tmpfs: allocate on read when stacked
[safe/jmp/linux-2.6] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC     0x01021994
59
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN     VM_READ
71 #define SHMEM_TRUNCATE   VM_WRITE
72
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT    64
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81         SGP_READ,       /* don't exceed i_size, don't allocate page */
82         SGP_CACHE,      /* don't exceed i_size, may allocate page */
83         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
84         SGP_WRITE,      /* may exceed i_size, may allocate page */
85 };
86
87 static int shmem_getpage(struct inode *inode, unsigned long idx,
88                          struct page **pagep, enum sgp_type sgp, int *type);
89
90 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91 {
92         /*
93          * The above definition of ENTRIES_PER_PAGE, and the use of
94          * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95          * might be reconsidered if it ever diverges from PAGE_SIZE.
96          *
97          * Mobility flags are masked out as swap vectors cannot move
98          */
99         return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
100                                 PAGE_CACHE_SHIFT-PAGE_SHIFT);
101 }
102
103 static inline void shmem_dir_free(struct page *page)
104 {
105         __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
106 }
107
108 static struct page **shmem_dir_map(struct page *page)
109 {
110         return (struct page **)kmap_atomic(page, KM_USER0);
111 }
112
113 static inline void shmem_dir_unmap(struct page **dir)
114 {
115         kunmap_atomic(dir, KM_USER0);
116 }
117
118 static swp_entry_t *shmem_swp_map(struct page *page)
119 {
120         return (swp_entry_t *)kmap_atomic(page, KM_USER1);
121 }
122
123 static inline void shmem_swp_balance_unmap(void)
124 {
125         /*
126          * When passing a pointer to an i_direct entry, to code which
127          * also handles indirect entries and so will shmem_swp_unmap,
128          * we must arrange for the preempt count to remain in balance.
129          * What kmap_atomic of a lowmem page does depends on config
130          * and architecture, so pretend to kmap_atomic some lowmem page.
131          */
132         (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
133 }
134
135 static inline void shmem_swp_unmap(swp_entry_t *entry)
136 {
137         kunmap_atomic(entry, KM_USER1);
138 }
139
140 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
141 {
142         return sb->s_fs_info;
143 }
144
145 /*
146  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
147  * for shared memory and for shared anonymous (/dev/zero) mappings
148  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
149  * consistent with the pre-accounting of private mappings ...
150  */
151 static inline int shmem_acct_size(unsigned long flags, loff_t size)
152 {
153         return (flags & VM_ACCOUNT)?
154                 security_vm_enough_memory(VM_ACCT(size)): 0;
155 }
156
157 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
158 {
159         if (flags & VM_ACCOUNT)
160                 vm_unacct_memory(VM_ACCT(size));
161 }
162
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow huge sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags)
170 {
171         return (flags & VM_ACCOUNT)?
172                 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
173 }
174
175 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
176 {
177         if (!(flags & VM_ACCOUNT))
178                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
179 }
180
181 static const struct super_operations shmem_ops;
182 static const struct address_space_operations shmem_aops;
183 static const struct file_operations shmem_file_operations;
184 static const struct inode_operations shmem_inode_operations;
185 static const struct inode_operations shmem_dir_inode_operations;
186 static const struct inode_operations shmem_special_inode_operations;
187 static struct vm_operations_struct shmem_vm_ops;
188
189 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
190         .ra_pages       = 0,    /* No readahead */
191         .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
192         .unplug_io_fn   = default_unplug_io_fn,
193 };
194
195 static LIST_HEAD(shmem_swaplist);
196 static DEFINE_SPINLOCK(shmem_swaplist_lock);
197
198 static void shmem_free_blocks(struct inode *inode, long pages)
199 {
200         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
201         if (sbinfo->max_blocks) {
202                 spin_lock(&sbinfo->stat_lock);
203                 sbinfo->free_blocks += pages;
204                 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
205                 spin_unlock(&sbinfo->stat_lock);
206         }
207 }
208
209 static int shmem_reserve_inode(struct super_block *sb)
210 {
211         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
212         if (sbinfo->max_inodes) {
213                 spin_lock(&sbinfo->stat_lock);
214                 if (!sbinfo->free_inodes) {
215                         spin_unlock(&sbinfo->stat_lock);
216                         return -ENOSPC;
217                 }
218                 sbinfo->free_inodes--;
219                 spin_unlock(&sbinfo->stat_lock);
220         }
221         return 0;
222 }
223
224 static void shmem_free_inode(struct super_block *sb)
225 {
226         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
227         if (sbinfo->max_inodes) {
228                 spin_lock(&sbinfo->stat_lock);
229                 sbinfo->free_inodes++;
230                 spin_unlock(&sbinfo->stat_lock);
231         }
232 }
233
234 /*
235  * shmem_recalc_inode - recalculate the size of an inode
236  *
237  * @inode: inode to recalc
238  *
239  * We have to calculate the free blocks since the mm can drop
240  * undirtied hole pages behind our back.
241  *
242  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
243  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
244  *
245  * It has to be called with the spinlock held.
246  */
247 static void shmem_recalc_inode(struct inode *inode)
248 {
249         struct shmem_inode_info *info = SHMEM_I(inode);
250         long freed;
251
252         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
253         if (freed > 0) {
254                 info->alloced -= freed;
255                 shmem_unacct_blocks(info->flags, freed);
256                 shmem_free_blocks(inode, freed);
257         }
258 }
259
260 /*
261  * shmem_swp_entry - find the swap vector position in the info structure
262  *
263  * @info:  info structure for the inode
264  * @index: index of the page to find
265  * @page:  optional page to add to the structure. Has to be preset to
266  *         all zeros
267  *
268  * If there is no space allocated yet it will return NULL when
269  * page is NULL, else it will use the page for the needed block,
270  * setting it to NULL on return to indicate that it has been used.
271  *
272  * The swap vector is organized the following way:
273  *
274  * There are SHMEM_NR_DIRECT entries directly stored in the
275  * shmem_inode_info structure. So small files do not need an addional
276  * allocation.
277  *
278  * For pages with index > SHMEM_NR_DIRECT there is the pointer
279  * i_indirect which points to a page which holds in the first half
280  * doubly indirect blocks, in the second half triple indirect blocks:
281  *
282  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
283  * following layout (for SHMEM_NR_DIRECT == 16):
284  *
285  * i_indirect -> dir --> 16-19
286  *            |      +-> 20-23
287  *            |
288  *            +-->dir2 --> 24-27
289  *            |        +-> 28-31
290  *            |        +-> 32-35
291  *            |        +-> 36-39
292  *            |
293  *            +-->dir3 --> 40-43
294  *                     +-> 44-47
295  *                     +-> 48-51
296  *                     +-> 52-55
297  */
298 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
299 {
300         unsigned long offset;
301         struct page **dir;
302         struct page *subdir;
303
304         if (index < SHMEM_NR_DIRECT) {
305                 shmem_swp_balance_unmap();
306                 return info->i_direct+index;
307         }
308         if (!info->i_indirect) {
309                 if (page) {
310                         info->i_indirect = *page;
311                         *page = NULL;
312                 }
313                 return NULL;                    /* need another page */
314         }
315
316         index -= SHMEM_NR_DIRECT;
317         offset = index % ENTRIES_PER_PAGE;
318         index /= ENTRIES_PER_PAGE;
319         dir = shmem_dir_map(info->i_indirect);
320
321         if (index >= ENTRIES_PER_PAGE/2) {
322                 index -= ENTRIES_PER_PAGE/2;
323                 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
324                 index %= ENTRIES_PER_PAGE;
325                 subdir = *dir;
326                 if (!subdir) {
327                         if (page) {
328                                 *dir = *page;
329                                 *page = NULL;
330                         }
331                         shmem_dir_unmap(dir);
332                         return NULL;            /* need another page */
333                 }
334                 shmem_dir_unmap(dir);
335                 dir = shmem_dir_map(subdir);
336         }
337
338         dir += index;
339         subdir = *dir;
340         if (!subdir) {
341                 if (!page || !(subdir = *page)) {
342                         shmem_dir_unmap(dir);
343                         return NULL;            /* need a page */
344                 }
345                 *dir = subdir;
346                 *page = NULL;
347         }
348         shmem_dir_unmap(dir);
349         return shmem_swp_map(subdir) + offset;
350 }
351
352 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
353 {
354         long incdec = value? 1: -1;
355
356         entry->val = value;
357         info->swapped += incdec;
358         if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
359                 struct page *page = kmap_atomic_to_page(entry);
360                 set_page_private(page, page_private(page) + incdec);
361         }
362 }
363
364 /*
365  * shmem_swp_alloc - get the position of the swap entry for the page.
366  *                   If it does not exist allocate the entry.
367  *
368  * @info:       info structure for the inode
369  * @index:      index of the page to find
370  * @sgp:        check and recheck i_size? skip allocation?
371  */
372 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
373 {
374         struct inode *inode = &info->vfs_inode;
375         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
376         struct page *page = NULL;
377         swp_entry_t *entry;
378
379         if (sgp != SGP_WRITE &&
380             ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
381                 return ERR_PTR(-EINVAL);
382
383         while (!(entry = shmem_swp_entry(info, index, &page))) {
384                 if (sgp == SGP_READ)
385                         return shmem_swp_map(ZERO_PAGE(0));
386                 /*
387                  * Test free_blocks against 1 not 0, since we have 1 data
388                  * page (and perhaps indirect index pages) yet to allocate:
389                  * a waste to allocate index if we cannot allocate data.
390                  */
391                 if (sbinfo->max_blocks) {
392                         spin_lock(&sbinfo->stat_lock);
393                         if (sbinfo->free_blocks <= 1) {
394                                 spin_unlock(&sbinfo->stat_lock);
395                                 return ERR_PTR(-ENOSPC);
396                         }
397                         sbinfo->free_blocks--;
398                         inode->i_blocks += BLOCKS_PER_PAGE;
399                         spin_unlock(&sbinfo->stat_lock);
400                 }
401
402                 spin_unlock(&info->lock);
403                 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
404                 if (page)
405                         set_page_private(page, 0);
406                 spin_lock(&info->lock);
407
408                 if (!page) {
409                         shmem_free_blocks(inode, 1);
410                         return ERR_PTR(-ENOMEM);
411                 }
412                 if (sgp != SGP_WRITE &&
413                     ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
414                         entry = ERR_PTR(-EINVAL);
415                         break;
416                 }
417                 if (info->next_index <= index)
418                         info->next_index = index + 1;
419         }
420         if (page) {
421                 /* another task gave its page, or truncated the file */
422                 shmem_free_blocks(inode, 1);
423                 shmem_dir_free(page);
424         }
425         if (info->next_index <= index && !IS_ERR(entry))
426                 info->next_index = index + 1;
427         return entry;
428 }
429
430 /*
431  * shmem_free_swp - free some swap entries in a directory
432  *
433  * @dir:        pointer to the directory
434  * @edir:       pointer after last entry of the directory
435  * @punch_lock: pointer to spinlock when needed for the holepunch case
436  */
437 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
438                                                 spinlock_t *punch_lock)
439 {
440         spinlock_t *punch_unlock = NULL;
441         swp_entry_t *ptr;
442         int freed = 0;
443
444         for (ptr = dir; ptr < edir; ptr++) {
445                 if (ptr->val) {
446                         if (unlikely(punch_lock)) {
447                                 punch_unlock = punch_lock;
448                                 punch_lock = NULL;
449                                 spin_lock(punch_unlock);
450                                 if (!ptr->val)
451                                         continue;
452                         }
453                         free_swap_and_cache(*ptr);
454                         *ptr = (swp_entry_t){0};
455                         freed++;
456                 }
457         }
458         if (punch_unlock)
459                 spin_unlock(punch_unlock);
460         return freed;
461 }
462
463 static int shmem_map_and_free_swp(struct page *subdir, int offset,
464                 int limit, struct page ***dir, spinlock_t *punch_lock)
465 {
466         swp_entry_t *ptr;
467         int freed = 0;
468
469         ptr = shmem_swp_map(subdir);
470         for (; offset < limit; offset += LATENCY_LIMIT) {
471                 int size = limit - offset;
472                 if (size > LATENCY_LIMIT)
473                         size = LATENCY_LIMIT;
474                 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
475                                                         punch_lock);
476                 if (need_resched()) {
477                         shmem_swp_unmap(ptr);
478                         if (*dir) {
479                                 shmem_dir_unmap(*dir);
480                                 *dir = NULL;
481                         }
482                         cond_resched();
483                         ptr = shmem_swp_map(subdir);
484                 }
485         }
486         shmem_swp_unmap(ptr);
487         return freed;
488 }
489
490 static void shmem_free_pages(struct list_head *next)
491 {
492         struct page *page;
493         int freed = 0;
494
495         do {
496                 page = container_of(next, struct page, lru);
497                 next = next->next;
498                 shmem_dir_free(page);
499                 freed++;
500                 if (freed >= LATENCY_LIMIT) {
501                         cond_resched();
502                         freed = 0;
503                 }
504         } while (next);
505 }
506
507 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
508 {
509         struct shmem_inode_info *info = SHMEM_I(inode);
510         unsigned long idx;
511         unsigned long size;
512         unsigned long limit;
513         unsigned long stage;
514         unsigned long diroff;
515         struct page **dir;
516         struct page *topdir;
517         struct page *middir;
518         struct page *subdir;
519         swp_entry_t *ptr;
520         LIST_HEAD(pages_to_free);
521         long nr_pages_to_free = 0;
522         long nr_swaps_freed = 0;
523         int offset;
524         int freed;
525         int punch_hole;
526         spinlock_t *needs_lock;
527         spinlock_t *punch_lock;
528         unsigned long upper_limit;
529
530         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
531         idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
532         if (idx >= info->next_index)
533                 return;
534
535         spin_lock(&info->lock);
536         info->flags |= SHMEM_TRUNCATE;
537         if (likely(end == (loff_t) -1)) {
538                 limit = info->next_index;
539                 upper_limit = SHMEM_MAX_INDEX;
540                 info->next_index = idx;
541                 needs_lock = NULL;
542                 punch_hole = 0;
543         } else {
544                 if (end + 1 >= inode->i_size) { /* we may free a little more */
545                         limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
546                                                         PAGE_CACHE_SHIFT;
547                         upper_limit = SHMEM_MAX_INDEX;
548                 } else {
549                         limit = (end + 1) >> PAGE_CACHE_SHIFT;
550                         upper_limit = limit;
551                 }
552                 needs_lock = &info->lock;
553                 punch_hole = 1;
554         }
555
556         topdir = info->i_indirect;
557         if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
558                 info->i_indirect = NULL;
559                 nr_pages_to_free++;
560                 list_add(&topdir->lru, &pages_to_free);
561         }
562         spin_unlock(&info->lock);
563
564         if (info->swapped && idx < SHMEM_NR_DIRECT) {
565                 ptr = info->i_direct;
566                 size = limit;
567                 if (size > SHMEM_NR_DIRECT)
568                         size = SHMEM_NR_DIRECT;
569                 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
570         }
571
572         /*
573          * If there are no indirect blocks or we are punching a hole
574          * below indirect blocks, nothing to be done.
575          */
576         if (!topdir || limit <= SHMEM_NR_DIRECT)
577                 goto done2;
578
579         /*
580          * The truncation case has already dropped info->lock, and we're safe
581          * because i_size and next_index have already been lowered, preventing
582          * access beyond.  But in the punch_hole case, we still need to take
583          * the lock when updating the swap directory, because there might be
584          * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
585          * shmem_writepage.  However, whenever we find we can remove a whole
586          * directory page (not at the misaligned start or end of the range),
587          * we first NULLify its pointer in the level above, and then have no
588          * need to take the lock when updating its contents: needs_lock and
589          * punch_lock (either pointing to info->lock or NULL) manage this.
590          */
591
592         upper_limit -= SHMEM_NR_DIRECT;
593         limit -= SHMEM_NR_DIRECT;
594         idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
595         offset = idx % ENTRIES_PER_PAGE;
596         idx -= offset;
597
598         dir = shmem_dir_map(topdir);
599         stage = ENTRIES_PER_PAGEPAGE/2;
600         if (idx < ENTRIES_PER_PAGEPAGE/2) {
601                 middir = topdir;
602                 diroff = idx/ENTRIES_PER_PAGE;
603         } else {
604                 dir += ENTRIES_PER_PAGE/2;
605                 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
606                 while (stage <= idx)
607                         stage += ENTRIES_PER_PAGEPAGE;
608                 middir = *dir;
609                 if (*dir) {
610                         diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
611                                 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
612                         if (!diroff && !offset && upper_limit >= stage) {
613                                 if (needs_lock) {
614                                         spin_lock(needs_lock);
615                                         *dir = NULL;
616                                         spin_unlock(needs_lock);
617                                         needs_lock = NULL;
618                                 } else
619                                         *dir = NULL;
620                                 nr_pages_to_free++;
621                                 list_add(&middir->lru, &pages_to_free);
622                         }
623                         shmem_dir_unmap(dir);
624                         dir = shmem_dir_map(middir);
625                 } else {
626                         diroff = 0;
627                         offset = 0;
628                         idx = stage;
629                 }
630         }
631
632         for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
633                 if (unlikely(idx == stage)) {
634                         shmem_dir_unmap(dir);
635                         dir = shmem_dir_map(topdir) +
636                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
637                         while (!*dir) {
638                                 dir++;
639                                 idx += ENTRIES_PER_PAGEPAGE;
640                                 if (idx >= limit)
641                                         goto done1;
642                         }
643                         stage = idx + ENTRIES_PER_PAGEPAGE;
644                         middir = *dir;
645                         if (punch_hole)
646                                 needs_lock = &info->lock;
647                         if (upper_limit >= stage) {
648                                 if (needs_lock) {
649                                         spin_lock(needs_lock);
650                                         *dir = NULL;
651                                         spin_unlock(needs_lock);
652                                         needs_lock = NULL;
653                                 } else
654                                         *dir = NULL;
655                                 nr_pages_to_free++;
656                                 list_add(&middir->lru, &pages_to_free);
657                         }
658                         shmem_dir_unmap(dir);
659                         cond_resched();
660                         dir = shmem_dir_map(middir);
661                         diroff = 0;
662                 }
663                 punch_lock = needs_lock;
664                 subdir = dir[diroff];
665                 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
666                         if (needs_lock) {
667                                 spin_lock(needs_lock);
668                                 dir[diroff] = NULL;
669                                 spin_unlock(needs_lock);
670                                 punch_lock = NULL;
671                         } else
672                                 dir[diroff] = NULL;
673                         nr_pages_to_free++;
674                         list_add(&subdir->lru, &pages_to_free);
675                 }
676                 if (subdir && page_private(subdir) /* has swap entries */) {
677                         size = limit - idx;
678                         if (size > ENTRIES_PER_PAGE)
679                                 size = ENTRIES_PER_PAGE;
680                         freed = shmem_map_and_free_swp(subdir,
681                                         offset, size, &dir, punch_lock);
682                         if (!dir)
683                                 dir = shmem_dir_map(middir);
684                         nr_swaps_freed += freed;
685                         if (offset || punch_lock) {
686                                 spin_lock(&info->lock);
687                                 set_page_private(subdir,
688                                         page_private(subdir) - freed);
689                                 spin_unlock(&info->lock);
690                         } else
691                                 BUG_ON(page_private(subdir) != freed);
692                 }
693                 offset = 0;
694         }
695 done1:
696         shmem_dir_unmap(dir);
697 done2:
698         if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
699                 /*
700                  * Call truncate_inode_pages again: racing shmem_unuse_inode
701                  * may have swizzled a page in from swap since vmtruncate or
702                  * generic_delete_inode did it, before we lowered next_index.
703                  * Also, though shmem_getpage checks i_size before adding to
704                  * cache, no recheck after: so fix the narrow window there too.
705                  *
706                  * Recalling truncate_inode_pages_range and unmap_mapping_range
707                  * every time for punch_hole (which never got a chance to clear
708                  * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
709                  * yet hardly ever necessary: try to optimize them out later.
710                  */
711                 truncate_inode_pages_range(inode->i_mapping, start, end);
712                 if (punch_hole)
713                         unmap_mapping_range(inode->i_mapping, start,
714                                                         end - start, 1);
715         }
716
717         spin_lock(&info->lock);
718         info->flags &= ~SHMEM_TRUNCATE;
719         info->swapped -= nr_swaps_freed;
720         if (nr_pages_to_free)
721                 shmem_free_blocks(inode, nr_pages_to_free);
722         shmem_recalc_inode(inode);
723         spin_unlock(&info->lock);
724
725         /*
726          * Empty swap vector directory pages to be freed?
727          */
728         if (!list_empty(&pages_to_free)) {
729                 pages_to_free.prev->next = NULL;
730                 shmem_free_pages(pages_to_free.next);
731         }
732 }
733
734 static void shmem_truncate(struct inode *inode)
735 {
736         shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
737 }
738
739 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
740 {
741         struct inode *inode = dentry->d_inode;
742         struct page *page = NULL;
743         int error;
744
745         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
746                 if (attr->ia_size < inode->i_size) {
747                         /*
748                          * If truncating down to a partial page, then
749                          * if that page is already allocated, hold it
750                          * in memory until the truncation is over, so
751                          * truncate_partial_page cannnot miss it were
752                          * it assigned to swap.
753                          */
754                         if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
755                                 (void) shmem_getpage(inode,
756                                         attr->ia_size>>PAGE_CACHE_SHIFT,
757                                                 &page, SGP_READ, NULL);
758                                 if (page)
759                                         unlock_page(page);
760                         }
761                         /*
762                          * Reset SHMEM_PAGEIN flag so that shmem_truncate can
763                          * detect if any pages might have been added to cache
764                          * after truncate_inode_pages.  But we needn't bother
765                          * if it's being fully truncated to zero-length: the
766                          * nrpages check is efficient enough in that case.
767                          */
768                         if (attr->ia_size) {
769                                 struct shmem_inode_info *info = SHMEM_I(inode);
770                                 spin_lock(&info->lock);
771                                 info->flags &= ~SHMEM_PAGEIN;
772                                 spin_unlock(&info->lock);
773                         }
774                 }
775         }
776
777         error = inode_change_ok(inode, attr);
778         if (!error)
779                 error = inode_setattr(inode, attr);
780 #ifdef CONFIG_TMPFS_POSIX_ACL
781         if (!error && (attr->ia_valid & ATTR_MODE))
782                 error = generic_acl_chmod(inode, &shmem_acl_ops);
783 #endif
784         if (page)
785                 page_cache_release(page);
786         return error;
787 }
788
789 static void shmem_delete_inode(struct inode *inode)
790 {
791         struct shmem_inode_info *info = SHMEM_I(inode);
792
793         if (inode->i_op->truncate == shmem_truncate) {
794                 truncate_inode_pages(inode->i_mapping, 0);
795                 shmem_unacct_size(info->flags, inode->i_size);
796                 inode->i_size = 0;
797                 shmem_truncate(inode);
798                 if (!list_empty(&info->swaplist)) {
799                         spin_lock(&shmem_swaplist_lock);
800                         list_del_init(&info->swaplist);
801                         spin_unlock(&shmem_swaplist_lock);
802                 }
803         }
804         BUG_ON(inode->i_blocks);
805         shmem_free_inode(inode->i_sb);
806         clear_inode(inode);
807 }
808
809 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
810 {
811         swp_entry_t *ptr;
812
813         for (ptr = dir; ptr < edir; ptr++) {
814                 if (ptr->val == entry.val)
815                         return ptr - dir;
816         }
817         return -1;
818 }
819
820 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
821 {
822         struct inode *inode;
823         unsigned long idx;
824         unsigned long size;
825         unsigned long limit;
826         unsigned long stage;
827         struct page **dir;
828         struct page *subdir;
829         swp_entry_t *ptr;
830         int offset;
831         int error;
832
833         idx = 0;
834         ptr = info->i_direct;
835         spin_lock(&info->lock);
836         limit = info->next_index;
837         size = limit;
838         if (size > SHMEM_NR_DIRECT)
839                 size = SHMEM_NR_DIRECT;
840         offset = shmem_find_swp(entry, ptr, ptr+size);
841         if (offset >= 0) {
842                 shmem_swp_balance_unmap();
843                 goto found;
844         }
845         if (!info->i_indirect)
846                 goto lost2;
847
848         dir = shmem_dir_map(info->i_indirect);
849         stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
850
851         for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
852                 if (unlikely(idx == stage)) {
853                         shmem_dir_unmap(dir-1);
854                         dir = shmem_dir_map(info->i_indirect) +
855                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
856                         while (!*dir) {
857                                 dir++;
858                                 idx += ENTRIES_PER_PAGEPAGE;
859                                 if (idx >= limit)
860                                         goto lost1;
861                         }
862                         stage = idx + ENTRIES_PER_PAGEPAGE;
863                         subdir = *dir;
864                         shmem_dir_unmap(dir);
865                         dir = shmem_dir_map(subdir);
866                 }
867                 subdir = *dir;
868                 if (subdir && page_private(subdir)) {
869                         ptr = shmem_swp_map(subdir);
870                         size = limit - idx;
871                         if (size > ENTRIES_PER_PAGE)
872                                 size = ENTRIES_PER_PAGE;
873                         offset = shmem_find_swp(entry, ptr, ptr+size);
874                         if (offset >= 0) {
875                                 shmem_dir_unmap(dir);
876                                 goto found;
877                         }
878                         shmem_swp_unmap(ptr);
879                 }
880         }
881 lost1:
882         shmem_dir_unmap(dir-1);
883 lost2:
884         spin_unlock(&info->lock);
885         return 0;
886 found:
887         idx += offset;
888         inode = &info->vfs_inode;
889         error = add_to_page_cache(page, inode->i_mapping, idx, GFP_ATOMIC);
890         if (error == -EEXIST) {
891                 struct page *filepage = find_get_page(inode->i_mapping, idx);
892                 if (filepage) {
893                         /*
894                          * There might be a more uptodate page coming down
895                          * from a stacked writepage: forget our swappage if so.
896                          */
897                         if (PageUptodate(filepage))
898                                 error = 0;
899                         page_cache_release(filepage);
900                 }
901         }
902         if (!error) {
903                 delete_from_swap_cache(page);
904                 set_page_dirty(page);
905                 info->flags |= SHMEM_PAGEIN;
906                 shmem_swp_set(info, ptr + offset, 0);
907         }
908         shmem_swp_unmap(ptr);
909         spin_unlock(&info->lock);
910         /*
911          * Decrement swap count even when the entry is left behind:
912          * try_to_unuse will skip over mms, then reincrement count.
913          */
914         swap_free(entry);
915         return 1;
916 }
917
918 /*
919  * shmem_unuse() search for an eventually swapped out shmem page.
920  */
921 int shmem_unuse(swp_entry_t entry, struct page *page)
922 {
923         struct list_head *p, *next;
924         struct shmem_inode_info *info;
925         int found = 0;
926
927         spin_lock(&shmem_swaplist_lock);
928         list_for_each_safe(p, next, &shmem_swaplist) {
929                 info = list_entry(p, struct shmem_inode_info, swaplist);
930                 if (!info->swapped)
931                         list_del_init(&info->swaplist);
932                 else if (shmem_unuse_inode(info, entry, page)) {
933                         /* move head to start search for next from here */
934                         list_move_tail(&shmem_swaplist, &info->swaplist);
935                         found = 1;
936                         break;
937                 }
938         }
939         spin_unlock(&shmem_swaplist_lock);
940         return found;
941 }
942
943 /*
944  * Move the page from the page cache to the swap cache.
945  */
946 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
947 {
948         struct shmem_inode_info *info;
949         swp_entry_t *entry, swap;
950         struct address_space *mapping;
951         unsigned long index;
952         struct inode *inode;
953
954         BUG_ON(!PageLocked(page));
955         mapping = page->mapping;
956         index = page->index;
957         inode = mapping->host;
958         info = SHMEM_I(inode);
959         if (info->flags & VM_LOCKED)
960                 goto redirty;
961         if (!total_swap_pages)
962                 goto redirty;
963
964         /*
965          * shmem_backing_dev_info's capabilities prevent regular writeback or
966          * sync from ever calling shmem_writepage; but a stacking filesystem
967          * may use the ->writepage of its underlying filesystem, in which case
968          * tmpfs should write out to swap only in response to memory pressure,
969          * and not for pdflush or sync.  However, in those cases, we do still
970          * want to check if there's a redundant swappage to be discarded.
971          */
972         if (wbc->for_reclaim)
973                 swap = get_swap_page();
974         else
975                 swap.val = 0;
976
977         spin_lock(&info->lock);
978         if (index >= info->next_index) {
979                 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
980                 goto unlock;
981         }
982         entry = shmem_swp_entry(info, index, NULL);
983         if (entry->val) {
984                 /*
985                  * The more uptodate page coming down from a stacked
986                  * writepage should replace our old swappage.
987                  */
988                 free_swap_and_cache(*entry);
989                 shmem_swp_set(info, entry, 0);
990         }
991         shmem_recalc_inode(inode);
992
993         if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
994                 remove_from_page_cache(page);
995                 shmem_swp_set(info, entry, swap.val);
996                 shmem_swp_unmap(entry);
997                 spin_unlock(&info->lock);
998                 if (list_empty(&info->swaplist)) {
999                         spin_lock(&shmem_swaplist_lock);
1000                         /* move instead of add in case we're racing */
1001                         list_move_tail(&info->swaplist, &shmem_swaplist);
1002                         spin_unlock(&shmem_swaplist_lock);
1003                 }
1004                 swap_duplicate(swap);
1005                 BUG_ON(page_mapped(page));
1006                 page_cache_release(page);       /* pagecache ref */
1007                 set_page_dirty(page);
1008                 unlock_page(page);
1009                 return 0;
1010         }
1011
1012         shmem_swp_unmap(entry);
1013 unlock:
1014         spin_unlock(&info->lock);
1015         swap_free(swap);
1016 redirty:
1017         set_page_dirty(page);
1018         if (wbc->for_reclaim)
1019                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1020         unlock_page(page);
1021         return 0;
1022 }
1023
1024 #ifdef CONFIG_NUMA
1025 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1026 {
1027         char *nodelist = strchr(value, ':');
1028         int err = 1;
1029
1030         if (nodelist) {
1031                 /* NUL-terminate policy string */
1032                 *nodelist++ = '\0';
1033                 if (nodelist_parse(nodelist, *policy_nodes))
1034                         goto out;
1035                 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1036                         goto out;
1037         }
1038         if (!strcmp(value, "default")) {
1039                 *policy = MPOL_DEFAULT;
1040                 /* Don't allow a nodelist */
1041                 if (!nodelist)
1042                         err = 0;
1043         } else if (!strcmp(value, "prefer")) {
1044                 *policy = MPOL_PREFERRED;
1045                 /* Insist on a nodelist of one node only */
1046                 if (nodelist) {
1047                         char *rest = nodelist;
1048                         while (isdigit(*rest))
1049                                 rest++;
1050                         if (!*rest)
1051                                 err = 0;
1052                 }
1053         } else if (!strcmp(value, "bind")) {
1054                 *policy = MPOL_BIND;
1055                 /* Insist on a nodelist */
1056                 if (nodelist)
1057                         err = 0;
1058         } else if (!strcmp(value, "interleave")) {
1059                 *policy = MPOL_INTERLEAVE;
1060                 /*
1061                  * Default to online nodes with memory if no nodelist
1062                  */
1063                 if (!nodelist)
1064                         *policy_nodes = node_states[N_HIGH_MEMORY];
1065                 err = 0;
1066         }
1067 out:
1068         /* Restore string for error message */
1069         if (nodelist)
1070                 *--nodelist = ':';
1071         return err;
1072 }
1073
1074 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1075                         struct shmem_inode_info *info, unsigned long idx)
1076 {
1077         struct vm_area_struct pvma;
1078         struct page *page;
1079
1080         /* Create a pseudo vma that just contains the policy */
1081         pvma.vm_start = 0;
1082         pvma.vm_pgoff = idx;
1083         pvma.vm_ops = NULL;
1084         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1085         page = swapin_readahead(entry, gfp, &pvma, 0);
1086         mpol_free(pvma.vm_policy);
1087         return page;
1088 }
1089
1090 static struct page *shmem_alloc_page(gfp_t gfp,
1091                         struct shmem_inode_info *info, unsigned long idx)
1092 {
1093         struct vm_area_struct pvma;
1094         struct page *page;
1095
1096         /* Create a pseudo vma that just contains the policy */
1097         pvma.vm_start = 0;
1098         pvma.vm_pgoff = idx;
1099         pvma.vm_ops = NULL;
1100         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1101         page = alloc_page_vma(gfp, &pvma, 0);
1102         mpol_free(pvma.vm_policy);
1103         return page;
1104 }
1105 #else
1106 static inline int shmem_parse_mpol(char *value, int *policy,
1107                                                 nodemask_t *policy_nodes)
1108 {
1109         return 1;
1110 }
1111
1112 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1113                         struct shmem_inode_info *info, unsigned long idx)
1114 {
1115         return swapin_readahead(entry, gfp, NULL, 0);
1116 }
1117
1118 static inline struct page *shmem_alloc_page(gfp_t gfp,
1119                         struct shmem_inode_info *info, unsigned long idx)
1120 {
1121         return alloc_page(gfp);
1122 }
1123 #endif
1124
1125 /*
1126  * shmem_getpage - either get the page from swap or allocate a new one
1127  *
1128  * If we allocate a new one we do not mark it dirty. That's up to the
1129  * vm. If we swap it in we mark it dirty since we also free the swap
1130  * entry since a page cannot live in both the swap and page cache
1131  */
1132 static int shmem_getpage(struct inode *inode, unsigned long idx,
1133                         struct page **pagep, enum sgp_type sgp, int *type)
1134 {
1135         struct address_space *mapping = inode->i_mapping;
1136         struct shmem_inode_info *info = SHMEM_I(inode);
1137         struct shmem_sb_info *sbinfo;
1138         struct page *filepage = *pagep;
1139         struct page *swappage;
1140         swp_entry_t *entry;
1141         swp_entry_t swap;
1142         gfp_t gfp;
1143         int error;
1144
1145         if (idx >= SHMEM_MAX_INDEX)
1146                 return -EFBIG;
1147
1148         if (type)
1149                 *type = 0;
1150
1151         /*
1152          * Normally, filepage is NULL on entry, and either found
1153          * uptodate immediately, or allocated and zeroed, or read
1154          * in under swappage, which is then assigned to filepage.
1155          * But shmem_readpage (required for splice) passes in a locked
1156          * filepage, which may be found not uptodate by other callers
1157          * too, and may need to be copied from the swappage read in.
1158          */
1159 repeat:
1160         if (!filepage)
1161                 filepage = find_lock_page(mapping, idx);
1162         if (filepage && PageUptodate(filepage))
1163                 goto done;
1164         error = 0;
1165         gfp = mapping_gfp_mask(mapping);
1166
1167         spin_lock(&info->lock);
1168         shmem_recalc_inode(inode);
1169         entry = shmem_swp_alloc(info, idx, sgp);
1170         if (IS_ERR(entry)) {
1171                 spin_unlock(&info->lock);
1172                 error = PTR_ERR(entry);
1173                 goto failed;
1174         }
1175         swap = *entry;
1176
1177         if (swap.val) {
1178                 /* Look it up and read it in.. */
1179                 swappage = lookup_swap_cache(swap);
1180                 if (!swappage) {
1181                         shmem_swp_unmap(entry);
1182                         /* here we actually do the io */
1183                         if (type && !(*type & VM_FAULT_MAJOR)) {
1184                                 __count_vm_event(PGMAJFAULT);
1185                                 *type |= VM_FAULT_MAJOR;
1186                         }
1187                         spin_unlock(&info->lock);
1188                         swappage = shmem_swapin(swap, gfp, info, idx);
1189                         if (!swappage) {
1190                                 spin_lock(&info->lock);
1191                                 entry = shmem_swp_alloc(info, idx, sgp);
1192                                 if (IS_ERR(entry))
1193                                         error = PTR_ERR(entry);
1194                                 else {
1195                                         if (entry->val == swap.val)
1196                                                 error = -ENOMEM;
1197                                         shmem_swp_unmap(entry);
1198                                 }
1199                                 spin_unlock(&info->lock);
1200                                 if (error)
1201                                         goto failed;
1202                                 goto repeat;
1203                         }
1204                         wait_on_page_locked(swappage);
1205                         page_cache_release(swappage);
1206                         goto repeat;
1207                 }
1208
1209                 /* We have to do this with page locked to prevent races */
1210                 if (TestSetPageLocked(swappage)) {
1211                         shmem_swp_unmap(entry);
1212                         spin_unlock(&info->lock);
1213                         wait_on_page_locked(swappage);
1214                         page_cache_release(swappage);
1215                         goto repeat;
1216                 }
1217                 if (PageWriteback(swappage)) {
1218                         shmem_swp_unmap(entry);
1219                         spin_unlock(&info->lock);
1220                         wait_on_page_writeback(swappage);
1221                         unlock_page(swappage);
1222                         page_cache_release(swappage);
1223                         goto repeat;
1224                 }
1225                 if (!PageUptodate(swappage)) {
1226                         shmem_swp_unmap(entry);
1227                         spin_unlock(&info->lock);
1228                         unlock_page(swappage);
1229                         page_cache_release(swappage);
1230                         error = -EIO;
1231                         goto failed;
1232                 }
1233
1234                 if (filepage) {
1235                         shmem_swp_set(info, entry, 0);
1236                         shmem_swp_unmap(entry);
1237                         delete_from_swap_cache(swappage);
1238                         spin_unlock(&info->lock);
1239                         copy_highpage(filepage, swappage);
1240                         unlock_page(swappage);
1241                         page_cache_release(swappage);
1242                         flush_dcache_page(filepage);
1243                         SetPageUptodate(filepage);
1244                         set_page_dirty(filepage);
1245                         swap_free(swap);
1246                 } else if (!(error = add_to_page_cache(
1247                                 swappage, mapping, idx, GFP_ATOMIC))) {
1248                         info->flags |= SHMEM_PAGEIN;
1249                         shmem_swp_set(info, entry, 0);
1250                         shmem_swp_unmap(entry);
1251                         delete_from_swap_cache(swappage);
1252                         spin_unlock(&info->lock);
1253                         filepage = swappage;
1254                         set_page_dirty(filepage);
1255                         swap_free(swap);
1256                 } else {
1257                         shmem_swp_unmap(entry);
1258                         spin_unlock(&info->lock);
1259                         unlock_page(swappage);
1260                         page_cache_release(swappage);
1261                         if (error == -ENOMEM) {
1262                                 /* let kswapd refresh zone for GFP_ATOMICs */
1263                                 congestion_wait(WRITE, HZ/50);
1264                         }
1265                         goto repeat;
1266                 }
1267         } else if (sgp == SGP_READ && !filepage) {
1268                 shmem_swp_unmap(entry);
1269                 filepage = find_get_page(mapping, idx);
1270                 if (filepage &&
1271                     (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1272                         spin_unlock(&info->lock);
1273                         wait_on_page_locked(filepage);
1274                         page_cache_release(filepage);
1275                         filepage = NULL;
1276                         goto repeat;
1277                 }
1278                 spin_unlock(&info->lock);
1279         } else {
1280                 shmem_swp_unmap(entry);
1281                 sbinfo = SHMEM_SB(inode->i_sb);
1282                 if (sbinfo->max_blocks) {
1283                         spin_lock(&sbinfo->stat_lock);
1284                         if (sbinfo->free_blocks == 0 ||
1285                             shmem_acct_block(info->flags)) {
1286                                 spin_unlock(&sbinfo->stat_lock);
1287                                 spin_unlock(&info->lock);
1288                                 error = -ENOSPC;
1289                                 goto failed;
1290                         }
1291                         sbinfo->free_blocks--;
1292                         inode->i_blocks += BLOCKS_PER_PAGE;
1293                         spin_unlock(&sbinfo->stat_lock);
1294                 } else if (shmem_acct_block(info->flags)) {
1295                         spin_unlock(&info->lock);
1296                         error = -ENOSPC;
1297                         goto failed;
1298                 }
1299
1300                 if (!filepage) {
1301                         spin_unlock(&info->lock);
1302                         filepage = shmem_alloc_page(gfp, info, idx);
1303                         if (!filepage) {
1304                                 shmem_unacct_blocks(info->flags, 1);
1305                                 shmem_free_blocks(inode, 1);
1306                                 error = -ENOMEM;
1307                                 goto failed;
1308                         }
1309
1310                         spin_lock(&info->lock);
1311                         entry = shmem_swp_alloc(info, idx, sgp);
1312                         if (IS_ERR(entry))
1313                                 error = PTR_ERR(entry);
1314                         else {
1315                                 swap = *entry;
1316                                 shmem_swp_unmap(entry);
1317                         }
1318                         if (error || swap.val || 0 != add_to_page_cache_lru(
1319                                         filepage, mapping, idx, GFP_ATOMIC)) {
1320                                 spin_unlock(&info->lock);
1321                                 page_cache_release(filepage);
1322                                 shmem_unacct_blocks(info->flags, 1);
1323                                 shmem_free_blocks(inode, 1);
1324                                 filepage = NULL;
1325                                 if (error)
1326                                         goto failed;
1327                                 goto repeat;
1328                         }
1329                         info->flags |= SHMEM_PAGEIN;
1330                 }
1331
1332                 info->alloced++;
1333                 spin_unlock(&info->lock);
1334                 clear_highpage(filepage);
1335                 flush_dcache_page(filepage);
1336                 SetPageUptodate(filepage);
1337                 if (sgp == SGP_DIRTY)
1338                         set_page_dirty(filepage);
1339         }
1340 done:
1341         *pagep = filepage;
1342         return 0;
1343
1344 failed:
1345         if (*pagep != filepage) {
1346                 unlock_page(filepage);
1347                 page_cache_release(filepage);
1348         }
1349         return error;
1350 }
1351
1352 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1353 {
1354         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1355         int error;
1356         int ret;
1357
1358         if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1359                 return VM_FAULT_SIGBUS;
1360
1361         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1362         if (error)
1363                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1364
1365         mark_page_accessed(vmf->page);
1366         return ret | VM_FAULT_LOCKED;
1367 }
1368
1369 #ifdef CONFIG_NUMA
1370 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1371 {
1372         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1373         return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1374 }
1375
1376 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1377                                           unsigned long addr)
1378 {
1379         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1380         unsigned long idx;
1381
1382         idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1383         return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1384 }
1385 #endif
1386
1387 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1388 {
1389         struct inode *inode = file->f_path.dentry->d_inode;
1390         struct shmem_inode_info *info = SHMEM_I(inode);
1391         int retval = -ENOMEM;
1392
1393         spin_lock(&info->lock);
1394         if (lock && !(info->flags & VM_LOCKED)) {
1395                 if (!user_shm_lock(inode->i_size, user))
1396                         goto out_nomem;
1397                 info->flags |= VM_LOCKED;
1398         }
1399         if (!lock && (info->flags & VM_LOCKED) && user) {
1400                 user_shm_unlock(inode->i_size, user);
1401                 info->flags &= ~VM_LOCKED;
1402         }
1403         retval = 0;
1404 out_nomem:
1405         spin_unlock(&info->lock);
1406         return retval;
1407 }
1408
1409 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1410 {
1411         file_accessed(file);
1412         vma->vm_ops = &shmem_vm_ops;
1413         vma->vm_flags |= VM_CAN_NONLINEAR;
1414         return 0;
1415 }
1416
1417 static struct inode *
1418 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1419 {
1420         struct inode *inode;
1421         struct shmem_inode_info *info;
1422         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1423
1424         if (shmem_reserve_inode(sb))
1425                 return NULL;
1426
1427         inode = new_inode(sb);
1428         if (inode) {
1429                 inode->i_mode = mode;
1430                 inode->i_uid = current->fsuid;
1431                 inode->i_gid = current->fsgid;
1432                 inode->i_blocks = 0;
1433                 inode->i_mapping->a_ops = &shmem_aops;
1434                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1435                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1436                 inode->i_generation = get_seconds();
1437                 info = SHMEM_I(inode);
1438                 memset(info, 0, (char *)inode - (char *)info);
1439                 spin_lock_init(&info->lock);
1440                 INIT_LIST_HEAD(&info->swaplist);
1441
1442                 switch (mode & S_IFMT) {
1443                 default:
1444                         inode->i_op = &shmem_special_inode_operations;
1445                         init_special_inode(inode, mode, dev);
1446                         break;
1447                 case S_IFREG:
1448                         inode->i_op = &shmem_inode_operations;
1449                         inode->i_fop = &shmem_file_operations;
1450                         mpol_shared_policy_init(&info->policy, sbinfo->policy,
1451                                                         &sbinfo->policy_nodes);
1452                         break;
1453                 case S_IFDIR:
1454                         inc_nlink(inode);
1455                         /* Some things misbehave if size == 0 on a directory */
1456                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1457                         inode->i_op = &shmem_dir_inode_operations;
1458                         inode->i_fop = &simple_dir_operations;
1459                         break;
1460                 case S_IFLNK:
1461                         /*
1462                          * Must not load anything in the rbtree,
1463                          * mpol_free_shared_policy will not be called.
1464                          */
1465                         mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1466                                                 NULL);
1467                         break;
1468                 }
1469         } else
1470                 shmem_free_inode(sb);
1471         return inode;
1472 }
1473
1474 #ifdef CONFIG_TMPFS
1475 static const struct inode_operations shmem_symlink_inode_operations;
1476 static const struct inode_operations shmem_symlink_inline_operations;
1477
1478 /*
1479  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1480  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1481  * below the loop driver, in the generic fashion that many filesystems support.
1482  */
1483 static int shmem_readpage(struct file *file, struct page *page)
1484 {
1485         struct inode *inode = page->mapping->host;
1486         int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1487         unlock_page(page);
1488         return error;
1489 }
1490
1491 static int
1492 shmem_write_begin(struct file *file, struct address_space *mapping,
1493                         loff_t pos, unsigned len, unsigned flags,
1494                         struct page **pagep, void **fsdata)
1495 {
1496         struct inode *inode = mapping->host;
1497         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1498         *pagep = NULL;
1499         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1500 }
1501
1502 static int
1503 shmem_write_end(struct file *file, struct address_space *mapping,
1504                         loff_t pos, unsigned len, unsigned copied,
1505                         struct page *page, void *fsdata)
1506 {
1507         struct inode *inode = mapping->host;
1508
1509         if (pos + copied > inode->i_size)
1510                 i_size_write(inode, pos + copied);
1511
1512         unlock_page(page);
1513         set_page_dirty(page);
1514         page_cache_release(page);
1515
1516         return copied;
1517 }
1518
1519 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1520 {
1521         struct inode *inode = filp->f_path.dentry->d_inode;
1522         struct address_space *mapping = inode->i_mapping;
1523         unsigned long index, offset;
1524         enum sgp_type sgp = SGP_READ;
1525
1526         /*
1527          * Might this read be for a stacking filesystem?  Then when reading
1528          * holes of a sparse file, we actually need to allocate those pages,
1529          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1530          */
1531         if (segment_eq(get_fs(), KERNEL_DS))
1532                 sgp = SGP_DIRTY;
1533
1534         index = *ppos >> PAGE_CACHE_SHIFT;
1535         offset = *ppos & ~PAGE_CACHE_MASK;
1536
1537         for (;;) {
1538                 struct page *page = NULL;
1539                 unsigned long end_index, nr, ret;
1540                 loff_t i_size = i_size_read(inode);
1541
1542                 end_index = i_size >> PAGE_CACHE_SHIFT;
1543                 if (index > end_index)
1544                         break;
1545                 if (index == end_index) {
1546                         nr = i_size & ~PAGE_CACHE_MASK;
1547                         if (nr <= offset)
1548                                 break;
1549                 }
1550
1551                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1552                 if (desc->error) {
1553                         if (desc->error == -EINVAL)
1554                                 desc->error = 0;
1555                         break;
1556                 }
1557                 if (page)
1558                         unlock_page(page);
1559
1560                 /*
1561                  * We must evaluate after, since reads (unlike writes)
1562                  * are called without i_mutex protection against truncate
1563                  */
1564                 nr = PAGE_CACHE_SIZE;
1565                 i_size = i_size_read(inode);
1566                 end_index = i_size >> PAGE_CACHE_SHIFT;
1567                 if (index == end_index) {
1568                         nr = i_size & ~PAGE_CACHE_MASK;
1569                         if (nr <= offset) {
1570                                 if (page)
1571                                         page_cache_release(page);
1572                                 break;
1573                         }
1574                 }
1575                 nr -= offset;
1576
1577                 if (page) {
1578                         /*
1579                          * If users can be writing to this page using arbitrary
1580                          * virtual addresses, take care about potential aliasing
1581                          * before reading the page on the kernel side.
1582                          */
1583                         if (mapping_writably_mapped(mapping))
1584                                 flush_dcache_page(page);
1585                         /*
1586                          * Mark the page accessed if we read the beginning.
1587                          */
1588                         if (!offset)
1589                                 mark_page_accessed(page);
1590                 } else {
1591                         page = ZERO_PAGE(0);
1592                         page_cache_get(page);
1593                 }
1594
1595                 /*
1596                  * Ok, we have the page, and it's up-to-date, so
1597                  * now we can copy it to user space...
1598                  *
1599                  * The actor routine returns how many bytes were actually used..
1600                  * NOTE! This may not be the same as how much of a user buffer
1601                  * we filled up (we may be padding etc), so we can only update
1602                  * "pos" here (the actor routine has to update the user buffer
1603                  * pointers and the remaining count).
1604                  */
1605                 ret = actor(desc, page, offset, nr);
1606                 offset += ret;
1607                 index += offset >> PAGE_CACHE_SHIFT;
1608                 offset &= ~PAGE_CACHE_MASK;
1609
1610                 page_cache_release(page);
1611                 if (ret != nr || !desc->count)
1612                         break;
1613
1614                 cond_resched();
1615         }
1616
1617         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1618         file_accessed(filp);
1619 }
1620
1621 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1622 {
1623         read_descriptor_t desc;
1624
1625         if ((ssize_t) count < 0)
1626                 return -EINVAL;
1627         if (!access_ok(VERIFY_WRITE, buf, count))
1628                 return -EFAULT;
1629         if (!count)
1630                 return 0;
1631
1632         desc.written = 0;
1633         desc.count = count;
1634         desc.arg.buf = buf;
1635         desc.error = 0;
1636
1637         do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1638         if (desc.written)
1639                 return desc.written;
1640         return desc.error;
1641 }
1642
1643 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1644 {
1645         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1646
1647         buf->f_type = TMPFS_MAGIC;
1648         buf->f_bsize = PAGE_CACHE_SIZE;
1649         buf->f_namelen = NAME_MAX;
1650         spin_lock(&sbinfo->stat_lock);
1651         if (sbinfo->max_blocks) {
1652                 buf->f_blocks = sbinfo->max_blocks;
1653                 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1654         }
1655         if (sbinfo->max_inodes) {
1656                 buf->f_files = sbinfo->max_inodes;
1657                 buf->f_ffree = sbinfo->free_inodes;
1658         }
1659         /* else leave those fields 0 like simple_statfs */
1660         spin_unlock(&sbinfo->stat_lock);
1661         return 0;
1662 }
1663
1664 /*
1665  * File creation. Allocate an inode, and we're done..
1666  */
1667 static int
1668 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1669 {
1670         struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1671         int error = -ENOSPC;
1672
1673         if (inode) {
1674                 error = security_inode_init_security(inode, dir, NULL, NULL,
1675                                                      NULL);
1676                 if (error) {
1677                         if (error != -EOPNOTSUPP) {
1678                                 iput(inode);
1679                                 return error;
1680                         }
1681                 }
1682                 error = shmem_acl_init(inode, dir);
1683                 if (error) {
1684                         iput(inode);
1685                         return error;
1686                 }
1687                 if (dir->i_mode & S_ISGID) {
1688                         inode->i_gid = dir->i_gid;
1689                         if (S_ISDIR(mode))
1690                                 inode->i_mode |= S_ISGID;
1691                 }
1692                 dir->i_size += BOGO_DIRENT_SIZE;
1693                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1694                 d_instantiate(dentry, inode);
1695                 dget(dentry); /* Extra count - pin the dentry in core */
1696         }
1697         return error;
1698 }
1699
1700 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1701 {
1702         int error;
1703
1704         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1705                 return error;
1706         inc_nlink(dir);
1707         return 0;
1708 }
1709
1710 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1711                 struct nameidata *nd)
1712 {
1713         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1714 }
1715
1716 /*
1717  * Link a file..
1718  */
1719 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1720 {
1721         struct inode *inode = old_dentry->d_inode;
1722         int ret;
1723
1724         /*
1725          * No ordinary (disk based) filesystem counts links as inodes;
1726          * but each new link needs a new dentry, pinning lowmem, and
1727          * tmpfs dentries cannot be pruned until they are unlinked.
1728          */
1729         ret = shmem_reserve_inode(inode->i_sb);
1730         if (ret)
1731                 goto out;
1732
1733         dir->i_size += BOGO_DIRENT_SIZE;
1734         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1735         inc_nlink(inode);
1736         atomic_inc(&inode->i_count);    /* New dentry reference */
1737         dget(dentry);           /* Extra pinning count for the created dentry */
1738         d_instantiate(dentry, inode);
1739 out:
1740         return ret;
1741 }
1742
1743 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1744 {
1745         struct inode *inode = dentry->d_inode;
1746
1747         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1748                 shmem_free_inode(inode->i_sb);
1749
1750         dir->i_size -= BOGO_DIRENT_SIZE;
1751         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1752         drop_nlink(inode);
1753         dput(dentry);   /* Undo the count from "create" - this does all the work */
1754         return 0;
1755 }
1756
1757 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1758 {
1759         if (!simple_empty(dentry))
1760                 return -ENOTEMPTY;
1761
1762         drop_nlink(dentry->d_inode);
1763         drop_nlink(dir);
1764         return shmem_unlink(dir, dentry);
1765 }
1766
1767 /*
1768  * The VFS layer already does all the dentry stuff for rename,
1769  * we just have to decrement the usage count for the target if
1770  * it exists so that the VFS layer correctly free's it when it
1771  * gets overwritten.
1772  */
1773 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1774 {
1775         struct inode *inode = old_dentry->d_inode;
1776         int they_are_dirs = S_ISDIR(inode->i_mode);
1777
1778         if (!simple_empty(new_dentry))
1779                 return -ENOTEMPTY;
1780
1781         if (new_dentry->d_inode) {
1782                 (void) shmem_unlink(new_dir, new_dentry);
1783                 if (they_are_dirs)
1784                         drop_nlink(old_dir);
1785         } else if (they_are_dirs) {
1786                 drop_nlink(old_dir);
1787                 inc_nlink(new_dir);
1788         }
1789
1790         old_dir->i_size -= BOGO_DIRENT_SIZE;
1791         new_dir->i_size += BOGO_DIRENT_SIZE;
1792         old_dir->i_ctime = old_dir->i_mtime =
1793         new_dir->i_ctime = new_dir->i_mtime =
1794         inode->i_ctime = CURRENT_TIME;
1795         return 0;
1796 }
1797
1798 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1799 {
1800         int error;
1801         int len;
1802         struct inode *inode;
1803         struct page *page = NULL;
1804         char *kaddr;
1805         struct shmem_inode_info *info;
1806
1807         len = strlen(symname) + 1;
1808         if (len > PAGE_CACHE_SIZE)
1809                 return -ENAMETOOLONG;
1810
1811         inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1812         if (!inode)
1813                 return -ENOSPC;
1814
1815         error = security_inode_init_security(inode, dir, NULL, NULL,
1816                                              NULL);
1817         if (error) {
1818                 if (error != -EOPNOTSUPP) {
1819                         iput(inode);
1820                         return error;
1821                 }
1822                 error = 0;
1823         }
1824
1825         info = SHMEM_I(inode);
1826         inode->i_size = len-1;
1827         if (len <= (char *)inode - (char *)info) {
1828                 /* do it inline */
1829                 memcpy(info, symname, len);
1830                 inode->i_op = &shmem_symlink_inline_operations;
1831         } else {
1832                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1833                 if (error) {
1834                         iput(inode);
1835                         return error;
1836                 }
1837                 unlock_page(page);
1838                 inode->i_op = &shmem_symlink_inode_operations;
1839                 kaddr = kmap_atomic(page, KM_USER0);
1840                 memcpy(kaddr, symname, len);
1841                 kunmap_atomic(kaddr, KM_USER0);
1842                 set_page_dirty(page);
1843                 page_cache_release(page);
1844         }
1845         if (dir->i_mode & S_ISGID)
1846                 inode->i_gid = dir->i_gid;
1847         dir->i_size += BOGO_DIRENT_SIZE;
1848         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1849         d_instantiate(dentry, inode);
1850         dget(dentry);
1851         return 0;
1852 }
1853
1854 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1855 {
1856         nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1857         return NULL;
1858 }
1859
1860 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1861 {
1862         struct page *page = NULL;
1863         int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1864         nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1865         if (page)
1866                 unlock_page(page);
1867         return page;
1868 }
1869
1870 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1871 {
1872         if (!IS_ERR(nd_get_link(nd))) {
1873                 struct page *page = cookie;
1874                 kunmap(page);
1875                 mark_page_accessed(page);
1876                 page_cache_release(page);
1877         }
1878 }
1879
1880 static const struct inode_operations shmem_symlink_inline_operations = {
1881         .readlink       = generic_readlink,
1882         .follow_link    = shmem_follow_link_inline,
1883 };
1884
1885 static const struct inode_operations shmem_symlink_inode_operations = {
1886         .truncate       = shmem_truncate,
1887         .readlink       = generic_readlink,
1888         .follow_link    = shmem_follow_link,
1889         .put_link       = shmem_put_link,
1890 };
1891
1892 #ifdef CONFIG_TMPFS_POSIX_ACL
1893 /**
1894  * Superblocks without xattr inode operations will get security.* xattr
1895  * support from the VFS "for free". As soon as we have any other xattrs
1896  * like ACLs, we also need to implement the security.* handlers at
1897  * filesystem level, though.
1898  */
1899
1900 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1901                                         size_t list_len, const char *name,
1902                                         size_t name_len)
1903 {
1904         return security_inode_listsecurity(inode, list, list_len);
1905 }
1906
1907 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1908                                     void *buffer, size_t size)
1909 {
1910         if (strcmp(name, "") == 0)
1911                 return -EINVAL;
1912         return security_inode_getsecurity(inode, name, buffer, size,
1913                                           -EOPNOTSUPP);
1914 }
1915
1916 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1917                                     const void *value, size_t size, int flags)
1918 {
1919         if (strcmp(name, "") == 0)
1920                 return -EINVAL;
1921         return security_inode_setsecurity(inode, name, value, size, flags);
1922 }
1923
1924 static struct xattr_handler shmem_xattr_security_handler = {
1925         .prefix = XATTR_SECURITY_PREFIX,
1926         .list   = shmem_xattr_security_list,
1927         .get    = shmem_xattr_security_get,
1928         .set    = shmem_xattr_security_set,
1929 };
1930
1931 static struct xattr_handler *shmem_xattr_handlers[] = {
1932         &shmem_xattr_acl_access_handler,
1933         &shmem_xattr_acl_default_handler,
1934         &shmem_xattr_security_handler,
1935         NULL
1936 };
1937 #endif
1938
1939 static struct dentry *shmem_get_parent(struct dentry *child)
1940 {
1941         return ERR_PTR(-ESTALE);
1942 }
1943
1944 static int shmem_match(struct inode *ino, void *vfh)
1945 {
1946         __u32 *fh = vfh;
1947         __u64 inum = fh[2];
1948         inum = (inum << 32) | fh[1];
1949         return ino->i_ino == inum && fh[0] == ino->i_generation;
1950 }
1951
1952 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1953                 struct fid *fid, int fh_len, int fh_type)
1954 {
1955         struct inode *inode;
1956         struct dentry *dentry = NULL;
1957         u64 inum = fid->raw[2];
1958         inum = (inum << 32) | fid->raw[1];
1959
1960         if (fh_len < 3)
1961                 return NULL;
1962
1963         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1964                         shmem_match, fid->raw);
1965         if (inode) {
1966                 dentry = d_find_alias(inode);
1967                 iput(inode);
1968         }
1969
1970         return dentry;
1971 }
1972
1973 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1974                                 int connectable)
1975 {
1976         struct inode *inode = dentry->d_inode;
1977
1978         if (*len < 3)
1979                 return 255;
1980
1981         if (hlist_unhashed(&inode->i_hash)) {
1982                 /* Unfortunately insert_inode_hash is not idempotent,
1983                  * so as we hash inodes here rather than at creation
1984                  * time, we need a lock to ensure we only try
1985                  * to do it once
1986                  */
1987                 static DEFINE_SPINLOCK(lock);
1988                 spin_lock(&lock);
1989                 if (hlist_unhashed(&inode->i_hash))
1990                         __insert_inode_hash(inode,
1991                                             inode->i_ino + inode->i_generation);
1992                 spin_unlock(&lock);
1993         }
1994
1995         fh[0] = inode->i_generation;
1996         fh[1] = inode->i_ino;
1997         fh[2] = ((__u64)inode->i_ino) >> 32;
1998
1999         *len = 3;
2000         return 1;
2001 }
2002
2003 static const struct export_operations shmem_export_ops = {
2004         .get_parent     = shmem_get_parent,
2005         .encode_fh      = shmem_encode_fh,
2006         .fh_to_dentry   = shmem_fh_to_dentry,
2007 };
2008
2009 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2010         gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2011         int *policy, nodemask_t *policy_nodes)
2012 {
2013         char *this_char, *value, *rest;
2014
2015         while (options != NULL) {
2016                 this_char = options;
2017                 for (;;) {
2018                         /*
2019                          * NUL-terminate this option: unfortunately,
2020                          * mount options form a comma-separated list,
2021                          * but mpol's nodelist may also contain commas.
2022                          */
2023                         options = strchr(options, ',');
2024                         if (options == NULL)
2025                                 break;
2026                         options++;
2027                         if (!isdigit(*options)) {
2028                                 options[-1] = '\0';
2029                                 break;
2030                         }
2031                 }
2032                 if (!*this_char)
2033                         continue;
2034                 if ((value = strchr(this_char,'=')) != NULL) {
2035                         *value++ = 0;
2036                 } else {
2037                         printk(KERN_ERR
2038                             "tmpfs: No value for mount option '%s'\n",
2039                             this_char);
2040                         return 1;
2041                 }
2042
2043                 if (!strcmp(this_char,"size")) {
2044                         unsigned long long size;
2045                         size = memparse(value,&rest);
2046                         if (*rest == '%') {
2047                                 size <<= PAGE_SHIFT;
2048                                 size *= totalram_pages;
2049                                 do_div(size, 100);
2050                                 rest++;
2051                         }
2052                         if (*rest)
2053                                 goto bad_val;
2054                         *blocks = DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2055                 } else if (!strcmp(this_char,"nr_blocks")) {
2056                         *blocks = memparse(value,&rest);
2057                         if (*rest)
2058                                 goto bad_val;
2059                 } else if (!strcmp(this_char,"nr_inodes")) {
2060                         *inodes = memparse(value,&rest);
2061                         if (*rest)
2062                                 goto bad_val;
2063                 } else if (!strcmp(this_char,"mode")) {
2064                         if (!mode)
2065                                 continue;
2066                         *mode = simple_strtoul(value,&rest,8);
2067                         if (*rest)
2068                                 goto bad_val;
2069                 } else if (!strcmp(this_char,"uid")) {
2070                         if (!uid)
2071                                 continue;
2072                         *uid = simple_strtoul(value,&rest,0);
2073                         if (*rest)
2074                                 goto bad_val;
2075                 } else if (!strcmp(this_char,"gid")) {
2076                         if (!gid)
2077                                 continue;
2078                         *gid = simple_strtoul(value,&rest,0);
2079                         if (*rest)
2080                                 goto bad_val;
2081                 } else if (!strcmp(this_char,"mpol")) {
2082                         if (shmem_parse_mpol(value,policy,policy_nodes))
2083                                 goto bad_val;
2084                 } else {
2085                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2086                                this_char);
2087                         return 1;
2088                 }
2089         }
2090         return 0;
2091
2092 bad_val:
2093         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2094                value, this_char);
2095         return 1;
2096
2097 }
2098
2099 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2100 {
2101         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2102         unsigned long max_blocks = sbinfo->max_blocks;
2103         unsigned long max_inodes = sbinfo->max_inodes;
2104         int policy = sbinfo->policy;
2105         nodemask_t policy_nodes = sbinfo->policy_nodes;
2106         unsigned long blocks;
2107         unsigned long inodes;
2108         int error = -EINVAL;
2109
2110         if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2111                                 &max_inodes, &policy, &policy_nodes))
2112                 return error;
2113
2114         spin_lock(&sbinfo->stat_lock);
2115         blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2116         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2117         if (max_blocks < blocks)
2118                 goto out;
2119         if (max_inodes < inodes)
2120                 goto out;
2121         /*
2122          * Those tests also disallow limited->unlimited while any are in
2123          * use, so i_blocks will always be zero when max_blocks is zero;
2124          * but we must separately disallow unlimited->limited, because
2125          * in that case we have no record of how much is already in use.
2126          */
2127         if (max_blocks && !sbinfo->max_blocks)
2128                 goto out;
2129         if (max_inodes && !sbinfo->max_inodes)
2130                 goto out;
2131
2132         error = 0;
2133         sbinfo->max_blocks  = max_blocks;
2134         sbinfo->free_blocks = max_blocks - blocks;
2135         sbinfo->max_inodes  = max_inodes;
2136         sbinfo->free_inodes = max_inodes - inodes;
2137         sbinfo->policy = policy;
2138         sbinfo->policy_nodes = policy_nodes;
2139 out:
2140         spin_unlock(&sbinfo->stat_lock);
2141         return error;
2142 }
2143 #endif
2144
2145 static void shmem_put_super(struct super_block *sb)
2146 {
2147         kfree(sb->s_fs_info);
2148         sb->s_fs_info = NULL;
2149 }
2150
2151 static int shmem_fill_super(struct super_block *sb,
2152                             void *data, int silent)
2153 {
2154         struct inode *inode;
2155         struct dentry *root;
2156         int mode   = S_IRWXUGO | S_ISVTX;
2157         uid_t uid = current->fsuid;
2158         gid_t gid = current->fsgid;
2159         int err = -ENOMEM;
2160         struct shmem_sb_info *sbinfo;
2161         unsigned long blocks = 0;
2162         unsigned long inodes = 0;
2163         int policy = MPOL_DEFAULT;
2164         nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2165
2166 #ifdef CONFIG_TMPFS
2167         /*
2168          * Per default we only allow half of the physical ram per
2169          * tmpfs instance, limiting inodes to one per page of lowmem;
2170          * but the internal instance is left unlimited.
2171          */
2172         if (!(sb->s_flags & MS_NOUSER)) {
2173                 blocks = totalram_pages / 2;
2174                 inodes = totalram_pages - totalhigh_pages;
2175                 if (inodes > blocks)
2176                         inodes = blocks;
2177                 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2178                                         &inodes, &policy, &policy_nodes))
2179                         return -EINVAL;
2180         }
2181         sb->s_export_op = &shmem_export_ops;
2182 #else
2183         sb->s_flags |= MS_NOUSER;
2184 #endif
2185
2186         /* Round up to L1_CACHE_BYTES to resist false sharing */
2187         sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2188                                 L1_CACHE_BYTES), GFP_KERNEL);
2189         if (!sbinfo)
2190                 return -ENOMEM;
2191
2192         spin_lock_init(&sbinfo->stat_lock);
2193         sbinfo->max_blocks = blocks;
2194         sbinfo->free_blocks = blocks;
2195         sbinfo->max_inodes = inodes;
2196         sbinfo->free_inodes = inodes;
2197         sbinfo->policy = policy;
2198         sbinfo->policy_nodes = policy_nodes;
2199
2200         sb->s_fs_info = sbinfo;
2201         sb->s_maxbytes = SHMEM_MAX_BYTES;
2202         sb->s_blocksize = PAGE_CACHE_SIZE;
2203         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2204         sb->s_magic = TMPFS_MAGIC;
2205         sb->s_op = &shmem_ops;
2206         sb->s_time_gran = 1;
2207 #ifdef CONFIG_TMPFS_POSIX_ACL
2208         sb->s_xattr = shmem_xattr_handlers;
2209         sb->s_flags |= MS_POSIXACL;
2210 #endif
2211
2212         inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2213         if (!inode)
2214                 goto failed;
2215         inode->i_uid = uid;
2216         inode->i_gid = gid;
2217         root = d_alloc_root(inode);
2218         if (!root)
2219                 goto failed_iput;
2220         sb->s_root = root;
2221         return 0;
2222
2223 failed_iput:
2224         iput(inode);
2225 failed:
2226         shmem_put_super(sb);
2227         return err;
2228 }
2229
2230 static struct kmem_cache *shmem_inode_cachep;
2231
2232 static struct inode *shmem_alloc_inode(struct super_block *sb)
2233 {
2234         struct shmem_inode_info *p;
2235         p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2236         if (!p)
2237                 return NULL;
2238         return &p->vfs_inode;
2239 }
2240
2241 static void shmem_destroy_inode(struct inode *inode)
2242 {
2243         if ((inode->i_mode & S_IFMT) == S_IFREG) {
2244                 /* only struct inode is valid if it's an inline symlink */
2245                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2246         }
2247         shmem_acl_destroy_inode(inode);
2248         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2249 }
2250
2251 static void init_once(struct kmem_cache *cachep, void *foo)
2252 {
2253         struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2254
2255         inode_init_once(&p->vfs_inode);
2256 #ifdef CONFIG_TMPFS_POSIX_ACL
2257         p->i_acl = NULL;
2258         p->i_default_acl = NULL;
2259 #endif
2260 }
2261
2262 static int init_inodecache(void)
2263 {
2264         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2265                                 sizeof(struct shmem_inode_info),
2266                                 0, SLAB_PANIC, init_once);
2267         return 0;
2268 }
2269
2270 static void destroy_inodecache(void)
2271 {
2272         kmem_cache_destroy(shmem_inode_cachep);
2273 }
2274
2275 static const struct address_space_operations shmem_aops = {
2276         .writepage      = shmem_writepage,
2277         .set_page_dirty = __set_page_dirty_no_writeback,
2278 #ifdef CONFIG_TMPFS
2279         .readpage       = shmem_readpage,
2280         .write_begin    = shmem_write_begin,
2281         .write_end      = shmem_write_end,
2282 #endif
2283         .migratepage    = migrate_page,
2284 };
2285
2286 static const struct file_operations shmem_file_operations = {
2287         .mmap           = shmem_mmap,
2288 #ifdef CONFIG_TMPFS
2289         .llseek         = generic_file_llseek,
2290         .read           = shmem_file_read,
2291         .write          = do_sync_write,
2292         .aio_write      = generic_file_aio_write,
2293         .fsync          = simple_sync_file,
2294         .splice_read    = generic_file_splice_read,
2295         .splice_write   = generic_file_splice_write,
2296 #endif
2297 };
2298
2299 static const struct inode_operations shmem_inode_operations = {
2300         .truncate       = shmem_truncate,
2301         .setattr        = shmem_notify_change,
2302         .truncate_range = shmem_truncate_range,
2303 #ifdef CONFIG_TMPFS_POSIX_ACL
2304         .setxattr       = generic_setxattr,
2305         .getxattr       = generic_getxattr,
2306         .listxattr      = generic_listxattr,
2307         .removexattr    = generic_removexattr,
2308         .permission     = shmem_permission,
2309 #endif
2310
2311 };
2312
2313 static const struct inode_operations shmem_dir_inode_operations = {
2314 #ifdef CONFIG_TMPFS
2315         .create         = shmem_create,
2316         .lookup         = simple_lookup,
2317         .link           = shmem_link,
2318         .unlink         = shmem_unlink,
2319         .symlink        = shmem_symlink,
2320         .mkdir          = shmem_mkdir,
2321         .rmdir          = shmem_rmdir,
2322         .mknod          = shmem_mknod,
2323         .rename         = shmem_rename,
2324 #endif
2325 #ifdef CONFIG_TMPFS_POSIX_ACL
2326         .setattr        = shmem_notify_change,
2327         .setxattr       = generic_setxattr,
2328         .getxattr       = generic_getxattr,
2329         .listxattr      = generic_listxattr,
2330         .removexattr    = generic_removexattr,
2331         .permission     = shmem_permission,
2332 #endif
2333 };
2334
2335 static const struct inode_operations shmem_special_inode_operations = {
2336 #ifdef CONFIG_TMPFS_POSIX_ACL
2337         .setattr        = shmem_notify_change,
2338         .setxattr       = generic_setxattr,
2339         .getxattr       = generic_getxattr,
2340         .listxattr      = generic_listxattr,
2341         .removexattr    = generic_removexattr,
2342         .permission     = shmem_permission,
2343 #endif
2344 };
2345
2346 static const struct super_operations shmem_ops = {
2347         .alloc_inode    = shmem_alloc_inode,
2348         .destroy_inode  = shmem_destroy_inode,
2349 #ifdef CONFIG_TMPFS
2350         .statfs         = shmem_statfs,
2351         .remount_fs     = shmem_remount_fs,
2352 #endif
2353         .delete_inode   = shmem_delete_inode,
2354         .drop_inode     = generic_delete_inode,
2355         .put_super      = shmem_put_super,
2356 };
2357
2358 static struct vm_operations_struct shmem_vm_ops = {
2359         .fault          = shmem_fault,
2360 #ifdef CONFIG_NUMA
2361         .set_policy     = shmem_set_policy,
2362         .get_policy     = shmem_get_policy,
2363 #endif
2364 };
2365
2366
2367 static int shmem_get_sb(struct file_system_type *fs_type,
2368         int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2369 {
2370         return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2371 }
2372
2373 static struct file_system_type tmpfs_fs_type = {
2374         .owner          = THIS_MODULE,
2375         .name           = "tmpfs",
2376         .get_sb         = shmem_get_sb,
2377         .kill_sb        = kill_litter_super,
2378 };
2379 static struct vfsmount *shm_mnt;
2380
2381 static int __init init_tmpfs(void)
2382 {
2383         int error;
2384
2385         error = bdi_init(&shmem_backing_dev_info);
2386         if (error)
2387                 goto out4;
2388
2389         error = init_inodecache();
2390         if (error)
2391                 goto out3;
2392
2393         error = register_filesystem(&tmpfs_fs_type);
2394         if (error) {
2395                 printk(KERN_ERR "Could not register tmpfs\n");
2396                 goto out2;
2397         }
2398
2399         shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2400                                 tmpfs_fs_type.name, NULL);
2401         if (IS_ERR(shm_mnt)) {
2402                 error = PTR_ERR(shm_mnt);
2403                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2404                 goto out1;
2405         }
2406         return 0;
2407
2408 out1:
2409         unregister_filesystem(&tmpfs_fs_type);
2410 out2:
2411         destroy_inodecache();
2412 out3:
2413         bdi_destroy(&shmem_backing_dev_info);
2414 out4:
2415         shm_mnt = ERR_PTR(error);
2416         return error;
2417 }
2418 module_init(init_tmpfs)
2419
2420 /*
2421  * shmem_file_setup - get an unlinked file living in tmpfs
2422  *
2423  * @name: name for dentry (to be seen in /proc/<pid>/maps
2424  * @size: size to be set for the file
2425  *
2426  */
2427 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2428 {
2429         int error;
2430         struct file *file;
2431         struct inode *inode;
2432         struct dentry *dentry, *root;
2433         struct qstr this;
2434
2435         if (IS_ERR(shm_mnt))
2436                 return (void *)shm_mnt;
2437
2438         if (size < 0 || size > SHMEM_MAX_BYTES)
2439                 return ERR_PTR(-EINVAL);
2440
2441         if (shmem_acct_size(flags, size))
2442                 return ERR_PTR(-ENOMEM);
2443
2444         error = -ENOMEM;
2445         this.name = name;
2446         this.len = strlen(name);
2447         this.hash = 0; /* will go */
2448         root = shm_mnt->mnt_root;
2449         dentry = d_alloc(root, &this);
2450         if (!dentry)
2451                 goto put_memory;
2452
2453         error = -ENFILE;
2454         file = get_empty_filp();
2455         if (!file)
2456                 goto put_dentry;
2457
2458         error = -ENOSPC;
2459         inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2460         if (!inode)
2461                 goto close_file;
2462
2463         SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2464         d_instantiate(dentry, inode);
2465         inode->i_size = size;
2466         inode->i_nlink = 0;     /* It is unlinked */
2467         init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2468                         &shmem_file_operations);
2469         return file;
2470
2471 close_file:
2472         put_filp(file);
2473 put_dentry:
2474         dput(dentry);
2475 put_memory:
2476         shmem_unacct_size(flags, size);
2477         return ERR_PTR(error);
2478 }
2479
2480 /*
2481  * shmem_zero_setup - setup a shared anonymous mapping
2482  *
2483  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2484  */
2485 int shmem_zero_setup(struct vm_area_struct *vma)
2486 {
2487         struct file *file;
2488         loff_t size = vma->vm_end - vma->vm_start;
2489
2490         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2491         if (IS_ERR(file))
2492                 return PTR_ERR(file);
2493
2494         if (vma->vm_file)
2495                 fput(vma->vm_file);
2496         vma->vm_file = file;
2497         vma->vm_ops = &shmem_vm_ops;
2498         return 0;
2499 }