;
596         idx -= offset;
597
598         dir = shmem_dir_map(topdir);
599         stage = ENTRIES_PER_PAGEPAGE/2;
600         if (idx < ENTRIES_PER_PAGEPAGE/2) {
601                 middir = topdir;
602                 diroff = idx/ENTRIES_PER_PAGE;
603         } else {
604                 dir += ENTRIES_PER_PAGE/2;
605                 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
606                 while (stage <= idx)
607                         stage += ENTRIES_PER_PAGEPAGE;
608                 middir = *dir;
609                 if (*dir) {
610                         diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
611                                 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
612                         if (!diroff && !offset && upper_limit >= stage) {
613                                 if (needs_lock) {
614                                         spin_lock(needs_lock);
615                                         *dir = NULL;
616                                         spin_unlock(needs_lock);
617                                         needs_lock = NULL;
618                                 } else
619                                         *dir = NULL;
620                                 nr_pages_to_free++;
621                                 list_add(&middir->lru, &pages_to_free);
622                         }
623                         shmem_dir_unmap(dir);
624                         dir = shmem_dir_map(middir);
625                 } else {
626                         diroff = 0;
627                         offset = 0;
628                         idx = stage;
629                 }
630         }
631
632         for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
633                 if (unlikely(idx == stage)) {
634                         shmem_dir_unmap(dir);
635                         dir = shmem_dir_map(topdir) +
636                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
637                         while (!*dir) {
638                                 dir++;
639                                 idx += ENTRIES_PER_PAGEPAGE;
640                                 if (idx >= limit)
641                                         goto done1;
642                         }
643                         stage = idx + ENTRIES_PER_PAGEPAGE;
644                         middir = *dir;
645                         if (punch_hole)
646                                 needs_lock = &info->lock;
647                         if (upper_limit >= stage) {
648                                 if (needs_lock) {
649                                         spin_lock(needs_lock);
650                                         *dir = NULL;
651                                         spin_unlock(needs_lock);
652                                         needs_lock = NULL;
653                                 } else
654                                         *dir = NULL;
655                                 nr_pages_to_free++;
656                                 list_add(&middir->lru, &pages_to_free);
657                         }
658                         shmem_dir_unmap(dir);
659                         cond_resched();
660                         dir = shmem_dir_map(middir);
661                         diroff = 0;
662                 }
663                 punch_lock = needs_lock;
664                 subdir = dir[diroff];
665                 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
666                         if (needs_lock) {
667                                 spin_lock(needs_lock);
668                                 dir[diroff] = NULL;
669                                 spin_unlock(needs_lock);
670                                 punch_lock = NULL;
671                         } else
672                                 dir[diroff] = NULL;
673                         nr_pages_to_free++;
674                         list_add(&subdir->lru, &pages_to_free);
675                 }
676                 if (subdir && page_private(subdir) /* has swap entries */) {
677                         size = limit - idx;
678                         if (size > ENTRIES_PER_PAGE)
679                                 size = ENTRIES_PER_PAGE;
680                         freed = shmem_map_and_free_swp(subdir,
681                                         offset, size, &dir, punch_lock);
682                         if (!dir)
683                                 dir = shmem_dir_map(middir);
684                         nr_swaps_freed += freed;
685                         if (offset || punch_lock) {
686                                 spin_lock(&info->lock);
687                                 set_page_private(subdir,
688                                         page_private(subdir) - freed);
689                                 spin_unlock(&info->lock);
690                         } else
691                                 BUG_ON(page_private(subdir) != freed);
692                 }
693                 offset = 0;
694         }
695 done1:
696         shmem_dir_unmap(dir);
697 done2:
698         if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
699                 /*
700                  * Call truncate_inode_pages again: racing shmem_unuse_inode
701                  * may have swizzled a page in from swap since vmtruncate or
702                  * generic_delete_inode did it, before we lowered next_index.
703                  * Also, though shmem_getpage checks i_size before adding to
704                  * cache, no recheck after: so fix the narrow window there too.
705                  *
706                  * Recalling truncate_inode_pages_range and unmap_mapping_range
707                  * every time for punch_hole (which never got a chance to clear
708                  * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
709                  * yet hardly ever necessary: try to optimize them out later.
710                  */
711                 truncate_inode_pages_range(inode->i_mapping, start, end);
712                 if (punch_hole)
713                         unmap_mapping_range(inode->i_mapping, start,
714                                                         end - start, 1);
715         }
716
717         spin_lock(&info->lock);
718         info->flags &= ~SHMEM_TRUNCATE;
719         info->swapped -= nr_swaps_freed;
720         if (nr_pages_to_free)
721                 shmem_free_blocks(inode, nr_pages_to_free);
722         shmem_recalc_inode(inode);
723         spin_unlock(&info->lock);
724
725         /*
726          * Empty swap vector directory pages to be freed?
727          */
728         if (!list_empty(&pages_to_free)) {
729                 pages_to_free.prev->next = NULL;
730                 shmem_free_pages(pages_to_free.next);
731         }
732 }
733
734 static void shmem_truncate(struct inode *inode)
735 {
736         shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
737 }
738
739 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
740 {
741         struct inode *inode = dentry->d_inode;
742         struct page *page = NULL;
743         int error;
744
745         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
746                 if (attr->ia_size < inode->i_size) {
747                         /*
748                          * If truncating down to a partial page, then
749                          * if that page is already allocated, hold it
750                          * in memory until the truncation is over, so
751                          * truncate_partial_page cannnot miss it were
752                          * it assigned to swap.
753                          */
754                         if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
755                                 (void) shmem_getpage(inode,
756                                         attr->ia_size>>PAGE_CACHE_SHIFT,
757                                                 &page, SGP_READ, NULL);
758                                 if (page)
759                                         unlock_page(page);
760                         }
761                         /*
762                          * Reset SHMEM_PAGEIN flag so that shmem_truncate can
763                          * detect if any pages might have been added to cache
764                          * after truncate_inode_pages.  But we needn't bother
765                          * if it's being fully truncated to zero-length: the
766                          * nrpages check is efficient enough in that case.
767                          */
768                         if (attr->ia_size) {
769                                 struct shmem_inode_info *info = SHMEM_I(inode);
770                                 spin_lock(&info->lock);
771                                 info->flags &= ~SHMEM_PAGEIN;
772                                 spin_unlock(&info->lock);
773                         }
774                 }
775         }
776
777         error = inode_change_ok(inode, attr);
778         if (!error)
779                 error = inode_setattr(inode, attr);
780 #ifdef CONFIG_TMPFS_POSIX_ACL
781         if (!error && (attr->ia_valid & ATTR_MODE))
782                 error = generic_acl_chmod(inode, &shmem_acl_ops);
783 #endif
784         if (page)
785                 page_cache_release(page);
786         return error;
787 }
788
789 static void shmem_delete_inode(struct inode *inode)
790 {
791         struct shmem_inode_info *info = SHMEM_I(inode);
792
793         if (inode->i_op->truncate == shmem_truncate) {
794                 truncate_inode_pages(inode->i_mapping, 0);
795                 shmem_unacct_size(info->flags, inode->i_size);
796                 inode->i_size = 0;
797                 shmem_truncate(inode);
798                 if (!list_empty(&info->swaplist)) {
799                         mutex_lock(&shmem_swaplist_mutex);
800                         list_del_init(&info->swaplist);
801                         mutex_unlock(&shmem_swaplist_mutex);
802                 }
803         }
804         BUG_ON(inode->i_blocks);
805         shmem_free_inode(inode->i_sb);
806         clear_inode(inode);
807 }
808
809 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
810 {
811         swp_entry_t *ptr;
812
813         for (ptr = dir; ptr < edir; ptr++) {
814                 if (ptr->val == entry.val)
815                         return ptr - dir;
816         }
817         return -1;
818 }
819
820 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
821 {
822         struct inode *inode;
823         unsigned long idx;
824         unsigned long size;
825         unsigned long limit;
826         unsigned long stage;
827         struct page **dir;
828         struct page *subdir;
829         swp_entry_t *ptr;
830         int offset;
831         int error;
832
833         idx = 0;
834         ptr = info->i_direct;
835         spin_lock(&info->lock);
836         limit = info->next_index;
837         size = limit;
838         if (size > SHMEM_NR_DIRECT)
839                 size = SHMEM_NR_DIRECT;
840         offset = shmem_find_swp(entry, ptr, ptr+size);
841         if (offset >= 0) {
842                 shmem_swp_balance_unmap();
843                 goto found;
844         }
845         if (!info->i_indirect)
846                 goto lost2;
847
848         dir = shmem_dir_map(info->i_indirect);
849         stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
850
851         for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
852                 if (unlikely(idx == stage)) {
853                         shmem_dir_unmap(dir-1);
854                         if (cond_resched_lock(&info->lock)) {
855                                 /* check it has not been truncated */
856                                 if (limit > info->next_index) {
857                                         limit = info->next_index;
858                                         if (idx >= limit)
859                                                 goto lost2;
860                                 }
861                         }
862                         dir = shmem_dir_map(info->i_indirect) +
863                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
864                         while (!*dir) {
865                                 dir++;
866                                 idx += ENTRIES_PER_PAGEPAGE;
867                                 if (idx >= limit)
868                                         goto lost1;
869                         }
870                         stage = idx + ENTRIES_PER_PAGEPAGE;
871                         subdir = *dir;
872                         shmem_dir_unmap(dir);
873                         dir = shmem_dir_map(subdir);
874                 }
875                 subdir = *dir;
876                 if (subdir && page_private(subdir)) {
877                         ptr = shmem_swp_map(subdir);
878                         size = limit - idx;
879                         if (size > ENTRIES_PER_PAGE)
880                                 size = ENTRIES_PER_PAGE;
881                         offset = shmem_find_swp(entry, ptr, ptr+size);
882                         if (offset >= 0) {
883                                 shmem_dir_unmap(dir);
884                                 goto found;
885                         }
886                         shmem_swp_unmap(ptr);
887                 }
888         }
889 lost1:
890         shmem_dir_unmap(dir-1);
891 lost2:
892         spin_unlock(&info->lock);
893         return 0;
894 found:
895         idx += offset;
896         inode = &info->vfs_inode;
897         error = add_to_page_cache(page, inode->i_mapping, idx, GFP_ATOMIC);
898         if (error == -EEXIST) {
899                 struct page *filepage = find_get_page(inode->i_mapping, idx);
900                 if (filepage) {
901                         /*
902                          * There might be a more uptodate page coming down
903                          * from a stacked writepage: forget our swappage if so.
904                          */
905                         if (PageUptodate(filepage))
906                                 error = 0;
907                         page_cache_release(filepage);
908                 }
909         }
910         if (!error) {
911                 delete_from_swap_cache(page);
912                 set_page_dirty(page);
913                 info->flags |= SHMEM_PAGEIN;
914                 shmem_swp_set(info, ptr + offset, 0);
915         }
916         shmem_swp_unmap(ptr);
917         spin_unlock(&info->lock);
918         /*
919          * Decrement swap count even when the entry is left behind:
920          * try_to_unuse will skip over mms, then reincrement count.
921          */
922         swap_free(entry);
923         return 1;
924 }
925
926 /*
927  * shmem_unuse() search for an eventually swapped out shmem page.
928  */
929 int shmem_unuse(swp_entry_t entry, struct page *page)
930 {
931         struct list_head *p, *next;
932         struct shmem_inode_info *info;
933         int found = 0;
934
935         mutex_lock(&shmem_swaplist_mutex);
936         list_for_each_safe(p, next, &shmem_swaplist) {
937                 info = list_entry(p, struct shmem_inode_info, swaplist);
938                 if (!info->swapped)
939                         list_del_init(&info->swaplist);
940                 else if (shmem_unuse_inode(info, entry, page)) {
941                         /* move head to start search for next from here */
942                         list_move_tail(&shmem_swaplist, &info->swaplist);
943                         found = 1;
944                         break;
945                 }
946                 cond_resched();
947         }
948         mutex_unlock(&shmem_swaplist_mutex);
949         return found;
950 }
951
952 /*
953  * Move the page from the page cache to the swap cache.
954  */
955 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
956 {
957         struct shmem_inode_info *info;
958         swp_entry_t *entry, swap;
959         struct address_space *mapping;
960         unsigned long index;
961         struct inode *inode;
962
963         BUG_ON(!PageLocked(page));
964         mapping = page->mapping;
965         index = page->index;
966         inode = mapping->host;
967         info = SHMEM_I(inode);
968         if (info->flags & VM_LOCKED)
969                 goto redirty;
970         if (!total_swap_pages)
971                 goto redirty;
972
973         /*
974          * shmem_backing_dev_info's capabilities prevent regular writeback or
975          * sync from ever calling shmem_writepage; but a stacking filesystem
976          * may use the ->writepage of its underlying filesystem, in which case
977          * tmpfs should write out to swap only in response to memory pressure,
978          * and not for pdflush or sync.  However, in those cases, we do still
979          * want to check if there's a redundant swappage to be discarded.
980          */
981         if (wbc->for_reclaim)
982                 swap = get_swap_page();
983         else
984                 swap.val = 0;
985
986         spin_lock(&info->lock);
987         if (index >= info->next_index) {
988                 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
989                 goto unlock;
990         }
991         entry = shmem_swp_entry(info, index, NULL);
992         if (entry->val) {
993                 /*
994                  * The more uptodate page coming down from a stacked
995                  * writepage should replace our old swappage.
996                  */
997                 free_swap_and_cache(*entry);
998                 shmem_swp_set(info, entry, 0);
999         }
1000         shmem_recalc_inode(inode);
1001
1002         if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1003                 remove_from_page_cache(page);
1004                 shmem_swp_set(info, entry, swap.val);
1005                 shmem_swp_unmap(entry);
1006                 spin_unlock(&info->lock);
1007                 if (list_empty(&info->swaplist)) {
1008                         mutex_lock(&shmem_swaplist_mutex);
1009                         /* move instead of add in case we're racing */
1010                         list_move_tail(&info->swaplist, &shmem_swaplist);
1011                         mutex_unlock(&shmem_swaplist_mutex);
1012                 }
1013                 swap_duplicate(swap);
1014                 BUG_ON(page_mapped(page));
1015                 page_cache_release(page);       /* pagecache ref */
1016                 set_page_dirty(page);
1017                 unlock_page(page);
1018                 return 0;
1019         }
1020
1021         shmem_swp_unmap(entry);
1022 unlock:
1023         spin_unlock(&info->lock);
1024         swap_free(swap);
1025 redirty:
1026         set_page_dirty(page);
1027         if (wbc->for_reclaim)
1028                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1029         unlock_page(page);
1030         return 0;
1031 }
1032
1033 #ifdef CONFIG_NUMA
1034 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1035 {
1036         char *nodelist = strchr(value, ':');
1037         int err = 1;
1038
1039         if (nodelist) {
1040                 /* NUL-terminate policy string */
1041                 *nodelist++ = '\0';
1042                 if (nodelist_parse(nodelist, *policy_nodes))
1043                         goto out;
1044                 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1045                         goto out;
1046         }
1047         if (!strcmp(value, "default")) {
1048                 *policy = MPOL_DEFAULT;
1049                 /* Don't allow a nodelist */
1050                 if (!nodelist)
1051                         err = 0;
1052         } else if (!strcmp(value, "prefer")) {
1053                 *policy = MPOL_PREFERRED;
1054                 /* Insist on a nodelist of one node only */
1055                 if (nodelist) {
1056                         char *rest = nodelist;
1057                         while (isdigit(*rest))
1058                                 rest++;
1059                         if (!*rest)
1060                                 err = 0;
1061                 }
1062         } else if (!strcmp(value, "bind")) {
1063                 *policy = MPOL_BIND;
1064                 /* Insist on a nodelist */
1065                 if (nodelist)
1066                         err = 0;
1067         } else if (!strcmp(value, "interleave")) {
1068                 *policy = MPOL_INTERLEAVE;
1069                 /*
1070                  * Default to online nodes with memory if no nodelist
1071                  */
1072                 if (!nodelist)
1073                         *policy_nodes = node_states[N_HIGH_MEMORY];
1074                 err = 0;
1075         }
1076 out:
1077         /* Restore string for error message */
1078         if (nodelist)
1079                 *--nodelist = ':';
1080         return err;
1081 }
1082
1083 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1084                         struct shmem_inode_info *info, unsigned long idx)
1085 {
1086         struct vm_area_struct pvma;
1087         struct page *page;
1088
1089         /* Create a pseudo vma that just contains the policy */
1090         pvma.vm_start = 0;
1091         pvma.vm_pgoff = idx;
1092         pvma.vm_ops = NULL;
1093         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1094         page = swapin_readahead(entry, gfp, &pvma, 0);
1095         mpol_free(pvma.vm_policy);
1096         return page;
1097 }
1098
1099 static struct page *shmem_alloc_page(gfp_t gfp,
1100                         struct shmem_inode_info *info, unsigned long idx)
1101 {
1102         struct vm_area_struct pvma;
1103         struct page *page;
1104
1105         /* Create a pseudo vma that just contains the policy */
1106         pvma.vm_start = 0;
1107         pvma.vm_pgoff = idx;
1108         pvma.vm_ops = NULL;
1109         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1110         page = alloc_page_vma(gfp, &pvma, 0);
1111         mpol_free(pvma.vm_policy);
1112         return page;
1113 }
1114 #else
1115 static inline int shmem_parse_mpol(char *value, int *policy,
1116                                                 nodemask_t *policy_nodes)
1117 {
1118         return 1;
1119 }
1120
1121 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1122                         struct shmem_inode_info *info, unsigned long idx)
1123 {
1124         return swapin_readahead(entry, gfp, NULL, 0);
1125 }
1126
1127 static inline struct page *shmem_alloc_page(gfp_t gfp,
1128                         struct shmem_inode_info *info, unsigned long idx)
1129 {
1130         return alloc_page(gfp);
1131 }
1132 #endif
1133
1134 /*
1135  * shmem_getpage - either get the page from swap or allocate a new one
1136  *
1137  * If we allocate a new one we do not mark it dirty. That's up to the
1138  * vm. If we swap it in we mark it dirty since we also free the swap
1139  * entry since a page cannot live in both the swap and page cache
1140  */
1141 static int shmem_getpage(struct inode *inode, unsigned long idx,
1142                         struct page **pagep, enum sgp_type sgp, int *type)
1143 {
1144         struct address_space *mapping = inode->i_mapping;
1145         struct shmem_inode_info *info = SHMEM_I(inode);
1146         struct shmem_sb_info *sbinfo;
1147         struct page *filepage = *pagep;
1148         struct page *swappage;
1149         swp_entry_t *entry;
1150         swp_entry_t swap;
1151         gfp_t gfp;
1152         int error;
1153
1154         if (idx >= SHMEM_MAX_INDEX)
1155                 return -EFBIG;
1156
1157         if (type)
1158                 *type = 0;
1159
1160         /*
1161          * Normally, filepage is NULL on entry, and either found
1162          * uptodate immediately, or allocated and zeroed, or read
1163          * in under swappage, which is then assigned to filepage.
1164          * But shmem_readpage (required for splice) passes in a locked
1165          * filepage, which may be found not uptodate by other callers
1166          * too, and may need to be copied from the swappage read in.
1167          */
1168 repeat:
1169         if (!filepage)
1170                 filepage = find_lock_page(mapping, idx);
1171         if (filepage && PageUptodate(filepage))
1172                 goto done;
1173         error = 0;
1174         gfp = mapping_gfp_mask(mapping);
1175
1176         spin_lock(&info->lock);
1177         shmem_recalc_inode(inode);
1178         entry = shmem_swp_alloc(info, idx, sgp);
1179         if (IS_ERR(entry)) {
1180                 spin_unlock(&info->lock);
1181                 error = PTR_ERR(entry);
1182                 goto failed;
1183         }
1184         swap = *entry;
1185
1186         if (swap.val) {
1187                 /* Look it up and read it in.. */
1188                 swappage = lookup_swap_cache(swap);
1189                 if (!swappage) {
1190                         shmem_swp_unmap(entry);
1191                         /* here we actually do the io */
1192                         if (type && !(*type & VM_FAULT_MAJOR)) {
1193                                 __count_vm_event(PGMAJFAULT);
1194                                 *type |= VM_FAULT_MAJOR;
1195                         }
1196                         spin_unlock(&info->lock);
1197                         swappage = shmem_swapin(swap, gfp, info, idx);
1198                         if (!swappage) {
1199                                 spin_lock(&info->lock);
1200                                 entry = shmem_swp_alloc(info, idx, sgp);
1201                                 if (IS_ERR(entry))
1202                                         error = PTR_ERR(entry);
1203                                 else {
1204                                         if (entry->val == swap.val)
1205                                                 error = -ENOMEM;
1206                                         shmem_swp_unmap(entry);
1207                                 }
1208                                 spin_unlock(&info->lock);
1209                                 if (error)
1210                                         goto failed;
1211                                 goto repeat;
1212                         }
1213                         wait_on_page_locked(swappage);
1214                         page_cache_release(swappage);
1215                         goto repeat;
1216                 }
1217
1218                 /* We have to do this with page locked to prevent races */
1219                 if (TestSetPageLocked(swappage)) {
1220                         shmem_swp_unmap(entry);
1221                         spin_unlock(&info->lock);
1222                         wait_on_page_locked(swappage);
1223                         page_cache_release(swappage);
1224                         goto repeat;
1225                 }
1226                 if (PageWriteback(swappage)) {
1227                         shmem_swp_unmap(entry);
1228                         spin_unlock(&info->lock);
1229                         wait_on_page_writeback(swappage);
1230                         unlock_page(swappage);
1231                         page_cache_release(swappage);
1232                         goto repeat;
1233                 }
1234                 if (!PageUptodate(swappage)) {
1235                         shmem_swp_unmap(entry);
1236                         spin_unlock(&info->lock);
1237                         unlock_page(swappage);
1238                         page_cache_release(swappage);
1239                         error = -EIO;
1240                         goto failed;
1241                 }
1242
1243                 if (filepage) {
1244                         shmem_swp_set(info, entry, 0);
1245                         shmem_swp_unmap(entry);
1246                         delete_from_swap_cache(swappage);
1247                         spin_unlock(&info->lock);
1248                         copy_highpage(filepage, swappage);
1249                         unlock_page(swappage);
1250                         page_cache_release(swappage);
1251                         flush_dcache_page(filepage);
1252                         SetPageUptodate(filepage);
1253                         set_page_dirty(filepage);
1254                         swap_free(swap);
1255                 } else if (!(error = add_to_page_cache(
1256                                 swappage, mapping, idx, GFP_ATOMIC))) {
1257                         info->flags |= SHMEM_PAGEIN;
1258                         shmem_swp_set(info, entry, 0);
1259                         shmem_swp_unmap(entry);
1260                         delete_from_swap_cache(swappage);
1261                         spin_unlock(&info->lock);
1262                         filepage = swappage;
1263                         set_page_dirty(filepage);
1264                         swap_free(swap);
1265                 } else {
1266                         shmem_swp_unmap(entry);
1267                         spin_unlock(&info->lock);
1268                         unlock_page(swappage);
1269                         page_cache_release(swappage);
1270                         if (error == -ENOMEM) {
1271                                 /* let kswapd refresh zone for GFP_ATOMICs */
1272                                 congestion_wait(WRITE, HZ/50);
1273                         }
1274                         goto repeat;
1275                 }
1276         } else if (sgp == SGP_READ && !filepage) {
1277                 shmem_swp_unmap(entry);
1278                 filepage = find_get_page(mapping, idx);
1279                 if (filepage &&
1280                     (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1281                         spin_unlock(&info->lock);
1282                         wait_on_page_locked(filepage);
1283                         page_cache_release(filepage);
1284                         filepage = NULL;
1285                         goto repeat;
1286                 }
1287                 spin_unlock(&info->lock);
1288         } else {
1289                 shmem_swp_unmap(entry);
1290                 sbinfo = SHMEM_SB(inode->i_sb);
1291                 if (sbinfo->max_blocks) {
1292                         spin_lock(&sbinfo->stat_lock);
1293                         if (sbinfo->free_blocks == 0 ||
1294                             shmem_acct_block(info->flags)) {
1295                                 spin_unlock(&sbinfo->stat_lock);
1296                                 spin_unlock(&info->lock);
1297                                 error = -ENOSPC;
1298                                 goto failed;
1299                         }
1300                         sbinfo->free_blocks--;
1301                         inode->i_blocks += BLOCKS_PER_PAGE;
1302                         spin_unlock(&sbinfo->stat_lock);
1303                 } else if (shmem_acct_block(info->flags)) {
1304                         spin_unlock(&info->lock);
1305                         error = -ENOSPC;
1306                         goto failed;
1307                 }
1308
1309                 if (!filepage) {
1310                         spin_unlock(&info->lock);
1311                         filepage = shmem_alloc_page(gfp, info, idx);
1312                         if (!filepage) {
1313                                 shmem_unacct_blocks(info->flags, 1);
1314                                 shmem_free_blocks(inode, 1);
1315                                 error = -ENOMEM;
1316                                 goto failed;
1317                         }
1318
1319                         spin_lock(&info->lock);
1320                         entry = shmem_swp_alloc(info, idx, sgp);
1321                         if (IS_ERR(entry))
1322                                 error = PTR_ERR(entry);
1323                         else {
1324                                 swap = *entry;
1325                                 shmem_swp_unmap(entry);
1326                         }
1327                         if (error || swap.val || 0 != add_to_page_cache_lru(
1328                                         filepage, mapping, idx, GFP_ATOMIC)) {
1329                                 spin_unlock(&info->lock);
1330                                 page_cache_release(filepage);
1331                                 shmem_unacct_blocks(info->flags, 1);
1332                                 shmem_free_blocks(inode, 1);
1333                                 filepage = NULL;
1334                                 if (error)
1335                                         goto failed;
1336                                 goto repeat;
1337                         }
1338                         info->flags |= SHMEM_PAGEIN;
1339                 }
1340
1341                 info->alloced++;
1342                 spin_unlock(&info->lock);
1343                 clear_highpage(filepage);
1344                 flush_dcache_page(filepage);
1345                 SetPageUptodate(filepage);
1346                 if (sgp == SGP_DIRTY)
1347                         set_page_dirty(filepage);
1348         }
1349 done:
1350         *pagep = filepage;
1351         return 0;
1352
1353 failed:
1354         if (*pagep != filepage) {
1355                 unlock_page(filepage);
1356                 page_cache_release(filepage);
1357         }
1358         return error;
1359 }
1360
1361 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1362 {
1363         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1364         int error;
1365         int ret;
1366
1367         if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1368                 return VM_FAULT_SIGBUS;
1369
1370         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1371         if (error)
1372                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1373
1374         mark_page_accessed(vmf->page);
1375         return ret | VM_FAULT_LOCKED;
1376 }
1377
1378 #ifdef CONFIG_NUMA
1379 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1380 {
1381         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1382         return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1383 }
1384
1385 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1386                                           unsigned long addr)
1387 {
1388         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1389         unsigned long idx;
1390
1391         idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1392         return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1393 }
1394 #endif
1395
1396 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1397 {
1398         struct inode *inode = file->f_path.dentry->d_inode;
1399         struct shmem_inode_info *info = SHMEM_I(inode);
1400         int retval = -ENOMEM;
1401
1402         spin_lock(&info->lock);
1403         if (lock && !(info->flags & VM_LOCKED)) {
1404                 if (!user_shm_lock(inode->i_size, user))
1405                         goto out_nomem;
1406                 info->flags |= VM_LOCKED;
1407         }
1408         if (!lock && (info->flags & VM_LOCKED) && user) {
1409                 user_shm_unlock(inode->i_size, user);
1410                 info->flags &= ~VM_LOCKED;
1411         }
1412         retval = 0;
1413 out_nomem:
1414         spin_unlock(&info->lock);
1415         return retval;
1416 }
1417
1418 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1419 {
1420         file_accessed(file);
1421         vma->vm_ops = &shmem_vm_ops;
1422         vma->vm_flags |= VM_CAN_NONLINEAR;
1423         return 0;
1424 }
1425
1426 static struct inode *
1427 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1428 {
1429         struct inode *inode;
1430         struct shmem_inode_info *info;
1431         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1432
1433         if (shmem_reserve_inode(sb))
1434                 return NULL;
1435
1436         inode = new_inode(sb);
1437         if (inode) {
1438                 inode->i_mode = mode;
1439                 inode->i_uid = current->fsuid;
1440                 inode->i_gid = current->fsgid;
1441                 inode->i_blocks = 0;
1442                 inode->i_mapping->a_ops = &shmem_aops;
1443                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1444                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1445                 inode->i_generation = get_seconds();
1446                 info = SHMEM_I(inode);
1447                 memset(info, 0, (char *)inode - (char *)info);
1448                 spin_lock_init(&info->lock);
1449                 INIT_LIST_HEAD(&info->swaplist);
1450
1451                 switch (mode & S_IFMT) {
1452                 default:
1453                         inode->i_op = &shmem_special_inode_operations;
1454                         init_special_inode(inode, mode, dev);
1455                         break;
1456                 case S_IFREG:
1457                         inode->i_op = &shmem_inode_operations;
1458                         inode->i_fop = &shmem_file_operations;
1459                         mpol_shared_policy_init(&info->policy, sbinfo->policy,
1460                                                         &sbinfo->policy_nodes);
1461                         break;
1462                 case S_IFDIR:
1463                         inc_nlink(inode);
1464                         /* Some things misbehave if size == 0 on a directory */
1465                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1466                         inode->i_op = &shmem_dir_inode_operations;
1467                         inode->i_fop = &simple_dir_operations;
1468                         break;
1469                 case S_IFLNK:
1470                         /*
1471                          * Must not load anything in the rbtree,
1472                          * mpol_free_shared_policy will not be called.
1473                          */
1474                         mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1475                                                 NULL);
1476                         break;
1477                 }
1478         } else
1479                 shmem_free_inode(sb);
1480         return inode;
1481 }
1482
1483 #ifdef CONFIG_TMPFS
1484 static const struct inode_operations shmem_symlink_inode_operations;
1485 static const struct inode_operations shmem_symlink_inline_operations;
1486
1487 /*
1488  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1489  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1490  * below the loop driver, in the generic fashion that many filesystems support.
1491  */
1492 static int shmem_readpage(struct file *file, struct page *page)
1493 {
1494         struct inode *inode = page->mapping->host;
1495         int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1496         unlock_page(page);
1497         return error;
1498 }
1499
1500 static int
1501 shmem_write_begin(struct file *file, struct address_space *mapping,
1502                         loff_t pos, unsigned len, unsigned flags,
1503                         struct page **pagep, void **fsdata)
1504 {
1505         struct inode *inode = mapping->host;
1506         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1507         *pagep = NULL;
1508         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1509 }
1510
1511 static int
1512 shmem_write_end(struct file *file, struct address_space *mapping,
1513                         loff_t pos, unsigned len, unsigned copied,
1514                         struct page *page, void *fsdata)
1515 {
1516         struct inode *inode = mapping->host;
1517
1518         if (pos + copied > inode->i_size)
1519                 i_size_write(inode, pos + copied);
1520
1521         unlock_page(page);
1522         set_page_dirty(page);
1523         page_cache_release(page);
1524
1525         return copied;
1526 }
1527
1528 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1529 {
1530         struct inode *inode = filp->f_path.dentry->d_inode;
1531         struct address_space *mapping = inode->i_mapping;
1532         unsigned long index, offset;
1533         enum sgp_type sgp = SGP_READ;
1534
1535         /*
1536          * Might this read be for a stacking filesystem?  Then when reading
1537          * holes of a sparse file, we actually need to allocate those pages,
1538          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1539          */
1540         if (segment_eq(get_fs(), KERNEL_DS))
1541                 sgp = SGP_DIRTY;
1542
1543         index = *ppos >> PAGE_CACHE_SHIFT;
1544         offset = *ppos & ~PAGE_CACHE_MASK;
1545
1546         for (;;) {
1547                 struct page *page = NULL;
1548                 unsigned long end_index, nr, ret;
1549                 loff_t i_size = i_size_read(inode);
1550
1551                 end_index = i_size >> PAGE_CACHE_SHIFT;
1552                 if (index > end_index)
1553                         break;
1554                 if (index == end_index) {
1555                         nr = i_size & ~PAGE_CACHE_MASK;
1556                         if (nr <= offset)
1557                                 break;
1558                 }
1559
1560                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1561                 if (desc->error) {
1562                         if (desc->error == -EINVAL)
1563                                 desc->error = 0;
1564                         break;
1565                 }
1566                 if (page)
1567                         unlock_page(page);
1568
1569                 /*
1570                  * We must evaluate after, since reads (unlike writes)
1571                  * are called without i_mutex protection against truncate
1572                  */
1573                 nr = PAGE_CACHE_SIZE;
1574                 i_size = i_size_read(inode);
1575                 end_index = i_size >> PAGE_CACHE_SHIFT;
1576                 if (index == end_index) {
1577                         nr = i_size & ~PAGE_CACHE_MASK;
1578                         if (nr <= offset) {
1579                                 if (page)
1580                                         page_cache_release(page);
1581                                 break;
1582                         }
1583                 }
1584                 nr -= offset;
1585
1586                 if (page) {
1587                         /*
1588                          * If users can be writing to this page using arbitrary
1589                          * virtual addresses, take care about potential aliasing
1590                          * before reading the page on the kernel side.
1591                          */
1592                         if (mapping_writably_mapped(mapping))
1593                                 flush_dcache_page(page);
1594                         /*
1595                          * Mark the page accessed if we read the beginning.
1596                          */
1597                         if (!offset)
1598                                 mark_page_accessed(page);
1599                 } else {
1600                         page = ZERO_PAGE(0);
1601                         page_cache_get(page);
1602                 }
1603
1604                 /*
1605                  * Ok, we have the page, and it's up-to-date, so
1606                  * now we can copy it to user space...
1607                  *
1608                  * The actor routine returns how many bytes were actually used..
1609                  * NOTE! This may not be the same as how much of a user buffer
1610                  * we filled up (we may be padding etc), so we can only update
1611                  * "pos" here (the actor routine has to update the user buffer
1612                  * pointers and the remaining count).
1613                  */
1614                 ret = actor(desc, page, offset, nr);
1615                 offset += ret;
1616                 index += offset >> PAGE_CACHE_SHIFT;
1617                 offset &= ~PAGE_CACHE_MASK;
1618
1619                 page_cache_release(page);
1620                 if (ret != nr || !desc->count)
1621                         break;
1622
1623                 cond_resched();
1624         }
1625
1626         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1627         file_accessed(filp);
1628 }
1629
1630 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1631 {
1632         read_descriptor_t desc;
1633
1634         if ((ssize_t) count < 0)
1635                 return -EINVAL;
1636         if (!access_ok(VERIFY_WRITE, buf, count))
1637                 return -EFAULT;
1638         if (!count)
1639                 return 0;
1640
1641         desc.written = 0;
1642         desc.count = count;
1643         desc.arg.buf = buf;
1644         desc.error = 0;
1645
1646         do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1647         if (desc.written)
1648                 return desc.written;
1649         return desc.error;
1650 }
1651
1652 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1653 {
1654         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1655
1656         buf->f_type = TMPFS_MAGIC;
1657         buf->f_bsize = PAGE_CACHE_SIZE;
1658         buf->f_namelen = NAME_MAX;
1659         spin_lock(&sbinfo->stat_lock);
1660         if (sbinfo->max_blocks) {
1661                 buf->f_blocks = sbinfo->max_blocks;
1662                 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1663         }
1664         if (sbinfo->max_inodes) {
1665                 buf->f_files = sbinfo->max_inodes;
1666                 buf->f_ffree = sbinfo->free_inodes;
1667         }
1668         /* else leave those fields 0 like simple_statfs */
1669         spin_unlock(&sbinfo->stat_lock);
1670         return 0;
1671 }
1672
1673 /*
1674  * File creation. Allocate an inode, and we're done..
1675  */
1676 static int
1677 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1678 {
1679         struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1680         int error = -ENOSPC;
1681
1682         if (inode) {
1683                 error = security_inode_init_security(inode, dir, NULL, NULL,
1684                                                      NULL);
1685                 if (error) {
1686                         if (error != -EOPNOTSUPP) {
1687                                 iput(inode);
1688                                 return error;
1689                         }
1690                 }
1691                 error = shmem_acl_init(inode, dir);
1692                 if (error) {
1693                         iput(inode);
1694                         return error;
1695                 }
1696                 if (dir->i_mode & S_ISGID) {
1697                         inode->i_gid = dir->i_gid;
1698                         if (S_ISDIR(mode))
1699                                 inode->i_mode |= S_ISGID;
1700                 }
1701                 dir->i_size += BOGO_DIRENT_SIZE;
1702                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1703                 d_instantiate(dentry, inode);
1704                 dget(dentry); /* Extra count - pin the dentry in core */
1705         }
1706         return error;
1707 }
1708
1709 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1710 {
1711         int error;
1712
1713         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1714                 return error;
1715         inc_nlink(dir);
1716         return 0;
1717 }
1718
1719 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1720                 struct nameidata *nd)
1721 {
1722         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1723 }
1724
1725 /*
1726  * Link a file..
1727  */
1728 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1729 {
1730         struct inode *inode = old_dentry->d_inode;
1731         int ret;
1732
1733         /*
1734          * No ordinary (disk based) filesystem counts links as inodes;
1735          * but each new link needs a new dentry, pinning lowmem, and
1736          * tmpfs dentries cannot be pruned until they are unlinked.
1737          */
1738         ret = shmem_reserve_inode(inode->i_sb);
1739         if (ret)
1740                 goto out;
1741
1742         dir->i_size += BOGO_DIRENT_SIZE;
1743         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1744         inc_nlink(inode);
1745         atomic_inc(&inode->i_count);    /* New dentry reference */
1746         dget(dentry);           /* Extra pinning count for the created dentry */
1747         d_instantiate(dentry, inode);
1748 out:
1749         return ret;
1750 }
1751
1752 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1753 {
1754         struct inode *inode = dentry->d_inode;
1755
1756         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1757                 shmem_free_inode(inode->i_sb);
1758
1759         dir->i_size -= BOGO_DIRENT_SIZE;
1760         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1761         drop_nlink(inode);
1762         dput(dentry);   /* Undo the count from "create" - this does all the work */
1763         return 0;
1764 }
1765
1766 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1767 {
1768         if (!simple_empty(dentry))
1769                 return -ENOTEMPTY;
1770
1771         drop_nlink(dentry->d_inode);
1772         drop_nlink(dir);
1773         return shmem_unlink(dir, dentry);
1774 }
1775
1776 /*
1777  * The VFS layer already does all the dentry stuff for rename,
1778  * we just have to decrement the usage count for the target if
1779  * it exists so that the VFS layer correctly free's it when it
1780  * gets overwritten.
1781  */
1782 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1783 {
1784         struct inode *inode = old_dentry->d_inode;
1785         int they_are_dirs = S_ISDIR(inode->i_mode);
1786
1787         if (!simple_empty(new_dentry))
1788                 return -ENOTEMPTY;
1789
1790         if (new_dentry->d_inode) {
1791                 (void) shmem_unlink(new_dir, new_dentry);
1792                 if (they_are_dirs)
1793                         drop_nlink(old_dir);
1794         } else if (they_are_dirs) {
1795                 drop_nlink(old_dir);
1796                 inc_nlink(new_dir);
1797         }
1798
1799         old_dir->i_size -= BOGO_DIRENT_SIZE;
1800         new_dir->i_size += BOGO_DIRENT_SIZE;
1801         old_dir->i_ctime = old_dir->i_mtime =
1802         new_dir->i_ctime = new_dir->i_mtime =
1803         inode->i_ctime = CURRENT_TIME;
1804         return 0;
1805 }
1806
1807 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1808 {
1809         int error;
1810         int len;
1811         struct inode *inode;
1812         struct page *page = NULL;
1813         char *kaddr;
1814         struct shmem_inode_info *info;
1815
1816         len = strlen(symname) + 1;
1817         if (len > PAGE_CACHE_SIZE)
1818                 return -ENAMETOOLONG;
1819
1820         inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1821         if (!inode)
1822                 return -ENOSPC;
1823
1824         error = security_inode_init_security(inode, dir, NULL, NULL,
1825                                              NULL);
1826         if (error) {
1827                 if (error != -EOPNOTSUPP) {
1828                         iput(inode);
1829                         return error;
1830                 }
1831                 error = 0;
1832         }
1833
1834         info = SHMEM_I(inode);
1835         inode->i_size = len-1;
1836         if (len <= (char *)inode - (char *)info) {
1837                 /* do it inline */
1838                 memcpy(info, symname, len);
1839                 inode->i_op = &shmem_symlink_inline_operations;
1840         } else {
1841                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1842                 if (error) {
1843                         iput(inode);
1844                         return error;
1845                 }
1846                 unlock_page(page);
1847                 inode->i_op = &shmem_symlink_inode_operations;
1848                 kaddr = kmap_atomic(page, KM_USER0);
1849                 memcpy(kaddr, symname, len);
1850                 kunmap_atomic(kaddr, KM_USER0);
1851                 set_page_dirty(page);
1852                 page_cache_release(page);
1853         }
1854         if (dir->i_mode & S_ISGID)
1855                 inode->i_gid = dir->i_gid;
1856         dir->i_size += BOGO_DIRENT_SIZE;
1857         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1858         d_instantiate(dentry, inode);
1859         dget(dentry);
1860         return 0;
1861 }
1862
1863 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1864 {
1865         nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1866         return NULL;
1867 }
1868
1869 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1870 {
1871         struct page *page = NULL;
1872         int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1873         nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1874         if (page)
1875                 unlock_page(page);
1876         return page;
1877 }
1878
1879 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1880 {
1881         if (!IS_ERR(nd_get_link(nd))) {
1882                 struct page *page = cookie;
1883                 kunmap(page);
1884                 mark_page_accessed(page);
1885                 page_cache_release(page);
1886         }
1887 }
1888
1889 static const struct inode_operations shmem_symlink_inline_operations = {
1890         .readlink       = generic_readlink,
1891         .follow_link    = shmem_follow_link_inline,
1892 };
1893
1894 static const struct inode_operations shmem_symlink_inode_operations = {
1895         .truncate       = shmem_truncate,
1896         .readlink       = generic_readlink,
1897         .follow_link    = shmem_follow_link,
1898         .put_link       = shmem_put_link,
1899 };
1900
1901 #ifdef CONFIG_TMPFS_POSIX_ACL
1902 /**
1903  * Superblocks without xattr inode operations will get security.* xattr
1904  * support from the VFS "for free". As soon as we have any other xattrs
1905  * like ACLs, we also need to implement the security.* handlers at
1906  * filesystem level, though.
1907  */
1908
1909 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1910                                         size_t list_len, const char *name,
1911                                         size_t name_len)
1912 {
1913         return security_inode_listsecurity(inode, list, list_len);
1914 }
1915
1916 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1917                                     void *buffer, size_t size)
1918 {
1919         if (strcmp(name, "") == 0)
1920                 return -EINVAL;
1921         return security_inode_getsecurity(inode, name, buffer, size,
1922                                           -EOPNOTSUPP);
1923 }
1924
1925 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1926                                     const void *value, size_t size, int flags)
1927 {
1928         if (strcmp(name, "") == 0)
1929                 return -EINVAL;
1930         return security_inode_setsecurity(inode, name, value, size, flags);
1931 }
1932
1933 static struct xattr_handler shmem_xattr_security_handler = {
1934         .prefix = XATTR_SECURITY_PREFIX,
1935         .list   = shmem_xattr_security_list,
1936         .get    = shmem_xattr_security_get,
1937         .set    = shmem_xattr_security_set,
1938 };
1939
1940 static struct xattr_handler *shmem_xattr_handlers[] = {
1941         &shmem_xattr_acl_access_handler,
1942         &shmem_xattr_acl_default_handler,
1943         &shmem_xattr_security_handler,
1944         NULL
1945 };
1946 #endif
1947
1948 static struct dentry *shmem_get_parent(struct dentry *child)
1949 {
1950         return ERR_PTR(-ESTALE);
1951 }
1952
1953 static int shmem_match(struct inode *ino, void *vfh)
1954 {
1955         __u32 *fh = vfh;
1956         __u64 inum = fh[2];
1957         inum = (inum << 32) | fh[1];
1958         return ino->i_ino == inum && fh[0] == ino->i_generation;
1959 }
1960
1961 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1962                 struct fid *fid, int fh_len, int fh_type)
1963 {
1964         struct inode *inode;
1965         struct dentry *dentry = NULL;
1966         u64 inum = fid->raw[2];
1967         inum = (inum << 32) | fid->raw[1];
1968
1969         if (fh_len < 3)
1970                 return NULL;
1971
1972         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1973                         shmem_match, fid->raw);
1974         if (inode) {
1975                 dentry = d_find_alias(inode);
1976                 iput(inode);
1977         }
1978
1979         return dentry;
1980 }
1981
1982 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1983                                 int connectable)
1984 {
1985         struct inode *inode = dentry->d_inode;
1986
1987         if (*len < 3)
1988                 return 255;
1989
1990         if (hlist_unhashed(&inode->i_hash)) {
1991                 /* Unfortunately insert_inode_hash is not idempotent,
1992                  * so as we hash inodes here rather than at creation
1993                  * time, we need a lock to ensure we only try
1994                  * to do it once
1995                  */
1996                 static DEFINE_SPINLOCK(lock);
1997                 spin_lock(&lock);
1998                 if (hlist_unhashed(&inode->i_hash))
1999                         __insert_inode_hash(inode,
2000                                             inode->i_ino + inode->i_generation);
2001                 spin_unlock(&lock);
2002         }
2003
2004         fh[0] = inode->i_generation;
2005         fh[1] = inode->i_ino;
2006         fh[2] = ((__u64)inode->i_ino) >> 32;
2007
2008         *len = 3;
2009         return 1;
2010 }
2011
2012 static const struct export_operations shmem_export_ops = {
2013         .get_parent     = shmem_get_parent,
2014         .encode_fh      = shmem_encode_fh,
2015         .fh_to_dentry   = shmem_fh_to_dentry,
2016 };
2017
2018 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2019         gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2020         int *policy, nodemask_t *policy_nodes)
2021 {
2022         char *this_char, *value, *rest;
2023
2024         while (options != NULL) {
2025                 this_char = options;
2026                 for (;;) {
2027                         /*
2028                          * NUL-terminate this option: unfortunately,
2029                          * mount options form a comma-separated list,
2030                          * but mpol's nodelist may also contain commas.
2031                          */
2032                         options = strchr(options, ',');
2033                         if (options == NULL)
2034                                 break;
2035                         options++;
2036                         if (!isdigit(*options)) {
2037                                 options[-1] = '\0';
2038                                 break;
2039                         }
2040                 }
2041                 if (!*this_char)
2042                         continue;
2043                 if ((value = strchr(this_char,'=')) != NULL) {
2044                         *value++ = 0;
2045                 } else {
2046                         printk(KERN_ERR
2047                             "tmpfs: No value for mount option '%s'\n",
2048                             this_char);
2049                         return 1;
2050                 }
2051
2052                 if (!strcmp(this_char,"size")) {
2053                         unsigned long long size;
2054                         size = memparse(value,&rest);
2055                         if (*rest == '%') {
2056                                 size <<= PAGE_SHIFT;
2057                                 size *= totalram_pages;
2058                                 do_div(size, 100);
2059                                 rest++;
2060                         }
2061                         if (*rest)
2062                                 goto bad_val;
2063                         *blocks = DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2064                 } else if (!strcmp(this_char,"nr_blocks")) {
2065                         *blocks = memparse(value,&rest);
2066                         if (*rest)
2067                                 goto bad_val;
2068                 } else if (!strcmp(this_char,"nr_inodes")) {
2069                         *inodes = memparse(value,&rest);
2070                         if (*rest)
2071                                 goto bad_val;
2072                 } else if (!strcmp(this_char,"mode")) {
2073                         if (!mode)
2074                                 continue;
2075                         *mode = simple_strtoul(value,&rest,8);
2076                         if (*rest)
2077                                 goto bad_val;
2078                 } else if (!strcmp(this_char,"uid")) {
2079                         if (!uid)
2080                                 continue;
2081                         *uid = simple_strtoul(value,&rest,0);
2082                         if (*rest)
2083                                 goto bad_val;
2084                 } else if (!strcmp(this_char,"gid")) {
2085                         if (!gid)
2086                                 continue;
2087                         *gid = simple_strtoul(value,&rest,0);
2088                         if (*rest)
2089                                 goto bad_val;
2090                 } else if (!strcmp(this_char,"mpol")) {
2091                         if (shmem_parse_mpol(value,policy,policy_nodes))
2092                                 goto bad_val;
2093                 } else {
2094                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2095                                this_char);
2096                         return 1;
2097                 }
2098         }
2099         return 0;
2100
2101 bad_val:
2102         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2103                value, this_char);
2104         return 1;
2105
2106 }
2107
2108 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2109 {
2110         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2111         unsigned long max_blocks = sbinfo->max_blocks;
2112         unsigned long max_inodes = sbinfo->max_inodes;
2113         int policy = sbinfo->policy;
2114         nodemask_t policy_nodes = sbinfo->policy_nodes;
2115         unsigned long blocks;
2116         unsigned long inodes;
2117         int error = -EINVAL;
2118
2119         if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2120                                 &max_inodes, &policy, &policy_nodes))
2121                 return error;
2122
2123         spin_lock(&sbinfo->stat_lock);
2124         blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2125         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2126         if (max_blocks < blocks)
2127                 goto out;
2128         if (max_inodes < inodes)
2129                 goto out;
2130         /*
2131          * Those tests also disallow limited->unlimited while any are in
2132          * use, so i_blocks will always be zero when max_blocks is zero;
2133          * but we must separately disallow unlimited->limited, because
2134          * in that case we have no record of how much is already in use.
2135          */
2136         if (max_blocks && !sbinfo->max_blocks)
2137                 goto out;
2138         if (max_inodes && !sbinfo->max_inodes)
2139                 goto out;
2140
2141         error = 0;
2142         sbinfo->max_blocks  = max_blocks;
2143         sbinfo->free_blocks = max_blocks - blocks;
2144         sbinfo->max_inodes  = max_inodes;
2145         sbinfo->free_inodes = max_inodes - inodes;
2146         sbinfo->policy = policy;
2147         sbinfo->policy_nodes = policy_nodes;
2148 out:
2149         spin_unlock(&sbinfo->stat_lock);
2150         return error;
2151 }
2152 #endif
2153
2154 static void shmem_put_super(struct super_block *sb)
2155 {
2156         kfree(sb->s_fs_info);
2157         sb->s_fs_info = NULL;
2158 }
2159
2160 static int shmem_fill_super(struct super_block *sb,
2161                             void *data, int silent)
2162 {
2163         struct inode *inode;
2164         struct dentry *root;
2165         int mode   = S_IRWXUGO | S_ISVTX;
2166         uid_t uid = current->fsuid;
2167         gid_t gid = current->fsgid;
2168         int err = -ENOMEM;
2169         struct shmem_sb_info *sbinfo;
2170         unsigned long blocks = 0;
2171         unsigned long inodes = 0;
2172         int policy = MPOL_DEFAULT;
2173         nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2174
2175 #ifdef CONFIG_TMPFS
2176         /*
2177          * Per default we only allow half of the physical ram per
2178          * tmpfs instance, limiting inodes to one per page of lowmem;
2179          * but the internal instance is left unlimited.
2180          */
2181         if (!(sb->s_flags & MS_NOUSER)) {
2182                 blocks = totalram_pages / 2;
2183                 inodes = totalram_pages - totalhigh_pages;
2184                 if (inodes > blocks)
2185                         inodes = blocks;
2186                 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2187                                         &inodes, &policy, &policy_nodes))
2188                         return -EINVAL;
2189         }
2190         sb->s_export_op = &shmem_export_ops;
2191 #else
2192         sb->s_flags |= MS_NOUSER;
2193 #endif
2194
2195         /* Round up to L1_CACHE_BYTES to resist false sharing */
2196         sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2197                                 L1_CACHE_BYTES), GFP_KERNEL);
2198         if (!sbinfo)
2199                 return -ENOMEM;
2200
2201         spin_lock_init(&sbinfo->stat_lock);
2202         sbinfo->max_blocks = blocks;
2203         sbinfo->free_blocks = blocks;
2204         sbinfo->max_inodes = inodes;
2205         sbinfo->free_inodes = inodes;
2206         sbinfo->policy = policy;
2207         sbinfo->policy_nodes = policy_nodes;
2208
2209         sb->s_fs_info = sbinfo;
2210         sb->s_maxbytes = SHMEM_MAX_BYTES;
2211         sb->s_blocksize = PAGE_CACHE_SIZE;
2212         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2213         sb->s_magic = TMPFS_MAGIC;
2214         sb->s_op = &shmem_ops;
2215         sb->s_time_gran = 1;
2216 #ifdef CONFIG_TMPFS_POSIX_ACL
2217         sb->s_xattr = shmem_xattr_handlers;
2218         sb->s_flags |= MS_POSIXACL;
2219 #endif
2220
2221         inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2222         if (!inode)
2223                 goto failed;
2224         inode->i_uid = uid;
2225         inode->i_gid = gid;
2226         root = d_alloc_root(inode);
2227         if (!root)
2228                 goto failed_iput;
2229         sb->s_root = root;
2230         return 0;
2231
2232 failed_iput:
2233         iput(inode);
2234 failed:
2235         shmem_put_super(sb);
2236         return err;
2237 }
2238
2239 static struct kmem_cache *shmem_inode_cachep;
2240
2241 static struct inode *shmem_alloc_inode(struct super_block *sb)
2242 {
2243         struct shmem_inode_info *p;
2244         p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2245         if (!p)
2246                 return NULL;
2247         return &p->vfs_inode;
2248 }
2249
2250 static void shmem_destroy_inode(struct inode *inode)
2251 {
2252         if ((inode->i_mode & S_IFMT) == S_IFREG) {
2253                 /* only struct inode is valid if it's an inline symlink */
2254                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2255         }
2256         shmem_acl_destroy_inode(inode);
2257         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2258 }
2259
2260 static void init_once(struct kmem_cache *cachep, void *foo)
2261 {
2262         struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2263
2264         inode_init_once(&p->vfs_inode);
2265 #ifdef CONFIG_TMPFS_POSIX_ACL
2266         p->i_acl = NULL;
2267         p->i_default_acl = NULL;
2268 #endif
2269 }
2270
2271 static int init_inodecache(void)
2272 {
2273         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2274                                 sizeof(struct shmem_inode_info),
2275                                 0, SLAB_PANIC, init_once);
2276         return 0;
2277 }
2278
2279 static void destroy_inodecache(void)
2280 {
2281         kmem_cache_destroy(shmem_inode_cachep);
2282 }
2283
2284 static const struct address_space_operations shmem_aops = {
2285         .writepage      = shmem_writepage,
2286         .set_page_dirty = __set_page_dirty_no_writeback,
2287 #ifdef CONFIG_TMPFS
2288         .readpage       = shmem_readpage,
2289         .write_begin    = shmem_write_begin,
2290         .write_end      = shmem_write_end,
2291 #endif
2292         .migratepage    = migrate_page,
2293 };
2294
2295 static const struct file_operations shmem_file_operations = {
2296         .mmap           = shmem_mmap,
2297 #ifdef CONFIG_TMPFS
2298         .llseek         = generic_file_llseek,
2299         .read           = shmem_file_read,
2300         .write          = do_sync_write,
2301         .aio_write      = generic_file_aio_write,
2302         .fsync          = simple_sync_file,
2303         .splice_read    = generic_file_splice_read,
2304         .splice_write   = generic_file_splice_write,
2305 #endif
2306 };
2307
2308 static const struct inode_operations shmem_inode_operations = {
2309         .truncate       = shmem_truncate,
2310         .setattr        = shmem_notify_change,
2311         .truncate_range = shmem_truncate_range,
2312 #ifdef CONFIG_TMPFS_POSIX_ACL
2313         .setxattr       = generic_setxattr,
2314         .getxattr       = generic_getxattr,
2315         .listxattr      = generic_listxattr,
2316         .removexattr    = generic_removexattr,
2317         .permission     = shmem_permission,
2318 #endif
2319
2320 };
2321
2322 static const struct inode_operations shmem_dir_inode_operations = {
2323 #ifdef CONFIG_TMPFS
2324         .create         = shmem_create,
2325         .lookup         = simple_lookup,
2326         .link           = shmem_link,
2327         .unlink         = shmem_unlink,
2328         .symlink        = shmem_symlink,
2329         .mkdir          = shmem_mkdir,
2330         .rmdir          = shmem_rmdir,
2331         .mknod          = shmem_mknod,
2332         .rename         = shmem_rename,
2333 #endif
2334 #ifdef CONFIG_TMPFS_POSIX_ACL
2335         .setattr        = shmem_notify_change,
2336         .setxattr       = generic_setxattr,
2337         .getxattr       = generic_getxattr,
2338         .listxattr      = generic_listxattr,
2339         .removexattr    = generic_removexattr,
2340         .permission     = shmem_permission,
2341 #endif
2342 };
2343
2344 static const struct inode_operations shmem_special_inode_operations = {
2345 #ifdef CONFIG_TMPFS_POSIX_ACL
2346         .setattr        = shmem_notify_change,
2347         .setxattr       = generic_setxattr,
2348         .getxattr       = generic_getxattr,
2349         .listxattr      = generic_listxattr,
2350         .removexattr    = generic_removexattr,
2351         .permission     = shmem_permission,
2352 #endif
2353 };
2354
2355 static const struct super_operations shmem_ops = {
2356         .alloc_inode    = shmem_alloc_inode,
2357         .destroy_inode  = shmem_destroy_inode,
2358 #ifdef CONFIG_TMPFS
2359         .statfs         = shmem_statfs,
2360         .remount_fs     = shmem_remount_fs,
2361 #endif
2362         .delete_inode   = shmem_delete_inode,
2363         .drop_inode     = generic_delete_inode,
2364         .put_super      = shmem_put_super,
2365 };
2366
2367 static struct vm_operations_struct shmem_vm_ops = {
2368         .fault          = shmem_fault,
2369 #ifdef CONFIG_NUMA
2370         .set_policy     = shmem_set_policy,
2371         .get_policy     = shmem_get_policy,
2372 #endif
2373 };
2374
2375
2376 static int shmem_get_sb(struct file_system_type *fs_type,
2377         int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2378 {
2379         return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2380 }
2381
2382 static struct file_system_type tmpfs_fs_type = {
2383         .owner          = THIS_MODULE,
2384         .name           = "tmpfs",
2385         .get_sb         = shmem_get_sb,
2386         .kill_sb        = kill_litter_super,
2387 };
2388 static struct vfsmount *shm_mnt;
2389
2390 static int __init init_tmpfs(void)
2391 {
2392         int error;
2393
2394         error = bdi_init(&shmem_backing_dev_info);
2395         if (error)
2396                 goto out4;
2397
2398         error = init_inodecache();
2399         if (error)
2400                 goto out3;
2401
2402         error = register_filesystem(&tmpfs_fs_type);
2403         if (error) {
2404                 printk(KERN_ERR "Could not register tmpfs\n");
2405                 goto out2;
2406         }
2407
2408         shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2409                                 tmpfs_fs_type.name, NULL);
2410         if (IS_ERR(shm_mnt)) {
2411                 error = PTR_ERR(shm_mnt);
2412                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2413                 goto out1;
2414         }
2415         return 0;
2416
2417 out1:
2418         unregister_filesystem(&tmpfs_fs_type);
2419 out2:
2420         destroy_inodecache();
2421 out3:
2422         bdi_destroy(&shmem_backing_dev_info);
2423 out4:
2424         shm_mnt = ERR_PTR(error);
2425         return error;
2426 }
2427 module_init(init_tmpfs)
2428
2429 /*
2430  * shmem_file_setup - get an unlinked file living in tmpfs
2431  *
2432  * @name: name for dentry (to be seen in /proc/<pid>/maps
2433  * @size: size to be set for the file
2434  *
2435  */
2436 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2437 {
2438         int error;
2439         struct file *file;
2440         struct inode *inode;
2441         struct dentry *dentry, *root;
2442         struct qstr this;
2443
2444         if (IS_ERR(shm_mnt))
2445                 return (void *)shm_mnt;
2446
2447         if (size < 0 || size > SHMEM_MAX_BYTES)
2448                 return ERR_PTR(-EINVAL);
2449
2450         if (shmem_acct_size(flags, size))
2451                 return ERR_PTR(-ENOMEM);
2452
2453         error = -ENOMEM;
2454         this.name = name;
2455         this.len = strlen(name);
2456         this.hash = 0; /* will go */
2457         root = shm_mnt->mnt_root;
2458         dentry = d_alloc(root, &this);
2459         if (!dentry)
2460                 goto put_memory;
2461
2462         error = -ENFILE;
2463         file = get_empty_filp();
2464         if (!file)
2465                 goto put_dentry;
2466
2467         error = -ENOSPC;
2468         inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2469         if (!inode)
2470                 goto close_file;
2471
2472         SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2473         d_instantiate(dentry, inode);
2474         inode->i_size = size;
2475         inode->i_nlink = 0;     /* It is unlinked */
2476         init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2477                         &shmem_file_operations);
2478         return file;
2479
2480 close_file:
2481         put_filp(file);
2482 put_dentry:
2483         dput(dentry);
2484 put_memory:
2485         shmem_unacct_size(flags, size);
2486         return ERR_PTR(error);
2487 }
2488
2489 /*
2490  * shmem_zero_setup - setup a shared anonymous mapping
2491  *
2492  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2493  */
2494 int shmem_zero_setup(struct vm_area_struct *vma)
2495 {
2496         struct file *file;
2497         loff_t size = vma->vm_end - vma->vm_start;
2498
2499         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2500         if (IS_ERR(file))
2501                 return PTR_ERR(file);
2502
2503         if (vma->vm_file)
2504                 fput(vma->vm_file);
2505         vma->vm_file = file;
2506         vma->vm_ops = &shmem_vm_ops;
2507         return 0;
2508 }