mempolicy: rework mempolicy Reference Counting [yet again]
[safe/jmp/linux-2.6] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
57
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC     0x01021994
60
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64
65 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN     VM_READ
72 #define SHMEM_TRUNCATE   VM_WRITE
73
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT    64
76
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
79
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 enum sgp_type {
82         SGP_READ,       /* don't exceed i_size, don't allocate page */
83         SGP_CACHE,      /* don't exceed i_size, may allocate page */
84         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
85         SGP_WRITE,      /* may exceed i_size, may allocate page */
86 };
87
88 #ifdef CONFIG_TMPFS
89 static unsigned long shmem_default_max_blocks(void)
90 {
91         return totalram_pages / 2;
92 }
93
94 static unsigned long shmem_default_max_inodes(void)
95 {
96         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97 }
98 #endif
99
100 static int shmem_getpage(struct inode *inode, unsigned long idx,
101                          struct page **pagep, enum sgp_type sgp, int *type);
102
103 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104 {
105         /*
106          * The above definition of ENTRIES_PER_PAGE, and the use of
107          * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108          * might be reconsidered if it ever diverges from PAGE_SIZE.
109          *
110          * Mobility flags are masked out as swap vectors cannot move
111          */
112         return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113                                 PAGE_CACHE_SHIFT-PAGE_SHIFT);
114 }
115
116 static inline void shmem_dir_free(struct page *page)
117 {
118         __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119 }
120
121 static struct page **shmem_dir_map(struct page *page)
122 {
123         return (struct page **)kmap_atomic(page, KM_USER0);
124 }
125
126 static inline void shmem_dir_unmap(struct page **dir)
127 {
128         kunmap_atomic(dir, KM_USER0);
129 }
130
131 static swp_entry_t *shmem_swp_map(struct page *page)
132 {
133         return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134 }
135
136 static inline void shmem_swp_balance_unmap(void)
137 {
138         /*
139          * When passing a pointer to an i_direct entry, to code which
140          * also handles indirect entries and so will shmem_swp_unmap,
141          * we must arrange for the preempt count to remain in balance.
142          * What kmap_atomic of a lowmem page does depends on config
143          * and architecture, so pretend to kmap_atomic some lowmem page.
144          */
145         (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146 }
147
148 static inline void shmem_swp_unmap(swp_entry_t *entry)
149 {
150         kunmap_atomic(entry, KM_USER1);
151 }
152
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155         return sb->s_fs_info;
156 }
157
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166         return (flags & VM_ACCOUNT)?
167                 security_vm_enough_memory(VM_ACCT(size)): 0;
168 }
169
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172         if (flags & VM_ACCOUNT)
173                 vm_unacct_memory(VM_ACCT(size));
174 }
175
176 /*
177  * ... whereas tmpfs objects are accounted incrementally as
178  * pages are allocated, in order to allow huge sparse files.
179  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181  */
182 static inline int shmem_acct_block(unsigned long flags)
183 {
184         return (flags & VM_ACCOUNT)?
185                 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189 {
190         if (!(flags & VM_ACCOUNT))
191                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192 }
193
194 static const struct super_operations shmem_ops;
195 static const struct address_space_operations shmem_aops;
196 static const struct file_operations shmem_file_operations;
197 static const struct inode_operations shmem_inode_operations;
198 static const struct inode_operations shmem_dir_inode_operations;
199 static const struct inode_operations shmem_special_inode_operations;
200 static struct vm_operations_struct shmem_vm_ops;
201
202 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
203         .ra_pages       = 0,    /* No readahead */
204         .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
205         .unplug_io_fn   = default_unplug_io_fn,
206 };
207
208 static LIST_HEAD(shmem_swaplist);
209 static DEFINE_MUTEX(shmem_swaplist_mutex);
210
211 static void shmem_free_blocks(struct inode *inode, long pages)
212 {
213         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214         if (sbinfo->max_blocks) {
215                 spin_lock(&sbinfo->stat_lock);
216                 sbinfo->free_blocks += pages;
217                 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218                 spin_unlock(&sbinfo->stat_lock);
219         }
220 }
221
222 static int shmem_reserve_inode(struct super_block *sb)
223 {
224         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225         if (sbinfo->max_inodes) {
226                 spin_lock(&sbinfo->stat_lock);
227                 if (!sbinfo->free_inodes) {
228                         spin_unlock(&sbinfo->stat_lock);
229                         return -ENOSPC;
230                 }
231                 sbinfo->free_inodes--;
232                 spin_unlock(&sbinfo->stat_lock);
233         }
234         return 0;
235 }
236
237 static void shmem_free_inode(struct super_block *sb)
238 {
239         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240         if (sbinfo->max_inodes) {
241                 spin_lock(&sbinfo->stat_lock);
242                 sbinfo->free_inodes++;
243                 spin_unlock(&sbinfo->stat_lock);
244         }
245 }
246
247 /**
248  * shmem_recalc_inode - recalculate the size of an inode
249  * @inode: inode to recalc
250  *
251  * We have to calculate the free blocks since the mm can drop
252  * undirtied hole pages behind our back.
253  *
254  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
255  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
256  *
257  * It has to be called with the spinlock held.
258  */
259 static void shmem_recalc_inode(struct inode *inode)
260 {
261         struct shmem_inode_info *info = SHMEM_I(inode);
262         long freed;
263
264         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
265         if (freed > 0) {
266                 info->alloced -= freed;
267                 shmem_unacct_blocks(info->flags, freed);
268                 shmem_free_blocks(inode, freed);
269         }
270 }
271
272 /**
273  * shmem_swp_entry - find the swap vector position in the info structure
274  * @info:  info structure for the inode
275  * @index: index of the page to find
276  * @page:  optional page to add to the structure. Has to be preset to
277  *         all zeros
278  *
279  * If there is no space allocated yet it will return NULL when
280  * page is NULL, else it will use the page for the needed block,
281  * setting it to NULL on return to indicate that it has been used.
282  *
283  * The swap vector is organized the following way:
284  *
285  * There are SHMEM_NR_DIRECT entries directly stored in the
286  * shmem_inode_info structure. So small files do not need an addional
287  * allocation.
288  *
289  * For pages with index > SHMEM_NR_DIRECT there is the pointer
290  * i_indirect which points to a page which holds in the first half
291  * doubly indirect blocks, in the second half triple indirect blocks:
292  *
293  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294  * following layout (for SHMEM_NR_DIRECT == 16):
295  *
296  * i_indirect -> dir --> 16-19
297  *            |      +-> 20-23
298  *            |
299  *            +-->dir2 --> 24-27
300  *            |        +-> 28-31
301  *            |        +-> 32-35
302  *            |        +-> 36-39
303  *            |
304  *            +-->dir3 --> 40-43
305  *                     +-> 44-47
306  *                     +-> 48-51
307  *                     +-> 52-55
308  */
309 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
310 {
311         unsigned long offset;
312         struct page **dir;
313         struct page *subdir;
314
315         if (index < SHMEM_NR_DIRECT) {
316                 shmem_swp_balance_unmap();
317                 return info->i_direct+index;
318         }
319         if (!info->i_indirect) {
320                 if (page) {
321                         info->i_indirect = *page;
322                         *page = NULL;
323                 }
324                 return NULL;                    /* need another page */
325         }
326
327         index -= SHMEM_NR_DIRECT;
328         offset = index % ENTRIES_PER_PAGE;
329         index /= ENTRIES_PER_PAGE;
330         dir = shmem_dir_map(info->i_indirect);
331
332         if (index >= ENTRIES_PER_PAGE/2) {
333                 index -= ENTRIES_PER_PAGE/2;
334                 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335                 index %= ENTRIES_PER_PAGE;
336                 subdir = *dir;
337                 if (!subdir) {
338                         if (page) {
339                                 *dir = *page;
340                                 *page = NULL;
341                         }
342                         shmem_dir_unmap(dir);
343                         return NULL;            /* need another page */
344                 }
345                 shmem_dir_unmap(dir);
346                 dir = shmem_dir_map(subdir);
347         }
348
349         dir += index;
350         subdir = *dir;
351         if (!subdir) {
352                 if (!page || !(subdir = *page)) {
353                         shmem_dir_unmap(dir);
354                         return NULL;            /* need a page */
355                 }
356                 *dir = subdir;
357                 *page = NULL;
358         }
359         shmem_dir_unmap(dir);
360         return shmem_swp_map(subdir) + offset;
361 }
362
363 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
364 {
365         long incdec = value? 1: -1;
366
367         entry->val = value;
368         info->swapped += incdec;
369         if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370                 struct page *page = kmap_atomic_to_page(entry);
371                 set_page_private(page, page_private(page) + incdec);
372         }
373 }
374
375 /**
376  * shmem_swp_alloc - get the position of the swap entry for the page.
377  * @info:       info structure for the inode
378  * @index:      index of the page to find
379  * @sgp:        check and recheck i_size? skip allocation?
380  *
381  * If the entry does not exist, allocate it.
382  */
383 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
384 {
385         struct inode *inode = &info->vfs_inode;
386         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387         struct page *page = NULL;
388         swp_entry_t *entry;
389
390         if (sgp != SGP_WRITE &&
391             ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392                 return ERR_PTR(-EINVAL);
393
394         while (!(entry = shmem_swp_entry(info, index, &page))) {
395                 if (sgp == SGP_READ)
396                         return shmem_swp_map(ZERO_PAGE(0));
397                 /*
398                  * Test free_blocks against 1 not 0, since we have 1 data
399                  * page (and perhaps indirect index pages) yet to allocate:
400                  * a waste to allocate index if we cannot allocate data.
401                  */
402                 if (sbinfo->max_blocks) {
403                         spin_lock(&sbinfo->stat_lock);
404                         if (sbinfo->free_blocks <= 1) {
405                                 spin_unlock(&sbinfo->stat_lock);
406                                 return ERR_PTR(-ENOSPC);
407                         }
408                         sbinfo->free_blocks--;
409                         inode->i_blocks += BLOCKS_PER_PAGE;
410                         spin_unlock(&sbinfo->stat_lock);
411                 }
412
413                 spin_unlock(&info->lock);
414                 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
415                 if (page)
416                         set_page_private(page, 0);
417                 spin_lock(&info->lock);
418
419                 if (!page) {
420                         shmem_free_blocks(inode, 1);
421                         return ERR_PTR(-ENOMEM);
422                 }
423                 if (sgp != SGP_WRITE &&
424                     ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425                         entry = ERR_PTR(-EINVAL);
426                         break;
427                 }
428                 if (info->next_index <= index)
429                         info->next_index = index + 1;
430         }
431         if (page) {
432                 /* another task gave its page, or truncated the file */
433                 shmem_free_blocks(inode, 1);
434                 shmem_dir_free(page);
435         }
436         if (info->next_index <= index && !IS_ERR(entry))
437                 info->next_index = index + 1;
438         return entry;
439 }
440
441 /**
442  * shmem_free_swp - free some swap entries in a directory
443  * @dir:        pointer to the directory
444  * @edir:       pointer after last entry of the directory
445  * @punch_lock: pointer to spinlock when needed for the holepunch case
446  */
447 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
448                                                 spinlock_t *punch_lock)
449 {
450         spinlock_t *punch_unlock = NULL;
451         swp_entry_t *ptr;
452         int freed = 0;
453
454         for (ptr = dir; ptr < edir; ptr++) {
455                 if (ptr->val) {
456                         if (unlikely(punch_lock)) {
457                                 punch_unlock = punch_lock;
458                                 punch_lock = NULL;
459                                 spin_lock(punch_unlock);
460                                 if (!ptr->val)
461                                         continue;
462                         }
463                         free_swap_and_cache(*ptr);
464                         *ptr = (swp_entry_t){0};
465                         freed++;
466                 }
467         }
468         if (punch_unlock)
469                 spin_unlock(punch_unlock);
470         return freed;
471 }
472
473 static int shmem_map_and_free_swp(struct page *subdir, int offset,
474                 int limit, struct page ***dir, spinlock_t *punch_lock)
475 {
476         swp_entry_t *ptr;
477         int freed = 0;
478
479         ptr = shmem_swp_map(subdir);
480         for (; offset < limit; offset += LATENCY_LIMIT) {
481                 int size = limit - offset;
482                 if (size > LATENCY_LIMIT)
483                         size = LATENCY_LIMIT;
484                 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
485                                                         punch_lock);
486                 if (need_resched()) {
487                         shmem_swp_unmap(ptr);
488                         if (*dir) {
489                                 shmem_dir_unmap(*dir);
490                                 *dir = NULL;
491                         }
492                         cond_resched();
493                         ptr = shmem_swp_map(subdir);
494                 }
495         }
496         shmem_swp_unmap(ptr);
497         return freed;
498 }
499
500 static void shmem_free_pages(struct list_head *next)
501 {
502         struct page *page;
503         int freed = 0;
504
505         do {
506                 page = container_of(next, struct page, lru);
507                 next = next->next;
508                 shmem_dir_free(page);
509                 freed++;
510                 if (freed >= LATENCY_LIMIT) {
511                         cond_resched();
512                         freed = 0;
513                 }
514         } while (next);
515 }
516
517 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
518 {
519         struct shmem_inode_info *info = SHMEM_I(inode);
520         unsigned long idx;
521         unsigned long size;
522         unsigned long limit;
523         unsigned long stage;
524         unsigned long diroff;
525         struct page **dir;
526         struct page *topdir;
527         struct page *middir;
528         struct page *subdir;
529         swp_entry_t *ptr;
530         LIST_HEAD(pages_to_free);
531         long nr_pages_to_free = 0;
532         long nr_swaps_freed = 0;
533         int offset;
534         int freed;
535         int punch_hole;
536         spinlock_t *needs_lock;
537         spinlock_t *punch_lock;
538         unsigned long upper_limit;
539
540         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541         idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542         if (idx >= info->next_index)
543                 return;
544
545         spin_lock(&info->lock);
546         info->flags |= SHMEM_TRUNCATE;
547         if (likely(end == (loff_t) -1)) {
548                 limit = info->next_index;
549                 upper_limit = SHMEM_MAX_INDEX;
550                 info->next_index = idx;
551                 needs_lock = NULL;
552                 punch_hole = 0;
553         } else {
554                 if (end + 1 >= inode->i_size) { /* we may free a little more */
555                         limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
556                                                         PAGE_CACHE_SHIFT;
557                         upper_limit = SHMEM_MAX_INDEX;
558                 } else {
559                         limit = (end + 1) >> PAGE_CACHE_SHIFT;
560                         upper_limit = limit;
561                 }
562                 needs_lock = &info->lock;
563                 punch_hole = 1;
564         }
565
566         topdir = info->i_indirect;
567         if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
568                 info->i_indirect = NULL;
569                 nr_pages_to_free++;
570                 list_add(&topdir->lru, &pages_to_free);
571         }
572         spin_unlock(&info->lock);
573
574         if (info->swapped && idx < SHMEM_NR_DIRECT) {
575                 ptr = info->i_direct;
576                 size = limit;
577                 if (size > SHMEM_NR_DIRECT)
578                         size = SHMEM_NR_DIRECT;
579                 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
580         }
581
582         /*
583          * If there are no indirect blocks or we are punching a hole
584          * below indirect blocks, nothing to be done.
585          */
586         if (!topdir || limit <= SHMEM_NR_DIRECT)
587                 goto done2;
588
589         /*
590          * The truncation case has already dropped info->lock, and we're safe
591          * because i_size and next_index have already been lowered, preventing
592          * access beyond.  But in the punch_hole case, we still need to take
593          * the lock when updating the swap directory, because there might be
594          * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595          * shmem_writepage.  However, whenever we find we can remove a whole
596          * directory page (not at the misaligned start or end of the range),
597          * we first NULLify its pointer in the level above, and then have no
598          * need to take the lock when updating its contents: needs_lock and
599          * punch_lock (either pointing to info->lock or NULL) manage this.
600          */
601
602         upper_limit -= SHMEM_NR_DIRECT;
603         limit -= SHMEM_NR_DIRECT;
604         idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
605         offset = idx % ENTRIES_PER_PAGE;
606         idx -= offset;
607
608         dir = shmem_dir_map(topdir);
609         stage = ENTRIES_PER_PAGEPAGE/2;
610         if (idx < ENTRIES_PER_PAGEPAGE/2) {
611                 middir = topdir;
612                 diroff = idx/ENTRIES_PER_PAGE;
613         } else {
614                 dir += ENTRIES_PER_PAGE/2;
615                 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
616                 while (stage <= idx)
617                         stage += ENTRIES_PER_PAGEPAGE;
618                 middir = *dir;
619                 if (*dir) {
620                         diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
621                                 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
622                         if (!diroff && !offset && upper_limit >= stage) {
623                                 if (needs_lock) {
624                                         spin_lock(needs_lock);
625                                         *dir = NULL;
626                                         spin_unlock(needs_lock);
627                                         needs_lock = NULL;
628                                 } else
629                                         *dir = NULL;
630                                 nr_pages_to_free++;
631                                 list_add(&middir->lru, &pages_to_free);
632                         }
633                         shmem_dir_unmap(dir);
634                         dir = shmem_dir_map(middir);
635                 } else {
636                         diroff = 0;
637                         offset = 0;
638                         idx = stage;
639                 }
640         }
641
642         for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
643                 if (unlikely(idx == stage)) {
644                         shmem_dir_unmap(dir);
645                         dir = shmem_dir_map(topdir) +
646                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
647                         while (!*dir) {
648                                 dir++;
649                                 idx += ENTRIES_PER_PAGEPAGE;
650                                 if (idx >= limit)
651                                         goto done1;
652                         }
653                         stage = idx + ENTRIES_PER_PAGEPAGE;
654                         middir = *dir;
655                         if (punch_hole)
656                                 needs_lock = &info->lock;
657                         if (upper_limit >= stage) {
658                                 if (needs_lock) {
659                                         spin_lock(needs_lock);
660                                         *dir = NULL;
661                                         spin_unlock(needs_lock);
662                                         needs_lock = NULL;
663                                 } else
664                                         *dir = NULL;
665                                 nr_pages_to_free++;
666                                 list_add(&middir->lru, &pages_to_free);
667                         }
668                         shmem_dir_unmap(dir);
669                         cond_resched();
670                         dir = shmem_dir_map(middir);
671                         diroff = 0;
672                 }
673                 punch_lock = needs_lock;
674                 subdir = dir[diroff];
675                 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
676                         if (needs_lock) {
677                                 spin_lock(needs_lock);
678                                 dir[diroff] = NULL;
679                                 spin_unlock(needs_lock);
680                                 punch_lock = NULL;
681                         } else
682                                 dir[diroff] = NULL;
683                         nr_pages_to_free++;
684                         list_add(&subdir->lru, &pages_to_free);
685                 }
686                 if (subdir && page_private(subdir) /* has swap entries */) {
687                         size = limit - idx;
688                         if (size > ENTRIES_PER_PAGE)
689                                 size = ENTRIES_PER_PAGE;
690                         freed = shmem_map_and_free_swp(subdir,
691                                         offset, size, &dir, punch_lock);
692                         if (!dir)
693                                 dir = shmem_dir_map(middir);
694                         nr_swaps_freed += freed;
695                         if (offset || punch_lock) {
696                                 spin_lock(&info->lock);
697                                 set_page_private(subdir,
698                                         page_private(subdir) - freed);
699                                 spin_unlock(&info->lock);
700                         } else
701                                 BUG_ON(page_private(subdir) != freed);
702                 }
703                 offset = 0;
704         }
705 done1:
706         shmem_dir_unmap(dir);
707 done2:
708         if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
709                 /*
710                  * Call truncate_inode_pages again: racing shmem_unuse_inode
711                  * may have swizzled a page in from swap since vmtruncate or
712                  * generic_delete_inode did it, before we lowered next_index.
713                  * Also, though shmem_getpage checks i_size before adding to
714                  * cache, no recheck after: so fix the narrow window there too.
715                  *
716                  * Recalling truncate_inode_pages_range and unmap_mapping_range
717                  * every time for punch_hole (which never got a chance to clear
718                  * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719                  * yet hardly ever necessary: try to optimize them out later.
720                  */
721                 truncate_inode_pages_range(inode->i_mapping, start, end);
722                 if (punch_hole)
723                         unmap_mapping_range(inode->i_mapping, start,
724                                                         end - start, 1);
725         }
726
727         spin_lock(&info->lock);
728         info->flags &= ~SHMEM_TRUNCATE;
729         info->swapped -= nr_swaps_freed;
730         if (nr_pages_to_free)
731                 shmem_free_blocks(inode, nr_pages_to_free);
732         shmem_recalc_inode(inode);
733         spin_unlock(&info->lock);
734
735         /*
736          * Empty swap vector directory pages to be freed?
737          */
738         if (!list_empty(&pages_to_free)) {
739                 pages_to_free.prev->next = NULL;
740                 shmem_free_pages(pages_to_free.next);
741         }
742 }
743
744 static void shmem_truncate(struct inode *inode)
745 {
746         shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
747 }
748
749 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
750 {
751         struct inode *inode = dentry->d_inode;
752         struct page *page = NULL;
753         int error;
754
755         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
756                 if (attr->ia_size < inode->i_size) {
757                         /*
758                          * If truncating down to a partial page, then
759                          * if that page is already allocated, hold it
760                          * in memory until the truncation is over, so
761                          * truncate_partial_page cannnot miss it were
762                          * it assigned to swap.
763                          */
764                         if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
765                                 (void) shmem_getpage(inode,
766                                         attr->ia_size>>PAGE_CACHE_SHIFT,
767                                                 &page, SGP_READ, NULL);
768                                 if (page)
769                                         unlock_page(page);
770                         }
771                         /*
772                          * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773                          * detect if any pages might have been added to cache
774                          * after truncate_inode_pages.  But we needn't bother
775                          * if it's being fully truncated to zero-length: the
776                          * nrpages check is efficient enough in that case.
777                          */
778                         if (attr->ia_size) {
779                                 struct shmem_inode_info *info = SHMEM_I(inode);
780                                 spin_lock(&info->lock);
781                                 info->flags &= ~SHMEM_PAGEIN;
782                                 spin_unlock(&info->lock);
783                         }
784                 }
785         }
786
787         error = inode_change_ok(inode, attr);
788         if (!error)
789                 error = inode_setattr(inode, attr);
790 #ifdef CONFIG_TMPFS_POSIX_ACL
791         if (!error && (attr->ia_valid & ATTR_MODE))
792                 error = generic_acl_chmod(inode, &shmem_acl_ops);
793 #endif
794         if (page)
795                 page_cache_release(page);
796         return error;
797 }
798
799 static void shmem_delete_inode(struct inode *inode)
800 {
801         struct shmem_inode_info *info = SHMEM_I(inode);
802
803         if (inode->i_op->truncate == shmem_truncate) {
804                 truncate_inode_pages(inode->i_mapping, 0);
805                 shmem_unacct_size(info->flags, inode->i_size);
806                 inode->i_size = 0;
807                 shmem_truncate(inode);
808                 if (!list_empty(&info->swaplist)) {
809                         mutex_lock(&shmem_swaplist_mutex);
810                         list_del_init(&info->swaplist);
811                         mutex_unlock(&shmem_swaplist_mutex);
812                 }
813         }
814         BUG_ON(inode->i_blocks);
815         shmem_free_inode(inode->i_sb);
816         clear_inode(inode);
817 }
818
819 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
820 {
821         swp_entry_t *ptr;
822
823         for (ptr = dir; ptr < edir; ptr++) {
824                 if (ptr->val == entry.val)
825                         return ptr - dir;
826         }
827         return -1;
828 }
829
830 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
831 {
832         struct inode *inode;
833         unsigned long idx;
834         unsigned long size;
835         unsigned long limit;
836         unsigned long stage;
837         struct page **dir;
838         struct page *subdir;
839         swp_entry_t *ptr;
840         int offset;
841         int error;
842
843         idx = 0;
844         ptr = info->i_direct;
845         spin_lock(&info->lock);
846         if (!info->swapped) {
847                 list_del_init(&info->swaplist);
848                 goto lost2;
849         }
850         limit = info->next_index;
851         size = limit;
852         if (size > SHMEM_NR_DIRECT)
853                 size = SHMEM_NR_DIRECT;
854         offset = shmem_find_swp(entry, ptr, ptr+size);
855         if (offset >= 0)
856                 goto found;
857         if (!info->i_indirect)
858                 goto lost2;
859
860         dir = shmem_dir_map(info->i_indirect);
861         stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
862
863         for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
864                 if (unlikely(idx == stage)) {
865                         shmem_dir_unmap(dir-1);
866                         if (cond_resched_lock(&info->lock)) {
867                                 /* check it has not been truncated */
868                                 if (limit > info->next_index) {
869                                         limit = info->next_index;
870                                         if (idx >= limit)
871                                                 goto lost2;
872                                 }
873                         }
874                         dir = shmem_dir_map(info->i_indirect) +
875                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
876                         while (!*dir) {
877                                 dir++;
878                                 idx += ENTRIES_PER_PAGEPAGE;
879                                 if (idx >= limit)
880                                         goto lost1;
881                         }
882                         stage = idx + ENTRIES_PER_PAGEPAGE;
883                         subdir = *dir;
884                         shmem_dir_unmap(dir);
885                         dir = shmem_dir_map(subdir);
886                 }
887                 subdir = *dir;
888                 if (subdir && page_private(subdir)) {
889                         ptr = shmem_swp_map(subdir);
890                         size = limit - idx;
891                         if (size > ENTRIES_PER_PAGE)
892                                 size = ENTRIES_PER_PAGE;
893                         offset = shmem_find_swp(entry, ptr, ptr+size);
894                         shmem_swp_unmap(ptr);
895                         if (offset >= 0) {
896                                 shmem_dir_unmap(dir);
897                                 goto found;
898                         }
899                 }
900         }
901 lost1:
902         shmem_dir_unmap(dir-1);
903 lost2:
904         spin_unlock(&info->lock);
905         return 0;
906 found:
907         idx += offset;
908         inode = igrab(&info->vfs_inode);
909         spin_unlock(&info->lock);
910
911         /*
912          * Move _head_ to start search for next from here.
913          * But be careful: shmem_delete_inode checks list_empty without taking
914          * mutex, and there's an instant in list_move_tail when info->swaplist
915          * would appear empty, if it were the only one on shmem_swaplist.  We
916          * could avoid doing it if inode NULL; or use this minor optimization.
917          */
918         if (shmem_swaplist.next != &info->swaplist)
919                 list_move_tail(&shmem_swaplist, &info->swaplist);
920         mutex_unlock(&shmem_swaplist_mutex);
921
922         error = 1;
923         if (!inode)
924                 goto out;
925         /* Precharge page while we can wait, compensate afterwards */
926         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
927         if (error)
928                 goto out;
929         error = radix_tree_preload(GFP_KERNEL);
930         if (error)
931                 goto uncharge;
932         error = 1;
933
934         spin_lock(&info->lock);
935         ptr = shmem_swp_entry(info, idx, NULL);
936         if (ptr && ptr->val == entry.val)
937                 error = add_to_page_cache(page, inode->i_mapping,
938                                                 idx, GFP_NOWAIT);
939         if (error == -EEXIST) {
940                 struct page *filepage = find_get_page(inode->i_mapping, idx);
941                 error = 1;
942                 if (filepage) {
943                         /*
944                          * There might be a more uptodate page coming down
945                          * from a stacked writepage: forget our swappage if so.
946                          */
947                         if (PageUptodate(filepage))
948                                 error = 0;
949                         page_cache_release(filepage);
950                 }
951         }
952         if (!error) {
953                 delete_from_swap_cache(page);
954                 set_page_dirty(page);
955                 info->flags |= SHMEM_PAGEIN;
956                 shmem_swp_set(info, ptr, 0);
957                 swap_free(entry);
958                 error = 1;      /* not an error, but entry was found */
959         }
960         if (ptr)
961                 shmem_swp_unmap(ptr);
962         spin_unlock(&info->lock);
963         radix_tree_preload_end();
964 uncharge:
965         mem_cgroup_uncharge_page(page);
966 out:
967         unlock_page(page);
968         page_cache_release(page);
969         iput(inode);            /* allows for NULL */
970         return error;
971 }
972
973 /*
974  * shmem_unuse() search for an eventually swapped out shmem page.
975  */
976 int shmem_unuse(swp_entry_t entry, struct page *page)
977 {
978         struct list_head *p, *next;
979         struct shmem_inode_info *info;
980         int found = 0;
981
982         mutex_lock(&shmem_swaplist_mutex);
983         list_for_each_safe(p, next, &shmem_swaplist) {
984                 info = list_entry(p, struct shmem_inode_info, swaplist);
985                 found = shmem_unuse_inode(info, entry, page);
986                 cond_resched();
987                 if (found)
988                         goto out;
989         }
990         mutex_unlock(&shmem_swaplist_mutex);
991 out:    return found;   /* 0 or 1 or -ENOMEM */
992 }
993
994 /*
995  * Move the page from the page cache to the swap cache.
996  */
997 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
998 {
999         struct shmem_inode_info *info;
1000         swp_entry_t *entry, swap;
1001         struct address_space *mapping;
1002         unsigned long index;
1003         struct inode *inode;
1004
1005         BUG_ON(!PageLocked(page));
1006         mapping = page->mapping;
1007         index = page->index;
1008         inode = mapping->host;
1009         info = SHMEM_I(inode);
1010         if (info->flags & VM_LOCKED)
1011                 goto redirty;
1012         if (!total_swap_pages)
1013                 goto redirty;
1014
1015         /*
1016          * shmem_backing_dev_info's capabilities prevent regular writeback or
1017          * sync from ever calling shmem_writepage; but a stacking filesystem
1018          * may use the ->writepage of its underlying filesystem, in which case
1019          * tmpfs should write out to swap only in response to memory pressure,
1020          * and not for pdflush or sync.  However, in those cases, we do still
1021          * want to check if there's a redundant swappage to be discarded.
1022          */
1023         if (wbc->for_reclaim)
1024                 swap = get_swap_page();
1025         else
1026                 swap.val = 0;
1027
1028         spin_lock(&info->lock);
1029         if (index >= info->next_index) {
1030                 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1031                 goto unlock;
1032         }
1033         entry = shmem_swp_entry(info, index, NULL);
1034         if (entry->val) {
1035                 /*
1036                  * The more uptodate page coming down from a stacked
1037                  * writepage should replace our old swappage.
1038                  */
1039                 free_swap_and_cache(*entry);
1040                 shmem_swp_set(info, entry, 0);
1041         }
1042         shmem_recalc_inode(inode);
1043
1044         if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1045                 remove_from_page_cache(page);
1046                 shmem_swp_set(info, entry, swap.val);
1047                 shmem_swp_unmap(entry);
1048                 if (list_empty(&info->swaplist))
1049                         inode = igrab(inode);
1050                 else
1051                         inode = NULL;
1052                 spin_unlock(&info->lock);
1053                 swap_duplicate(swap);
1054                 BUG_ON(page_mapped(page));
1055                 page_cache_release(page);       /* pagecache ref */
1056                 set_page_dirty(page);
1057                 unlock_page(page);
1058                 if (inode) {
1059                         mutex_lock(&shmem_swaplist_mutex);
1060                         /* move instead of add in case we're racing */
1061                         list_move_tail(&info->swaplist, &shmem_swaplist);
1062                         mutex_unlock(&shmem_swaplist_mutex);
1063                         iput(inode);
1064                 }
1065                 return 0;
1066         }
1067
1068         shmem_swp_unmap(entry);
1069 unlock:
1070         spin_unlock(&info->lock);
1071         swap_free(swap);
1072 redirty:
1073         set_page_dirty(page);
1074         if (wbc->for_reclaim)
1075                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1076         unlock_page(page);
1077         return 0;
1078 }
1079
1080 #ifdef CONFIG_NUMA
1081 #ifdef CONFIG_TMPFS
1082 static int shmem_parse_mpol(char *value, unsigned short *policy,
1083                         unsigned short *mode_flags, nodemask_t *policy_nodes)
1084 {
1085         char *nodelist = strchr(value, ':');
1086         char *flags = strchr(value, '=');
1087         int err = 1;
1088
1089         if (nodelist) {
1090                 /* NUL-terminate policy string */
1091                 *nodelist++ = '\0';
1092                 if (nodelist_parse(nodelist, *policy_nodes))
1093                         goto out;
1094                 if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1095                         goto out;
1096         }
1097         if (flags)
1098                 *flags++ = '\0';
1099         if (!strcmp(value, "default")) {
1100                 *policy = MPOL_DEFAULT;
1101                 /* Don't allow a nodelist */
1102                 if (!nodelist)
1103                         err = 0;
1104         } else if (!strcmp(value, "prefer")) {
1105                 *policy = MPOL_PREFERRED;
1106                 /* Insist on a nodelist of one node only */
1107                 if (nodelist) {
1108                         char *rest = nodelist;
1109                         while (isdigit(*rest))
1110                                 rest++;
1111                         if (!*rest)
1112                                 err = 0;
1113                 }
1114         } else if (!strcmp(value, "bind")) {
1115                 *policy = MPOL_BIND;
1116                 /* Insist on a nodelist */
1117                 if (nodelist)
1118                         err = 0;
1119         } else if (!strcmp(value, "interleave")) {
1120                 *policy = MPOL_INTERLEAVE;
1121                 /*
1122                  * Default to online nodes with memory if no nodelist
1123                  */
1124                 if (!nodelist)
1125                         *policy_nodes = node_states[N_HIGH_MEMORY];
1126                 err = 0;
1127         }
1128
1129         *mode_flags = 0;
1130         if (flags) {
1131                 /*
1132                  * Currently, we only support two mutually exclusive
1133                  * mode flags.
1134                  */
1135                 if (!strcmp(flags, "static"))
1136                         *mode_flags |= MPOL_F_STATIC_NODES;
1137                 else if (!strcmp(flags, "relative"))
1138                         *mode_flags |= MPOL_F_RELATIVE_NODES;
1139                 else
1140                         err = 1;        /* unrecognized flag */
1141         }
1142 out:
1143         /* Restore string for error message */
1144         if (nodelist)
1145                 *--nodelist = ':';
1146         if (flags)
1147                 *--flags = '=';
1148         return err;
1149 }
1150
1151 static void shmem_show_mpol(struct seq_file *seq, unsigned short policy,
1152                         unsigned short flags, const nodemask_t policy_nodes)
1153 {
1154         char *policy_string;
1155
1156         switch (policy) {
1157         case MPOL_PREFERRED:
1158                 policy_string = "prefer";
1159                 break;
1160         case MPOL_BIND:
1161                 policy_string = "bind";
1162                 break;
1163         case MPOL_INTERLEAVE:
1164                 policy_string = "interleave";
1165                 break;
1166         default:
1167                 /* MPOL_DEFAULT */
1168                 return;
1169         }
1170
1171         seq_printf(seq, ",mpol=%s", policy_string);
1172
1173         if (policy != MPOL_INTERLEAVE ||
1174             !nodes_equal(policy_nodes, node_states[N_HIGH_MEMORY])) {
1175                 char buffer[64];
1176                 int len;
1177
1178                 len = nodelist_scnprintf(buffer, sizeof(buffer), policy_nodes);
1179                 if (len < sizeof(buffer))
1180                         seq_printf(seq, ":%s", buffer);
1181                 else
1182                         seq_printf(seq, ":?");
1183         }
1184 }
1185 #endif /* CONFIG_TMPFS */
1186
1187 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1188                         struct shmem_inode_info *info, unsigned long idx)
1189 {
1190         struct mempolicy mpol, *spol;
1191         struct vm_area_struct pvma;
1192         struct page *page;
1193
1194         spol = mpol_cond_copy(&mpol,
1195                                 mpol_shared_policy_lookup(&info->policy, idx));
1196
1197         /* Create a pseudo vma that just contains the policy */
1198         pvma.vm_start = 0;
1199         pvma.vm_pgoff = idx;
1200         pvma.vm_ops = NULL;
1201         pvma.vm_policy = spol;
1202         page = swapin_readahead(entry, gfp, &pvma, 0);
1203         return page;
1204 }
1205
1206 static struct page *shmem_alloc_page(gfp_t gfp,
1207                         struct shmem_inode_info *info, unsigned long idx)
1208 {
1209         struct vm_area_struct pvma;
1210
1211         /* Create a pseudo vma that just contains the policy */
1212         pvma.vm_start = 0;
1213         pvma.vm_pgoff = idx;
1214         pvma.vm_ops = NULL;
1215         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1216
1217         /*
1218          * alloc_page_vma() will drop the shared policy reference
1219          */
1220         return alloc_page_vma(gfp, &pvma, 0);
1221 }
1222 #else /* !CONFIG_NUMA */
1223 #ifdef CONFIG_TMPFS
1224 static inline int shmem_parse_mpol(char *value, unsigned short *policy,
1225                         unsigned short *mode_flags, nodemask_t *policy_nodes)
1226 {
1227         return 1;
1228 }
1229
1230 static inline void shmem_show_mpol(struct seq_file *seq, unsigned short policy,
1231                         unsigned short flags, const nodemask_t policy_nodes)
1232 {
1233 }
1234 #endif /* CONFIG_TMPFS */
1235
1236 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1237                         struct shmem_inode_info *info, unsigned long idx)
1238 {
1239         return swapin_readahead(entry, gfp, NULL, 0);
1240 }
1241
1242 static inline struct page *shmem_alloc_page(gfp_t gfp,
1243                         struct shmem_inode_info *info, unsigned long idx)
1244 {
1245         return alloc_page(gfp);
1246 }
1247 #endif /* CONFIG_NUMA */
1248
1249 /*
1250  * shmem_getpage - either get the page from swap or allocate a new one
1251  *
1252  * If we allocate a new one we do not mark it dirty. That's up to the
1253  * vm. If we swap it in we mark it dirty since we also free the swap
1254  * entry since a page cannot live in both the swap and page cache
1255  */
1256 static int shmem_getpage(struct inode *inode, unsigned long idx,
1257                         struct page **pagep, enum sgp_type sgp, int *type)
1258 {
1259         struct address_space *mapping = inode->i_mapping;
1260         struct shmem_inode_info *info = SHMEM_I(inode);
1261         struct shmem_sb_info *sbinfo;
1262         struct page *filepage = *pagep;
1263         struct page *swappage;
1264         swp_entry_t *entry;
1265         swp_entry_t swap;
1266         gfp_t gfp;
1267         int error;
1268
1269         if (idx >= SHMEM_MAX_INDEX)
1270                 return -EFBIG;
1271
1272         if (type)
1273                 *type = 0;
1274
1275         /*
1276          * Normally, filepage is NULL on entry, and either found
1277          * uptodate immediately, or allocated and zeroed, or read
1278          * in under swappage, which is then assigned to filepage.
1279          * But shmem_readpage (required for splice) passes in a locked
1280          * filepage, which may be found not uptodate by other callers
1281          * too, and may need to be copied from the swappage read in.
1282          */
1283 repeat:
1284         if (!filepage)
1285                 filepage = find_lock_page(mapping, idx);
1286         if (filepage && PageUptodate(filepage))
1287                 goto done;
1288         error = 0;
1289         gfp = mapping_gfp_mask(mapping);
1290         if (!filepage) {
1291                 /*
1292                  * Try to preload while we can wait, to not make a habit of
1293                  * draining atomic reserves; but don't latch on to this cpu.
1294                  */
1295                 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1296                 if (error)
1297                         goto failed;
1298                 radix_tree_preload_end();
1299         }
1300
1301         spin_lock(&info->lock);
1302         shmem_recalc_inode(inode);
1303         entry = shmem_swp_alloc(info, idx, sgp);
1304         if (IS_ERR(entry)) {
1305                 spin_unlock(&info->lock);
1306                 error = PTR_ERR(entry);
1307                 goto failed;
1308         }
1309         swap = *entry;
1310
1311         if (swap.val) {
1312                 /* Look it up and read it in.. */
1313                 swappage = lookup_swap_cache(swap);
1314                 if (!swappage) {
1315                         shmem_swp_unmap(entry);
1316                         /* here we actually do the io */
1317                         if (type && !(*type & VM_FAULT_MAJOR)) {
1318                                 __count_vm_event(PGMAJFAULT);
1319                                 *type |= VM_FAULT_MAJOR;
1320                         }
1321                         spin_unlock(&info->lock);
1322                         swappage = shmem_swapin(swap, gfp, info, idx);
1323                         if (!swappage) {
1324                                 spin_lock(&info->lock);
1325                                 entry = shmem_swp_alloc(info, idx, sgp);
1326                                 if (IS_ERR(entry))
1327                                         error = PTR_ERR(entry);
1328                                 else {
1329                                         if (entry->val == swap.val)
1330                                                 error = -ENOMEM;
1331                                         shmem_swp_unmap(entry);
1332                                 }
1333                                 spin_unlock(&info->lock);
1334                                 if (error)
1335                                         goto failed;
1336                                 goto repeat;
1337                         }
1338                         wait_on_page_locked(swappage);
1339                         page_cache_release(swappage);
1340                         goto repeat;
1341                 }
1342
1343                 /* We have to do this with page locked to prevent races */
1344                 if (TestSetPageLocked(swappage)) {
1345                         shmem_swp_unmap(entry);
1346                         spin_unlock(&info->lock);
1347                         wait_on_page_locked(swappage);
1348                         page_cache_release(swappage);
1349                         goto repeat;
1350                 }
1351                 if (PageWriteback(swappage)) {
1352                         shmem_swp_unmap(entry);
1353                         spin_unlock(&info->lock);
1354                         wait_on_page_writeback(swappage);
1355                         unlock_page(swappage);
1356                         page_cache_release(swappage);
1357                         goto repeat;
1358                 }
1359                 if (!PageUptodate(swappage)) {
1360                         shmem_swp_unmap(entry);
1361                         spin_unlock(&info->lock);
1362                         unlock_page(swappage);
1363                         page_cache_release(swappage);
1364                         error = -EIO;
1365                         goto failed;
1366                 }
1367
1368                 if (filepage) {
1369                         shmem_swp_set(info, entry, 0);
1370                         shmem_swp_unmap(entry);
1371                         delete_from_swap_cache(swappage);
1372                         spin_unlock(&info->lock);
1373                         copy_highpage(filepage, swappage);
1374                         unlock_page(swappage);
1375                         page_cache_release(swappage);
1376                         flush_dcache_page(filepage);
1377                         SetPageUptodate(filepage);
1378                         set_page_dirty(filepage);
1379                         swap_free(swap);
1380                 } else if (!(error = add_to_page_cache(
1381                                 swappage, mapping, idx, GFP_NOWAIT))) {
1382                         info->flags |= SHMEM_PAGEIN;
1383                         shmem_swp_set(info, entry, 0);
1384                         shmem_swp_unmap(entry);
1385                         delete_from_swap_cache(swappage);
1386                         spin_unlock(&info->lock);
1387                         filepage = swappage;
1388                         set_page_dirty(filepage);
1389                         swap_free(swap);
1390                 } else {
1391                         shmem_swp_unmap(entry);
1392                         spin_unlock(&info->lock);
1393                         unlock_page(swappage);
1394                         if (error == -ENOMEM) {
1395                                 /* allow reclaim from this memory cgroup */
1396                                 error = mem_cgroup_cache_charge(swappage,
1397                                         current->mm, gfp & ~__GFP_HIGHMEM);
1398                                 if (error) {
1399                                         page_cache_release(swappage);
1400                                         goto failed;
1401                                 }
1402                                 mem_cgroup_uncharge_page(swappage);
1403                         }
1404                         page_cache_release(swappage);
1405                         goto repeat;
1406                 }
1407         } else if (sgp == SGP_READ && !filepage) {
1408                 shmem_swp_unmap(entry);
1409                 filepage = find_get_page(mapping, idx);
1410                 if (filepage &&
1411                     (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1412                         spin_unlock(&info->lock);
1413                         wait_on_page_locked(filepage);
1414                         page_cache_release(filepage);
1415                         filepage = NULL;
1416                         goto repeat;
1417                 }
1418                 spin_unlock(&info->lock);
1419         } else {
1420                 shmem_swp_unmap(entry);
1421                 sbinfo = SHMEM_SB(inode->i_sb);
1422                 if (sbinfo->max_blocks) {
1423                         spin_lock(&sbinfo->stat_lock);
1424                         if (sbinfo->free_blocks == 0 ||
1425                             shmem_acct_block(info->flags)) {
1426                                 spin_unlock(&sbinfo->stat_lock);
1427                                 spin_unlock(&info->lock);
1428                                 error = -ENOSPC;
1429                                 goto failed;
1430                         }
1431                         sbinfo->free_blocks--;
1432                         inode->i_blocks += BLOCKS_PER_PAGE;
1433                         spin_unlock(&sbinfo->stat_lock);
1434                 } else if (shmem_acct_block(info->flags)) {
1435                         spin_unlock(&info->lock);
1436                         error = -ENOSPC;
1437                         goto failed;
1438                 }
1439
1440                 if (!filepage) {
1441                         spin_unlock(&info->lock);
1442                         filepage = shmem_alloc_page(gfp, info, idx);
1443                         if (!filepage) {
1444                                 shmem_unacct_blocks(info->flags, 1);
1445                                 shmem_free_blocks(inode, 1);
1446                                 error = -ENOMEM;
1447                                 goto failed;
1448                         }
1449
1450                         /* Precharge page while we can wait, compensate after */
1451                         error = mem_cgroup_cache_charge(filepage, current->mm,
1452                                                         gfp & ~__GFP_HIGHMEM);
1453                         if (error) {
1454                                 page_cache_release(filepage);
1455                                 shmem_unacct_blocks(info->flags, 1);
1456                                 shmem_free_blocks(inode, 1);
1457                                 filepage = NULL;
1458                                 goto failed;
1459                         }
1460
1461                         spin_lock(&info->lock);
1462                         entry = shmem_swp_alloc(info, idx, sgp);
1463                         if (IS_ERR(entry))
1464                                 error = PTR_ERR(entry);
1465                         else {
1466                                 swap = *entry;
1467                                 shmem_swp_unmap(entry);
1468                         }
1469                         if (error || swap.val || 0 != add_to_page_cache_lru(
1470                                         filepage, mapping, idx, GFP_NOWAIT)) {
1471                                 spin_unlock(&info->lock);
1472                                 mem_cgroup_uncharge_page(filepage);
1473                                 page_cache_release(filepage);
1474                                 shmem_unacct_blocks(info->flags, 1);
1475                                 shmem_free_blocks(inode, 1);
1476                                 filepage = NULL;
1477                                 if (error)
1478                                         goto failed;
1479                                 goto repeat;
1480                         }
1481                         mem_cgroup_uncharge_page(filepage);
1482                         info->flags |= SHMEM_PAGEIN;
1483                 }
1484
1485                 info->alloced++;
1486                 spin_unlock(&info->lock);
1487                 clear_highpage(filepage);
1488                 flush_dcache_page(filepage);
1489                 SetPageUptodate(filepage);
1490                 if (sgp == SGP_DIRTY)
1491                         set_page_dirty(filepage);
1492         }
1493 done:
1494         *pagep = filepage;
1495         return 0;
1496
1497 failed:
1498         if (*pagep != filepage) {
1499                 unlock_page(filepage);
1500                 page_cache_release(filepage);
1501         }
1502         return error;
1503 }
1504
1505 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1506 {
1507         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1508         int error;
1509         int ret;
1510
1511         if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1512                 return VM_FAULT_SIGBUS;
1513
1514         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1515         if (error)
1516                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1517
1518         mark_page_accessed(vmf->page);
1519         return ret | VM_FAULT_LOCKED;
1520 }
1521
1522 #ifdef CONFIG_NUMA
1523 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1524 {
1525         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1526         return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1527 }
1528
1529 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1530                                           unsigned long addr)
1531 {
1532         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1533         unsigned long idx;
1534
1535         idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1536         return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1537 }
1538 #endif
1539
1540 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1541 {
1542         struct inode *inode = file->f_path.dentry->d_inode;
1543         struct shmem_inode_info *info = SHMEM_I(inode);
1544         int retval = -ENOMEM;
1545
1546         spin_lock(&info->lock);
1547         if (lock && !(info->flags & VM_LOCKED)) {
1548                 if (!user_shm_lock(inode->i_size, user))
1549                         goto out_nomem;
1550                 info->flags |= VM_LOCKED;
1551         }
1552         if (!lock && (info->flags & VM_LOCKED) && user) {
1553                 user_shm_unlock(inode->i_size, user);
1554                 info->flags &= ~VM_LOCKED;
1555         }
1556         retval = 0;
1557 out_nomem:
1558         spin_unlock(&info->lock);
1559         return retval;
1560 }
1561
1562 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1563 {
1564         file_accessed(file);
1565         vma->vm_ops = &shmem_vm_ops;
1566         vma->vm_flags |= VM_CAN_NONLINEAR;
1567         return 0;
1568 }
1569
1570 static struct inode *
1571 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1572 {
1573         struct inode *inode;
1574         struct shmem_inode_info *info;
1575         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1576
1577         if (shmem_reserve_inode(sb))
1578                 return NULL;
1579
1580         inode = new_inode(sb);
1581         if (inode) {
1582                 inode->i_mode = mode;
1583                 inode->i_uid = current->fsuid;
1584                 inode->i_gid = current->fsgid;
1585                 inode->i_blocks = 0;
1586                 inode->i_mapping->a_ops = &shmem_aops;
1587                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1588                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1589                 inode->i_generation = get_seconds();
1590                 info = SHMEM_I(inode);
1591                 memset(info, 0, (char *)inode - (char *)info);
1592                 spin_lock_init(&info->lock);
1593                 INIT_LIST_HEAD(&info->swaplist);
1594
1595                 switch (mode & S_IFMT) {
1596                 default:
1597                         inode->i_op = &shmem_special_inode_operations;
1598                         init_special_inode(inode, mode, dev);
1599                         break;
1600                 case S_IFREG:
1601                         inode->i_op = &shmem_inode_operations;
1602                         inode->i_fop = &shmem_file_operations;
1603                         mpol_shared_policy_init(&info->policy, sbinfo->policy,
1604                                         sbinfo->flags, &sbinfo->policy_nodes);
1605                         break;
1606                 case S_IFDIR:
1607                         inc_nlink(inode);
1608                         /* Some things misbehave if size == 0 on a directory */
1609                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1610                         inode->i_op = &shmem_dir_inode_operations;
1611                         inode->i_fop = &simple_dir_operations;
1612                         break;
1613                 case S_IFLNK:
1614                         /*
1615                          * Must not load anything in the rbtree,
1616                          * mpol_free_shared_policy will not be called.
1617                          */
1618                         mpol_shared_policy_init(&info->policy, MPOL_DEFAULT, 0,
1619                                                 NULL);
1620                         break;
1621                 }
1622         } else
1623                 shmem_free_inode(sb);
1624         return inode;
1625 }
1626
1627 #ifdef CONFIG_TMPFS
1628 static const struct inode_operations shmem_symlink_inode_operations;
1629 static const struct inode_operations shmem_symlink_inline_operations;
1630
1631 /*
1632  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1633  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1634  * below the loop driver, in the generic fashion that many filesystems support.
1635  */
1636 static int shmem_readpage(struct file *file, struct page *page)
1637 {
1638         struct inode *inode = page->mapping->host;
1639         int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1640         unlock_page(page);
1641         return error;
1642 }
1643
1644 static int
1645 shmem_write_begin(struct file *file, struct address_space *mapping,
1646                         loff_t pos, unsigned len, unsigned flags,
1647                         struct page **pagep, void **fsdata)
1648 {
1649         struct inode *inode = mapping->host;
1650         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1651         *pagep = NULL;
1652         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1653 }
1654
1655 static int
1656 shmem_write_end(struct file *file, struct address_space *mapping,
1657                         loff_t pos, unsigned len, unsigned copied,
1658                         struct page *page, void *fsdata)
1659 {
1660         struct inode *inode = mapping->host;
1661
1662         if (pos + copied > inode->i_size)
1663                 i_size_write(inode, pos + copied);
1664
1665         unlock_page(page);
1666         set_page_dirty(page);
1667         page_cache_release(page);
1668
1669         return copied;
1670 }
1671
1672 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1673 {
1674         struct inode *inode = filp->f_path.dentry->d_inode;
1675         struct address_space *mapping = inode->i_mapping;
1676         unsigned long index, offset;
1677         enum sgp_type sgp = SGP_READ;
1678
1679         /*
1680          * Might this read be for a stacking filesystem?  Then when reading
1681          * holes of a sparse file, we actually need to allocate those pages,
1682          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1683          */
1684         if (segment_eq(get_fs(), KERNEL_DS))
1685                 sgp = SGP_DIRTY;
1686
1687         index = *ppos >> PAGE_CACHE_SHIFT;
1688         offset = *ppos & ~PAGE_CACHE_MASK;
1689
1690         for (;;) {
1691                 struct page *page = NULL;
1692                 unsigned long end_index, nr, ret;
1693                 loff_t i_size = i_size_read(inode);
1694
1695                 end_index = i_size >> PAGE_CACHE_SHIFT;
1696                 if (index > end_index)
1697                         break;
1698                 if (index == end_index) {
1699                         nr = i_size & ~PAGE_CACHE_MASK;
1700                         if (nr <= offset)
1701                                 break;
1702                 }
1703
1704                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1705                 if (desc->error) {
1706                         if (desc->error == -EINVAL)
1707                                 desc->error = 0;
1708                         break;
1709                 }
1710                 if (page)
1711                         unlock_page(page);
1712
1713                 /*
1714                  * We must evaluate after, since reads (unlike writes)
1715                  * are called without i_mutex protection against truncate
1716                  */
1717                 nr = PAGE_CACHE_SIZE;
1718                 i_size = i_size_read(inode);
1719                 end_index = i_size >> PAGE_CACHE_SHIFT;
1720                 if (index == end_index) {
1721                         nr = i_size & ~PAGE_CACHE_MASK;
1722                         if (nr <= offset) {
1723                                 if (page)
1724                                         page_cache_release(page);
1725                                 break;
1726                         }
1727                 }
1728                 nr -= offset;
1729
1730                 if (page) {
1731                         /*
1732                          * If users can be writing to this page using arbitrary
1733                          * virtual addresses, take care about potential aliasing
1734                          * before reading the page on the kernel side.
1735                          */
1736                         if (mapping_writably_mapped(mapping))
1737                                 flush_dcache_page(page);
1738                         /*
1739                          * Mark the page accessed if we read the beginning.
1740                          */
1741                         if (!offset)
1742                                 mark_page_accessed(page);
1743                 } else {
1744                         page = ZERO_PAGE(0);
1745                         page_cache_get(page);
1746                 }
1747
1748                 /*
1749                  * Ok, we have the page, and it's up-to-date, so
1750                  * now we can copy it to user space...
1751                  *
1752                  * The actor routine returns how many bytes were actually used..
1753                  * NOTE! This may not be the same as how much of a user buffer
1754                  * we filled up (we may be padding etc), so we can only update
1755                  * "pos" here (the actor routine has to update the user buffer
1756                  * pointers and the remaining count).
1757                  */
1758                 ret = actor(desc, page, offset, nr);
1759                 offset += ret;
1760                 index += offset >> PAGE_CACHE_SHIFT;
1761                 offset &= ~PAGE_CACHE_MASK;
1762
1763                 page_cache_release(page);
1764                 if (ret != nr || !desc->count)
1765                         break;
1766
1767                 cond_resched();
1768         }
1769
1770         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1771         file_accessed(filp);
1772 }
1773
1774 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1775 {
1776         read_descriptor_t desc;
1777
1778         if ((ssize_t) count < 0)
1779                 return -EINVAL;
1780         if (!access_ok(VERIFY_WRITE, buf, count))
1781                 return -EFAULT;
1782         if (!count)
1783                 return 0;
1784
1785         desc.written = 0;
1786         desc.count = count;
1787         desc.arg.buf = buf;
1788         desc.error = 0;
1789
1790         do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1791         if (desc.written)
1792                 return desc.written;
1793         return desc.error;
1794 }
1795
1796 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1797 {
1798         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1799
1800         buf->f_type = TMPFS_MAGIC;
1801         buf->f_bsize = PAGE_CACHE_SIZE;
1802         buf->f_namelen = NAME_MAX;
1803         spin_lock(&sbinfo->stat_lock);
1804         if (sbinfo->max_blocks) {
1805                 buf->f_blocks = sbinfo->max_blocks;
1806                 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1807         }
1808         if (sbinfo->max_inodes) {
1809                 buf->f_files = sbinfo->max_inodes;
1810                 buf->f_ffree = sbinfo->free_inodes;
1811         }
1812         /* else leave those fields 0 like simple_statfs */
1813         spin_unlock(&sbinfo->stat_lock);
1814         return 0;
1815 }
1816
1817 /*
1818  * File creation. Allocate an inode, and we're done..
1819  */
1820 static int
1821 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1822 {
1823         struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1824         int error = -ENOSPC;
1825
1826         if (inode) {
1827                 error = security_inode_init_security(inode, dir, NULL, NULL,
1828                                                      NULL);
1829                 if (error) {
1830                         if (error != -EOPNOTSUPP) {
1831                                 iput(inode);
1832                                 return error;
1833                         }
1834                 }
1835                 error = shmem_acl_init(inode, dir);
1836                 if (error) {
1837                         iput(inode);
1838                         return error;
1839                 }
1840                 if (dir->i_mode & S_ISGID) {
1841                         inode->i_gid = dir->i_gid;
1842                         if (S_ISDIR(mode))
1843                                 inode->i_mode |= S_ISGID;
1844                 }
1845                 dir->i_size += BOGO_DIRENT_SIZE;
1846                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1847                 d_instantiate(dentry, inode);
1848                 dget(dentry); /* Extra count - pin the dentry in core */
1849         }
1850         return error;
1851 }
1852
1853 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1854 {
1855         int error;
1856
1857         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1858                 return error;
1859         inc_nlink(dir);
1860         return 0;
1861 }
1862
1863 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1864                 struct nameidata *nd)
1865 {
1866         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1867 }
1868
1869 /*
1870  * Link a file..
1871  */
1872 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1873 {
1874         struct inode *inode = old_dentry->d_inode;
1875         int ret;
1876
1877         /*
1878          * No ordinary (disk based) filesystem counts links as inodes;
1879          * but each new link needs a new dentry, pinning lowmem, and
1880          * tmpfs dentries cannot be pruned until they are unlinked.
1881          */
1882         ret = shmem_reserve_inode(inode->i_sb);
1883         if (ret)
1884                 goto out;
1885
1886         dir->i_size += BOGO_DIRENT_SIZE;
1887         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1888         inc_nlink(inode);
1889         atomic_inc(&inode->i_count);    /* New dentry reference */
1890         dget(dentry);           /* Extra pinning count for the created dentry */
1891         d_instantiate(dentry, inode);
1892 out:
1893         return ret;
1894 }
1895
1896 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1897 {
1898         struct inode *inode = dentry->d_inode;
1899
1900         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1901                 shmem_free_inode(inode->i_sb);
1902
1903         dir->i_size -= BOGO_DIRENT_SIZE;
1904         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1905         drop_nlink(inode);
1906         dput(dentry);   /* Undo the count from "create" - this does all the work */
1907         return 0;
1908 }
1909
1910 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1911 {
1912         if (!simple_empty(dentry))
1913                 return -ENOTEMPTY;
1914
1915         drop_nlink(dentry->d_inode);
1916         drop_nlink(dir);
1917         return shmem_unlink(dir, dentry);
1918 }
1919
1920 /*
1921  * The VFS layer already does all the dentry stuff for rename,
1922  * we just have to decrement the usage count for the target if
1923  * it exists so that the VFS layer correctly free's it when it
1924  * gets overwritten.
1925  */
1926 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1927 {
1928         struct inode *inode = old_dentry->d_inode;
1929         int they_are_dirs = S_ISDIR(inode->i_mode);
1930
1931         if (!simple_empty(new_dentry))
1932                 return -ENOTEMPTY;
1933
1934         if (new_dentry->d_inode) {
1935                 (void) shmem_unlink(new_dir, new_dentry);
1936                 if (they_are_dirs)
1937                         drop_nlink(old_dir);
1938         } else if (they_are_dirs) {
1939                 drop_nlink(old_dir);
1940                 inc_nlink(new_dir);
1941         }
1942
1943         old_dir->i_size -= BOGO_DIRENT_SIZE;
1944         new_dir->i_size += BOGO_DIRENT_SIZE;
1945         old_dir->i_ctime = old_dir->i_mtime =
1946         new_dir->i_ctime = new_dir->i_mtime =
1947         inode->i_ctime = CURRENT_TIME;
1948         return 0;
1949 }
1950
1951 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1952 {
1953         int error;
1954         int len;
1955         struct inode *inode;
1956         struct page *page = NULL;
1957         char *kaddr;
1958         struct shmem_inode_info *info;
1959
1960         len = strlen(symname) + 1;
1961         if (len > PAGE_CACHE_SIZE)
1962                 return -ENAMETOOLONG;
1963
1964         inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1965         if (!inode)
1966                 return -ENOSPC;
1967
1968         error = security_inode_init_security(inode, dir, NULL, NULL,
1969                                              NULL);
1970         if (error) {
1971                 if (error != -EOPNOTSUPP) {
1972                         iput(inode);
1973                         return error;
1974                 }
1975                 error = 0;
1976         }
1977
1978         info = SHMEM_I(inode);
1979         inode->i_size = len-1;
1980         if (len <= (char *)inode - (char *)info) {
1981                 /* do it inline */
1982                 memcpy(info, symname, len);
1983                 inode->i_op = &shmem_symlink_inline_operations;
1984         } else {
1985                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1986                 if (error) {
1987                         iput(inode);
1988                         return error;
1989                 }
1990                 unlock_page(page);
1991                 inode->i_op = &shmem_symlink_inode_operations;
1992                 kaddr = kmap_atomic(page, KM_USER0);
1993                 memcpy(kaddr, symname, len);
1994                 kunmap_atomic(kaddr, KM_USER0);
1995                 set_page_dirty(page);
1996                 page_cache_release(page);
1997         }
1998         if (dir->i_mode & S_ISGID)
1999                 inode->i_gid = dir->i_gid;
2000         dir->i_size += BOGO_DIRENT_SIZE;
2001         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2002         d_instantiate(dentry, inode);
2003         dget(dentry);
2004         return 0;
2005 }
2006
2007 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2008 {
2009         nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2010         return NULL;
2011 }
2012
2013 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2014 {
2015         struct page *page = NULL;
2016         int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2017         nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2018         if (page)
2019                 unlock_page(page);
2020         return page;
2021 }
2022
2023 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2024 {
2025         if (!IS_ERR(nd_get_link(nd))) {
2026                 struct page *page = cookie;
2027                 kunmap(page);
2028                 mark_page_accessed(page);
2029                 page_cache_release(page);
2030         }
2031 }
2032
2033 static const struct inode_operations shmem_symlink_inline_operations = {
2034         .readlink       = generic_readlink,
2035         .follow_link    = shmem_follow_link_inline,
2036 };
2037
2038 static const struct inode_operations shmem_symlink_inode_operations = {
2039         .truncate       = shmem_truncate,
2040         .readlink       = generic_readlink,
2041         .follow_link    = shmem_follow_link,
2042         .put_link       = shmem_put_link,
2043 };
2044
2045 #ifdef CONFIG_TMPFS_POSIX_ACL
2046 /*
2047  * Superblocks without xattr inode operations will get security.* xattr
2048  * support from the VFS "for free". As soon as we have any other xattrs
2049  * like ACLs, we also need to implement the security.* handlers at
2050  * filesystem level, though.
2051  */
2052
2053 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2054                                         size_t list_len, const char *name,
2055                                         size_t name_len)
2056 {
2057         return security_inode_listsecurity(inode, list, list_len);
2058 }
2059
2060 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2061                                     void *buffer, size_t size)
2062 {
2063         if (strcmp(name, "") == 0)
2064                 return -EINVAL;
2065         return xattr_getsecurity(inode, name, buffer, size);
2066 }
2067
2068 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2069                                     const void *value, size_t size, int flags)
2070 {
2071         if (strcmp(name, "") == 0)
2072                 return -EINVAL;
2073         return security_inode_setsecurity(inode, name, value, size, flags);
2074 }
2075
2076 static struct xattr_handler shmem_xattr_security_handler = {
2077         .prefix = XATTR_SECURITY_PREFIX,
2078         .list   = shmem_xattr_security_list,
2079         .get    = shmem_xattr_security_get,
2080         .set    = shmem_xattr_security_set,
2081 };
2082
2083 static struct xattr_handler *shmem_xattr_handlers[] = {
2084         &shmem_xattr_acl_access_handler,
2085         &shmem_xattr_acl_default_handler,
2086         &shmem_xattr_security_handler,
2087         NULL
2088 };
2089 #endif
2090
2091 static struct dentry *shmem_get_parent(struct dentry *child)
2092 {
2093         return ERR_PTR(-ESTALE);
2094 }
2095
2096 static int shmem_match(struct inode *ino, void *vfh)
2097 {
2098         __u32 *fh = vfh;
2099         __u64 inum = fh[2];
2100         inum = (inum << 32) | fh[1];
2101         return ino->i_ino == inum && fh[0] == ino->i_generation;
2102 }
2103
2104 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2105                 struct fid *fid, int fh_len, int fh_type)
2106 {
2107         struct inode *inode;
2108         struct dentry *dentry = NULL;
2109         u64 inum = fid->raw[2];
2110         inum = (inum << 32) | fid->raw[1];
2111
2112         if (fh_len < 3)
2113                 return NULL;
2114
2115         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2116                         shmem_match, fid->raw);
2117         if (inode) {
2118                 dentry = d_find_alias(inode);
2119                 iput(inode);
2120         }
2121
2122         return dentry;
2123 }
2124
2125 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2126                                 int connectable)
2127 {
2128         struct inode *inode = dentry->d_inode;
2129
2130         if (*len < 3)
2131                 return 255;
2132
2133         if (hlist_unhashed(&inode->i_hash)) {
2134                 /* Unfortunately insert_inode_hash is not idempotent,
2135                  * so as we hash inodes here rather than at creation
2136                  * time, we need a lock to ensure we only try
2137                  * to do it once
2138                  */
2139                 static DEFINE_SPINLOCK(lock);
2140                 spin_lock(&lock);
2141                 if (hlist_unhashed(&inode->i_hash))
2142                         __insert_inode_hash(inode,
2143                                             inode->i_ino + inode->i_generation);
2144                 spin_unlock(&lock);
2145         }
2146
2147         fh[0] = inode->i_generation;
2148         fh[1] = inode->i_ino;
2149         fh[2] = ((__u64)inode->i_ino) >> 32;
2150
2151         *len = 3;
2152         return 1;
2153 }
2154
2155 static const struct export_operations shmem_export_ops = {
2156         .get_parent     = shmem_get_parent,
2157         .encode_fh      = shmem_encode_fh,
2158         .fh_to_dentry   = shmem_fh_to_dentry,
2159 };
2160
2161 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2162                                bool remount)
2163 {
2164         char *this_char, *value, *rest;
2165
2166         while (options != NULL) {
2167                 this_char = options;
2168                 for (;;) {
2169                         /*
2170                          * NUL-terminate this option: unfortunately,
2171                          * mount options form a comma-separated list,
2172                          * but mpol's nodelist may also contain commas.
2173                          */
2174                         options = strchr(options, ',');
2175                         if (options == NULL)
2176                                 break;
2177                         options++;
2178                         if (!isdigit(*options)) {
2179                                 options[-1] = '\0';
2180                                 break;
2181                         }
2182                 }
2183                 if (!*this_char)
2184                         continue;
2185                 if ((value = strchr(this_char,'=')) != NULL) {
2186                         *value++ = 0;
2187                 } else {
2188                         printk(KERN_ERR
2189                             "tmpfs: No value for mount option '%s'\n",
2190                             this_char);
2191                         return 1;
2192                 }
2193
2194                 if (!strcmp(this_char,"size")) {
2195                         unsigned long long size;
2196                         size = memparse(value,&rest);
2197                         if (*rest == '%') {
2198                                 size <<= PAGE_SHIFT;
2199                                 size *= totalram_pages;
2200                                 do_div(size, 100);
2201                                 rest++;
2202                         }
2203                         if (*rest)
2204                                 goto bad_val;
2205                         sbinfo->max_blocks =
2206                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2207                 } else if (!strcmp(this_char,"nr_blocks")) {
2208                         sbinfo->max_blocks = memparse(value, &rest);
2209                         if (*rest)
2210                                 goto bad_val;
2211                 } else if (!strcmp(this_char,"nr_inodes")) {
2212                         sbinfo->max_inodes = memparse(value, &rest);
2213                         if (*rest)
2214                                 goto bad_val;
2215                 } else if (!strcmp(this_char,"mode")) {
2216                         if (remount)
2217                                 continue;
2218                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2219                         if (*rest)
2220                                 goto bad_val;
2221                 } else if (!strcmp(this_char,"uid")) {
2222                         if (remount)
2223                                 continue;
2224                         sbinfo->uid = simple_strtoul(value, &rest, 0);
2225                         if (*rest)
2226                                 goto bad_val;
2227                 } else if (!strcmp(this_char,"gid")) {
2228                         if (remount)
2229                                 continue;
2230                         sbinfo->gid = simple_strtoul(value, &rest, 0);
2231                         if (*rest)
2232                                 goto bad_val;
2233                 } else if (!strcmp(this_char,"mpol")) {
2234                         if (shmem_parse_mpol(value, &sbinfo->policy,
2235                                 &sbinfo->flags, &sbinfo->policy_nodes))
2236                                 goto bad_val;
2237                 } else {
2238                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2239                                this_char);
2240                         return 1;
2241                 }
2242         }
2243         return 0;
2244
2245 bad_val:
2246         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2247                value, this_char);
2248         return 1;
2249
2250 }
2251
2252 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2253 {
2254         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2255         struct shmem_sb_info config = *sbinfo;
2256         unsigned long blocks;
2257         unsigned long inodes;
2258         int error = -EINVAL;
2259
2260         if (shmem_parse_options(data, &config, true))
2261                 return error;
2262
2263         spin_lock(&sbinfo->stat_lock);
2264         blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2265         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2266         if (config.max_blocks < blocks)
2267                 goto out;
2268         if (config.max_inodes < inodes)
2269                 goto out;
2270         /*
2271          * Those tests also disallow limited->unlimited while any are in
2272          * use, so i_blocks will always be zero when max_blocks is zero;
2273          * but we must separately disallow unlimited->limited, because
2274          * in that case we have no record of how much is already in use.
2275          */
2276         if (config.max_blocks && !sbinfo->max_blocks)
2277                 goto out;
2278         if (config.max_inodes && !sbinfo->max_inodes)
2279                 goto out;
2280
2281         error = 0;
2282         sbinfo->max_blocks  = config.max_blocks;
2283         sbinfo->free_blocks = config.max_blocks - blocks;
2284         sbinfo->max_inodes  = config.max_inodes;
2285         sbinfo->free_inodes = config.max_inodes - inodes;
2286         sbinfo->policy      = config.policy;
2287         sbinfo->flags       = config.flags;
2288         sbinfo->policy_nodes = config.policy_nodes;
2289 out:
2290         spin_unlock(&sbinfo->stat_lock);
2291         return error;
2292 }
2293
2294 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2295 {
2296         struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2297
2298         if (sbinfo->max_blocks != shmem_default_max_blocks())
2299                 seq_printf(seq, ",size=%luk",
2300                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2301         if (sbinfo->max_inodes != shmem_default_max_inodes())
2302                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2303         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2304                 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2305         if (sbinfo->uid != 0)
2306                 seq_printf(seq, ",uid=%u", sbinfo->uid);
2307         if (sbinfo->gid != 0)
2308                 seq_printf(seq, ",gid=%u", sbinfo->gid);
2309         shmem_show_mpol(seq, sbinfo->policy, sbinfo->flags,
2310                         sbinfo->policy_nodes);
2311         return 0;
2312 }
2313 #endif /* CONFIG_TMPFS */
2314
2315 static void shmem_put_super(struct super_block *sb)
2316 {
2317         kfree(sb->s_fs_info);
2318         sb->s_fs_info = NULL;
2319 }
2320
2321 static int shmem_fill_super(struct super_block *sb,
2322                             void *data, int silent)
2323 {
2324         struct inode *inode;
2325         struct dentry *root;
2326         struct shmem_sb_info *sbinfo;
2327         int err = -ENOMEM;
2328
2329         /* Round up to L1_CACHE_BYTES to resist false sharing */
2330         sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2331                                 L1_CACHE_BYTES), GFP_KERNEL);
2332         if (!sbinfo)
2333                 return -ENOMEM;
2334
2335         sbinfo->max_blocks = 0;
2336         sbinfo->max_inodes = 0;
2337         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2338         sbinfo->uid = current->fsuid;
2339         sbinfo->gid = current->fsgid;
2340         sbinfo->policy = MPOL_DEFAULT;
2341         sbinfo->flags = 0;
2342         sbinfo->policy_nodes = node_states[N_HIGH_MEMORY];
2343         sb->s_fs_info = sbinfo;
2344
2345 #ifdef CONFIG_TMPFS
2346         /*
2347          * Per default we only allow half of the physical ram per
2348          * tmpfs instance, limiting inodes to one per page of lowmem;
2349          * but the internal instance is left unlimited.
2350          */
2351         if (!(sb->s_flags & MS_NOUSER)) {
2352                 sbinfo->max_blocks = shmem_default_max_blocks();
2353                 sbinfo->max_inodes = shmem_default_max_inodes();
2354                 if (shmem_parse_options(data, sbinfo, false)) {
2355                         err = -EINVAL;
2356                         goto failed;
2357                 }
2358         }
2359         sb->s_export_op = &shmem_export_ops;
2360 #else
2361         sb->s_flags |= MS_NOUSER;
2362 #endif
2363
2364         spin_lock_init(&sbinfo->stat_lock);
2365         sbinfo->free_blocks = sbinfo->max_blocks;
2366         sbinfo->free_inodes = sbinfo->max_inodes;
2367
2368         sb->s_maxbytes = SHMEM_MAX_BYTES;
2369         sb->s_blocksize = PAGE_CACHE_SIZE;
2370         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2371         sb->s_magic = TMPFS_MAGIC;
2372         sb->s_op = &shmem_ops;
2373         sb->s_time_gran = 1;
2374 #ifdef CONFIG_TMPFS_POSIX_ACL
2375         sb->s_xattr = shmem_xattr_handlers;
2376         sb->s_flags |= MS_POSIXACL;
2377 #endif
2378
2379         inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2380         if (!inode)
2381                 goto failed;
2382         inode->i_uid = sbinfo->uid;
2383         inode->i_gid = sbinfo->gid;
2384         root = d_alloc_root(inode);
2385         if (!root)
2386                 goto failed_iput;
2387         sb->s_root = root;
2388         return 0;
2389
2390 failed_iput:
2391         iput(inode);
2392 failed:
2393         shmem_put_super(sb);
2394         return err;
2395 }
2396
2397 static struct kmem_cache *shmem_inode_cachep;
2398
2399 static struct inode *shmem_alloc_inode(struct super_block *sb)
2400 {
2401         struct shmem_inode_info *p;
2402         p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2403         if (!p)
2404                 return NULL;
2405         return &p->vfs_inode;
2406 }
2407
2408 static void shmem_destroy_inode(struct inode *inode)
2409 {
2410         if ((inode->i_mode & S_IFMT) == S_IFREG) {
2411                 /* only struct inode is valid if it's an inline symlink */
2412                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2413         }
2414         shmem_acl_destroy_inode(inode);
2415         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2416 }
2417
2418 static void init_once(struct kmem_cache *cachep, void *foo)
2419 {
2420         struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2421
2422         inode_init_once(&p->vfs_inode);
2423 #ifdef CONFIG_TMPFS_POSIX_ACL
2424         p->i_acl = NULL;
2425         p->i_default_acl = NULL;
2426 #endif
2427 }
2428
2429 static int init_inodecache(void)
2430 {
2431         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2432                                 sizeof(struct shmem_inode_info),
2433                                 0, SLAB_PANIC, init_once);
2434         return 0;
2435 }
2436
2437 static void destroy_inodecache(void)
2438 {
2439         kmem_cache_destroy(shmem_inode_cachep);
2440 }
2441
2442 static const struct address_space_operations shmem_aops = {
2443         .writepage      = shmem_writepage,
2444         .set_page_dirty = __set_page_dirty_no_writeback,
2445 #ifdef CONFIG_TMPFS
2446         .readpage       = shmem_readpage,
2447         .write_begin    = shmem_write_begin,
2448         .write_end      = shmem_write_end,
2449 #endif
2450         .migratepage    = migrate_page,
2451 };
2452
2453 static const struct file_operations shmem_file_operations = {
2454         .mmap           = shmem_mmap,
2455 #ifdef CONFIG_TMPFS
2456         .llseek         = generic_file_llseek,
2457         .read           = shmem_file_read,
2458         .write          = do_sync_write,
2459         .aio_write      = generic_file_aio_write,
2460         .fsync          = simple_sync_file,
2461         .splice_read    = generic_file_splice_read,
2462         .splice_write   = generic_file_splice_write,
2463 #endif
2464 };
2465
2466 static const struct inode_operations shmem_inode_operations = {
2467         .truncate       = shmem_truncate,
2468         .setattr        = shmem_notify_change,
2469         .truncate_range = shmem_truncate_range,
2470 #ifdef CONFIG_TMPFS_POSIX_ACL
2471         .setxattr       = generic_setxattr,
2472         .getxattr       = generic_getxattr,
2473         .listxattr      = generic_listxattr,
2474         .removexattr    = generic_removexattr,
2475         .permission     = shmem_permission,
2476 #endif
2477
2478 };
2479
2480 static const struct inode_operations shmem_dir_inode_operations = {
2481 #ifdef CONFIG_TMPFS
2482         .create         = shmem_create,
2483         .lookup         = simple_lookup,
2484         .link           = shmem_link,
2485         .unlink         = shmem_unlink,
2486         .symlink        = shmem_symlink,
2487         .mkdir          = shmem_mkdir,
2488         .rmdir          = shmem_rmdir,
2489         .mknod          = shmem_mknod,
2490         .rename         = shmem_rename,
2491 #endif
2492 #ifdef CONFIG_TMPFS_POSIX_ACL
2493         .setattr        = shmem_notify_change,
2494         .setxattr       = generic_setxattr,
2495         .getxattr       = generic_getxattr,
2496         .listxattr      = generic_listxattr,
2497         .removexattr    = generic_removexattr,
2498         .permission     = shmem_permission,
2499 #endif
2500 };
2501
2502 static const struct inode_operations shmem_special_inode_operations = {
2503 #ifdef CONFIG_TMPFS_POSIX_ACL
2504         .setattr        = shmem_notify_change,
2505         .setxattr       = generic_setxattr,
2506         .getxattr       = generic_getxattr,
2507         .listxattr      = generic_listxattr,
2508         .removexattr    = generic_removexattr,
2509         .permission     = shmem_permission,
2510 #endif
2511 };
2512
2513 static const struct super_operations shmem_ops = {
2514         .alloc_inode    = shmem_alloc_inode,
2515         .destroy_inode  = shmem_destroy_inode,
2516 #ifdef CONFIG_TMPFS
2517         .statfs         = shmem_statfs,
2518         .remount_fs     = shmem_remount_fs,
2519         .show_options   = shmem_show_options,
2520 #endif
2521         .delete_inode   = shmem_delete_inode,
2522         .drop_inode     = generic_delete_inode,
2523         .put_super      = shmem_put_super,
2524 };
2525
2526 static struct vm_operations_struct shmem_vm_ops = {
2527         .fault          = shmem_fault,
2528 #ifdef CONFIG_NUMA
2529         .set_policy     = shmem_set_policy,
2530         .get_policy     = shmem_get_policy,
2531 #endif
2532 };
2533
2534
2535 static int shmem_get_sb(struct file_system_type *fs_type,
2536         int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2537 {
2538         return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2539 }
2540
2541 static struct file_system_type tmpfs_fs_type = {
2542         .owner          = THIS_MODULE,
2543         .name           = "tmpfs",
2544         .get_sb         = shmem_get_sb,
2545         .kill_sb        = kill_litter_super,
2546 };
2547 static struct vfsmount *shm_mnt;
2548
2549 static int __init init_tmpfs(void)
2550 {
2551         int error;
2552
2553         error = bdi_init(&shmem_backing_dev_info);
2554         if (error)
2555                 goto out4;
2556
2557         error = init_inodecache();
2558         if (error)
2559                 goto out3;
2560
2561         error = register_filesystem(&tmpfs_fs_type);
2562         if (error) {
2563                 printk(KERN_ERR "Could not register tmpfs\n");
2564                 goto out2;
2565         }
2566
2567         shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2568                                 tmpfs_fs_type.name, NULL);
2569         if (IS_ERR(shm_mnt)) {
2570                 error = PTR_ERR(shm_mnt);
2571                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2572                 goto out1;
2573         }
2574         return 0;
2575
2576 out1:
2577         unregister_filesystem(&tmpfs_fs_type);
2578 out2:
2579         destroy_inodecache();
2580 out3:
2581         bdi_destroy(&shmem_backing_dev_info);
2582 out4:
2583         shm_mnt = ERR_PTR(error);
2584         return error;
2585 }
2586 module_init(init_tmpfs)
2587
2588 /**
2589  * shmem_file_setup - get an unlinked file living in tmpfs
2590  * @name: name for dentry (to be seen in /proc/<pid>/maps
2591  * @size: size to be set for the file
2592  * @flags: vm_flags
2593  */
2594 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2595 {
2596         int error;
2597         struct file *file;
2598         struct inode *inode;
2599         struct dentry *dentry, *root;
2600         struct qstr this;
2601
2602         if (IS_ERR(shm_mnt))
2603                 return (void *)shm_mnt;
2604
2605         if (size < 0 || size > SHMEM_MAX_BYTES)
2606                 return ERR_PTR(-EINVAL);
2607
2608         if (shmem_acct_size(flags, size))
2609                 return ERR_PTR(-ENOMEM);
2610
2611         error = -ENOMEM;
2612         this.name = name;
2613         this.len = strlen(name);
2614         this.hash = 0; /* will go */
2615         root = shm_mnt->mnt_root;
2616         dentry = d_alloc(root, &this);
2617         if (!dentry)
2618                 goto put_memory;
2619
2620         error = -ENFILE;
2621         file = get_empty_filp();
2622         if (!file)
2623                 goto put_dentry;
2624
2625         error = -ENOSPC;
2626         inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2627         if (!inode)
2628                 goto close_file;
2629
2630         SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2631         d_instantiate(dentry, inode);
2632         inode->i_size = size;
2633         inode->i_nlink = 0;     /* It is unlinked */
2634         init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2635                         &shmem_file_operations);
2636         return file;
2637
2638 close_file:
2639         put_filp(file);
2640 put_dentry:
2641         dput(dentry);
2642 put_memory:
2643         shmem_unacct_size(flags, size);
2644         return ERR_PTR(error);
2645 }
2646
2647 /**
2648  * shmem_zero_setup - setup a shared anonymous mapping
2649  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2650  */
2651 int shmem_zero_setup(struct vm_area_struct *vma)
2652 {
2653         struct file *file;
2654         loff_t size = vma->vm_end - vma->vm_start;
2655
2656         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2657         if (IS_ERR(file))
2658                 return PTR_ERR(file);
2659
2660         if (vma->vm_file)
2661                 fput(vma->vm_file);
2662         vma->vm_file = file;
2663         vma->vm_ops = &shmem_vm_ops;
2664         return 0;
2665 }